Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid
2015-01-01
Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231
Community trait overdispersion due to trophic interactions: concerns for assembly process inference
Petchey, Owen L.
2016-01-01
The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference. PMID:27733548
Lorenz, Kim; Cohen, Barak A.
2012-01-01
Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125
Salminen, Mikko; Ravaja, Niklas
2017-01-01
Performance review discussions of real manager–subordinate pairs were examined in two studies to investigate the effects of trait emotional intelligence (EI) on dyad member’s felt and expressed emotions. Altogether there were 84 managers and 122 subordinates in two studies using 360 measured and self-reported trait EI. Facial electromyography, and frontal electroencephalography (EEG) asymmetry were collected continuously. Manager’s high trait EI was related to increased positive valence emotional facial expressions in the dyad during the discussions. The managers also had more EEG frontal asymmetry indicating approach motivation, than the subordinates. In addition, actor and partner effects and actor × partner interactions, and interactions between the role and actor or partner effect of trait EI were observed. Both actor and partner trait EI were related to more positive self-reported emotional valence. The results imply that trait EI has a role in organizational social interaction. PMID:28400747
Cuperman, Ronen; Ickes, William
2009-10-01
The authors used the unstructured dyadic interaction paradigm to examine the effects of gender and the Big Five personality traits on dyad members' behaviors and perceptions in 87 initial, unstructured interactions. Most of the significant Big Five effects (84%) were associated with the traits of Extraversion and Agreeableness. There were several significant actor and partner effects for both of these traits. However, the most interesting and novel effects took the form of significant Actor x Partner interactions. Personality similarity resulted in relatively good initial interactions for dyads composed of 2 extraverts or 2 introverts, when compared with dissimilar (extravert-introvert) pairs. However, personality similarity resulted in uniquely poor initial interactions for dyads composed of 2 "disagreeables." In summary, the Big Five traits predict behavior and perceptions in initial dyadic interactions, not just in the form of actor and partner "main effects" but also in the form of Actor x Partner interactions. 2009 APA, all rights reserved.
Fields, Margaret A.; Cole, Pamela M.; Maggi, Mirella C.
2016-01-01
We investigated the degree to which toddlers’ observed emotional states, toddlers’ temperamental traits, and their interaction accounted for variance in mothers’ and fathers’ parenting. Main effects of two emotional states (positive emotion and negative emotion), three temperamental traits (negative affectivity, effortful control, and surgency) as well as state-by-trait interactions, were examined in relation to parental sensitivity, positive affect, and negative affect. The hypothesis that toddlers’ temperamental traits would moderate the association between their observed emotional states and parenting was partially supported. Significant state-by-trait interactions were found in models predicting the probability that mothers and fathers expressed negative affect towards their toddlers. For parental sensitivity and positive affect, only main effects of temperament and/or emotion expression accounted for variance in parenting. PMID:28479643
Vega-Trejo, Regina; Head, Megan L; Jennions, Michael D; Kruuk, Loeske E B
2018-01-01
The impact of environmental conditions on the expression of genetic variance and on maternal effects variance remains an important question in evolutionary quantitative genetics. We investigate here the effects of early environment on variation in seven adult life history, morphological, and secondary sexual traits (including sperm characteristics) in a viviparous poeciliid fish, the mosquitofish Gambusia holbrooki. Specifically, we manipulated food availability during early development and then assessed additive genetic and maternal effects contributions to the overall phenotypic variance in adults. We found higher heritability for female than male traits, but maternal effects variance for traits in both sexes. An interaction between maternal effects variance and rearing environment affected two adult traits (female age at maturity and male size at maturity), but there was no evidence of trade-offs in maternal effects across environments. Our results illustrate (i) the potential for pre-natal maternal effects to interact with offspring environment during development, potentially affecting traits through to adulthood and (ii) that genotype-by-environment interactions might be overestimated if maternal-by-environment interactions are not accounted for, similar to heritability being overestimated if maternal effects are ignored. We also discuss the potential for dominance genetic variance to contribute to the estimate of maternal effects variance.
The heritable basis of gene-environment interactions in cardiometabolic traits.
Poveda, Alaitz; Chen, Yan; Brändström, Anders; Engberg, Elisabeth; Hallmans, Göran; Johansson, Ingegerd; Renström, Frida; Kurbasic, Azra; Franks, Paul W
2017-03-01
Little is known about the heritable basis of gene-environment interactions in humans. We therefore screened multiple cardiometabolic traits to assess the probability that they are influenced by genotype-environment interactions. Fourteen established environmental risk exposures and 11 cardiometabolic traits were analysed in the VIKING study, a cohort of 16,430 Swedish adults from 1682 extended pedigrees with available detailed genealogical, phenotypic and demographic information, using a maximum likelihood variance decomposition method in Sequential Oligogenic Linkage Analysis Routines software. All cardiometabolic traits had statistically significant heritability estimates, with narrow-sense heritabilities (h 2 ) ranging from 24% to 47%. Genotype-environment interactions were detected for age and sex (for the majority of traits), physical activity (for triacylglycerols, 2 h glucose and diastolic BP), smoking (for weight), alcohol intake (for weight, BMI and 2 h glucose) and diet pattern (for weight, BMI, glycaemic traits and systolic BP). Genotype-age interactions for weight and systolic BP, genotype-sex interactions for BMI and triacylglycerols and genotype-alcohol intake interactions for weight remained significant after multiple test correction. Age, sex and alcohol intake are likely to be major modifiers of genetic effects for a range of cardiometabolic traits. This information may prove valuable for studies that seek to identify specific loci that modify the effects of lifestyle in cardiometabolic disease.
William R. Glenny; Justin B. Runyon; Laura A. Burkle
2018-01-01
Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...
Luo, Xingguang; Zuo, Lingjun; Kranzler, Henry; Zhang, Huiping; Wang, Shuang; Gelernter, Joel
2011-01-01
Background Personality traits are among the most complex quantitative traits. Certain personality traits are associated with substance dependence (SD); genetic factors may influence both. Associations between opioid receptor (OPR) genes and SD have been reported. This study investigated the relationship between OPR genes and personality traits in a case-control sample. Methods We assessed dimensions of the five-factor model of personality in 556 subjects: 250 with SD [181 European-Americans (EAs) and 69 African-Americans (AAs)] and 306 healthy subjects (266 EAs and 40 AAs). We genotyped 20 OPRM1 markers, 8 OPRD1 markers, and 7 OPRK1 markers, and 38 unlinked ancestry-informative markers in these subjects. The relationships between OPR genes and personality traits were examined using MANCOVA, controlling for gene-gene interaction effects and potential confounders. Associations were decomposed by Roy-Bargmann Stepdown ANCOVA. Results Personality traits were associated as main or interaction effects with the haplotypes, diplotypes, alleles and genotypes at the three OPR genes (0.002
Big Five aspects of personality interact to predict depression.
Allen, Timothy A; Carey, Bridget E; McBride, Carolina; Bagby, R Michael; DeYoung, Colin G; Quilty, Lena C
2017-09-16
Research has shown that three personality traits-Neuroticism, Extraversion, and Conscientiousness-moderate one another in a three-way interaction that predicts depressive symptoms in healthy populations. We test the hypothesis that this effect is driven by three lower-order traits: withdrawal, industriousness, and enthusiasm. We then replicate this interaction within a clinical population for the first time. Sample 1 included 376 healthy adults. Sample 2 included 354 patients diagnosed with current major depressive disorder. Personality and depressive tendencies were assessed via the Big Five Aspect Scales and Personality Inventory for DSM-5 in Sample 1, respectively, and by the NEO-PI-R and Beck Depression Inventory-II in Sample 2. Withdrawal, industriousness, and enthusiasm interacted to predict depressive tendencies in both samples. The pattern of the interaction supported a "best two out of three" principle, in which low risk scores on two trait dimensions protects against a high risk score on the third trait. Evidence was also present for a "worst two out of three" principle, in which high risk scores on two traits are associated with equivalent depressive severity as high risk scores on all three traits. These results highlight the importance of examining interactive effects of personality traits on psychopathology. © 2017 Wiley Periodicals, Inc.
Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.
2015-01-01
Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247
Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C
2015-10-22
Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).
Sasaki, Hiroyuki; Hayashi, Yoichiro
2013-01-01
This study examined the framing effect of decision making in contexts in which the issue of social justice matters as well as the moderating effects of personality traits on the relationship between justice and framing effects. The authors manipulated procedural justice and outcome valence of the decision frame within two vignettes and measured two personality traits (self-efficacy and anxiety) of participants. The results from 363 participants showed that the moderating effects of personality traits counterbalanced the interaction between justice and framing, such that for individuals with high self-efficacy/low trait anxiety, justice effects were larger in negative framing than in positive framing; those with the opposite disposition exhibited the opposite pattern. These effects were interpreted in terms of an attribution process as the information processing strategy. The aforementioned findings suggest that the justice and decision theories can be developed to account for the moderating effects of personality traits. Some limitations of this study and the direction of future research are also discussed.
Genetic, environmental, and epigenetic factors in the development of personality disturbance.
Depue, Richard A
2009-01-01
A dimensional model of personality disturbance is presented that is defined by extreme values on interacting subsets of seven major personality traits. Being at the extreme has marked effects on the threshold for eliciting those traits under stimulus conditions: that is, the extent to which the environment affects the neurobiological functioning underlying the traits. To explore the nature of development of extreme values on these traits, each trait is discussed in terms of three major issues: (a) the neurobiological variables associated with the trait, (b) individual variation in this neurobiology as a function of genetic polymorphisms, and (c) the effects of environmental adversity on these neurobiological variables through the action of epigenetic processes. It is noted that gene-environment interaction appears to be dependent on two main factors: (a) both genetic and environmental variables appear to have the most profound and enduring effects when they exert their effects during early postnatal periods, times when the forebrain is undergoing exuberant experience-expectant dendritic and axonal growth; and (b) environmental effects on neurobiology are strongly modified by individual differences in "traitlike" functioning of neurobiological variables. A model of the nature of the interaction between environmental and neurobiological variables in the development of personality disturbance is presented.
Han, Lide; Yang, Jian; Zhu, Jun
2007-06-01
A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.
Pölkki, Mari; Kangassalo, Katariina; Rantala, Markus J
2014-01-01
Environmental pollution is considered one of the major threats to organisms. Direct effects of heavy metal pollution on various life-history traits are well recognized, while the effects of potential interactions between two distinct environmental conditions on different traits are poorly understood. Here, we have tested the effects of interactions between temperature conditions and heavy metal exposure on innate immunity and other life-history traits. Maggots of the blow fly Protophormia terraenovae were reared on either copper-contaminated or uncontaminated food, under three different temperature environments. Encapsulation response, body mass, and development time were measured for adult flies that were not directly exposed to copper. We found that the effects of copper exposure on immunity and other traits are temperature-dependent, suggesting that the ability to regulate toxic compounds in body tissues might depend on temperature conditions. Furthermore, we found that temperature has an effect on sex differences in immune defense. Males had an encapsulation response at higher temperatures stronger than that of females. Our results indicate that the effects of environmental conditions on different traits are much more intricate than what can be predicted. This is something that should be considered when conducting immunological experiments or comparing results of previous studies.
Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.
Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S
2013-10-01
Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF effects on growth may overlook changes in plant traits that have the potential to influence interactions, and hence yield, on farms. Given the effects of AMF on plant traits documented here, and the great importance of both herbivores and pollinators to wild and cultivated plants, we advocate for comprehensive assessments of mycorrhizal effects in complex community contexts, with the aim of incorporating multispecies interactions both above and below the soil surface.
Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W
2010-06-01
Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.
Bocianowski, Jan
2013-03-01
Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.
Effects and interactions of myostatin and callipyge mutations: I. Growth and carcass traits
USDA-ARS?s Scientific Manuscript database
Objectives were to document effects of the Texel myostatin mutation (MSTN) on growth and carcass traits and also test whether or not interactions with the callipyge mutation (CLPG) could be detected. Twelve rams heterozygous at both loci on the two different chromosomes were mated to 215 terminal-si...
Becklin, Katie M; Gamez, Guadalupe; Uelk, Bryan; Raguso, Robert A; Galen, Candace
2011-08-01
Plants interact with above- and belowground organisms; the combined effects of these interactions determine plant fitness and trait evolution. To better understand the ecological and evolutionary implications of multispecies interactions, we explored linkages between soil fungi, pollinators, and floral larcenists in Polemonium viscosum (Polemoniaceae). Using a fungicide, we experimentally reduced fungal colonization of krummholz and tundra P. viscosum in 2008-2009. We monitored floral signals and rewards, interactions with pollinators and larcenists, and seed set for fungicide-treated and control plants. Fungicide effects varied among traits, between interactions, and with environmental context. Treatment effects were negligible in 2008, but stronger in 2009, especially in the less-fertile krummholz habitat. There, fungicide increased nectar sugar content and damage by larcenist ants, but did not affect pollination. Surprisingly, fungicide also enhanced seed set, suggesting that direct resource costs of soil fungi exceed indirect benefits from reduced larceny. In the tundra, fungicide effects were negligible in both years. However, pooled across treatments, colonization by mycorrhizal fungi in 2009 correlated negatively with the intensity and diversity of floral volatile organic compounds, suggesting integrated above- and belowground signaling pathways. Fungicide effects on floral rewards in P. viscosum link soil fungi to ecological costs of pollinator attraction. Trait-specific linkages to soil fungi should decouple expression of sensitive and buffered floral phenotypes in P. viscosum. Overall, this study demonstrates how multitrophic linkages may lead to shifting selection pressures on interaction traits, restricting the evolution of specialization.
Interactions between genetic variation and cellular environment in skeletal muscle gene expression.
Taylor, D Leland; Knowles, David A; Scott, Laura J; Ramirez, Andrea H; Casale, Francesco Paolo; Wolford, Brooke N; Guan, Li; Varshney, Arushi; Albanus, Ricardo D'Oliveira; Parker, Stephen C J; Narisu, Narisu; Chines, Peter S; Erdos, Michael R; Welch, Ryan P; Kinnunen, Leena; Saramies, Jouko; Sundvall, Jouko; Lakka, Timo A; Laakso, Markku; Tuomilehto, Jaakko; Koistinen, Heikki A; Stegle, Oliver; Boehnke, Michael; Birney, Ewan; Collins, Francis S
2018-01-01
From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.
Tzeng, Jung-Ying; Zhang, Daowen; Pongpanich, Monnat; Smith, Chris; McCarthy, Mark I.; Sale, Michèle M.; Worrall, Bradford B.; Hsu, Fang-Chi; Thomas, Duncan C.; Sullivan, Patrick F.
2011-01-01
Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis. PMID:21835306
Soliveres, Santiago; Maestre, Fernando T; Bowker, Matthew A; Torices, Rubén; Quero, José L; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J; Espinosa, Carlos I; Hemmings, Frank; Monerris, Jorge J; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R; Hernández, Rosa M; Noumi, Zouhaier
2014-08-20
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of -and interrelationships among- these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.
Soliveres, Santiago; Maestre, Fernando T.; Bowker, Matthew A.; Torices, Rubén; Quero, José L.; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J.; Espinosa, Carlos I.; Hemmings, Frank; Monerris, Jorge J.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R.; Hernández, Rosa M.; Noumi, Zouhaier
2015-01-01
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of –and interrelationships among– these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. PMID:25914604
Formation of Educational Expectations of Lower Socioeconomic Status Children
ERIC Educational Resources Information Center
Kim, Kyung-Nyun
2014-01-01
The purpose of this study was to investigate the mediation effects of children's cognitive and noncognitive traits on the relationship between dropout mothers' traits and their children's educational expectations and to examine the interaction effects of dropout mothers' General Education Development (GED) on children's traits and educational…
Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure
Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira
2015-01-01
A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620
The effect of cultural interaction on cumulative cultural evolution.
Nakahashi, Wataru
2014-07-07
Cultural transmission and cultural evolution are important for animals, especially for humans. I developed a new analytical model of cultural evolution, in which each newborn learns cultural traits from multiple individuals (exemplars) in parental generation, individually explores around learned cultural traits, judges the utility of known cultural traits, and adopts a mature cultural trait. Cultural evolutionary speed increases when individuals explore a wider range of cultural traits, accurately judge the skill level of cultural traits (strong direct bias), do not strongly conform to the population mean, increase the exploration range according to the variety of socially learned cultural traits (condition dependent exploration), and make smaller errors in social learning. Number of exemplars, population size, similarity of cultural traits between exemplars, and one-to-many transmission have little effect on cultural evolutionary speed. I also investigated how cultural interaction between two populations with different mean skill levels affects their cultural evolution. A population sometimes increases in skill level more if it encounters a less skilled population than if it does not encounter anyone. A less skilled population sometimes exceeds a more skilled population in skill level by cultural interaction between both populations. The appropriateness of this analytical method is confirmed by individual-based simulations. Copyright © 2014 Elsevier Ltd. All rights reserved.
The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.
Croll, Daniel; McDonald, Bruce A
2017-04-01
Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.
Marr, A B; Arcese, P; Hochachka, W M; Reid, J M; Keller, L F
2006-11-01
1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.
Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E
2015-01-02
Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. Copyright © 2014 Elsevier Inc. All rights reserved.
Contrasting impacts of competition on ecological and social trait evolution in songbirds
Tobias, Joseph A.; Burns, Kevin J.; Mason, Nicholas A.; Shultz, Allison J.; Morlon, Hélène
2018-01-01
Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation. PMID:29385141
Contrasting impacts of competition on ecological and social trait evolution in songbirds.
Drury, Jonathan P; Tobias, Joseph A; Burns, Kevin J; Mason, Nicholas A; Shultz, Allison J; Morlon, Hélène
2018-01-01
Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation.
Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise
2016-01-01
Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961
GENETIC VARIATION IN BABOON CRANIOFACIAL SEXUAL DIMORPHISM
Willmore, Katherine E.; Roseman, Charles C.; Rogers, Jeffrey; Richtsmeier, Joan T.; Cheverud, James M.
2010-01-01
Sexual dimorphism is a widespread phenomenon and contributes greatly to intraspecies variation. Despite a long history of active research, the genetic basis of dimorphism for complex traits remains unknown. Understanding the sex-specific differences in genetic architecture for cranial traits in a highly dimorphic species could identify possible mechanisms through which selection acts to produce dimorphism. Using distances calculated from three-dimensional landmark data from CT scans of 402 baboon skulls from a known genealogy, we estimated genetic variance parameters in both sexes to determine the presence of gene-by-sex (G × S) interactions and X-linked heritability. We hypothesize that traits exhibiting the greatest degree of sexual dimorphism (facial traits in baboons) will demonstrate either stronger G × S interactions or X-linked effects. We found G × S interactions and X-linked effects for a few measures that span the areas connecting the face to the neurocranium but for no traits restricted to the face. This finding suggests that facial traits will have a limited response to selection for further evolution of dimorphism in this population. We discuss the implications of our results with respect to the origins of cranial sexual dimorphism in this baboon sample, and how the genetic architecture of these traits affects their potential for future evolution. PMID:19210535
Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor
Mohammed, Riyazaddin; Are, Ashok K.; Bhavanasi, Ramaiah; Munghate, Rajendra S.; Kavi Kishor, Polavarapu B.; Sharma, Hari C.
2015-01-01
The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant height suggested G X E interactions for these traits. PMID:26579183
Chiorri, Carlo; Garbarino, Sergio; Bracco, Fabrizio; Magnavita, Nicola
2015-01-01
Previous research has suggested that personality traits of the Five Factor Model play a role in worker's response to workload. The aim of this study was to investigate the association of personality traits of first responders with their perceived workload in real-life tasks. A flying column of 269 police officers completed a measure of subjective workload (NASA-Task Load Index) after intervention tasks in a major public event. Officers' scores on a measure of Five Factor Model personality traits were obtained from archival data. Linear Mixed Modeling was used to test the direct and interaction effects of personality traits on workload scores once controlling for background variables, task type and workload source (mental, temporal and physical demand of the task, perceived effort, dissatisfaction for the performance and frustration due to the task). All personality traits except extraversion significantly interacted at least with one workload source. Perceived workload in flying column police officers appears to be the result of their personality characteristics interacting with the workload source. The implications of these results for the development of support measures aimed at reducing the impact of workload in this category of workers are discussed. PMID:26640456
Lu, D; Jiao, S; Tiezzi, F; Knauer, M; Huang, Y; Gray, K A; Maltecca, C
2017-08-01
Utilization of feed in livestock species consists of a wide range of biological processes, and therefore, its efficiency can be expressed in various ways, including direct measurement, such as daily feed intake, as well as indicator measures, such as feeding behavior. Measuring feed efficiency is important to the swine industry, and its accuracy can be enhanced by using automated feeding systems, which record feed intake and associated feeding behavior of individual animals. Each automated feeder space is often shared among several pigs and therefore raises concerns about social interactions among pen mates with regard to feeding behavior. The study herein used a data set of 14,901 Duroc boars with individual records on feed intake, feeding behavior, and other off-test traits. These traits were modeled with and without the random spatial effect of Pen_Room, a concatenation of room and pen, or random social interaction among pen mates. The nonheritable spatial effect of common Pen-Room was observed for traits directly measuring feed intake and accounted for up to 13% of the total phenotypic variance in the average daily feeding rate. The social interaction effect explained larger proportions of phenotypic variation in all the traits studied, with the highest being 59% for ADFI in the group of feeding behaviors, 73% for residual feed intake (RFI; RFI4 and RFI6) in the feed efficiency traits, and 69% for intramuscular fat percentage in the off-test traits. After accounting for the social interaction effect, residual BW gain and RFI and BW gain (RIG) were found to have the heritability of 0.38 and 0.18, respectively, and had strong genetic correlations with growth and off-test traits. Feeding behavior traits were found to be moderately heritable, ranging from 0.14 (ADFI) to 0.52 (average daily occupation time), and some of them were strongly correlated with feed efficiency measures; for example, there was a genetic correlation of 0.88 between ADFI and RFI6. Our work suggested that accounting for the social common pen effect was important for estimating genetic parameters of traits recorded by the automated feeding system. Residual BW gain and RIG appeared to be two robust measures of feed efficiency. Feeding behavior measures are worth further investigation as indicators of feed efficiency.
Du, Xiongming; Liu, Shouye; Sun, Junling; Zhang, Gengyun; Jia, Yinhua; Pan, Zhaoe; Xiang, Haitao; He, Shoupu; Xia, Qiuju; Xiao, Songhua; Shi, Weijun; Quan, Zhiwu; Liu, Jianguang; Ma, Jun; Pang, Baoyin; Wang, Liru; Sun, Gaofei; Gong, Wenfang; Jenkins, Johnie N; Lou, Xiangyang; Zhu, Jun; Xu, Haiming
2018-06-13
Cottonseed is one of the most important raw materials for plant protein, oil and alternative biofuel for diesel engines. Understanding the complex genetic basis of cottonseed traits is requisite for achieving efficient genetic improvement of the traits. However, it is not yet clear about their genetic architecture in genomic level. GWAS has been an effective way to explore genetic basis of quantitative traits in human and many crops. This study aims to dissect genetic mechanism seven cottonseed traits by a GWAS for genetic improvement. A genome-wide association study (GWAS) based on a full gene model with gene effects as fixed and gene-environment interaction as random, was conducted for protein, oil and 5 fatty acids using 316 accessions and ~ 390 K SNPs. Totally, 124 significant quantitative trait SNPs (QTSs), consisting of 16, 21, 87 for protein, oil and fatty acids (palmitic, linoleic, oleic, myristic, stearic), respectively, were identified and the broad-sense heritability was estimated from 71.62 to 93.43%; no QTS-environment interaction was detected for the protein, the palmitic and the oleic contents; the protein content was predominantly controlled by epistatic effects accounting for 65.18% of the total variation, but the oil content and the fatty acids except the palmitic were mainly determined by gene main effects and no epistasis was detected for the myristic and the stearic. Prediction of superior pure line and hybrid revealed the potential of the QTSs in the improvement of cottonseed traits, and the hybrid could achieve higher or lower genetic values compared with pure lines. This study revealed complex genetic architecture of seven cottonseed traits at whole genome-wide by mixed linear model approach; the identified genetic variants and estimated genetic component effects of gene, gene-gene and gene-environment interaction provide cotton geneticist or breeders new knowledge on the genetic mechanism of the traits and the potential molecular breeding design strategy.
Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria
2017-02-01
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.
Donaldson, Peter H; Kirkovski, Melissa; Rinehart, Nicole J; Enticott, Peter G
2018-03-01
The temporoparietal junction (TPJ) is implicated in mental and emotional state attribution, processes associated with autism-relevant traits. Transcranial direct current stimulation (tDCS) to the TPJ can influence social-cognitive performance. However, associations with electrophysiology and autism-relevant traits remain relatively unexamined. This study had two aims: first, exploring links between Autism-Spectrum Quotient (AQ) scores and social-cognitive performance; second, examining interactions between AQ scores and high-definition-tDCS (HD-tDCS) applied to the right TPJ in terms of mental/emotional state attribution and neurophysiological outcomes. Fifty-three participants completed mental/emotional state attribution tasks before and after HD-tDCS. Pre-stimulation mental state attribution accuracy was reduced in participants with higher AQ Switching scores. Cathodal stimulation was associated with reduced emotion attribution performance in participants with higher AQ Switching and AQ Social scores (the latter at trend-level). Anodal stimulation more frequently interacted with AQ Social scores in terms of neurophysiology, in particular regarding reduced delta power in the left compared to right TPJ, and trend-level positive interactions with P100 and P300 latencies during the emotion recognition task. Elements of attention/switching (AQ Switching) may subserve or underpin elements of social cognition (AQ Social), and cathodal and anodal stimulation may have differing effects depending on trait levels in these domains. This study makes an important and original contribution in terms of increasing understanding of how such trait-level variation might interact with the effects of tDCS and also extending previous studies with regard to understanding potential roles of the rTPJ in both attention and social cognition and how autism-relevant traits might influence TPJ function. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Andersen, Christian Walther; Sibani, Paolo
2016-05-01
Based on the stochastic dynamics of interacting agents which reproduce, mutate, and die, the tangled nature model (TNM) describes key emergent features of biological and cultural ecosystems' evolution. While trait inheritance is not included in many applications, i.e., the interactions of an agent and those of its mutated offspring are taken to be uncorrelated, in the family of TNMs introduced in this work correlations of varying strength are parametrized by a positive integer K . We first show that the interactions generated by our rule are nearly independent of K . Consequently, the structural and dynamical effects of trait inheritance can be studied independently of effects related to the form of the interactions. We then show that changing K strengthens the core structure of the ecology, leads to population abundance distributions better approximated by log-normal probability densities, and increases the probability that a species extant at time tw also survives at t >tw . Finally, survival probabilities of species are shown to decay as powers of the ratio t /tw , a so-called pure aging behavior usually seen in glassy systems of physical origin. We find a quantitative dynamical effect of trait inheritance, namely, that increasing the value of K numerically decreases the decay exponent of the species survival probability.
Andersen, Christian Walther; Sibani, Paolo
2016-05-01
Based on the stochastic dynamics of interacting agents which reproduce, mutate, and die, the tangled nature model (TNM) describes key emergent features of biological and cultural ecosystems' evolution. While trait inheritance is not included in many applications, i.e., the interactions of an agent and those of its mutated offspring are taken to be uncorrelated, in the family of TNMs introduced in this work correlations of varying strength are parametrized by a positive integer K. We first show that the interactions generated by our rule are nearly independent of K. Consequently, the structural and dynamical effects of trait inheritance can be studied independently of effects related to the form of the interactions. We then show that changing K strengthens the core structure of the ecology, leads to population abundance distributions better approximated by log-normal probability densities, and increases the probability that a species extant at time t_{w} also survives at t>t_{w}. Finally, survival probabilities of species are shown to decay as powers of the ratio t/t_{w}, a so-called pure aging behavior usually seen in glassy systems of physical origin. We find a quantitative dynamical effect of trait inheritance, namely, that increasing the value of K numerically decreases the decay exponent of the species survival probability.
USDA-ARS?s Scientific Manuscript database
Genotype × environment interactions and trait correlations significantly impact efforts to develop high yield, high quality, and environmentally stable Upland cotton (Gossypium hirsutum L.) cultivars. Knowledge of both can and should be used to design optimal breeding programs and effective selectio...
Wang, Yuanbo E; Higgins, Nancy C; Uleman, James S; Michaux, Aaron; Vipond, Douglas
2016-03-01
People unconsciously and unintentionally make inferences about others' personality traits based on their behaviours. In this study, a classic memory phenomenon--proactive interference (PI)--is for the first time used to detect spontaneous trait inferences. PI should occur when lists of behaviour descriptions, all implying the same trait, are to be remembered. Switching to a new trait should produce 'release' from proactive interference (or RPI). Results from two experiments supported these predictions. PI and RPI effects are consistent with an interactive activation and competition model of person perception (e.g., McNeill & Burton, 2002, J. Exp. Psychol., 55A, 1141), which predicts categorical organization of social behaviours based on personality traits. Advantages of this model are discussed. © 2015 The British Psychological Society.
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lee, Mindy; Murphy, Karen; Andrews, Glenda
2018-01-01
Positive face-to-face human interactions are known to benefit well-being. Drawing upon previous work regarding the interference of media (via technological devices or print) in social interaction, the aim of this study was to identify whether using media during face-to-face interaction could potentially limit the positive effect of interaction on well-being. Participants were 437 university students who completed an online survey which assessed media multitasking behaviors, well-being (trait depression, trait anxiety, social anxiety, empathy, and psychological well-being), and personality traits (Big-5 and narcissism). Face-to-face interaction was positively associated with well-being. However, when media use during face-to-face interaction was considered, there was a negative relationship with well-being (more depression, more anxiety, and less psychological well-being). Those who used certain media types, such as phone or video chatting, listening to music, and gaming, while interacting with others, also had lower scores on measures of empathy. Regression analyses showed significant contributions by these media types to empathy levels, even after controlling for age, gender, and personality traits. Face-to-face media multitasking was related to higher levels of narcissism and neuroticism, and lower levels of agreeableness, conscientiousness, and openness. This study provides insight into the possible role of media multitasking during face-to-face interaction on psychosocial outcomes.
Inbreeding depression by environment interactions in a free-living mammal population
Pemberton, J M; Ellis, P E; Pilkington, J G; Bérénos, C
2017-01-01
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild. PMID:27876804
Inbreeding depression by environment interactions in a free-living mammal population.
Pemberton, J M; Ellis, P E; Pilkington, J G; Bérénos, C
2017-01-01
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild.
The genetic architecture of maize (Zea mays L.) kernel weight determination.
Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas
2014-09-18
Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.
Plant traits related to nitrogen uptake influence plant-microbe competition.
Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe
2015-08-01
Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more relevant for understanding plant-microbe interactions than composite traits, such as nitrophily, which are related to a number of ecophysiological processes.
Sadeh, Naomi; Spielberg, Jeffrey M; Hayes, Jasmeet P
2018-01-01
We examined current posttraumatic stress disorder (PTSD) symptoms, trait disinhibition, and affective context as contributors to impulsive and self-destructive behavior in 94 trauma-exposed Veterans. Participants completed an affective Go/No-Go task (GNG) with different emotional contexts (threat, reward, and a multidimensional threat/reward condition) and current PTSD, trait disinhibition, and risky/self-destructive behavior measures. PTSD interacted with trait disinhibition to explain recent engagement in risky/self-destructive behavior, with Veterans scoring high on trait disinhibition and current PTSD symptoms reporting the highest levels of these behaviors. On the GNG task, commission errors were also associated with the interaction of PTSD symptoms and trait disinhibition. Specifically, PTSD symptoms were associated with greater commission errors in threat vs. reward contexts for individuals who were low on trait disinhibition. In contrast, veterans high on PTSD and trait disinhibition exhibited the greatest number of commission errors in the multidimensional affective context that involved both threat and reward processing. Results highlight the interactive effects of PTSD and disinhibited personality traits, as well as threat and reward systems, as risk factors for impulsive and self-destructive behavior in trauma-exposed groups. Findings have clinical implications for understanding heterogeneity in the expression of PTSD and its association with disinhibited behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
2018-01-01
Background Mindfulness-based art therapy (MBAT) induces emotional relaxation in coronary artery disease (CAD) patients, and is a treatment known to improve psychological stability. The objective of this study was to evaluate the treatment effects of MBAT for CAD patients. Methods A total of 44 CAD patients were selected as participants, 21 patients belonged to a MBAT group, and 23 patients belonged to the control group. The patients in the MBAT group were given 12 sessions of treatments. To measure depression and anxiety, Beck Depression Inventory (BDI) and Trait Anxiety Inventory (TAI) were used. Anger and anger expression were evaluated using the State Trait Anger Expression Inventory (STAXI). The treatment results were analyzed using two-way repeated measures analysis of variance (ANOVA). Results The results showed that significant effects for groups, time, and interaction in the depression (interaction effect, [F(1,36) = 23.15, P < 0.001]; between groups, [F(1,36) = 5.73, P = 0.022]), trait anxiety (interaction effect, [F(1,36) = 13.23, P < 0.001]; between groups, [F(1,36) = 4.38, P = 0.043]), state anger (interaction effect, [F(1,36) = 5.60, P = 0.023]), trait anger (interaction effect, [F(1,36) = 6.93, P = 0.012]; within group, [F(1,36) = 4.73, P = 0.036]), anger control (interaction effect, [F(1,36) = 8.41, P = 0.006]; within group, [F(1,36) = 9.41, P = 0.004]), anger out (interaction effect, [F(1,36) = 6.88, P = 0.012]; within group, [F(1,36) = 13.17, P < 0.001]; between groups, [F(1,36) = 5.62, P = 0.023]), and anger in (interaction effect, [F(1,36) = 32.66, P < 0.001]; within group, [F(1,36) = 25.90, P < 0.001]; between groups, [F(1,36) = 12.44, P < 0.001]). Conclusion MBAT can be seen as an effective treatment method that improves CAD patients' psychological stability. Evaluation of treatment effects using program development and large-scale research for future clinical application is needed. PMID:29542299
Personality factors and posttraumatic stress: associations in civilians one year after air attacks.
Lecic-Tosevski, Dusica; Gavrilovic, Jelena; Knezevic, Goran; Priebe, Stefan
2003-12-01
There is an ongoing debate on which risk factors for developing posttraumatic stress symptoms are more important--personality traits reflecting vulnerability, previous stressful experiences or characteristics of the traumatic event. In this study, posttraumatic stress symptoms and their relationship with personality traits, previous stressful experiences and exposure to stressful events during air attacks in Yugoslavia were investigated. The Millon Clinical Multiaxial Inventory (MCMI; Millon, 1983), Impact of Events Scale (IES; Horowitz, Wilner, & Alvarez, 1979), Life Stressor Checklist Revised (LSCL-R; Wolfe & Kimerling, 1997), and List of Stressors were administered to a homogeneous group of medical students 1 year after the attacks. In multiple regression analyses, compulsive and passive-aggressive personality traits and a higher level of exposure to stressors during air attacks independently predicted the degree of intrusion symptoms. Avoidance symptoms were predicted by avoidant personality traits and a higher exposure to stressors both previously in life and during the attacks. In the next step, we tested in analyses of variance whether personality traits, previous stressful experiences, and stressful events during attacks as independent variables interact in predicting intrusion and avoidance symptoms. For this, students were clustered into three groups depending on their predominant personality traits. In addition to direct predictive effects, there were significant interaction effects in predicting both intrusion and avoidance. The findings suggest that each of the tested factors, i.e., personality traits, previous stressful experiences, and exposure to traumatic events may have an independent and direct influence on developing posttraumatic stress. However, the effect of these factors cannot just be added up. Rather, the factors interact in their impact on posttraumatic stress symptoms. Bigger samples and longitudinal designs will be required to understand precisely how different personality traits influence response to stressful events.
Woo, Hyung Jun; Reifman, Jaques
2018-06-05
Investigation of the genetic architectures that influence the behavioral traits of animals can provide important insights into human neuropsychiatric phenotypes. These traits, however, are often highly polygenic, with individual loci contributing only small effects to the overall association. The polygenicity makes it challenging to explain, for example, the widely observed comorbidity between stress and cardiac disease. We present an algorithm for inferring the collective association of a large number of interacting gene variants with a quantitative trait. Using simulated data, we demonstrate that by taking into account the non-uniform distribution of genotypes within a cohort, we can achieve greater power than regression-based methods for high-dimensional inference. We analyzed genome-wide data sets of outbred mice and pet dogs, and found neurobiological pathways whose associations with behavioral traits arose primarily from interaction effects: γ-carboxylated coagulation factors and downstream neuronal signaling were highly associated with conditioned fear, consistent with our previous finding in human post-traumatic stress disorder (PTSD) data. Prepulse inhibition in mice was associated with serotonin transporter and platelet homeostasis, and noise-induced fear in dogs with hemostasis. Our findings suggest a novel explanation for the observed comorbidity between PTSD/anxiety and cardiovascular diseases: key coagulation factors modulating hemostasis also regulate synaptic plasticity affecting the learning and extinction of fear.
USDA-ARS?s Scientific Manuscript database
Environmental effects have been shown to influence several economically important traits in beef cattle. In this study, genetic x nutritional environment interaction has been evaluated in a composite beef cattle breed (50% Red Angus, 25% Charolais, 25% Tarentaise). Four nutritional environments (MAR...
Schiele, Miriam A; Ziegler, Christiane; Holitschke, Karoline; Schartner, Christoph; Schmidt, Brigitte; Weber, Heike; Reif, Andreas; Romanos, Marcel; Pauli, Paul; Zwanzger, Peter; Deckert, Jürgen; Domschke, Katharina
2016-08-01
Environmental vulnerability factors such as adverse childhood experiences in interaction with genetic risk variants, e.g., the serotonin transporter gene linked polymorphic region (5-HTTLPR), are assumed to play a role in the development of anxiety and affective disorders. However, positive influences such as general self-efficacy (GSE) may exert a compensatory effect on genetic disposition, environmental adversity, and anxiety traits. We, thus, assessed childhood trauma (Childhood Trauma Questionnaire, CTQ) and GSE in 678 adults genotyped for 5-HTTLPR/rs25531 and their interaction on agoraphobic cognitions (Agoraphobic Cognitions Questionnaire, ACQ), social anxiety (Liebowitz Social Anxiety Scale, LSAS), and trait anxiety (State-Trait Anxiety Inventory, STAI-T). The relationship between anxiety traits and childhood trauma was moderated by self-efficacy in 5-HTTLPR/rs25531 LALA genotype carriers: LALA probands maltreated as children showed high anxiety scores when self-efficacy was low, but low anxiety scores in the presence of high self-efficacy despite childhood maltreatment. Our results extend previous findings regarding anxiety-related traits showing an interactive relationship between 5-HTT genotype and adverse childhood experiences by suggesting coping-related measures to function as an additional dimension buffering the effects of a gene-environment risk constellation. Given that anxiety disorders manifest already early in childhood, this insight could contribute to the improvement of psychotherapeutic interventions by including measures strengthening self-efficacy and inform early targeted preventive interventions in at-risk populations, particularly within the crucial time window of childhood and adolescence.
Ayub, Nailah
2015-11-01
While a specific personality trait may escalate suicide ideation, contextual factors such as social support, when provided effectively, may alleviate the effects of such personality traits. This study examined the moderating role of social support in the relationship between the Big-Five personality traits and suicide ideation. Significant interactions were found between social support and extraversion and emotional stability. Specifically, the relationship between emotional stability and extraversion to suicide ideation was exacerbated when social support was low. Slope analysis showed openness also interacted with low social support. Results were computed for frequency, duration and attitude dimensions of suicide ideation. Extraversion interacted with social support to predict all three dimensions. Social support moderated emotional stability to predict frequency and duration, moderated conscientiousness towards frequency and attitude, and moderated openness towards attitude. The results imply that whereas personality traits may be difficult to alter, social support may play a significant role in saving a life. Psychologists should include family and friends when treating a suicidal youth, guiding them to awareness of one's personality and being more supportive. Copyright © 2015 John Wiley & Sons, Ltd.
Lay, C. R.; Linhart, Y. B.; Diggle, P. K.
2011-01-01
Background and Aims Plants are sessile organisms that face selection by both herbivores and pollinators. Herbivores and pollinators may select on the same traits and/or mediate each others' effects. Erysimum capitatum (Brassicaceae) is a widespread and variable plant species with generalized pollination that is attacked by a number of herbivores. The following questions were addressed. (a) Are pollinators and herbivores attracted by similar plant traits? (b) Does herbivory affect pollinator preferences? (c) Do pollinators and/or herbivores affect fitness and select on plant traits? (d) Do plant compensatory responses affect the outcome of interactions among plants, pollinators and herbivores? (e) Do interactions among E. capitatum and its pollinators and herbivores differ among sites and years? Methods In 2005 and 2006, observational and experimental studies were combined in four populations at different elevations to examine selection by pollinators and herbivores on floral traits of E. capitatum. Key Results Pollinator and herbivore assemblages varied spatially and temporally, as did their effects on plant fitness and selection. Both pollinators and herbivores preferred plants with more flowers, and herbivory sometimes reduced pollinator visitation. Pollinators did not select on plant traits in any year or population and E. capitatum was not pollen limited; however, supplemental pollen resulted in altered plant resource allocation. Herbivores reduced fitness and selected for plant traits in some populations, and these effects were mediated by plant compensatory responses. Conclusions Individuals of Erysimum capitatum are visited by diverse groups of pollinators and herbivores that shift in abundance and importance in time and space. Compensatory reproductive mechanisms mediate interactions with both pollinators and herbivores and may allow E. capitatum to succeed in this complex selective environment. PMID:21724655
Ciucci, Enrica; Baroncelli, Andrea
2014-09-01
This study investigated the unique and interactive effects of emotion-related personality traits (i.e., callousness and uncaring traits) and peer social standing (i.e., social preference and perceived popularity) on cyberbullying behaviors in preadolescents. A total of 529 preadolescents (247 boys, 46.69%) were recruited from an Italian middle school (Mage=12 years and 7 months; SD=1 year and 2 months). The participants primarily consisted of Italian children (91.12%). A series of binary logistic regression analyses parted by gender were conducted to examine the main and interactive effects of self-reported emotion-related variables and peer-reported social standing in the prediction of self-reported cyberbullying behaviors, while controlling for cyber victimization and grade effects. In girls, an uncaring disposition was directly associated with cyberbullying behaviors, whereas in boys this association only emerged for those with low perceived popularity. Our results indicated that, in developing anti(cyber)bullying programs, school researchers and practitioners should jointly consider individual and contextual factors.
An, Li; Lin, Yingxiang; Yang, Ting; Hua, Lin
2016-05-18
Currently, the majority of genetic association studies on chronic obstructive pulmonary disease (COPD) risk focused on identifying the individual effects of single nucleotide polymorphisms (SNPs) as well as their interaction effects on the disease. However, conventional genetic studies often use binary disease status as the primary phenotype, but for COPD, many quantitative traits have the potential correlation with the disease status and closely reflect pathological changes. Here, we genotyped 44 SNPs from four genes (EPHX1, GSTP1, SERPINE2, and TGFB1) in 310 patients and 203 controls which belonged to the Chinese Han population to test the two-way and three-way genetic interactions with COPD-related quantitative traits using recently developed generalized multifactor dimensionality reduction (GMDR) and quantitative multifactor dimensionality reduction (QMDR) algorithms. Based on the 310 patients and the whole samples of 513 subjects, the best gene-gene interactions models were detected for four lung-function-related quantitative traits. For the forced expiratory volume in 1 s (FEV1), the best interaction was seen from EPHX1, SERPINE2, and GSTP1. For FEV1%pre, the forced vital capacity (FVC), and FEV1/FVC, the best interactions were seen from SERPINE2 and TGFB1. The results of this study provide further evidence for the genotype combinations at risk of developing COPD in Chinese Han population and improve the understanding on the genetic etiology of COPD and COPD-related quantitative traits.
Kim, Hyun-Jin; Min, Kyoung-Bok; Min, Jin-Young
2016-07-01
Chronic psychosocial stress is a crucial risk factor in the development of many diseases including obesity. Neuropeptide Y (NPY), distributed throughout the peripheral and central nervous system, is believed to pay a role in the pathophysiologic relationship between stress and obesity. Although several animal studies have investigated the impact on obesity of interactions between NPY single nucleotide polymorphisms (SNPs) and stress, the same remains to be analyzed in humans. To identify NPY gene-by-stress interaction effects on human obesity, we analyzed the interaction between four NPY SNPs and stress with obesity-related traits, including visceral adipose tissue (VAT). A total of 1468 adult subjects were included for this analysis. In a SNP-only model without interaction with stress, no significant SNPs were found (pSNP>0.05). However, NPY SNPs-by-stress interaction effects were significantly linked to body mass index (BMI), waist circumference, and VAT (pint<0.05), even though a significant interaction effect for rs16135 on BMI was not identified. These significant interaction effects were also detected in interaction results for the binary traits of obesity. Among the obesity traits, mean changes of VAT by increased stress levels in homozygous risk allele carriers were the greatest (range of mean increases for four SNPs (min-max)=12.57cm(2)-29.86cm(2)). This study suggests that common polymorphisms for NPY were associated with human obesity by interacting with psychosocial stress, emphasizing the need for stress management in obesity prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Comparison of Four Approaches to Account for Method Effects in Latent State-Trait Analyses
ERIC Educational Resources Information Center
Geiser, Christian; Lockhart, Ginger
2012-01-01
Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators…
Interactive effects of trait and state affect on top-down control of attention
Hur, Juyoen; Miller, Gregory A.; McDavitt, Jenika R.B.; Spielberg, Jeffrey M.; Crocker, Laura D.; Infantolino, Zachary P.; Towers, David N.; Warren, Stacie L.
2015-01-01
Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention. PMID:25556211
[Analytic methods for seed models with genotype x environment interactions].
Zhu, J
1996-01-01
Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by Monte Carlo simulations.
Kozub, N A; Sozinov, I A; sozinov, A A
2004-12-01
The effect of introgression of a chromosome 1D segment from Aegilops cylindrica to winter common wheat on productivity traits in F2 plants was studied using storage protein loci as genetic markers. An allele of the gliadin-coding Gli-D1 locus served as a marker of the introgression. Using of two- and three-locus interaction models, it was shown that the introgression tagged with Gli-D1 affected the manifestation of productivity traits (productive tillering, grain weight per plant and grain number per plant) through interaction with other marker storage protein loci: Glu-B1, Glu-D1, and Gli-B2.
Li, Pengcheng; Zhuang, Zhongjuan; Cai, Hongguang; Cheng, Shuai; Soomro, Ayaz Ali; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Yuan, Lixing; Chen, Fanjun
2016-03-01
Maize (Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen (N) deficiency, but the underlying genetic architecture remains to be investigated. Using an advanced BC4 F3 population, we investigated the root growth plasticity under two contrasted N levels and identified the quantitative trait loci (QTLs) with QTL-environment (Q × E) interaction effects. Principal components analysis (PCA) on changes of root traits to N deficiency (ΔLN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC, while root traits scattered highly on PC2 and PC3. Hierarchical cluster analysis on traits for ΔLN-HN further assigned the BC4 F3 lines into six groups, in which the special phenotypic responses to N deficiency was presented. These results revealed the complicated root plasticity of maize in response to N deficiency that can be caused by genotype-environment (G × E) interactions. Furthermore, QTL mapping using a multi-environment analysis identified 35 QTLs for root traits. Nine of these QTLs exhibited significant Q × E interaction effects. Taken together, our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N deficiency, which will be useful for developing maize tolerance cultivars to N deficiency. © 2015 Institute of Botany, Chinese Academy of Sciences.
Theis, Nina; Barber, Nicholas A; Gillespie, Sandra D; Hazzard, Ruth V; Adler, Lynn S
2014-08-01
• Floral traits play important roles in pollinator attraction and defense against floral herbivory. However, plants may experience trade-offs between conspicuousness to pollinators and herbivore attraction. Comparative studies provide an excellent framework to examine the role of multiple traits shaping mutualist and antagonist interactions.• To assess whether putative defensive and attractive traits predict species interactions, we grew 20 different Cucurbitaceae species and varieties in the field to measure interactions with pollinators and herbivores and in the greenhouse to assess trait variation. Cucurbits are characterized by the production of cucurbitacins, bitter nonvolatile terpenoids that are effective against generalist herbivores but can attract specialist beetles. We determined whether plant traits such as cucurbitacins predict herbivore resistance and pollinator attraction using an information-theoretic approach.• Mutualists and floral antagonists were attracted to the same cucurbit varieties once they flowered. However, rather than cucurbitacin concentration, we found that the size of the flower and volatile emissions of floral sesquiterpenoids explained both pollinator and floral herbivore visitation preference across cucurbit taxa. This pattern held across cucurbit taxa and within the Cucurbita genus.• Surprisingly, floral sesquiterpenoid volatiles, which are associated with direct defense, indirect defense, and attraction, rather than defense traits such as cucurbitacins, appeared to drive interactions with both pollinators and floral herbivores across cucurbit taxa. Identifying the relevant plant traits for attraction and deterrence is important in this economically valuable crop, particularly if pollinators and floral herbivores use the same plant traits as cues. © 2014 Botanical Society of America, Inc.
Animal behaviour and algal camouflage jointly structure predation and selection.
Start, Denon
2018-05-01
Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Cancer and life-history traits: lessons from host-parasite interactions.
Ujvari, Beata; Beckmann, Christa; Biro, Peter A; Arnal, Audrey; Tasiemski, Aurelie; Massol, Francois; Salzet, Michel; Mery, Frederic; Boidin-Wichlacz, Celine; Misse, Dorothee; Renaud, Francois; Vittecoq, Marion; Tissot, Tazzio; Roche, Benjamin; Poulin, Robert; Thomas, Frederic
2016-04-01
Despite important differences between infectious diseases and cancers, tumour development (neoplasia) can nonetheless be closely compared to infectious disease because of the similarity of their effects on the body. On this basis, we predict that many of the life-history (LH) responses observed in the context of host-parasite interactions should also be relevant in the context of cancer. Parasites are thought to affect LH traits of their hosts because of strong selective pressures like direct and indirect mortality effects favouring, for example, early maturation and reproduction. Cancer can similarly also affect LH traits by imposing direct costs and/or indirectly by triggering plastic adjustments and evolutionary responses. Here, we discuss how and why a LH focus is a potentially productive but under-exploited research direction for cancer research, by focusing our attention on similarities between infectious disease and cancer with respect to their effects on LH traits and their evolution. We raise the possibility that LH adjustments can occur in response to cancer via maternal/paternal effects and that these changes can be heritable to (adaptively) modify the LH traits of their offspring. We conclude that LH adjustments can potentially influence the transgenerational persistence of inherited oncogenic mutations in populations.
Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian
2018-05-09
The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.
Seed removal by scatter-hoarding rodents: the effects of tannin and nutrient concentration.
Wang, Bo; Yang, Xiaolan
2015-04-01
The mutualistic interaction between scatter-hoarding rodents and seed plants have a long co-evolutionary history. Plants are believed to have evolved traits that influence the foraging behavior of rodents, thus increasing the probability of seed removal and caching, which benefits the establishment of seedlings. Tannin and nutrient content in seeds are considered among the most essential factors in this plant-animal interaction. However, most previous studies used different species of plant seeds, rendering it difficult to tease apart the relative effect of each single nutrient on rodent foraging behavior due to confounding combinations of nutrient contents across seed species. Hence, to further explore how tannin and different nutritional traits of seed affect scatter-hoarding rodent foraging preferences, we manipulated tannin, fat, protein and starch content levels, and also seed size levels by using an artificial seed system. Our results showed that both tannin and various nutrients significantly affected rodent foraging preferences, but were also strongly affected by seed size. In general, rodents preferred to remove seeds with less tannin. Fat addition could counteract the negative effect of tannin on seed removal by rodents, while the effect of protein addition was weaker. Starch by itself had no effect, but it interacted with tannin in a complex way. Our findings shed light on the effects of tannin and nutrient content on seed removal by scatter-hoarding rodents. We therefore, believe that these and perhaps other seed traits should interactively influence this important plant-rodent interaction. However, how selection operates on seed traits to counterbalance these competing interests/factors merits further study. Copyright © 2015 Elsevier B.V. All rights reserved.
Anger, preoccupied attachment, and domain disorganization in borderline personality disorder
Morse, Jennifer Q.; Hill, Jonathan; Pilkonis, Paul A.; Yaggi, Kirsten; Broyden, Nichaela; Stepp, Stephanie; Reed, Lawrence Ian; Feske, Ulrike
2010-01-01
Emotional dysregulation and attachment insecurity have been reported in borderline personality disorder (BPD). Domain disorganization, evidenced in poor regulation of emotions and behaviors in relation to the demands of different social domains, may be a distinguishing feature of BPD. Understanding the interplay between these factors may be critical for identifying interacting processes in BPD and potential subtypes of BPD. Therefore, we examined the joint and interactive effects of anger, preoccupied attachment, and domain disorganization on BPD traits in clinical sample of 128 psychiatric patients. The results suggest that these factors contribute to BPD both independently and in interaction, even when controlling for other personality disorder traits and Axis I symptoms. In regression analyses, the interaction between anger and domain disorganization predicted BPD traits. In recursive partitioning analyses, two possible paths to BPD were identified: high anger combined with high domain disorganization and low anger combined with preoccupied attachment. These results may suggest possible subtypes of BPD or possible mechanisms by which BPD traits are established and maintained. PMID:19538080
Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C
2014-02-28
Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.
Au, Al K C; Lam, Shui-Fong
2017-04-01
Previous works on the effect of self-construal in interpersonal behaviours tend to adopt a main effect approach. The present research proposes an interactive approach in understanding two response patterns in dyadic conflict by combining self-construal and the stance of the opponent. Independent self-construal was hypothesised to be associated with a self-centred pattern of conflict response, which is characterised by taking contending responses regardless of whether the stance of the opponent is dominant or submissive. Relational self-construal was hypothesised to be associated with a tuning-in pattern of conflict response, which is characterised by showing contending responses when the opponent is submissive but yielding responses when the opponent is dominant. With trait self-construal measured and opponent's stance manipulated, Study 1 provided initial support for the hypotheses. Study 2 showed a three-way interaction effect between trait self-construal, manipulated self-construal and the opponent's stance on actual conflict responses during discussion of a scenario. The effect of self-construal manipulation was only observed among people who were low in trait independent self-construal and average in trait relational self-construal. The results pinpoint the importance of considering personal and opponent factors simultaneously in understanding the dynamics of dyadic conflict processes. © 2015 International Union of Psychological Science.
Janssens, Lizanne; Stoks, Robby
2017-07-01
Interactions with pollutants and environmental factors are poorly studied for physiological traits. Yet physiological traits are important for explaining and predicting interactions at higher levels of organization. We investigated the single and combined impact of the pesticide chlorpyrifos, predation risk and warming on endpoints related to oxidative stress in the damselfly Enallagma cyathigerum. We thereby integrated information on reactive oxygen species (ROS), antioxidant enzymes and oxidative damage. All three treatments impacted the oxidative stress levels and for most traits the pesticide interacted antagonistically with warming or predation risk. Chlorpyrifos exposure resulted in increased ROS levels, decreased antioxidant defence and increased oxidative damage compared to the control situation. Under warming, the pesticide-induced increase in oxidative stress was less strong and the investment in antioxidant defence higher. Although both the pesticide and predation risk increased oxidative damage, the effects of the pesticide on oxidative damage were less strong in the presence of predator cues (at 20 °C). Despite the weaker pesticide-induced effects under predation risk, the combination of the pesticide and predator cues consistently caused the highest ROS levels, the lowest antioxidant defence and the highest oxidative damage, indicating the importance of cumulative stressor effects for impairing fitness. Our results provide the first evidence for antagonistic interactions of warming and predation risk with a pollutant for physiological traits. We identified two general mechanisms that may generate antagonistic interactions for oxidative stress: cross-tolerance and the maximum cumulative levels of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Korovaitseva, Galina I.; Lezheiko, Tatyana V.; Golimbet, Vera E.
2017-01-01
Literature suggests that the effect of winter birth on vulnerability to schizophrenia might be mediated by increased expression of proinflammatory cytokines due to prenatal infection and its inadequate regulation by anti-inflammatory factors. As the response of the immune system depends on genotype, this study assessed the interaction effects of cytokine genes and season of birth (SOB) on schizotypy measured with the Schizotypal Personality Questionnaire (SPQ-74). We searched for associations of IL1B rs16944, IL4 rs2243250, and IL-1RN VNTR polymorphisms, SOB, and their interactions with the SPQ-74 total score in a sample of 278 healthy individuals. A significant effect of the IL4 X SOB interaction was found, p = 0.007 and η2 = 0.028. We confirmed this effect using an extended sample of 373 individuals. Homozygotes CC born in winter showed the highest SPQ total score and differed significantly from winter-born T allele carriers, p = 0.049. This difference was demonstrated for cognitive-perceptual and disorganized but not interpersonal dimensions. The findings are consistent with the hypothesis that the cytokine genes by SOB interaction can influence variability of schizotypal traits in the general population. The IL4 T allele appeared to have a protective effect against the development of positive and disorganized schizotypal traits in winter-born individuals. PMID:29464121
Alfimova, Margarita V; Korovaitseva, Galina I; Lezheiko, Tatyana V; Golimbet, Vera E
2017-01-01
Literature suggests that the effect of winter birth on vulnerability to schizophrenia might be mediated by increased expression of proinflammatory cytokines due to prenatal infection and its inadequate regulation by anti-inflammatory factors. As the response of the immune system depends on genotype, this study assessed the interaction effects of cytokine genes and season of birth (SOB) on schizotypy measured with the Schizotypal Personality Questionnaire (SPQ-74). We searched for associations of IL1B rs16944, IL4 rs2243250, and IL-1RN VNTR polymorphisms, SOB, and their interactions with the SPQ-74 total score in a sample of 278 healthy individuals. A significant effect of the IL4 X SOB interaction was found, p = 0.007 and η 2 = 0.028. We confirmed this effect using an extended sample of 373 individuals. Homozygotes CC born in winter showed the highest SPQ total score and differed significantly from winter-born T allele carriers, p = 0.049. This difference was demonstrated for cognitive-perceptual and disorganized but not interpersonal dimensions. The findings are consistent with the hypothesis that the cytokine genes by SOB interaction can influence variability of schizotypal traits in the general population. The IL4 T allele appeared to have a protective effect against the development of positive and disorganized schizotypal traits in winter-born individuals.
Pasalich, Dave S; Dadds, Mark R; Hawes, David J
2014-11-30
Callous-unemotional (CU) traits and autism spectrum disorders (ASD) symptoms are characterized by problems in empathy; however, these behavioral features are rarely examined together in children with conduct problems. This study investigated additive and interactive effects of CU traits and ASD symptoms in relation to cognitive and affective empathy in a non-ASD clinic-referred sample. Participants were 134 children aged 3 to 9 years (M=5.60; 79% boys) with oppositional defiant/conduct disorder, and their parents. Clinicians, teachers, and parents reported on dimensions of child behavior, and parental reports of family dysfunction and direct observations of parental warmth/responsiveness assessed quality of family relationships. Results from multiple regression analysis showed that, over and above the effects of child conduct problem severity and quality of family relationships, both ASD symptoms and CU traits were uniquely associated with deficits in cognitive empathy. Moreover, CU traits demonstrated an independent association with affective empathy, and this relationship was moderated by ASD symptoms. That is, there was a stronger negative association between CU traits and affective empathy at higher versus lower levels of ASD symptoms. These findings suggest including both CU traits and ASD-related social impairments in models delineating the atypical development of empathy in children with conduct problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle
2015-01-01
Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409
Rahman, Md. Moshiur; Turchini, Giovanni M.; Gasparini, Clelia; Norambuena, Fernando; Evans, Jonathan P.
2014-01-01
Environmental and ecological conditions can shape the evolution of life history traits in many animals. Among such factors, food or nutrition availability can play an important evolutionary role in moderating an animal's life history traits, particularly sexually selected traits. Here, we test whether diet quantity and/or composition in the form of omega-3 long chain polyunsaturated fatty acids (here termed ‘n3LC’) influence the expression of pre- and postcopulatory traits in the guppy (Poecilia reticulata), a livebearing poeciliid fish. We assigned males haphazardly to one of two experimental diets supplemented with n3LC, and each of these diet treatments was further divided into two diet ‘quantity’ treatments. Our experimental design therefore explored the main and interacting effects of two factors (n3LC content and diet quantity) on the expression of precopulatory (sexual behaviour and sexual ornamentation, including the size, number and spectral properties of colour spots) and postcopulatory (the velocity, viability, number and length of sperm) sexually selected traits. Our study revealed that diet quantity had significant effects on most of the pre- and postcopulatory traits, while n3LC manipulation had a significant effect on sperm traits and in particular on sperm viability. Our analyses also revealed interacting effects of diet quantity and n3LC levels on courtship displays, and the area of orange and iridescent colour spots in the males’ colour patterns. We also confirmed that our dietary manipulations of n3LC resulted in the differential uptake of n3LC in body and testes tissues in the different n3LC groups. This study reveals the effects of diet quantity and n3LC on behavioural, ornamental and ejaculate traits in P. reticulata and underscores the likely role that diet plays in maintaining the high variability in these condition-dependent sexual traits. PMID:25170940
Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.
Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie
2016-09-15
Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.
2013-01-01
Background The impact of psychological factors is often taken into account in the evaluation of quality of life. However, the effect of optimism and trait anxiety remains controversial and they are rarely studied simultaneously. We aimed to study the effect of this factor on health-related quality of life (HRQOL) of patients after a hospitalization in relation with their chronic disease. Methods Using cross-sectional data from the SATISQOL cohort, we conducted a multicentric study, including patients hospitalized for an intervention in connection with their chronic disease. Six months after hospitalization, patients completed a generic HRQOL questionnaire (SF-36), and the STAI and LOT-R questionnaires to evaluate optimism and trait anxiety. We studied the effect of each trait on HRQOL separately, and simultaneously, taking account of their interaction in 3 models, using an ANOVA. Results In this study, 1529 patients were included in three participating hospitals and there existed wide diversity in the chronic diseases in our population. The HRQOL score increased for all dimensions of SF36 between 15,8 and 44,5 when the level of anxiety decreased (p < 0.0001) for the model 1, assessing the effect of anxiety on HRQOL and increased for all dimensions of SF36 between 3.1 and 12.7 with increasing level of optimism (< 0.0001) in the model 2 assessing the effect of optimism on HRQOL. In the model 3, assessing the effect of both anxiety and optimism on HRQOL, and their interaction, the HRQOL score for all dimensions of the SF36 increased when the level of anxiety decreased (p < 0.0001). It increased with increasing level of optimism (p < 0.006) in the model for all dimensions of SF36 except the Role Physical dimension. In this model, interaction between anxiety and optimism was significant for the Social Functioning dimension (p = 0.0021). Conclusions Optimism and trait anxiety appeared to be significantly correlated with HRQOL. Furthermore, an interaction existed between the trait anxiety and optimism for some dimensions of SF36. Contrary to optimism, it seems essential to evaluate trait anxiety in future studies about HRQOL, since it could represent a confounding factor. PMID:23914779
Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa
2017-01-01
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831
Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa
2017-03-01
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.
Interactive effects of trait and state affect on top-down control of attention.
Hur, Juyoen; Miller, Gregory A; McDavitt, Jenika R B; Spielberg, Jeffrey M; Crocker, Laura D; Infantolino, Zachary P; Towers, David N; Warren, Stacie L; Heller, Wendy
2015-08-01
Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Sex-specific genetic architecture of human fatness in Chinese: the SAPPHIRe Study.
Chiu, Y-F; Chuang, L-M; Kao, H-Y; Shih, K-C; Lin, M-W; Lee, W-J; Quertermous, T; Curb, J D; Chen, I; Rodriguez, B L; Hsiung, C A
2010-11-01
To dissect the genetic architecture of sexual dimorphism in obesity-related traits, we evaluated the sex-genotype interaction, sex-specific heritability and genome-wide linkages for seven measurements related to obesity. A total of 1,365 non-diabetic Chinese subjects from the family study of the Stanford Asia-Pacific Program of Hypertension and Insulin Resistance were used to search for quantitative trait loci (QTLs) responsible for the obesity-related traits. Pleiotropy and co-incidence effects from the QTLs were also examined using the bivariate linkage approach. We found that sex-specific differences in heritability and the genotype-sex interaction effects were substantially significant for most of these traits. Several QTLs with strong linkage evidence were identified after incorporating genotype by sex (G × S) interactions into the linkage mapping, including one QTL for hip circumference [maximum LOD score (MLS) = 4.22, empirical p = 0.000033] and two QTLs: for BMI on chromosome 12q with MLS 3.37 (empirical p = 0.0043) and 3.10 (empirical p = 0.0054). Sex-specific analyses demonstrated that these linkage signals all resulted from females rather than males. Most of these QTLs for obesity-related traits replicated the findings in other ethnic groups. Bivariate linkage analyses showed several obesity traits were influenced by a common set of QTLs. All regions with linkage signals were observed in one gender, but not in the whole sample, suggesting the genetic architecture of obesity-related traits does differ by gender. These findings are useful for further identification of the liability genes for these phenotypes through candidate genes or genome-wide association analysis.
Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S
2014-02-01
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.
terHorst, Casey P
2010-12-01
Ecologists have long recognized the importance of indirect ecological effects on species abundances, coexistence, and diversity. However, the evolutionary consequences of indirect interactions are rarely considered. Here I conduct selection experiments and examine the evolutionary response of Colpoda sp., a ciliated protozoan, to other members of the inquiline community of purple pitcher plants (Sarracenia purpurea). I measured the evolution of six traits in response to (1) predation by mosquito larvae, (2) competition from other ciliated protozoans, and (3) simultaneous predation and competition. The latter treatment incorporated both direct effects and indirect effects due to interactions between predators and competitors. Population growth rate and cell size evolved in response to direct effects of predators and competitors. However, trait values in the multispecies treatment were similar to those in the monoculture treatment, indicating that direct effects were offset by strong indirect effects on the evolution of traits. For most of the traits measured, indirect effects were opposed to, and often stronger than, direct effects. These indirect effects occurred as a result of behavioral changes of the predator in the presence of competitors and as a result of reduced densities of competitors in the presence of predators. Incorporating indirect effects provides a more realistic description of how species evolve in complex natural communities.
Tang, Hongliang; Shen, Jianbo; Zhang, Fusuo; Rengel, Zed
2013-04-01
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.
Ge, Yan; Zhang, Qian; Zhao, Wenguo; Zhang, Kan; Qu, Weina
2017-11-01
To explore the effect of anger behind the wheel on driving behavior and accident involvement has been the subject of many studies. However, few studies have explored the interaction between anger and driving experience on dangerous driving behavior. This study is a moderated mediation analysis of the effect of trait anger, driving anger, and driving experience on driving behavior. A sample of 303 drivers was tested using the Trait Anger Scale (TAS), the Driving Anger Scale (DAS), and the Dula Dangerous Driving Index (DDDI). The results showed that trait anger and driving anger were positively correlated with dangerous driving behavior. Driving anger partially mediated the effect of trait anger on dangerous driving behavior. Driving experience moderated the relationship between trait anger and driving anger. It also moderated the effect of driving anger on dangerous driving behavior. These results suggest that drivers with more driving experience may be safer as they are not easily irritated during driving. © 2017 Wiley Periodicals, Inc.
Yan, Wansen; Li, Yonghui; Sui, Nan
2014-02-01
Internet addiction (IA) is an emerging social and mental health issue among youths. Analysis of risk factors, as well as their interactions, is crucial for understanding the development of IA. This study investigated the relationship between recent stressful life events, personality traits, perceived family functioning and IA in 892 college students. Subjects were classified into categories (non-addicted, mild IA or severe IA) using the Chen Internet Addiction Scale. Stressful life events, personality traits and family functioning were assessed using the Adolescent Self-Rating Life Events Checklist, the Eysenck Personality Questionnaire, and the Family Adaptability and Cohesion Scale, respectively. The results indicated that compared with non-addicted subjects, subjects with severe IA (9.98%) had lower family functioning, lower extraversion, higher neuroticism and psychoticism, and more stressful life events, and subjects with mild IA (11.21%) had higher neuroticism and more health and adaptation problems. Neuroticism and health and adaptation problems were potential predictors of IA. An interaction effect between psychoticism and total life stress on IA was also found. These findings highlight the role of personality traits and life stress and their interactions in college students' IA. Further research should explore the mechanisms underlying the interaction effect of psychoticism with life stress on IA. Copyright © 2013 John Wiley & Sons, Ltd.
Rijlaarsdam, Jolien; van IJzendoorn, Marinus H.; Verhulst, Frank C; Jaddoe, Vincent W. V.; Felix, Janine F.; Tiemeier, Henning; Bakermans-Kranenburg, Marian J.
2017-01-01
Lay Abstract The gene encoding the oxytocin receptor (OXTR), localized on chromosome 3p25, is considered a promising candidate for explaining genetic vulnerability to autistic traits. Although several lines of evidence implicate OXTR SNP rs53576 (G/A) variation in social behavior, findings have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. This study investigated the main and interactive effects of OXTR rs53576 genotype, stress exposure, and OXTR methylation on child autistic traits. Prenatal maternal stress exposure, but not OXTR rs53576 genotype and OXTR methylation, showed a main effect on child autistic traits. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction. More specifically, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. Scientific Abstract Findings of studies investigating OXTR SNP rs53576 (G-A) variation in social behavior have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were collected in a total of 743 children participating in the Generation R Study. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main effects, suggesting that opposing effects cancelled each other out. Indeed, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. PMID:27520745
Pueyo, Y; Kéfi, S; Díaz-Sierra, R; Alados, C L; Rietkerk, M
2010-12-01
The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment. Copyright © 2010 Elsevier Inc. All rights reserved.
Xu, Z C; Zhu, J
2000-01-01
According to the double-cross mating design and using principles of Cockerham's general genetic model, a genetic model with additive, dominance and epistatic effects (ADAA model) was proposed for the analysis of agronomic traits. Components of genetic effects were derived for different generations. Monte Carlo simulation was conducted for analyzing the ADAA model and its reduced AD model by using different generations. It was indicated that genetic variance components could be estimated without bias by MINQUE(1) method and genetic effects could be predicted effectively by AUP method; at least three generations (including parent, F1 of single cross and F1 of double-cross) were necessary for analyzing the ADAA model and only two generations (including parent and F1 of double-cross) were enough for the reduced AD model. When epistatic effects were taken into account, a new approach for predicting the heterosis of agronomic traits of double-crosses was given on the basis of unbiased prediction of genotypic merits of parents and their crosses. In addition, genotype x environment interaction effects and interaction heterosis due to G x E interaction were discussed briefly.
Jackson, Dylan B; Beaver, Kevin M
2016-03-01
A wealth of research has revealed that a shorter duration of breastfeeding during infancy can increase the risk of various maladaptive traits, including neuropsychological deficits. Despite the number of studies that have been conducted on the topic, few studies have explored whether the effects of breastfeeding on neuropsychological functioning and personality features persist into adulthood. Furthermore, very little research to date has examined whether this relationship is moderated by specific indicators of genetic risk. The current study examines the direct and interactive effects of breastfeeding experiences and the serotonin transporter polymorphism (5HTTLPR) on neuropsychological deficits and psychopathic personality traits. Using data from the National Longitudinal study of Adolescent Health, we find that no exposure to breastfeeding and a shorter duration of breastfeeding significantly increase the risk of exhibiting neuropsychological deficits during adolescence and early adulthood as well as psychopathic personality traits during adulthood. The results also reveal a number of gene × environment interactions between 5HTTLPR, breastfeeding exposure and breastfeeding duration in the prediction of neuropsychological deficits, but not in the prediction of psychopathic personality traits.
Trait mindfulness helps shield decision-making from translating into health-risk behavior.
Black, David S; Sussman, Steve; Johnson, C Anderson; Milam, Joel
2012-12-01
The cognitive tendency toward mindfulness may influence the enactment of health and risk behaviors by its bringing increased attention to and awareness of decision-making processes underlying behavior. The present study examined the moderating effect of trait mindfulness on associations between intentions to smoke (ITS)/smoking refusal self-efficacy (SRSE) and smoking frequency. Self-reports from Chinese adolescents (N = 5,287; mean age = 16.2 years, standard deviation = .7; 48.8% female) were collected in 24 schools. Smoking frequency was regressed on latent factor interactions Mindful Attention Awareness Scale*ITS and Mindful Attention Awareness Scale*SRSE, adjusting for school clustering effects and covariates. Both interaction terms were significant in cross-sectional analyses and showed that high ITS predicted higher smoking frequency among those low, relative to high, in trait mindfulness, whereas low SRSE predicted higher smoking frequency among those low, relative to high, in trait mindfulness. Findings suggest trait mindfulness possibly shields against decision-making processes that place adolescents at risk for smoking. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Engst, Karina; Baasch, Annett; Bruelheide, Helge
2017-09-01
Species-rich semi-natural grasslands are highly endangered habitats in Central Europe and numerous restoration efforts have been made to compensate for the losses in the last decades. However, some plant species could become more easily established than others. The establishment success of 37 species was analyzed over 6 years at two study sites of a restoration project in Germany where hay transfer and sowing of threshing material in combination with additional sowing were applied. The effects of the restoration method applied, time since the restoration took place, traits related to germination, dispersal, and reproduction, and combinations of these traits on the establishment were analyzed. While the specific restoration method of how seeds were transferred played a subordinate role, the establishment success depended in particular on traits such as flower season or the lifeform. Species flowering in autumn, such as Pastinaca sativa and Serratula tinctoria , became established better than species flowering in other seasons, probably because they could complete their life cycle, resulting in increasingly stronger seed pressure with time. Geophytes, like Allium angulosum and Galium boreale , became established very poorly, but showed an increase with study duration. For various traits, we found significant trait by method and trait by year interactions, indicating that different traits promoted establishment under different conditions. Using a multi-model approach, we tested whether traits acted in combination. For the first years and the last year, we found that models with three traits explained establishment success better than models with a single trait or two traits. While traits had only an additive effect on the establishment success in the first years, trait interactions became important thereafter. The most important trait was the season of flowering, which occurred in all best models from the third year onwards. Overall, our approach revealed the potential of functional trait analysis to predict success in restoration projects.
A trait-based framework for stream algal communities.
Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David
2016-01-01
The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a fairly comprehensive set of traits can help shed light on the drivers of algal community composition in situations where multiple stressors are operating. Further, to understand non-linear and non-additive effects of such drivers, communities need to be studied along multiple gradients of natural variation or anthropogenic stressors.
Schmitz, Oswald
2017-01-01
Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.
Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.
Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz
2015-06-07
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Associations between personality traits and CCK-4-induced panic attacks in healthy volunteers.
Tõru, Innar; Aluoja, Anu; Võhma, Ulle; Raag, Mait; Vasar, Veiko; Maron, Eduard; Shlik, Jakov
2010-07-30
In this study we examined how personality disposition may affect the response to cholecystokinin tetrapeptide (CCK-4; 50 microg) challenge in healthy volunteers (n=105). Personality traits were assessed with the Swedish universities Scales of Personality (SSP). Statistical methods employed were correlation analysis and logistic regression. The results showed that the occurrence of CCK-4-induced panic attacks was best predicted by baseline diastolic blood pressure, preceding anxiety and SSP-defined traits of lack of assertiveness, detachment, embitterment and verbal aggression. Significant interactions were noted between the above mentioned variables, modifying their individual effects. For different subsets of CCK-4-induced symptoms, the traits of physical aggression, irritability, somatic anxiety and stress susceptibility also appeared related to panic manifestations. These findings suggest that some personality traits and their interactions may influence vulnerability to CCK-4-induced panic attacks in healthy volunteers. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.
2016-01-01
Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695
Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D
2016-01-01
Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.
Yang, Zhou; Lü, Kai; Chen, Yafen; Montagnes, David J. S.
2012-01-01
The occurrence of Microcystis blooms is a worldwide concern that has caused numerous adverse effects on water quality and lake ecology. Elevated ammonia and microcystin concentrations co-occur during the degradation of Microcystis blooms and are toxic to aquatic organisms; we studied the relative and combined effects of these on the life history of the model organism Daphnia magna. Ammonia and microcystin-LR treatments were: 0, 0.366, 0.581 mg L−1 and 0, 10, 30, 100 µg L−1, respectively. Experiments followed a fully factorial design. Incubations were 14 d and recorded the following life-history traits: number of moults, time to first batch of eggs, time to first clutch, size at first batch of eggs, size at first clutch, number of clutches per female, number of offspring per clutch, and total offspring per female. Both ammonia and microcystin were detrimental to most life-history traits. Interactive effects of the toxins occurred for five traits: the time to first batch of eggs appearing in the brood pouch, time to first clutch, size at first clutch, number of clutches, and total offspring per female. The interactive effects of ammonia and microcystin appeared to be synergistic on some parameters (e.g., time to first eggs) and antagonistic on others (e.g., total offspring per female). In conclusion, the released toxins during the degradation of Microcystis blooms would result, according to our data, in substantially negative effect on D. magna. PMID:22403641
Wang, Lei; Baskin, Jerry M; Baskin, Carol C; Cornelissen, J Hans C; Dong, Ming; Huang, Zhenying
2012-09-25
Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration.
2012-01-01
Background Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Results Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Conclusions Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. PMID:23006315
Incorporating gene-environment interaction in testing for association with rare genetic variants.
Chen, Han; Meigs, James B; Dupuis, Josée
2014-01-01
The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.
Li, Fengmei; Xie, Jianyin; Zhu, Xiaoyang; Wang, Xueqiang; Zhao, Yan; Ma, Xiaoqian; Zhang, Zhanying; Rashid, Muhammad A R; Zhang, Zhifang; Zhi, Linran; Zhang, Shuyang; Li, Jinjie; Li, Zichao; Zhang, Hongliang
2018-01-01
Avoidance of disadvantageous genetic correlations among growth duration and yield traits is critical in developing crop varieties that efficiently use light and energy resources and produce high yields. To understand the genetic basis underlying the correlations among heading date and three major yield traits in rice, we investigated the four traits in a diverse and representative core collection of 266 cultivated rice accessions in both long-day and short-day environments, and conducted the genome-wide association study using 4.6 million single nucleotide polymorphisms (SNPs). There were clear positive correlation between heading date and grain number per panicle, and negative correlation between grain number per panicle and panicle number, as well as different degrees of correlations among other traits in different subspecies and environments. We detected 47 pleiotropic genes in 15 pleiotropic quantitative trait loci (pQTLs), 18 pleiotropic genes containing 37 pleiotropic SNPs in 8 pQTLs, 27 pQTLs with r 2 of linkage disequilibrium higher than 0.2, and 39 pairs of interactive genes from 8 metabolic pathways that may contribute to the above phenotypic correlations, but these genetic bases were different for correlations among different traits. Distributions of haplotypes revealed that selection for pleiotropic genes or interactive genes controlling different traits focused on genotypes with weak effect or on those balancing two traits that maximized production but sometimes their utilization strategies depend on the traits and environment. Detection of pQTLs and interactive genes and associated molecular markers will provide an ability to overcome disadvantageous correlations and to utilize the advantageous correlations among traits through marker-assisted selection in breeding.
Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao
2015-12-01
Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ellen, Esther D.; Rodenburg, T. Bas; Albers, Gerard A. A.; Bolhuis, J. Elizabeth; Camerlink, Irene; Duijvesteijn, Naomi; Knol, Egbert F.; Muir, William M.; Peeters, Katrijn; Reimert, Inonge; Sell-Kubiak, Ewa; van Arendonk, Johan A. M.; Visscher, Jeroen; Bijma, Piter
2014-01-01
Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock. PMID:25426136
Ellen, Esther D; Rodenburg, T Bas; Albers, Gerard A A; Bolhuis, J Elizabeth; Camerlink, Irene; Duijvesteijn, Naomi; Knol, Egbert F; Muir, William M; Peeters, Katrijn; Reimert, Inonge; Sell-Kubiak, Ewa; van Arendonk, Johan A M; Visscher, Jeroen; Bijma, Piter
2014-01-01
Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock.
Robins, R W; Caspi, A; Moffitt, T E
2000-08-01
This research tested 6 models of the independent and interactive effects of stable personality traits on each partner's reports of relationship satisfaction and quality. Both members of 360 couples (N = 720) completed the Multidimensional Personality Questionnaire and were interviewed about their relationship. Findings show that a woman's relationship happiness is predicted by her partner's low Negative Emotionality, high Positive Emotionality, and high Constraint, whereas a man's relationship happiness is predicted only by his partner's low Negative Emotionality. Findings also show evidence of additive but not interactive effects: Each partner's personality contributed independently to relationship outcomes but not in a synergistic way. These results are discussed in relation to models that seek to integrate research on individual differences in personality traits with research on interpersonal processes in intimate relationships.
A meta-analysis of zooplankton functional traits influencing ecosystem function.
Hébert, Marie-Pier; Beisner, Beatrix E; Maranger, Roxane
2016-04-01
The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits.
Duan, Honglang; Chaszar, Brian; Lewis, James D; Smith, Renee A; Huxman, Travis E; Tissue, David T
2018-04-26
Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have struggled with assessing the relative importance of hydraulic and carbon metabolic traits in determining mortality, yet an integrated trait, time-dependent framework provides considerable insight into the risk of death from drought for trees.
Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A
2012-01-01
Intra- and interspecific plant-plant interactions are fundamental to patterns of community assembly and to the mixture effects observed in biodiversity studies. Although much research has been conducted at the species level, very little is understood about how genetic variation within and among interacting species may drive these processes. Using clones of both Solidago altissima and Solidago gigantea, we found that genotypic variation in a plant's neighbours affected both above- and belowground plant traits, and that genotype by genotype interactions between neighbouring plants impacted associated pollinator communities. The traits for which focal plant genotypic variation explained the most variation varied by plant species, whereas neighbour genotypic variation explained the most variation in coarse root biomass. Our results provide new insight into genotypic and species diversity effects in plant-neighbour interactions, the extended consequences of diversity effects, and the potential for evolution in response to competitive or to facilitative plant-neighbour interactions. © 2011 Blackwell Publishing Ltd/CNRS.
Li, Kehu; Bao, Jinsong; Corke, Harold; Sun, Mei
2017-04-15
The USDA rice mini-core collection consists of 217 accessions representative of a world-wide germplam bank. We investigated its genotypic diversity in starch physicochemical properties and the effects of genotype, environment and G×E interaction in this study. High genotypic diversity was found in all 18 measured starch quality traits in the mini-core rice in two location-years in China. Genotype, environment and G×E effects on these traits were analysed using 115 common accessions successfully produced in both environments. Thermal properties (T o , T p and T c ) were very stable whereas most other traits differed significantly between environments. However, when these accessions were divided into five subgroups based on amylose content, environment was found to have differential effects. G×E interaction also played a significant role in determining the starch traits. These findings will provide guidance for selection from the diverse genotypes in the USDA mini-core collection for cultivation and for developing cultivars with desired cooking and eating quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sadikaj, Gentiana; Moskowitz, D S
2018-05-25
Alcohol intoxication facilitates interpersonal aggression, but this effect depends on person and situation characteristics. Using the Alcohol Myopia Model, we examined the joint influence of alcohol, trait anger, and state anger on the association between perceived quarrelsomeness in an interaction partner and quarrelsome behavior in naturally occurring interpersonal interactions. Using an event-contingent recording method over a 20-day period, community adults reported their perception of an interaction partner's quarrelsome behavior, their own anger and quarrelsome behavior, and the number of alcohol drinks consumed up to 3 hours prior to an interpersonal interaction. Results revealed that alcohol consumption and trait anger jointly moderated the association between perceived quarrelsomeness and quarrelsome behavior indirectly via state anger. Heightened anger experience accounted for increased quarrelsome behavior in response to perceived quarrelsomeness among higher trait anger individuals who reported increased alcohol consumption. When no alcohol was consumed, no such difference in quarrelsome behavioral response was found between low and high trait anger individuals. Findings suggest that alcohol consumption may strengthen the influence of perceived quarrelsomeness on a person's own quarrelsome behavior among individuals with a readiness to experience anger. Intense anger experience may undermine these individuals' ability to inhibit aggressive behaviors when under the influence of alcohol. Copyright © 2018 by the Research Society on Alcoholism.
Ecology, sexual selection and speciation.
Maan, Martine E; Seehausen, Ole
2011-06-01
The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research. © 2011 Blackwell Publishing Ltd/CNRS.
Fortunel, Claire; Valencia, Renato; Wright, S Joseph; Garwood, Nancy C; Kraft, Nathan J B
2016-09-01
As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests. © 2016 John Wiley & Sons Ltd/CNRS.
Bregman, Tom P; Lees, Alexander C; MacGregor, Hannah E A; Darski, Bianca; de Moura, Nárgila G; Aleixo, Alexandre; Barlow, Jos; Tobias, Joseph A
2016-12-14
Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. © 2016 The Author(s).
Bregman, Tom P.; Lees, Alexander C.; MacGregor, Hannah E. A.; Darski, Bianca; de Moura, Nárgila G.; Aleixo, Alexandre; Barlow, Jos
2016-01-01
Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. PMID:27928045
The Evolution of Sexually Antagonistic Phenotypes
Perry, Jennifer C.; Rowe, Locke
2015-01-01
Sexual conflict occurs whenever there is sexually antagonistic selection on shared traits. When shared traits result from interactions (e.g., mating rate) and have a different genetic basis in each sex (i.e., interlocus conflict), then sex-specific traits that shift the value of these interaction traits toward the sex-specific optimum will be favored. Male traits can be favored that increase the fitness of their male bearers, but decrease the fitness of interacting females. Likewise, female traits that reduce the costs of interacting with harmful males may simultaneously impose costs on males. If the evolution of these antagonistic traits changes the nature of selection acting on the opposite sex, interesting coevolutionary dynamics will result. Here we examine three current issues in the study of sexually antagonistic interactions: the female side of sexual conflict, the ecological context of sexual conflict, and the strength of evidence for sexually antagonistic coevolution. PMID:26032715
Lockefeer, J P M; De Vries, J
2013-05-01
Depressive symptoms, fatigue, and low sleep quality are common symptoms during and after breast cancer (BC) treatment. In the present study, the relationship between trait anxiety and these symptoms in a long follow-up period was examined. This was a prospective study. Participants, composed of 163 women with BC and 224 women with benign breast problems (BBPs), completed questionnaires on depressive symptoms, fatigue, and sleep quality before diagnosis and 1, 3, 6, 12, and 24 months after diagnosis (BBP group) or surgical treatment (BC group). In addition, patients completed a questionnaire on trait anxiety before diagnosis. Trait anxiety was the most significant predictor for depressive symptoms (p < 0.001) and lower sleep quality (p = 0.040) at 2-year follow-up. For fatigue, fatigue at baseline and trait anxiety together was the most important predictor (p < 0.001). Linear mixed model analyses showed that there was an interaction effect of time with trait anxiety and with diagnosis for depressive symptoms (p = 0.001 and p < 0.001) and fatigue (p = 0.004 and p < 0.001). There was no interaction effect of time with trait anxiety or diagnosis for sleep quality (p = 0.055 and p = 0.225). Together with diagnosis, trait anxiety was an important determinant of depressive symptoms, fatigue, and low sleep quality following diagnosis of BBP or BC and seemed to be a common factor in these persisting symptoms. Copyright © 2012 John Wiley & Sons, Ltd.
Jordan, Nicholas R.; Forester, James D.
2018-01-01
Invasion potential should be part of the evaluation of candidate species for any species introduction. However, estimating invasion risks remains a challenging problem, particularly in complex landscapes. Certain plant traits are generally considered to increase invasive potential and there is an understanding that landscapes influence invasions dynamics, but little research has been done to explore how those drivers of invasions interact. We evaluate the relative roles of, and potential interactions between, plant invasiveness traits and landscape characteristics on invasions with a case study using a model parameterized for the potentially invasive biomass crop, Miscanthus × giganteus. Using that model we simulate invasions on 1000 real landscapes to evaluate how landscape characteristics, including both composition and spatial structure, affect invasion outcomes. We conducted replicate simulations with differing strengths of plant invasiveness traits (dispersal ability, establishment ability, population growth rate, and the ability to utilize dispersal corridors) to evaluate how the importance of landscape characteristics for predicting invasion patterns changes depending on the invader details. Analysis of simulations showed that the presence of highly suitable habitat (e.g., grasslands) is generally the strongest determinant of invasion dynamics but that there are also more subtle interactions between landscapes and invader traits. These effects can also vary between different aspects of invasion dynamics (short vs. long time scales and population size vs. spatial extent). These results illustrate that invasions are complex emergent processes with multiple drivers and effective management needs to reflect the ecology of the species of interest and the particular goals or risks for which efforts need to be optimized. PMID:29771923
QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice.
Senthilvel, Senapathy; Vinod, Kunnummal Kurungara; Malarvizhi, Palaniappan; Maheswaran, Marappa
2008-09-01
Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype x environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL x environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.
Characterising variation in wheat traits under hostile soil conditions in India
Khokhar, Jaswant S.; Sareen, Sindhu; Tyagi, Bhudeva S.; Singh, Gyanendra; Chowdhury, Apurba K.; Dhar, Tapamay; Singh, Vinod; King, Ian P.; Young, Scott D.
2017-01-01
Intensive crop breeding has increased wheat yields and production in India. Wheat improvement in India typically involves selecting yield and component traits under non-hostile soil conditions at regional scales. The aim of this study is to quantify G*E interactions on yield and component traits to further explore site-specific trait selection for hostile soils. Field experiments were conducted at six sites (pH range 4.5–9.5) in 2013–14 and 2014–15, in three agro-climatic regions of India. At each site, yield and component traits were measured on 36 genotypes, representing elite varieties from a wide genetic background developed for different regions. Mean grain yields ranged from 1.0 to 5.5 t ha-1 at hostile and non-hostile sites, respectively. Site (E) had the largest effect on yield and component traits, however, interactions between genotype and site (G*E) affected most traits to a greater extent than genotype alone. Within each agro-climatic region, yield and component traits correlated positively between hostile and non-hostile sites. However, some genotypes performed better under hostile soils, with site-specific relationships between yield and component traits, which supports the value of ongoing site-specific selection activities. PMID:28604800
Schmitz, Oswald
2017-01-01
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073
Schumacher, Sonja; Oe, Misari; Wilhelm, Frank H; Rufer, Michael; Heinrichs, Markus; Weidt, Steffi; Moergeli, Hanspeter; Martin-Soelch, Chantal
2018-01-01
Previous research has demonstrated that the neuropeptide oxytocin modulates social behaviors and reduces anxiety. However, effects of oxytocin on startle reactivity, a well-validated measure of defense system activation related to fear and anxiety, have been inconsistent. Here we investigated the influence of oxytocin on startle reactivity with particular focus on the role of trait anxiety. Forty-four healthy male participants attended two experimental sessions. They received intranasal oxytocin (24 IU) in one session and placebo in the other. Startle probes were presented in combination with pictures of social and non-social content. Eye-blink startle magnitude was measured by electromyography over the musculus orbicularis oculi in response to 95 dB noise bursts. Participants were assigned to groups of high vs. low trait anxiety based on their scores on the trait form of the Spielberger State-Trait Anxiety Inventory (STAI). A significant interaction effect of oxytocin with STAI confirmed that trait anxiety moderated the effect of oxytocin on startle reactivity. Post-hoc tests indicated that for participants with elevated trait anxiety, oxytocin increased startle magnitude, particularly when watching non-social pictures, while this was not the case for participants with low trait anxiety. Results indicate that effects of oxytocin on defense system activation depend on individual differences in trait anxiety. Trait anxiety may be an important moderator variable that should be considered in human studies on oxytocin effects.
Global and local disturbances interact to modify seagrass palatability.
Jiménez-Ramos, Rocío; Egea, Luis G; Ortega, María J; Hernández, Ignacio; Vergara, Juan J; Brun, Fernando G
2017-01-01
Global change, such as warming and ocean acidification, and local anthropogenic disturbances, such as eutrophication, can have profound impacts on marine organisms. However, we are far from being able to predict the outcome of multiple interacting disturbances on seagrass communities. Herbivores are key in determining plant community structure and the transfer of energy up the food web. Global and local disturbances may alter the ecological role of herbivory by modifying leaf palatability (i.e. leaf traits) and consequently, the feeding patterns of herbivores. This study evaluates the main and interactive effects of factors related to global change (i.e. elevated temperature, lower pH levels and associated ocean acidification) and local disturbance (i.e. eutrophication through ammonium enrichment) on a broad spectrum of leaf traits using the temperate seagrass Cymodocea nodosa, including structural, nutritional, biomechanical and chemical traits. The effect of these traits on the consumption rates of the generalist herbivore Paracentrotus lividus (purple sea urchin) is evaluated. The three disturbances of warming, low pH level and eutrophication, alone and in combination, increased the consumption rate of seagrass by modifying all leaf traits. Leaf nutritional quality, measured as nitrogen content, was positively correlated to consumption rate. In contrast, a negative correlation was found between feeding decisions by sea urchins and structural, biomechanical and chemical leaf traits. In addition, a notable accomplishment of this work is the identification of phenolic compounds not previously reported for C. nodosa. Our results suggest that global and local disturbances may trigger a major shift in the herbivory of seagrass communities, with important implications for the resilience of seagrass ecosystems.
Interaction of Induced Anxiety and Verbal Working Memory: Influence of Trait Anxiety
ERIC Educational Resources Information Center
Patel, Nilam; Stoodley, Catherine; Pine, Daniel S.; Grillon, Christian; Ernst, Monique
2017-01-01
This study examines the influence of trait anxiety on working memory (WM) in safety and threat. Interactions between experimentally induced anxiety and WM performance (on different cognitive loads) have been reported in healthy, nonanxious subjects. Differences in trait anxiety may moderate these interactions. Accordingly, these interactions may…
Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem
Barber, Nicholas A.; Kiers, E. Toby; Hazzard, Ruth V.; Adler, Lynn S.
2013-01-01
Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant–AMF interactions should include these indirect effects. To determine how AMF affect plant–insect interactions, we grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context-dependency of plant–AMF interactions. PMID:24046771
Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication.
Doust, Andrew N; Lukens, Lewis; Olsen, Kenneth M; Mauro-Herrera, Margarita; Meyer, Ann; Rogers, Kimberly
2014-04-29
Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.
Berrached, Rachda; Kadik, Leila; Ait Mouheb, Hocine; Prinzing, Andreas
2017-01-01
Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little tolerant species. Lack of abiotic tolerance might hence constrain accessible resources and thereby impose a stronger synchronization with biotic partners such as pollinators. PMID:28301580
Adaptive evolution of body size subject to indirect effect in trophic cascade system.
Wang, Xin; Fan, Meng; Hao, Lina
2017-09-01
Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.
2014-01-01
Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335
Phenotypic Mismatches Reveal Escape from Arms-Race Coevolution
Hanifin, Charles T; Brodie, Edmund D; Brodie, Edmund D
2008-01-01
Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were “ahead” of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race. PMID:18336073
Sickle Cell Trait and Scholastic Achievement
ERIC Educational Resources Information Center
Jackson, Yvonne; Ayrer, James
1974-01-01
In a preliminary study, no significant interaction effects were found between scholastic achievement and sickle cell trait in black children currently in eight and ninth grades, as measured by the Iowa Tests of Basic Skills over a consecutive period of four years, 1968 through 1971, grades four through seven. (EH)
Stereotype Threat, Test Anxiety, and Mathematics Performance
ERIC Educational Resources Information Center
Tempel, Tobias; Neumann, Roland
2014-01-01
We investigated the combined effects of stereotype threat and trait test anxiety on mathematics test performance. Stereotype threat and test anxiety interacted with each other in affecting performance. Trait test anxiety predicted performance only in a diagnostic condition that prevented stereotype threat by stereotype denial. A state measure of…
Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi
2017-08-24
Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.
Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn
2017-07-01
Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.
Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Zhang, Zuo-Feng; Ho, Gloria; Crandall, Carolyn
2017-01-01
Genetic variants and traits in metabolic signaling pathways may interact with lifestyle factors such as obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal colorectal cancer (CRC) risk, but these interrelated pathways are not fully understood. In this case-cohort study, we examined 33 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/ insulin resistance (IR) traits and signaling pathways, using data from 704 postmenopausal women in Women’s Health Initiative Observation ancillary studies. Stratifying by the lifestyle modifiers, we assessed the effects of IGF-I/IR traits (fasting total and free IGF-I, IGF binding protein-3, insulin, glucose, and homeostatic model assessment–insulin resistance) on CRC risk as a mediator or influencing factor. Six SNPs in the INS, IGF-I, and IGFBP3 genes were associated with CRC risk, and those associations differed between non-obese/active and obese/inactive women and between E nonusers and users. Roughly 30% of the cancer risk due to the SNP was mediated by IGF-I/IR traits. Likewise, carriers of 11 SNPs in the IRS1 and AKT1/2 genes (signaling pathway–related genetic variants) had different associations with CRC risk between strata, and the proportion of the SNP–cancer association explained by traits varied from 30% to 50%. Our findings suggest that IGF-I/IR genetic variants interact with obesity, physical activity, and exogenous E, altering postmenopausal CRC risk, through IGF-I/IR traits, but also through different pathways. Unraveling gene–phenotype–lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce CRC risk. PMID:29023587
Hughes, A. Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L.
2012-01-01
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions. PMID:22970316
Allelic-based gene-gene interaction associated with quantitative traits.
Jung, Jeesun; Sun, Bin; Kwon, Deukwoo; Koller, Daniel L; Foroud, Tatiana M
2009-05-01
Recent studies have shown that quantitative phenotypes may be influenced not only by multiple single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method assigns a score to unrelated subjects according to their allelic combination inferred from observed genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with a quantitative trait. To investigate the statistical properties of the proposed method, we performed a simulation study to estimate type I error rates and power and demonstrated that this allelic approach achieves greater power than the more commonly used genotypic approach to test for gene-gene interaction. As an example, the proposed method was applied to data obtained as part of a candidate gene study of sodium retention by the kidney. We found that this method detects an interaction between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.
A perspective on interaction effects in genetic association studies
2016-01-01
ABSTRACT The identification of gene–gene and gene–environment interaction in human traits and diseases is an active area of research that generates high expectation, and most often lead to high disappointment. This is partly explained by a misunderstanding of the inherent characteristics of standard regression‐based interaction analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of linear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking this components it appears first that the simplest biological interaction models—in which the magnitude of a genetic effect depends on a common exposure—are among the most difficult to identify. Second, I highlight the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore the advantages and limitations of multivariate interaction models, when testing for interaction between multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be leveraged for future method development and to improve our understanding of the genetic architecture of multifactorial traits. PMID:27390122
Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly
Barton, Madeleine; Sunnucks, Paul; Norgate, Melanie; Murray, Neil; Kearney, Michael
2014-01-01
Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate) populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation) are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both. PMID:24743771
Evolution in plant populations as a driver of ecological changes in arthropod communities
Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.
2009-01-01
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution. PMID:19414473
Demerath, Ellen W; Lutsey, Pam L; Monda, Keri L; Linda Kao, Wen Hong; Bressler, Jan; Pankow, James S; North, Kari E; Folsom, Aaron R
2011-09-01
Physical inactivity accentuates the association of variants in the FTO locus with obesity-related traits but evidence is largely lacking in non-European populations. Here we tested the hypothesis that physical activity (PA) modifies the association of the FTO single-nucleotide polymorphism (SNP) rs9939609 with adiposity traits in 2,656 African Americans (AA) (1,626 women and 1,030 men) and 9,867 European Americans (EA) (5,286 women and 4,581 men) aged 45-66 years in the Atherosclerosis Risk in Communities (ARIC) study. Individuals in the lowest quintile of the sport activity index of the Baecke questionnaire were categorized as low PA. Baseline BMI, waist circumference (WC), and skinfold measures were dependent variables in regression models testing the additive effect of the SNP, low PA, and their interaction, adjusting for age, alcohol use, cigarette use, educational attainment, and percent European ancestry in AA adults, stratified by sex and race/ethnicity. rs9939609 was associated with adiposity in all groups other than AA women. The SNP × PA interaction was significant in AA men (P ≤ 0.002 for all traits) and EA men (P ≤ 0.04 for all traits). For each additional copy of the A (risk) allele, WC in AA men was higher in those with low PA (β(lowPA): 5.1 cm, 95% confidence interval (CI): 2.6-7.5) than high PA (β(highPA): 0.7 cm, 95% CI: -0.4 to 1.9); P (interaction) = 0.002). The interaction effect was not observed in EA or AA women. FTO SNP × PA interactions on adiposity were observed for AA as well as EA men. Differences by sex require further examination.
Detection of epistatic effects with logic regression and a classical linear regression model.
Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata
2014-02-01
To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.
The Role of Co-occurring Emotions and Personality Traits in Anger Expression
Mill, Aire; Kööts-Ausmees, Liisi; Allik, Jüri; Realo, Anu
2018-01-01
The main aim of the current study was to examine the role of co-occurring emotions and their interactive effects with the Big Five personality traits in anger expression. Everyday anger expression (“anger-in” and “anger-out” behavior) was studied with the experience-sampling method in a group of 110 participants for 14 consecutive days on 7 random occasions per day. Our results showed that the simultaneously co-occurring emotions that buffer against anger expression are sadness, surprise, disgust, disappointment, and irritation for anger-in behavior, and fear, sadness and disappointment for anger-out reactions. While previous studies have shown that differentiating one's current affect into discrete emotion categories buffers against anger expression (Pond et al., 2012), our study further demonstrated the existence of specific interactive effects between the experience of momentary emotions and personality traits that lead to higher levels of either suppression or expression of anger behavior (or both). For example, the interaction between the trait Openness and co-occurring surprise, in predicting anger-in behavior, indicates that less open people hold their anger back more, and more open people use less anger-in behavior. Co-occurring disgust increases anger-out reactions in people low in Conscientiousness, but decreases anger-out reactions in people high in Conscientiousness. People high in Neuroticism are less likely to engage in anger-in behavior when experiencing disgust, surprise, or irritation alongside anger, but show more anger out in the case of co-occurring contempt. The results of the current study help to further clarify the interactions between the basic personality traits and the experience of momentary co-occurring emotions in determining anger behavior. PMID:29479333
van Lankveld, Jacques; Bergh, Simone
2008-04-01
In this study we investigated the effects of state and trait aspects of self-focused attention on genital and subjective sexual arousal of sexually functional, healthy women during presentation of audiovisual erotic stimuli. Psychophysiological sexual response was measured as vaginal pulse amplitude using a vaginal photoplethysmograph. Experiential aspects of sexual arousal were measured both during stimulus presentation and retrospectively after stimulus offset. Trait level of sexual self-focus was measured with the Sexual Self-Consciousness Scale. State self-focus was induced by switching on a TV camera that pointed at the participant's face and upper torso. A manipulation check revealed that both groups experienced equally elevated levels of self-focused attention of their physical appearance. Induction of state self-focus per se did not affect genital responses, but an interaction effect of self-focus and participants' level of trait sexual self-focus was revealed. Compared with women with low scores on this trait, women with high scores exhibited smaller genital responses when state self-focus was induced. Both groups did not differ when no self-focus was induced. Increase of state self-focus did not affect subjective sexual arousal, but participants with a high level of trait sexual self-focus reported stronger subjective arousal, compared with those with low trait level. The results were discussed with reference to previous work in this field. Some implications for treatment of sexual arousal disorder were discussed.
Consumer trait variation influences tritrophic interactions in salt marsh communities.
Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A
2015-07-01
The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.
Huang, Yang; Siwo, Geoffrey; Wuchty, Stefan; Ferdig, Michael T; Przytycka, Teresa M
2012-04-01
It is being increasingly recognized that many important phenotypic traits, including various diseases, are governed by a combination of weak genetic effects and their interactions. While the detection of epistatic interactions that involve a non-additive effect of two loci on a quantitative trait is particularly challenging, this interaction type is fundamental for the understanding of genome organization and gene regulation. However, current methods that detect epistatic interactions typically rely on the existence of a strong primary effect, considerably limiting the sensitivity of the search. To fill this gap, we developed a new method, SEE (Symmetric Epistasis Estimation), allowing the genome-wide detection of epistatic interactions without the need for a strong primary effect. We applied our approach to progeny crosses of the human malaria parasite P. falciparum and S. cerevisiae. We found an abundance of epistatic interactions in the parasite and a much smaller number of such interactions in yeast. The genome of P. falciparum also harboured several epistatic interaction hotspots that putatively play a role in drug resistance mechanisms. The abundance of observed epistatic interactions might suggest a mechanism of compensation for the extremely limited repertoire of transcription factors. Interestingly, epistatic interaction hotspots were associated with elevated levels of linkage disequilibrium, an observation that suggests selection pressure acting on P. falciparum, potentially reflecting host-pathogen interactions or drug-induced selection.
NickAria, Shiva; Haghpanah, Sezaneh; Ramzi, Mani; Karimi, Mehran
2018-05-10
Globin switching is a significant factor on blood hemoglobin (Hb) level but its molecular mechanisms have not yet been identified, however, several quantitative trait loci (QTL) and polymorphisms involved regions on chromosomes 2p, 6q, 8q and X account for variation in the γ-globin expression level. We studied the effect of interaction between a region on intron six of the TOX gene, chromosome 8q (chr8q) and XmnI locus on the γ-globin promoter, chr11p on γ-globin expression in 150 β-thalassemia intermedia (β-TI) patients, evaluated by statistical interaction analysis. Our results showed a significant interaction between one QTL on intron six of the TOX gene (rs9693712) and XmnI locus that effect γ-globin expression. Interchromosomal interaction mediates through transcriptional machanisms to preserve true genome architectural features, chromosomes localization and DNA bending. This interaction can be a part of the unknown molecular mechanism of globin switching and regulation of gene expression.
Kluemper, Donald H; McLarty, Benjamin D; Bing, Mark N
2015-01-01
It is widely established that the Big Five personality traits of conscientiousness, agreeableness, and emotional stability are antecedents to workplace deviance (Berry, Ones, & Sackett, 2007). However, these meta-analytic findings are based on self-reported personality traits. A recent meta-analysis by Oh, Wang, and Mount (2011) identified the value of acquaintance-reported personality in the prediction of job performance. The current investigation extends prior work by comparing the validities of self- and acquaintance-reported personality in the prediction of workplace deviance across 2 studies. We also hypothesized and tested an interactive, value-added integration of self- with acquaintance-reported personality using socioanalytic personality theory (R. T. Hogan, 1991). Both studies assessed self- and acquaintance-rated Big Five traits, along with supervisor-rated workplace deviance. However, the studies varied the measures of workplace deviance, and the 2nd study also included a self-rated workplace deviance criterion for additional comparison. Across both studies, the traits of conscientiousness and agreeableness were strong predictors of workplace deviance, and acquaintance-reported personality provided incremental validity beyond self-reports. Additionally, acquaintance-reported conscientiousness and agreeableness moderated the prediction of workplace deviance by interacting with the corresponding self-reported traits. Implications for personality theory and measurement are discussed along with applications for practice. (c) 2015 APA, all rights reserved.
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.
Phuke, Rahul M.; Anuradha, Kotla; Radhika, Kommineni; Jabeen, Farzana; Anuradha, Ghanta; Ramesh, Thatikunta; Hariprasanna, K.; Mehtre, Shivaji P.; Deshpande, Santosh P.; Anil, Gaddameedi; Das, Roma R.; Rathore, Abhishek; Hash, Tom; Reddy, Belum V. S.; Kumar, Are Ashok
2017-01-01
The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01) indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc. PMID:28529518
Interpretation of Appearance: The Effect of Facial Features on First Impressions and Personality
Wolffhechel, Karin; Fagertun, Jens; Jacobsen, Ulrik Plesner; Majewski, Wiktor; Hemmingsen, Astrid Sofie; Larsen, Catrine Lohmann; Lorentzen, Sofie Katrine; Jarmer, Hanne
2014-01-01
Appearance is known to influence social interactions, which in turn could potentially influence personality development. In this study we focus on discovering the relationship between self-reported personality traits, first impressions and facial characteristics. The results reveal that several personality traits can be read above chance from a face, and that facial features influence first impressions. Despite the former, our prediction model fails to reliably infer personality traits from either facial features or first impressions. First impressions, however, could be inferred more reliably from facial features. We have generated artificial, extreme faces visualising the characteristics having an effect on first impressions for several traits. Conclusively, we find a relationship between first impressions, some personality traits and facial features and consolidate that people on average assess a given face in a highly similar manner. PMID:25233221
Interpretation of appearance: the effect of facial features on first impressions and personality.
Wolffhechel, Karin; Fagertun, Jens; Jacobsen, Ulrik Plesner; Majewski, Wiktor; Hemmingsen, Astrid Sofie; Larsen, Catrine Lohmann; Lorentzen, Sofie Katrine; Jarmer, Hanne
2014-01-01
Appearance is known to influence social interactions, which in turn could potentially influence personality development. In this study we focus on discovering the relationship between self-reported personality traits, first impressions and facial characteristics. The results reveal that several personality traits can be read above chance from a face, and that facial features influence first impressions. Despite the former, our prediction model fails to reliably infer personality traits from either facial features or first impressions. First impressions, however, could be inferred more reliably from facial features. We have generated artificial, extreme faces visualising the characteristics having an effect on first impressions for several traits. Conclusively, we find a relationship between first impressions, some personality traits and facial features and consolidate that people on average assess a given face in a highly similar manner.
The paradox of enrichment in an adaptive world
Mougi, Akihiko; Nishimura, Kinya
2008-01-01
Paradoxically, enrichment can destabilize a predator–prey food web. While adaptive dynamics can greatly influence the stability of interaction systems, few theoretical studies have examined the effect of the adaptive dynamics of interaction-related traits on the possibility of resolution of the paradox of enrichment. We consider the evolution of attack and defence traits of a predator and two prey species in a one predator–two prey system in which the predator practises optimal diet use. The results showed that optimal foraging alone cannot eliminate a pattern of destabilization with enrichment, but trait evolution of the predator or prey can change the pattern to one of stabilization, implying a possible resolution of the paradox of enrichment. Furthermore, trait evolution in all species can broaden the parameter range of stabilization. Importantly, rapid evolution can stabilize this system, but weaken its stability in the face of enrichment. PMID:18700201
Dean E. Pearson
2010-01-01
Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...
Stolerman, Elliot S.; Manning, Alisa K.; McAteer, Jarred B.; Dupuis, Josée; Fox, Caroline S.; Cupples, L. Adrienne; Meigs, James B.; Florez, Jose C.
2008-01-01
OBJECTIVE—A recent meta-analysis demonstrated a nominal association of the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) K→Q missense single nucleotide polymorphism (SNP) at position 121 with type 2 diabetes. We set out to confirm the association of ENPP1 K121Q with hyperglycemia, expand this association to insulin resistance traits, and determine whether the association stems from K121Q or another variant in linkage disequilibrium with it. RESEARCH DESIGN AND METHODS—We characterized the haplotype structure of ENPP1 and selected 39 tag SNPs that captured 96% of common variation in the region (minor allele frequency ≥5%) with an r2 value ≥0.80. We genotyped the SNPs in 2,511 Framingham Heart Study participants and used age- and sex-adjusted linear mixed effects (LME) models to test for association with quantitative metabolic traits. We also examined whether interaction between K121Q and BMI affected glycemic trait levels. RESULTS—The Q allele of K121Q (rs1044498) was associated with increased fasting plasma glucose (FPG), A1C, fasting insulin, and insulin resistance by homeostasis model assessment (HOMA-IR; all P = 0.01–0.006). Two noncoding SNPs (rs7775386 and rs7773477) demonstrated similar associations, but LME models indicated that their effects were not independent from K121Q. We found no association of K121Q with obesity, but interaction models suggested that the effect of the Q allele on FPG and HOMA-IR was stronger in those with a higher BMI (P = 0.008 and 0.01 for interaction, respectively). CONCLUSIONS—The Q allele of ENPP1 K121Q is associated with hyperglycemia and insulin resistance in whites. We found an adiposity-SNP interaction, with a stronger association of K121Q with diabetes-related quantitative traits in people with a higher BMI. PMID:18426862
Impact of selection on maize root traits and rhizosphere interactions
NASA Astrophysics Data System (ADS)
Schmidt, J. E.; Gaudin, A. C. M.
2017-12-01
Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.
Interactions for pollinator visitation and their consequences for reproduction in a plant community
NASA Astrophysics Data System (ADS)
Hegland, Stein Joar; Totland, Ørjan
2012-08-01
Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.
Kim, Hyun-Jin; Min, Jin-Young; Min, Kyoung-Bok
2016-09-01
Central obesity plays a major role in the development of many chronic diseases, including cardiovascular disease and cancer. Chronic stress may be involved in the pathophysiology of central obesity. Although several large-scale genome-wide association studies have reported susceptibility genes for central adiposity, the effects of interactions between genes and psychosocial stress on central adiposity have rarely been examined. A recent study focusing on Caucasians discovered the novel gene early B-cell factor 1 (EBF1) , which was associated with central obesity-related traits via interactions with stress levels. We aimed to evaluate EBF1 gene-by-stress interaction effects on central adiposity traits, including visceral adipose tissue (VAT), in Korean adults. A total of 1467 Korean adults were included in this study. We selected 22 single-nucleotide polymorphisms (SNPs) in the EBF1 gene and analyzed their interactions with stress on central adiposity using additive, dominant, and recessive genetic modeling. The four SNPs that had strong linkage disequilibrium relationships (rs10061900, rs10070743, rs4704967, and rs10056564) demonstrated significant interactions with the waist-hip ratio in the dominant model ( p int <0.007). In addition, two other SNPs (rs6556377 and rs13180086) were associated with VAT by interactions with stress levels, especially in the recessive genetic model ( p int <0.007). As stress levels increased, the mean values of central adiposity traits according to SNP genotypes exhibited gradual but significant changes ( p <0.05). These results suggest that the common genetic variants for EBF1 are associated with central adiposity through interactions with stress levels, emphasizing the importance of managing stress in the prevention of central obesity.
Gillespie, Steven M; Mitchell, Ian J; Abu-Akel, Ahmad M
2017-07-25
Various clinical disorders, including psychopathy, and autism and schizophrenia spectrum disorders, have been linked with impairments in Theory of Mind (ToM). However, although these conditions can co-occur in the same individual, the effect of their inter-play on ToM abilities has not been investigated. Here we assessed ToM abilities in 55 healthy adults while performing a naturalistic ToM task, requiring participants to watch a short film and judge the actors' mental states. The results reveal for the first time that autistic traits and positive psychotic experiences interact with psychopathic tendencies in opposite directions to predict ToM performance-the interaction of psychopathic tendencies with autism traits was associated with a decrement in performance, whereas the interaction of psychopathic tendencies and positive psychotic experiences was associated with improved performance. These effects were specific to cognitive rather than affective ToM. These results underscore the importance of the simultaneous assessment of these dimensions within clinical settings. Future research in these clinical populations may benefit by taking into account such individual differences.
Chabris, Christopher F; Lee, James J; Benjamin, Daniel J; Beauchamp, Jonathan P; Glaeser, Edward L; Borst, Gregoire; Pinker, Steven; Laibson, David I
2013-10-01
We explain why traits of interest to behavioral scientists may have a genetic architecture featuring hundreds or thousands of loci with tiny individual effects rather than a few with large effects and why such an architecture makes it difficult to find robust associations between traits and genes. We conducted a genome-wide association study at 2 sites, Harvard University and Union College, measuring more than 100 physical and behavioral traits with a sample size typical of candidate gene studies. We evaluated predictions that alleles with large effect sizes would be rare and most traits of interest to social science are likely characterized by a lack of strong directional selection. We also carried out a theoretical analysis of the genetic architecture of traits based on R.A. Fisher's geometric model of natural selection and empirical analyses of the effects of selection bias and phenotype measurement stability on the results of genetic association studies. Although we replicated several known genetic associations with physical traits, we found only 2 associations with behavioral traits that met the nominal genome-wide significance threshold, indicating that physical and behavioral traits are mainly affected by numerous genes with small effects. The challenge for social science genomics is the likelihood that genes are connected to behavioral variation by lengthy, nonlinear, interactive causal chains, and unraveling these chains requires allying with personal genomics to take advantage of the potential for large sample sizes as well as continuing with traditional epidemiological studies.
Oguro, Michio; Sakai, Satoki
2015-03-01
• While much research has examined the relation between leaf traits and herbivory, very little is known about the interaction between floral traits, particularly biochemical traits, and florivory. We investigated patterns between floral traits and florivory across multiple species using phylogenetic comparative approaches to enhance our understanding of the evolution of plant-florivore interactions.• The relation between the intensity of florivory and five biochemical traits (concentrations of carbon, nitrogen, phosphorus, water, and total phenolics) and two morphological traits (diameter and number of flower heads) were investigated in wild individuals of 18 native species of Asteraceae. The phylogenetic signals in the morphological traits and intensity of florivory were also tested.• We found that species with higher nitrogen, water, and total phenolics and lower phosphorus concentrations in the flower heads and species with a large number and diameter of flower heads tended to be attacked by florivores. In addition, we found significant phylogenetic signals in florivory and morphological traits.• Our results clearly show that biochemical traits also play important roles in plant-florivore interactions, as previously shown in plant-leaf herbivore interactions. The positive relationship between florivory and total phenolics implies that phenolic compounds in flower heads may not act as a defense in the species. In addition, the observed pattern of signals in florivory might not be solely explained by the signals of the measured traits and other plant traits may also play significant roles in plant-florivore interaction in these species. © 2015 Botanical Society of America, Inc.
[Effect of cytokine genes and season of birth on personality].
Alfimova, M V; Golimbet, V E; Korovaitseva, G I; Lezheiko, T V; Kondrat'ev, N V; Gabaeva, M V
To evaluate the interaction effects of season of birth and immune system genes on the personality traits 'Novelty seeking' (NS) and 'Self-directedness' (SD). Based on results on an influence of the immune system on the brain processes, the authors hypothesized that the interaction of immune system genes and season of birth, which is relevant for immune phenotype, can contribute to the development of personality traits. NS and SD were measured in 336 healthy volunteers, aged from 16 to 67 years, using the Temperament and Character Inventory (TCI-125). IL1B C3954T, IL4 C-589T, IL13 C1112T and TNFA G-308A polymorphisms were genotyped. An interaction effect of IL4 C-589T and season of birth on the personality traits was found (F2,322=6.03, pcorr=0.011, η2=0.04). Carriers of the minor allele T, who were born in winter, had lower NS and higher SD. There was a nominal main effect of genotype on SD (F=5.44, p=0.020) as well, with higher SD scores in carriers of the allele T compared to the CC genotype. The results suggest that the etiology of personality and immune characteristics can share common genetic elements including IL-4.
A strategy to apply quantitative epistasis analysis on developmental traits.
Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei
2017-05-15
Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.
Packard, Chris J; Cavanagh, Jonathan; McLean, Jennifer S; McConnachie, Alex; Messow, Claudia-Martina; Batty, G David; Burns, Harry; Deans, Kevin A; Sattar, Naveed; Shiels, Paul G; Velupillai, Yoga N; Tannahill, Carol; Millar, Keith
2012-12-01
Associations between personality traits, mental wellbeing and good health behaviours were examined to understand further the social and psychological context of the health divide. In a cross-sectional study, 666 subjects recruited from areas of high and low socioeconomic deprivation had personality traits and mental wellbeing assessed, and lifestyle behaviours quantified. Regression models (using deprivation as a moderating variable) assessed the extent to which personality traits and mental wellbeing predicted health behaviour. Deprived (vs. affluent) subjects exhibited similar levels of extraversion but higher levels of neuroticism and psychoticism, more hopelessness, less sense of coherence, lower self-esteem and lower self-efficacy (all P< 0.001). They ate less fruit and vegetables, smoked more and took less aerobic exercise (all P< 0.001). In the deprived group, personality traits were significantly more important predictors of mental wellbeing than in the least deprived group (P< 0.01 for interaction), and mental wellbeing and extraversion appeared more strongly related to good health behaviours. Persistence of a social divide in health may be related to interactions between personality, mental wellbeing and the adoption of good health behaviours in deprived areas. Effectiveness of health messages may be enhanced by accommodating the variation in the levels of extraversion, neuroticism, hopelessness and sense of coherence.
Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan
2017-10-17
Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570
von dem Hagen, Elisabeth A H; Bright, Naomi
2017-02-01
Autism is characterised by difficulties in social functioning, notably in interactions with other people. Yet, most studies addressing social difficulties have used static images or, at best, videos of social stimuli, with no scope for real interaction. Here, we study one crucial aspect of social interactions-gaze behaviour-in an interactive setting. First, typical individuals were shown videos of an experimenter and, by means of a deception procedure, were either led to believe that the experimenter was present via a live video-feed or was pre-recorded. Participants' eye movements revealed that when passively viewing an experimenter they believed to be "live," they looked less at that person than when they believed the experimenter video was pre-recorded. Interestingly, this reduction in viewing behaviour in response to the believed "live" presence of the experimenter was absent in individuals high in autistic traits, suggesting a relative insensitivity to social presence alone. When participants were asked to actively engage in a real-time interaction with the experimenter, however, high autistic trait individuals looked significantly less at the experimenter relative to low autistic trait individuals. The results reinforce findings of atypical gaze behaviour in individuals high in autistic traits, but suggest that active engagement in a social interaction may be important in eliciting reduced looking. We propose that difficulties with the spatio-temporal dynamics associated with real social interactions rather than underlying difficulties processing the social stimulus itself may drive these effects. The results underline the importance of developing ecologically valid methods to investigate social cognition. Autism Res 2017, 10: 359-368. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Harrison, Sarah J; Raubenheimer, David; Simpson, Stephen J; Godin, Jean-Guy J; Bertram, Susan M
2014-10-07
Phosphorus has been identified as an important determinant of nutrition-related biological variation. The macronutrients protein (P) and carbohydrates (C), both alone and interactively, are known to affect animal performance. No study, however, has investigated the importance of phosphorus relative to dietary protein or carbohydrates, or the interactive effects of phosphorus with these macronutrients, on fitness-related traits in animals. We used a nutritional geometry framework to address this question in adult field crickets (Gryllus veletis). Our results showed that lifespan, weight gain, acoustic mate signalling and egg production were maximized on diets with different P : C ratios, that phosphorus did not positively affect any of these fitness traits, and that males and females had different optimal macronutrient intake ratios for reproductive performance. When given a choice, crickets selected diets that maximized both lifespan and reproductive performance by preferentially eating diets with low P : C ratios, and females selected diets with a higher P : C ratio than males. Conversely, phosphorus intake was not regulated. Overall, our findings highlight the importance of disentangling the influences of different nutrients, and of quantifying both their individual and interactive effects, on animal fitness traits, so as to gain a more integrative understanding of their nutritional ecology. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L
2015-09-01
The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.
Baysinger, Michael A; Scherer, Kelly T; LeBreton, James M
2014-01-01
The present research examines the influence of implicit and explicit personality characteristics on group process and effectiveness. Individuals from 112 groups participated in 2 problem-solving tasks and completed measures of group process and effectiveness. Results indicated that groups characterized by higher levels of psychopathy and implicit aggression tended to have more dysfunctional interactions and negative perceptions of the group. In addition, task participation and negative socioemotional behaviors fully mediated the relationship between group personality traits and group commitment and cohesion, and negative socioemotional behaviors fully mediated the relationship between group personality and performance on both tasks. Implications of antisocial traits for group interactions and performance, as well as for future theory and research, are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved
Applicant Personality and Procedural Justice Perceptions of Group Selection Interviews.
Bye, Hege H; Sandal, Gro M
2016-01-01
We investigated how job applicants' personalities influence perceptions of the structural and social procedural justice of group selection interviews (i.e., a group of several applicants being evaluated simultaneously). We especially addressed trait interactions between neuroticism and extraversion (the affective plane) and extraversion and agreeableness (the interpersonal plane). Data on personality (pre-interview) and justice perceptions (post-interview) were collected in a field study among job applicants ( N = 97) attending group selection interviews for positions as teachers in a Norwegian high school. Interaction effects in hierarchical regression analyses showed that perceptions of social and structural justice increased with levels of extraversion among high scorers on neuroticism. Among emotionally stable applicants, however, being introverted or extraverted did not matter to justice perceptions. Extraversion did not impact on the perception of social justice for applicants low in agreeableness. Agreeable applicants, however, experienced the group interview as more socially fair when they were also extraverted. The impact of applicant personality on justice perceptions may be underestimated if traits interactions are not considered. Procedural fairness ratings for the group selection interview were high, contrary to the negative reactions predicted by other researchers. There was no indication that applicants with desirable traits (i.e., traits predictive of job performance) reacted negatively to this selection tool. Despite the widespread use of interviews in selection, previous studies of applicant personality and fairness reactions have not included interviews. The study demonstrates the importance of previously ignored trait interactions in understanding applicant reactions.
Approaches to Use of Observational Methods of a Study of Parent-Child Interaction.
ERIC Educational Resources Information Center
Baumrind, Diana
The methodology discussed is used in ongoing research to contrast the effectiveness of several patterns of parental authority with the same children at different ages. The first characteristic of these methods is the use of trait and behavior ratings to assess dispositional tendencies. The construct of a dispositional trait is used to account for…
The Effects of Birth Order on Personality Traits and Feelings of Academic Sibling Rivalry
ERIC Educational Resources Information Center
Badger, Julia; Reddy, Peter
2009-01-01
The influence of birth order on personality and sibling rivalry is controversial; little research has been conducted into academic sibling rivalry, and none into the connection with personality traits. This study considers the interaction of all three factors. Firstborns (N=22) and lastborns (N=24) completed online personality tests and an…
Studies of the Interaction of Human Malaria Parasites with the Metabolism of the Host Red Cell.
1977-06-15
thalassemia trait have significantly lower levels of ATP per red cell than individuals who do not have thalassemia trait. We confirmed this in Sardinia and...it raises the interesting possibility that the protective effect of thalassemia may be due to a major genetic modifying influence on levels of ATP. C
Komatsu, Masanori; Nishino, Kagetomo; Fujimori, Yuki; Haga, Yasutoshi; Iwama, Nagako; Arakawa, Aisaku; Aihara, Yoshito; Takeda, Hisato; Takahashi, Hideaki
2018-02-01
Growth hormone secretagogue receptor 1a (GHSR1a), growth hormone (GH), growth hormone receptor (GHR), non-SMC condensin I complex, subunit G (NCAPG) and stearoyl-CoA desaturase (SCD), are known to play important roles in growth and lipid metabolisms. Single and epistatic effects of the five genes on carcass, price-related and fatty acid (FA) composition traits were analyzed in a commercial Japanese Black cattle population of Ibaraki Prefecture. A total of 650 steers and 116 heifers for carcass and price-related traits, and 158 steers for FA composition traits were used in this study. Epistatic effects between pairs of the five genes were found in several traits. Alleles showing strain-specific differences in the five genes had significant single and epistatic effects in some traits. The data suggest that a TG-repeat polymorphism of the GHSR1a.5'UTR-(TG) n locus plays a central role in gene-gene epistatic interaction of FA composition traits in the adipose tissue of Japanese Black cattle. © 2017 Japanese Society of Animal Science.
Mathew, Boby; Léon, Jens; Sannemann, Wiebke; Sillanpää, Mikko J.
2018-01-01
Gene-by-gene interactions, also known as epistasis, regulate many complex traits in different species. With the availability of low-cost genotyping it is now possible to study epistasis on a genome-wide scale. However, identifying genome-wide epistasis is a high-dimensional multiple regression problem and needs the application of dimensionality reduction techniques. Flowering Time (FT) in crops is a complex trait that is known to be influenced by many interacting genes and pathways in various crops. In this study, we successfully apply Sure Independence Screening (SIS) for dimensionality reduction to identify two-way and three-way epistasis for the FT trait in a Multiparent Advanced Generation Inter-Cross (MAGIC) barley population using the Bayesian multilocus model. The MAGIC barley population was generated from intercrossing among eight parental lines and thus, offered greater genetic diversity to detect higher-order epistatic interactions. Our results suggest that SIS is an efficient dimensionality reduction approach to detect high-order interactions in a Bayesian multilocus model. We also observe that many of our findings (genomic regions with main or higher-order epistatic effects) overlap with known candidate genes that have been already reported in barley and closely related species for the FT trait. PMID:29254994
Plant functional traits predict green roof ecosystem services.
Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke
2015-02-17
Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A
2016-08-09
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.
2016-01-01
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774
Jiang, Wenzhu; Jin, Yong-Mei; Lee, Joohyun; Lee, Kang-Ie; Piao, Rihua; Han, Longzhi; Shin, Jin-Chul; Jin, Rong-De; Cao, Tiehua; Pan, Hong-Yu; Du, Xinglin; Koh, Hee-Jong
2011-01-01
Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for coldrelated traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments. PMID:22080374
A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying
2015-09-01
Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.
Kelly, Scott A.; Hua, Kunjie; Pomp, Daniel
2012-01-01
Driven by the recent obesity epidemic, interest in understanding the complex genetic and environmental basis of body weight and composition is great. We investigated this by searching for quantitative trait loci (QTLs) affecting a number of weight and adiposity traits in a G10 advanced intercross population produced from crosses of mice in inbred strain C57BL/6J with those in a strain selected for high voluntary wheel running. The mice in this population were fed either a high-fat or a control diet throughout the study and also measured for four exercise traits prior to death, allowing us to test for pre- and postexercise QTLs as well as QTL-by-diet and QTL-by-exercise interactions. Our genome scan uncovered a number of QTLs, of which 40% replicated QTLs previously found for similar traits in an earlier (G4) generation. For those replicated QTLs, the confidence intervals were reduced from an average of 19 Mb in the G4 to 8 Mb in the G10. Four QTLs on chromosomes 3, 8, 13, and 18 were especially prominent in affecting the percentage of fat in the mice. About of all QTLs showed interactions with diet, exercise, or both, their genotypic effects on the traits showing a variety of patterns depending on the diet or level of exercise. It was concluded that the indirect effects of these QTLs provide an underlying genetic basis for the considerable variability in weight or fat loss typically found among individuals on the same diet and/or exercise regimen. PMID:23048196
Arch, Joanna J; Landy, Lauren N; Brown, Kirk Warren
2016-07-01
Arch et al. (2014) demonstrated that brief self-compassion meditation training (SCT) dampened sympathetic (salivary alpha-amylase) and subjective anxiety responses to the Trier Social Stress Test (TSST), relative to attention and no-instruction control conditions. The present study examined baseline predictors and moderators of these SCT intervention effects. Baseline characteristics included two stress vulnerability traits (social anxiety and rumination) and two potential resiliency traits (non-attachment and self-compassion). We investigated how these traits moderated the effects of SCT on response to the TSST, relative to the control conditions. We also tested how these individual differences predicted TSST responses across conditions in order to uncover characteristics that confer increased vulnerability and resiliency to social stressors. Trait non-attachment, rumination (for sympathetic TSST response only), and social anxiety (for subjective TSST response only) interacted with training condition to moderate TSST responses such that following SCT, lower attachment and lower social anxiety predicted lower TSST stress responses, relative to those scoring higher on these traits. In contrast, trait self-compassion neither moderated nor predicted responses to the TSST. Thus, although SCT had robust effects on buffering stress across individuals with varying levels of trait self-compassion, other psychological traits enhanced or dampened the effect of SCT on TSST responses. These findings support the importance of examining the role of relevant baseline psychological traits to predict sympathetic and subjective responses to social evaluative threat, particularly in the context of resiliency training. Copyright © 2016 Elsevier Ltd. All rights reserved.
Daily stress interacts with trait dissociation to predict sleep-related experiences in young adults.
Soffer-Dudek, Nirit; Shahar, Golan
2011-08-01
Building on the previously documented effects of stress and dissociation on sleep and dreaming, we examined their interactive role in general sleep-related experiences (GSEs; e.g., nightmares, falling dreams, hypnagogic hallucinations; see Watson, 2001). Stress, sleep quality, and GSEs were assessed daily for 14 days among young adults. Baseline assessment included life stress, sleep quality, psychopathology, dissociation, and related dimensions. Multilevel analyses indicated that daily stress brings about GSEs among highly dissociative young adults. Additionally, baseline trait dissociation predicted within-subject elevation in GSEs when daily stress was high. Flawed sleep-wake transitions, previously linked to dissociation and sleep-related experiences, might account for this effect. © 2011 American Psychological Association
The evolution of multivariate maternal effects.
Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart
2014-04-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.
The Evolution of Multivariate Maternal Effects
Kuijper, Bram; Johnstone, Rufus A.; Townley, Stuart
2014-01-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations. PMID:24722346
CHAPIN, F. STUART
2003-01-01
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725
Sex-typed personality traits and gender identity as predictors of young adults' career interests.
Dinella, Lisa M; Fulcher, Megan; Weisgram, Erica S
2014-04-01
Gender segregation of careers is still prominent in the U.S. workforce. The current study was designed to investigate the role of sex-typed personality traits and gender identity in predicting emerging adults' interests in sex-typed careers. Participants included 586 university students (185 males, 401 females). Participants reported their sex-typed personality traits (masculine and feminine traits), gender identities (gender typicality, contentment, felt pressure to conform, and intergroup bias), and interests in sex-typed careers. Results indicated both sex-typed personality traits and gender identity were important predictors of young adults' career interests, but in varying degrees and differentially for men and women. Men's sex-typed personality traits and gender typicality were predictive of their masculine career interests even more so when the interaction of their masculine traits and gender typicality were considered. When gender typicality and sex-typed personality traits were considered simultaneously, gender typicality was negatively related to men's feminine career interests and gender typicality was the only significant predictor of men's feminine career interests. For women, sex-typed personality traits and gender typicality were predictive of their sex-typed career interests. The level of pressure they felt to conform to their gender also positively predicted interest in feminine careers. The interaction of sex-typed personality traits and gender typicality did not predict women's career interests more than when these variables were considered as main effects. Results of the multidimensional assessment of gender identity confirmed that various dimensions of gender identity played different roles in predicting career interests and gender typicality was the strongest predictor of career interests.
Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice.
Vikram, Prashant; Swamy, B P Mallikarjuna; Dixit, Shalabh; Trinidad, Jennylyn; Sta Cruz, Ma Teresa; Maturan, Paul C; Amante, Modesto; Kumar, Arvind
2016-01-01
Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress.
Parasitism and the Biodiversity-Functioning Relationship.
Frainer, André; McKie, Brendan G; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D
2018-04-01
Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions - parasitism - has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite-host interactions should be incorporated into the BD-EF framework. Copyright © 2018 Elsevier Ltd. All rights reserved.
Homophily and the speed of social mobilization: the effect of acquired and ascribed traits.
Alstott, Jeff; Madnick, Stuart; Velu, Chander
2014-01-01
Large-scale mobilization of individuals across social networks is becoming increasingly prevalent in society. However, little is known about what affects the speed of social mobilization. Here we use a framed field experiment to identify and measure properties of individuals and their relationships that predict mobilization speed. We ran a global social mobilization contest and recorded personal traits of the participants and those they recruited. We studied the effects of ascribed traits (gender, age) and acquired traits (geography, and information source) on the speed of mobilization. We found that homophily, a preference for interacting with other individuals with similar traits, had a mixed role in social mobilization. Homophily was present for acquired traits, in which mobilization speed was faster when the recuiter and recruit had the same trait compared to different traits. In contrast, we did not find support for homophily for the ascribed traits. Instead, those traits had other, non-homophily effects: Females mobilized other females faster than males mobilized other males. Younger recruiters mobilized others faster, and older recruits mobilized slower. Recruits also mobilized faster when they first heard about the contest directly from the contest organization, and decreased in speed when hearing from less personal source types (e.g. family vs. media). These findings show that social mobilization includes dynamics that are unlike other, more passive forms of social activity propagation. These findings suggest relevant factors for engineering social mobilization tasks for increased speed.
USDA-ARS?s Scientific Manuscript database
There are concerns about antagonisms between immunity and animal productivity in livestock production. The objective of this study was to evaluate the effect of antibody levels through a response to vaccination protocol, weaning timing, and their interaction on performance and carcass quality traits...
Rodenburg, Gerda; Kremers, Stef P J; Oenema, Anke; van de Mheen, Dike
2012-01-01
Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions. To examine associations of children's appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake. Data were used from 1275 children participating in the INPACT study in 2009-2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children's appetitive traits, children's dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses. Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight. Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children.
Rodenburg, Gerda; Kremers, Stef P. J.; Oenema, Anke; van de Mheen, Dike
2012-01-01
Background Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions. Objectives To examine associations of children’s appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake. Methods Data were used from 1275 children participating in the INPACT study in 2009–2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children’s appetitive traits, children’s dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses. Results Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight. Conclusions Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children. PMID:23227194
Experimental reduction in interaction intensity strongly affects biotic selection.
Sletvold, Nina; Ågren, Jon
2016-11-01
The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.
Mondy, Cédric P; Muñoz, Isabel; Dolédec, Sylvain
2016-12-01
Multiple stressors constitute a serious threat to aquatic ecosystems, particularly in the Mediterranean region where water scarcity is likely to interact with other anthropogenic stressors. Biological traits potentially allow the unravelling of the effects of multiple stressors. However, thus far, trait-based approaches have failed to fully deliver on their promise and still lack strong predictive power when multiple stressors are present. We aimed to quantify specific community tolerances against six anthropogenic stressors and investigate the responses of the underlying macroinvertebrate biological traits and their combinations. We built and calibrated boosted regression tree models to predict community tolerances using multiple biological traits with a priori hypotheses regarding their individual responses to specific stressors. We analysed the combinations of traits underlying community tolerance and the effect of trait association on this tolerance. Our results validated the following three hypotheses: (i) the community tolerance models efficiently and robustly related trait combinations to stressor intensities and, to a lesser extent, to stressors related to the presence of dams and insecticides; (ii) the effects of traits on community tolerance not only depended on trait identity but also on the trait associations emerging at the community level from the co-occurrence of different traits in species; and (iii) the community tolerances and the underlying trait combinations were specific to the different stressors. This study takes a further step towards predictive tools in community ecology that consider combinations and associations of traits as the basis of stressor tolerance. Additionally, the community tolerance concept has potential application to help stream managers in the decision process regarding management options. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Eisenberg, Dan T. A.; Campbell, Benjamin; MacKillop, James; Lum, J. Koji; Wilson, David S.
2007-01-01
Background Season of birth (SOB) has been associated with many physiological and psychological traits including novelty seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their common effects on the dopaminergic system. Methodology/Principal Findings Based on a sample of 195 subjects, we examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2) TaqI A and D4 (DRD4) 48 bp VNTR. Primary analyses included factorial gender×SOB ANOVAs or binary logistic regression models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4 genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1) a SOB×DRD4 interaction effect on venturesomeness and (2) a DRD2×DRD4 interaction effect on sensation seeking. Conclusion These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic polymorphism. These findings suggest that SOB should be included in future studies of risky behaviors and behavioral genetic studies of the dopamine system. PMID:18030347
Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F; Graff, Misa; Fisher, Virginia A; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S; Ahluwalia, Tarunveer S; Chu, Audrey Y; Heard-Costa, Nancy L; Lim, Elise; Perez, Jeremiah; Eicher, John D; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E; Jackson, Anne U; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P S; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A; Stančáková, Alena; Strawbridge, Rona J; Stringham, Heather M; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vedantam, Sailaja L; Verweij, Niek; Vink, Jacqueline M; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E; Zubair, Niha; Abecasis, Gonçalo R; Adair, Linda S; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J L; Bartz, Traci M; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M; Buyske, Steve; Campbell, Harry; Chambers, John C; Collins, Francis S; Curran, Joanne E; de Borst, Gert J; de Craen, Anton J M; de Geus, Eco J C; Dedoussis, George; Delgado, Graciela E; den Ruijter, Hester M; Eiriksdottir, Gudny; Eriksson, Anna L; Esko, Tõnu; Faul, Jessica D; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A; Jørgensen, Marit E; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Leander, Karin; Lee, Nanette R; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A F; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G; McKenzie, Colin A; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W; Musk, Aw Bill; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Oldehinkel, Albertine J; Olden, Matthias; Ong, Ken K; Padmanabhan, Sandosh; Peyser, Patricia A; Pisinger, Charlotta; Porteous, David J; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rasmussen-Torvik, Laura J; Rawal, Rajesh; Rice, Treva; Ridker, Paul M; Rose, Lynda M; Bien, Stephanie A; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A; Sennblad, Bengt; Siemelink, Marten A; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A; Stott, David J; Swertz, Morris A; Swift, Amy J; Taylor, Kent D; Tayo, Bamidele O; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R G J; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A; Boomsma, Dorret I; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I; Chen, Yii-DerIda; Chines, Peter S; Cooper, Richard S; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans-Jörgen; Gudnason, Vilmundur; Haiman, Christopher A; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D; Wouter Jukema, J; Kardia, Sharon L R; Kivimaki, Mika; Kooner, Jaspal S; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I; Metspalu, Andres; Morris, Andrew P; Ohlsson, Claes; Palmer, Lyle J; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Smith, Blair H; Sørensen, Thorkild I A; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J; Weir, David R; Whitfield, John B; Wilson, James F; Tyrrell, Jessica; Frayling, Timothy M; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S; Hirschhorn, Joel N; Hunter, David J; Spector, Tim D; Strachan, David P; van Duijn, Cornelia M; Heid, Iris M; Mohlke, Karen L; Marchini, Jonathan; Loos, Ruth J F; Kilpeläinen, Tuomas O; Liu, Ching-Ti; Borecki, Ingrid B; North, Kari E; Cupples, L Adrienne
2017-04-26
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
Justice, Anne E.; Winkler, Thomas W.; Feitosa, Mary F.; Graff, Misa; Fisher, Virginia A.; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S.; Ahluwalia, Tarunveer S.; Chu, Audrey Y.; Heard-Costa, Nancy L.; Lim, Elise; Perez, Jeremiah; Eicher, John D.; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F.; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E.; Jackson, Anne U.; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E.; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P. S.; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A.; Stančáková, Alena; Strawbridge, Rona J.; Stringham, Heather M.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vedantam, Sailaja L.; Verweij, Niek; Vink, Jacqueline M.; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E.; Zubair, Niha; Abecasis, Gonçalo R.; Adair, Linda S.; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J. L.; Bartz, Traci M.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L.; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M.; Buyske, Steve; Campbell, Harry; Chambers, John C.; Collins, Francis S.; Curran, Joanne E.; de Borst, Gert J.; de Craen, Anton J. M.; de Geus, Eco J. C.; Dedoussis, George; Delgado, Graciela E.; den Ruijter, Hester M.; Eiriksdottir, Gudny; Eriksson, Anna L.; Esko, Tõnu; Faul, Jessica D.; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B.; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas D.; Heath, Andrew C.; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J.; Hollensted, Mette; Holmen, Oddgeir L.; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L.; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A.; Jørgensen, Marit E.; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A.; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K.; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Leander, Karin; Lee, Nanette R.; Lind, Lars; Lindgren, Cecilia M.; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A. F.; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G.; McKenzie, Colin A.; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W.; Musk, AW (Bill); Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Oldehinkel, Albertine J.; Olden, Matthias; Ong, Ken K.; Padmanabhan, Sandosh; Peyser, Patricia A.; Pisinger, Charlotta; Porteous, David J.; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rasmussen-Torvik, Laura J.; Rawal, Rajesh; Rice, Treva; Ridker, Paul M.; Rose, Lynda M.; Bien, Stephanie A.; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A.; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A.; Sennblad, Bengt; Siemelink, Marten A.; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A.; Stott, David J.; Swertz, Morris A.; Swift, Amy J.; Taylor, Kent D.; Tayo, Bamidele O.; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M.; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R. G. J.; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H. R.; Wong, Andrew; Wright, Alan F.; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A.; Boomsma, Dorret I.; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I.; Chen, Yii-DerIda; Chines, Peter S.; Cooper, Richard S.; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans- Jörgen; Gudnason, Vilmundur; Haiman, Christopher A.; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D.; Wouter Jukema, J; Kardia, Sharon L. R.; Kivimaki, Mika; Kooner, Jaspal S.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I.; Metspalu, Andres; Morris, Andrew P.; Ohlsson, Claes; Palmer, Lyle J.; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Smith, Blair H.; Sørensen, Thorkild I. A.; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J.; Weir, David R.; Whitfield, John B.; Wilson, James F.; Tyrrell, Jessica; Frayling, Timothy M.; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S.; Hirschhorn, Joel N.; Hunter, David J.; Spector, Tim D.; Strachan, David P.; van Duijn, Cornelia M.; Heid, Iris M.; Mohlke, Karen L.; Marchini, Jonathan; Loos, Ruth J. F.; Kilpeläinen, Tuomas O.; Liu, Ching-Ti; Borecki, Ingrid B.; North, Kari E.; Cupples, L Adrienne
2017-01-01
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution. PMID:28443625
Consumer co-evolution as an important component of the eco-evolutionary feedback.
Hiltunen, Teppo; Becks, Lutz
2014-10-22
Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and co-evolution between predator and prey in this context. Here, we investigate the role of consumer co-evolution for eco-evolutionary feedback in bacteria-ciliate microcosm experiments by manipulating the initial trait variation in the predator populations. With co-evolved predators, prey evolve anti-predatory defences faster, trait values are more variable, and predator and prey population sizes are larger at the end of the experiment compared with the non-co-evolved predators. Most importantly, differences in predator traits results in a shift from evolution driving ecology, to ecology driving evolution. Thus we demonstrate that predator co-evolution has important effects on eco-evolutionary dynamics.
Pan, Yu; Cai, Wenpeng; Dong, Wei; Xiao, Jie; Yan, Jin; Cheng, Qi
2017-04-01
Converging evidence reveals significant increase in both state anxiety and trait anxiety during the past 2 decades among military servicemen and servicewomen in China. In the present study, we employed the Chinese version of the State-trait Anxiety Inventory (STAI) to examine trait and state anxiety in Chinese military servicemen and servicewomen. We further evaluated orienting, alerting and execution inhibition using the attention network test.Healthy military servicemen and servicewomen were recruited for the present study. The STAI was used to measure both state and trait anxiety and the attention network test was done to determine reaction time and accuracy rate.Fifty-seven subjects were eligible for the study. Their mean STAI score was 3.2 ± 2.8 (range, 1-17) and 29 (50.9%) subjects were categorized into the high trait anxiety group and 28 (49.1%) subjects into the low trait anxiety group. The reaction time of the high trait anxiety group to incongruent, congruent, and neutral target was significantly longer than that of the low trait anxiety group (P < .05). Moreover, the accurate rate of the high trait anxiety group for incongruent, congruent, and neutral target was significantly higher than that of the low trait anxiety group (P < .05). Repeated analysis of variance showed marked effect of trait anxiety, cue types, and target types on reaction time. There was significant interaction among trait anxiety, target types, and cue types. Trait anxiety and target types also had marked effect on the accurate rate. Multivariate analysis showed no marked effect of trait anxiety on the alerting, orienting, and execution inhibition subnetwork.The present study has demonstrated that military service personnel with high trait anxiety requires more time for cognitive processing of external information but exhibits enhanced reaction accuracy rate compared to those with low trait anxiety. Our findings indicate that interventional strategies to improve the psychological wellbeing of military service personnel should be implemented to improve combat mission performance.
Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O
2015-01-01
The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.
QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population
Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua
2014-01-01
Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932
Prenatal maternal stress predicts autism traits in 6½ year-old children: Project Ice Storm.
Walder, Deborah J; Laplante, David P; Sousa-Pires, Alexandra; Veru, Franz; Brunet, Alain; King, Suzanne
2014-10-30
Research implicates prenatal maternal stress (PNMS) as a risk factor for neurodevelopmental disorders; however few studies report PNMS effects on autism risk in offspring. We examined, prospectively, the degree to which objective and subjective elements of PNMS explained variance in autism-like traits among offspring, and tested moderating effects of sex and PNMS timing in utero. Subjects were 89 (46F/43M) children who were in utero during the 1998 Quebec Ice Storm. Soon after the storm, mothers completed questionnaires on objective exposure and subjective distress, and completed the Autism Spectrum Screening Questionnaire (ASSQ) for their children at age 6½. ASSQ scores were higher among boys than girls. Greater objective and subjective PNMS predicted higher ASSQ independent of potential confounds. An objective-by-subjective interaction suggested that when subjective PNMS was high, objective PNMS had little effect; whereas when subjective PNMS was low, objective PNMS strongly affected ASSQ scores. A timing-by-objective stress interaction suggested objective stress significantly affected ASSQ in first-trimester exposed children, though less so with later exposure. The final regression explained 43% of variance in ASSQ scores; the main effect of sex and the sex-by-PNMS interactions were not significant. Findings may help elucidate neurodevelopmental origins of non-clinical autism-like traits from a dimensional perspective. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Huang, San-Yuan; Chang, Yun-Hsuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Hui Lee, I; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band
2013-08-01
The vulnerability of developing addictions is associated with genetic factors and personality traits. The predisposing genetic variants and personality traits may be common to all addictions or specific to a particular class of addiction. To investigate the relationship between genetic variances, personality traits, and their interactions in addiction are important. We recruited 175 opiate-dependent patients, 102 alcohol-dependent patients, and 111 healthy controls. All participants were diagnosed using DSM-IV criteria and assessed with Tridimensional Personality Questionnaire (TPQ). The dopamine D2 receptor (DRD2), 5-HTT-linked promoter region (5-HTTLPR), and aldehyde dehydrogenase 2 (ALDH2) genes were genotyped using PCR. The genotype frequency of the 5-HTTLPR and ALDH2 was significantly different between the patients and controls (P=0.013, P<0.001, respectively), and borderline significant (P=0.05) for DRD2 polymorphism. Both Novelty Seeking (NS) and Harm Avoidance (HA) scores were higher for patients (P<0.001). After stratification by candidate genes, addicts with ALDH2 *1/*1 interacting with the low-functional group of DRD2 and 5-HTTLPR genes have higher HA traits, whereas addicts with ALDH2 *1/*2 or *2/*2 and low-functional group of DRD2 and 5-HTTLPR genes have higher NS traits. We concluded that addicts, both alcohol- and opiate-dependent patients, have common genetic variants in DRD2 and 5-HTTLPR but specific for ALDH2. Higher NS and HA traits were found in both patient groups with the interaction with DRD2, 5-HTTLPR, and ALDH2 genes. The ALDH2 gene variants had different effect in the NS and HA dimension while the DRD2 and 5-HTTLPR genes did not. Copyright © 2013 Elsevier B.V. All rights reserved.
Diouf, Isidore A.; Derivot, Laurent; Bitton, Frédérique; Pascual, Laura; Causse, Mathilde
2018-01-01
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population—derived from eight parental lines covering a large diversity in cultivated tomato—were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33–86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines. PMID:29559986
ERIC Educational Resources Information Center
Arora, Ridhi; Rangnekar, Santosh
2016-01-01
In this study, we examined potential two-way interaction effects of the Big Five personality traits extraversion and openness to experience on career commitment measured in terms of three components of career identity, career resilience, and career planning. Participants included 450 managers from public and private sector organizations in North…
Vantaux, Amélie; Ouattarra, Issiaka; Lefèvre, Thierry; Dabiré, Kounbobr Roch
2016-04-23
Many studies have shown that the environment in which larvae develop can influence adult characteristics with consequences for the transmission of pathogens. We investigated how two environmental stresses (larviciding and nutritional stress) interact to affect Anopheles gambiae (previously An. gambiae S molecular form) life history traits and its susceptibility for field isolates of its natural malaria agent Plasmodium falciparum. Larvae were reared in the presence or not of a sub-lethal concentration of larvicide and under a high and low food regimen. Development time, individual size, adult survival and competence for P. falciparum were assessed. Individuals under low food regimen took more time to develop, had a lower development success and were smaller while there was no main effect of larvicide exposure on these traits. However, larvicide exposure impacted individual size in interaction with nutritional stress. Female survival was affected by the interaction between gametocytemia, parasite exposure and larval diet, as well as the interaction between gametocytemia, parasite exposure and larvicidal stress, and the interaction between gametocytemia, larvicidal exposure and larval diet. Among the 951 females dissected 7 days post-infection, 559 (58.78%) harboured parasites. Parasite prevalence was significantly affected by the interaction between larvicidal stress and larval diet. Indeed, females under low food regimen had a higher prevalence than females under high food regimen and this difference was greater under larvicidal stress. The two stresses did not impact parasite intensity. We found that larval nutritional and larvicidal stresses affect mosquito life history traits in complex ways, which could greatly affect P. falciparum transmission. Further studies combining field-based trials on larvicide use and mosquito experimental infections would give a more accurate understanding of the effects of this vector control tool on malaria transmission.
Predicting rates of interspecific interaction from phylogenetic trees.
Nuismer, Scott L; Harmon, Luke J
2015-01-01
Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.
Gegear, Robert J; Burns, Rebecca; Swoboda-Bhattarai, Katharine A
2017-02-01
Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a "primary" type of animal pollinator. However, syndrome traits may also function to deter "secondary" flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such costs through synergistic color-orientation and color-reward trait interactions. Floral syndromes therefore represent complex adaptations to multiple pollinator groups, rather than simply the primary pollinator. © 2016 by the Ecological Society of America.
2013-01-01
Background The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. Methods Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. Results Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. Conclusions The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight. PMID:24168700
Reynolds, Lisa M; McCambridge, Sarah A; Bissett, Ian P; Consedine, Nathan S
2014-12-01
To evaluate whether trait and experimentally manipulated state disgust independently and/or interactively predict immediate and anticipated avoidance in decision scenarios related to colorectal cancer (CRC). Eighty participants, aged 18 to 66 years, completed questionnaires assessing trait disgust prior to a laboratory session. Participants were gender block randomized to disgust or control conditions before completing tasks assessing immediate avoidance of a CRC disgust elicitor (stoma bag) and anticipated avoidance in hypothetical CRC scenarios. Manipulation checks confirmed the elicitation of disgust in the experimental condition. Persons in the experimental condition were more likely to exhibit immediate avoidance behaviors in response to a commonly used bowel disease device (stoma bag), and trait disgust predicted time to touch the device. Trait disgust also moderated the influence of state disgust on anticipated avoidance, namely delay in help seeking for bowel symptoms and predicted rating disgusting side effects as more deterring to adherence. The current report suggests the importance of examining disgust in CRC contexts and provides the first empirical demonstration that state and trait aspects of disgust may interactively operate to deter certain types of decisions. It thus furthers understanding of emotions and avoidance in a health context that has had surprisingly little focus to date.
Vrshek-Schallhorn, Suzanne; Avery, Bradley M; Ditcheva, Maria; Sapuram, Vaibhav R
2018-06-01
Various internalizing risk factors predict, in separate studies, both augmented and reduced cortisol responding to lab-induced stress. Stressor severity appears key: We tested whether heightened trait-like internalizing risk (here, trait rumination) predicts heightened cortisol reactivity under modest objective stress, but conversely predicts reduced reactivity under more robust objective stress. Thus, we hypothesized that trait rumination would interact with a curvilinear (quadratic) function of stress severity to predict cortisol reactivity. Evidence comes from 85 currently non-depressed emerging adults who completed either a non-stressful control protocol (n = 29), an intermediate difficulty Trier Social Stress Test (TSST; n = 26), or a robustly stressful negative evaluative TSST (n = 30). Latent growth curve models evaluated relationships between trait rumination and linear and quadratic effects of stressor severity on the change in cortisol and negative affect over time. Among other findings, a significant Trait Rumination x Quadratic Stress Severity interaction effect for cortisol's Quadratic Trend of Time (i.e., reactivity, B = .125, p = .017) supported the hypothesis. Rumination predicted greater cortisol reactivity to intermediate stress (r p = .400, p = .043), but blunted reactivity to more robust negative evaluative stress (r p = -0.379, p = 0.039). Contrasting hypotheses, negative affective reactivity increased independently of rumination as stressor severity increased (B = .453, p = 0.044). The direction of the relationship between an internalizing risk factor (trait rumination) and cortisol reactivity varies as a function of stressor severity. We propose the Cortisol Reactivity Threshold Model, which may help reconcile several divergent reactivity literatures and has implications for internalizing psychopathology, particularly depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jennings, David E; Krupa, James J; Rohr, Jason R
2016-07-01
Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology
Puijalon, Sara; Lena, Jean-Paul; Bornette, Gudrun
2007-01-01
Background and Aims Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. Methods An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. Key Results Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. Conclusions These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species. PMID:17913725
Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan
2013-06-01
Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.
Differential Impact of Personality Traits on Distracted Driving Behaviors in Teens and Older Adults
Parr, Morgan N.; Ross, Lesley A.; McManus, Benjamin; Bishop, Haley J.; Wittig, Shannon M. O.; Stavrinos, Despina
2016-01-01
Objective To determine the impact of personality on distracted driving behaviors. Method Participants included 120 drivers (48 teens, 72 older adults) who completed the 45-item Big Five Personality questionnaire assessing self-reported personality factors and the Questionnaire Assessing Distracted Driving (QUADD) assessing the frequency of distracted driving behaviors. Associations for all five personality traits with each outcome (e.g. number of times texting on the phone, talking on the phone, and interacting with the phone while driving) were analyzed separately for teens and older adults using negative binomial or Poisson regressions that controlled for age, gender and education. Results In teens, higher levels of openness and conscientiousness were predictive of greater reported texting frequency and interacting with a phone while driving, while lower levels of agreeableness was predictive of fewer reported instances of texting and interacting with a phone while driving. In older adults, greater extraversion was predictive of greater reported talking on and interacting with a phone while driving. Other personality factors were not significantly associated with distracted driving behaviors. Conclusions Personality traits may be important predictors of distracted driving behaviors, though specific traits associated with distracted driving may vary across age groups. The relationship between personality and distracted driving behaviors provides a unique opportunity to target drivers who are more likely to engage in distracted driving behavior, thereby increasing the effectiveness of educational campaigns and improving driving safety. PMID:27054484
Chronic Smoking, Trait Anxiety, and the Physiological Response to Stress.
Wiggert, Nicole; Wilhelm, Frank H; Nakajima, Motohiro; al'Absi, Mustafa
2016-10-14
Both chronic smoking and trait anxiety have been associated with dysregulations in psychobiological stress response systems. However, these factors have not been studied in conjunction. We expected trait anxiety and smoking status to attenuate stress reactivity. Furthermore, we expected an allostatic load effect resulting in particularly attenuated stress reactivity in high-anxious smokers. In addition, high-anxious smokers were expected to exhibit increased urges to smoke in response to stress. 115 smokers and 37 nonsmokers, aged 18-64 years, completed a laboratory session including mental stressors such as evaluated public speaking and mental arithmetic. Trait anxiety was assessed using Spielberger's State-Trait Anxiety Inventory. Cardiovascular autonomic indices, salivary cortisol, and the desire to smoke were measured at baseline, during stressors, and at recovery. Regression analyses showed that smokers exhibited attenuated cardiovascular stress responses in comparison to nonsmokers. Higher trait anxiety predicted attenuated systolic blood pressure responses to stress. No interaction effect of smoking status and trait anxiety was found in stress response measures. Higher trait anxiety predicted an increased desire to smoke in response to stress among smokers. Results indicate that both smoking status and trait anxiety are associated with blunted sympatho-adrenal cardiovascular stress reactivity. Elevated urges to smoke in response to stress found among smokers with high trait anxiety suggest an important role of anxiety in smoking propensity and relapse.
Chronic Smoking, Trait Anxiety, and the Physiological Response to Stress
Wiggert, Nicole; Wilhelm, Frank H.; Nakajima, Motohiro; al’Absi, Mustafa
2016-01-01
Background and Objectives Both chronic smoking and trait anxiety have been associated with dysregulations in psychobiological stress response systems. However, these factors have not been studied in conjunction. We expected trait anxiety and smoking status to attenuate stress reactivity. Furthermore, we expected an allostatic load effect resulting in particularly attenuated stress reactivity in high-anxious smokers. In addition, high-anxious smokers were expected to exhibit increased urges to smoke in response to stress. Methods 115 smokers and 37 nonsmokers, aged 18 – 64 years, completed a laboratory session including mental stressors such as evaluated public speaking and mental arithmetic. Trait anxiety was assessed using Spielberger’s State-Trait Anxiety Inventory. Cardiovascular autonomic indices, salivary cortisol, and the desire to smoke were measured at baseline, during stressors, and at recovery. Results Regression analyses showed that smokers exhibited attenuated cardiovascular stress responses in comparison to nonsmokers. Higher trait anxiety predicted attenuated systolic blood pressure responses to stress. No interaction effect of smoking status and trait anxiety was found in stress response measures. Higher trait anxiety predicted an increased desire to smoke in response to stress among smokers. Conclusion Results indicate that both smoking status and trait anxiety are associated with blunted sympatho-adrenal cardiovascular stress reactivity. Elevated urges to smoke in response to stress found among smokers with high trait anxiety suggest an important role of anxiety in smoking propensity and relapse. PMID:27484702
Does trait affectivity predict work-to-family conflict and enrichment beyond job characteristics?
Tement, Sara; Korunka, Christian
2013-01-01
The present study examines whether negative and positive affectivity (NA and PA, respectively) predict different forms of work-to-family conflict (WFC-time, WFC-strain, WFC-behavior) and enrichment (WFE-development, WFE-affect, WFE-capital) beyond job characteristics (workload, autonomy, variety, workplace support). Furthermore, interactions between job characteristics and trait affectivity while predicting WFC and WFE were examined. Using a large sample of Slovenian employees (N = 738), NA and PA were found to explain variance in WFC as well as in WFE above and beyond job characteristics. More precisely, NA significantly predicted WFC, whereas PA significantly predicted WFE. In addition, several interactive effects were found to predict forms of WFC and WFE. These results highlight the importance of trait affectivity in work-family research. They provide further support for the crucial impact of job characteristics as well.
Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L
2009-12-01
Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.
Watkins, Laura E.; DiLillo, David; Maldonado, Rosalita C.
2015-01-01
This study draws on Finkel and Eckhardt’s (2013) I3 framework to examine the interactive effects of two emotion regulation strategies, anger rumination (an impellance factor) and reappraisal (an inhibition factor), and alcohol intoxication (a disinhibition factor), on intimate partner aggression (IPA) perpetration as measured with an analogue aggression task. Participants were 69 couples recruited from a large Midwestern university (total N = 138). Participants’ trait rumination and reappraisal were measured by self-report. Participants were randomized individually to an alcohol or placebo condition, then recalled an anger event while employing one of three randomly assigned emotion regulation conditions (rumination, reappraisal, or uninstructed). Following this, participants completed an analogue aggression task involving ostensibly assigning white noise blasts to their partner. Participants in the alcohol condition displayed greater IPA than participants in the placebo condition for provoked IPA, but not unprovoked IPA. Results also revealed interactions such that for those in the alcohol and rumination group, higher trait reappraisal was related to lower unprovoked IPA. For provoked IPA, higher trait rumination was related to greater IPA among those in the alcohol and rumination condition and those in the placebo and uninstructed condition. In general, results were consistent with I3 theory, suggesting that alcohol disinhibits, rumination impels, and trait reappraisal inhibits IPA. The theoretical and clinical implications of these findings are discussed in the context of current knowledge about the influence of alcohol intoxication and emotion regulation strategies on IPA perpetration. PMID:25844831
Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C
2018-06-01
Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.
Social traits, social networks and evolutionary biology.
Fisher, D N; McAdam, A G
2017-12-01
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Elzo, M A; Rae, D O; Lanhart, S E; Hembry, F G; Wasdin, J G; Driver, J D
2009-08-01
The objective of this research was to assess the association between 4 cow reproductive and weight traits, and 2 preweaning calf traits and ELISA scores for paratuberculosis (0 = negative, 1 = suspect, 2 = weak-positive, and 3 = positive) in a multibreed herd of cows ranging from 100% Angus (A) to 100% Brahman (B). Cow data were 624 gestation lengths (GL), 358 records of time open (TO), 605 calving intervals (CI), and 1240 weight changes from November to weaning in September (WC) from 502 purebred and crossbred cows. Calf data consisted of 956 birth weights (BWT), and 923 weaning weights adjusted to 205 d of age (WW205) from 956 purebred and crossbred calves. Traits were analyzed individually using multibreed mixed models that assumed homogeneity of variances across breed groups. Covariances among random effects were assumed to be zero. Fixed effects were year, age of cow, sex of calf, year x age of cow interaction (except WC), age of cow x sex of calf interaction (only for WC), and covariates for B fraction of sire and cow, heterosis of cow and calf, and ELISA score. Random effects were sire (except for TO and CI), dam, and residual. Regression estimates of cow and calf traits on ELISA scores indicated that lower cow fertility (longer TO), lower ability of cows to maintain weight (negative WC), lower calf BWT, and lower calf WW205 were associated with higher cow ELISA scores. Further research on the effects of subclinical paratuberculosis in beef cattle at regional and national levels seems advisable considering the large potential economic cost of this disease.
Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut
2014-01-01
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746
Domestication impacts on plant–herbivore interactions: a meta-analysis
Poveda, Katja
2017-01-01
For millennia, humans have imposed strong selection on domesticated crops, resulting in drastically altered crop phenotypes compared with wild ancestors. Crop yields have increased, but a long-held hypothesis is that domestication has also unintentionally decreased plant defences against herbivores. To test this hypothesis, we conducted a phylogenetically controlled meta-analysis comparing insect herbivore resistance and putative plant defence traits between crops and their wild relatives. Our database included 2098 comparisons made across 73 crops in 89 studies. We found that domestication consistently reduced plant resistance to herbivores, although the magnitude of the effects varied across plant organs and depended on how resistance was measured. However, domestication had no consistent effects on the specific plant defence traits underlying resistance, including secondary metabolites and physical feeding barriers. The values of these traits sometimes increased and sometimes decreased during domestication. Consistent negative effects of domestication were observed only when defence traits were measured in reproductive organs or in the plant organ that was harvested. These results highlight the complexity of evolution under domestication and the need for an improved theoretical understanding of the mechanisms through which agronomic selection can influence the species interactions that impact both the yield and sustainability of our food systems. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920379
Nectar alkaloids decrease pollination and female reproduction in a native plant.
Adler, Lynn S; Irwin, Rebecca E
2012-04-01
The evolution of floral traits may be shaped by a community of floral visitors that affect plant fitness, including pollinators and floral antagonists. The role of nectar in attracting pollinators has been extensively studied, but its effects on floral antagonists are less understood. Furthermore, the composition of non-sugar nectar components, such as secondary compounds, may affect plant reproduction via changes in both pollinator and floral antagonist behavior. We manipulated the nectar alkaloid gelsemine in wild plants of the native perennial vine Gelsemium sempervirens. We crossed nectar gelsemine manipulations with a hand-pollination treatment, allowing us to determine the effect of both the trait and the interaction on plant female reproduction. We measured pollen deposition, pollen removal, and nectar robbing to assess whether gelsemine altered the behavior of mutualists and antagonists. High nectar gelsemine reduced conspecific pollen receipt by nearly half and also reduced the proportion of conspecific pollen grains received, but had no effect on nectar robbing. Although high nectar gelsemine reduced pollen removal, an estimate of male reproduction, by one-third, this effect was not statistically significant. Fruit set was limited by pollen receipt. However, this effect varied across sites such that the sites that were most pollen-limited were also the sites where nectar alkaloids had the least effect on pollen receipt, resulting in no significant effect of nectar alkaloids on fruit set. Finally, high nectar gelsemine significantly reduced seed weight; however, this effect was mediated by a mechanism other than pollen limitation. Taken together, our work suggests that nectar alkaloids are more costly than beneficial in our system, and that relatively small-scale spatial variation in trait effects and interactions could determine the selective impacts of traits such as nectar composition.
Deciphering the Interdependence between Ecological and Evolutionary Networks.
Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A
2018-05-24
Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lunar and climatic effects on boar ejaculate traits.
Chinchilla-Vargas, Josué; Kerns, Karl; Rothschild, Max F
2018-06-01
There is evidence that phases of the moon affect wild animal behaviors including reproduction. There is, however, little evidence of moon phase effects on domestic livestock reproduction. This study investigated the effects of moon phase and climatic variables on boar ejaculate traits. Records of 4149 semen collections from boars of nine different breeds at one boar stud were used. The response variables were volume of ejaculate, concentration of sperm in the ejaculate, and number of doses obtained per ejaculate. Moon phase, greatest daily temperature (T), least daily T, average daily relative humidity (RH), temperature-humidity index (THI), season and the interaction of moon phase with season were analyzed at the day of collection and 45 days prior to date of collection as a proxy of initiation of spermatogenesis. For both dates analyzed season and the interaction of season with moon had significant effects (P < 0.05) on the volume of the ejaculate. Moon phase had a significant effect (P < 0.05) on volume of ejaculate at the day of collection. Sperm concentration was affected (P < 0.05) by the interaction of moon phase with season, high and low temperature, THI, RH and breed. Season had an effect (P < 0.01) on concentration of sperm at the initiation of spermatogenesis. For doses that could be used for AI that were obtained/ejaculate, there were effects of moon phase, season, the interaction between season and moon phase and breed (P < 0.05) at collection day and at the initiation of spermatogenesis. There was an interaction (P < 0.0001) between season and moon phase for volume of ejaculate, sperm concentration and number of doses obtained per ejaculate at date of collection and at day of initiation of spermatogenesis. The significant interaction of season and moon phase on boar semen traits suggests that to maximize productivity of modern swine production systems determining a collection schedule in some seasons relative to moon phase may be advantageous. Copyright © 2018 Elsevier B.V. All rights reserved.
Nguyen, Nguyen H.; Hamzah, Azhar; Thoa, Ngo P.
2017-01-01
The extent to which genetic gain achieved from selection programs under strictly controlled environments in the nucleus that can be expressed in commercial production systems is not well-documented in aquaculture species. The main aim of this paper was to assess the effects of genotype by environment interaction on genetic response and genetic parameters for four body traits (harvest weight, standard length, body depth, body width) and survival in Red tilapia (Oreochromis spp.). The growth and survival data were recorded on 19,916 individual fish from a pedigreed population undergoing three generations of selection for increased harvest weight in earthen ponds from 2010 to 2012 at the Aquaculture Extension Center, Department of Fisheries, Jitra in Kedah, Malaysia. The pedigree comprised a total of 224 sires and 262 dams, tracing back to the base population in 2009. A multivariate animal model was used to measure genetic response and estimate variance and covariance components. When the homologous body traits in freshwater pond and cage were treated as genetically distinct traits, the genetic correlations between the two environments were high (0.85–0.90) for harvest weight and square root of harvest weight but the estimates were of lower magnitudes for length, width and depth (0.63–0.79). The heritabilities estimated for the five traits studied differed between pond (0.02 to 0.22) and cage (0.07 to 0.68). The common full-sib effects were large, ranging from 0.23 to 0.59 in pond and 0.11 to 0.31 in cage across all traits. The direct and correlated responses for four body traits were generally greater in pond than in cage environments (0.011–1.561 vs. −0.033–0.567 genetic standard deviation units, respectively). Selection for increased harvest body weight resulted in positive genetic changes in survival rate in both pond and cage culture. In conclusion, the reduced selection response and the magnitude of the genetic parameter estimates in the production environment (i.e., cage) relative to those achieved in the nucleus (pond) were a result of the genotype by environment interaction and this effect should be taken into consideration in the future breeding program for Red tilapia. PMID:28659970
Genotype x Nutritional Environment Interaction in a Composite Beef Cattle Breed
USDA-ARS?s Scientific Manuscript database
Environmental effects have been shown to influence several economically important traits in beef cattle. In this study, genetic x nutritional environment interaction has been evaluated in a composite beef cattle breed(50% Red Angus, 25% Charolais, 25% Tarentaise).Cows were randomly assigned to be fe...
Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D
2001-01-01
Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.
Rohrmann, Sonja; Bechtoldt, Myriam N; Hopp, Henrik; Hodapp, Volker; Zapf, Dieter
2011-07-01
In customer interactions, emotional display rules typically prescribe service providers to suppress negative emotions and display positive ones. This study investigated the causal impact of these emotional display rules on physiological indicators of workers' stress and performance. Additionally, the moderating influence of personality was examined by analyzing the impact of trait anger. In a simulated call center, 82 females were confronted with a complaining customer and instructed to react either authentically and show their true emotions or to "serve with a smile" and hide negative emotions. Increases in diastolic blood pressure and heart rates were higher in the smile condition, while verbal fluency was lower. Trait anger moderated the effects on diastolic blood pressure and observer ratings' of participants' professional competence, suggesting more negative effects for high trait anger individuals. Findings imply that emotional display rules may increase call center employees' strain and that considering employees' personality may be crucial for precluding health and performance impairments among call center workers.
Genetic Mechanisms Leading to Sex Differences Across Common Diseases and Anthropometric Traits.
Traglia, Michela; Bseiso, Dina; Gusev, Alexander; Adviento, Brigid; Park, Daniel S; Mefford, Joel A; Zaitlen, Noah; Weiss, Lauren A
2017-02-01
Common diseases often show sex differences in prevalence, onset, symptomology, treatment, or prognosis. Although studies have been performed to evaluate sex differences at specific SNP associations, this work aims to comprehensively survey a number of complex heritable diseases and anthropometric traits. Potential genetically encoded sex differences we investigated include differential genetic liability thresholds or distributions, gene-sex interaction at autosomal loci, major contribution of the X-chromosome, or gene-environment interactions reflected in genes responsive to androgens or estrogens. Finally, we tested the overlap between sex-differential association with anthropometric traits and disease risk. We utilized complementary approaches of assessing GWAS association enrichment and SNP-based heritability estimation to explore explicit sex differences, as well as enrichment in sex-implicated functional categories. We do not find consistent increased genetic load in the lower-prevalence sex, or a disproportionate role for the X-chromosome in disease risk, despite sex-heterogeneity on the X for several traits. We find that all anthropometric traits show less than complete correlation between the genetic contribution to males and females, and find a convincing example of autosome-wide genome-sex interaction in multiple sclerosis (P = 1 × 10 -9 ). We also find some evidence for hormone-responsive gene enrichment, and striking evidence of the contribution of sex-differential anthropometric associations to common disease risk, implying that general mechanisms of sexual dimorphism determining secondary sex characteristics have shared effects on disease risk. Copyright © 2017 by the Genetics Society of America.
Genetic Mechanisms Leading to Sex Differences Across Common Diseases and Anthropometric Traits
Traglia, Michela; Bseiso, Dina; Gusev, Alexander; Adviento, Brigid; Park, Daniel S.; Mefford, Joel A.; Zaitlen, Noah; Weiss, Lauren A.
2017-01-01
Common diseases often show sex differences in prevalence, onset, symptomology, treatment, or prognosis. Although studies have been performed to evaluate sex differences at specific SNP associations, this work aims to comprehensively survey a number of complex heritable diseases and anthropometric traits. Potential genetically encoded sex differences we investigated include differential genetic liability thresholds or distributions, gene–sex interaction at autosomal loci, major contribution of the X-chromosome, or gene–environment interactions reflected in genes responsive to androgens or estrogens. Finally, we tested the overlap between sex-differential association with anthropometric traits and disease risk. We utilized complementary approaches of assessing GWAS association enrichment and SNP-based heritability estimation to explore explicit sex differences, as well as enrichment in sex-implicated functional categories. We do not find consistent increased genetic load in the lower-prevalence sex, or a disproportionate role for the X-chromosome in disease risk, despite sex-heterogeneity on the X for several traits. We find that all anthropometric traits show less than complete correlation between the genetic contribution to males and females, and find a convincing example of autosome-wide genome-sex interaction in multiple sclerosis (P = 1 × 10−9). We also find some evidence for hormone-responsive gene enrichment, and striking evidence of the contribution of sex-differential anthropometric associations to common disease risk, implying that general mechanisms of sexual dimorphism determining secondary sex characteristics have shared effects on disease risk. PMID:27974502
Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael
2011-01-01
Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.
Autistic and schizotypal traits and global functioning in bipolar I disorder.
Abu-Akel, Ahmad; Clark, Jennifer; Perry, Amy; Wood, Stephen J; Forty, Liz; Craddock, Nick; Jones, Ian; Gordon-Smith, Katherine; Jones, Lisa
2017-01-01
To determine the expression of autistic and positive schizotypal traits in a large sample of adults with bipolar I disorder (BD I), and the effect of co-occurring autistic and positive schizotypal traits on global functioning in BD I. Autistic and positive schizotypal traits were self-assessed in 797 individuals with BD-I recruited by the Bipolar Disorder Research Network. Differences in global functioning (rated using the Global Assessment Scale) during lifetime worst depressive and manic episodes (GASD and GASM respectively) were calculated in groups with high/low autistic and positive schizotypal traits. Regression analyses assessed the interactive effect of autistic and positive schizotypal traits on global functioning. 47.2% (CI=43.7-50.7%) showed clinically significant levels of autistic traits, and 23.22% (95% CI=20.29-26.14) showed clinically significant levels of positive schizotypal traits. In the worst episode of mania, the high autistic, high positive schizotypal group had better global functioning compared to the other groups. Individual differences analyses showed that high levels of both traits were associated with better global functioning in both mood states. Autistic and schizotypal traits were assessed using self-rated questionnaires. Expression of autistic and schizotypal traits in adults with BD I is prevalent, and may be important to predict illness aetiology, prognosis, and diagnostic practices in this population. Future work should focus on replicating these findings in independent samples, and on the biological and/or psychosocial mechanisms underlying better global functioning in those who have high levels of both autistic and positive schizotypal traits. Copyright © 2016 Elsevier B.V. All rights reserved.
Balakrishnan, Divya; Subrahmanyam, Desiraju; Badri, Jyothi; Raju, Addanki Krishnam; Rao, Yadavalli Venkateswara; Beerelli, Kavitha; Mesapogu, Sukumar; Surapaneni, Malathi; Ponnuswamy, Revathi; Padmavathi, G.; Babu, V. Ravindra; Neelamraju, Sarla
2016-01-01
Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions. PMID:27807437
Comparative analysis of genetic architectures for nine developmental traits of rye.
Masojć, Piotr; Milczarski, P; Kruszona, P
2017-08-01
Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.
Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante
2017-08-01
Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.
Cassandro, M; Battagin, M; Penasa, M; De Marchi, M
2015-01-01
Milk coagulation properties (MCP) are gaining popularity among dairy cattle producers and the improvement of traits associated with MCP is expected to result in a benefit for the dairy industry, especially in countries with a long tradition in cheese production. The objectives of this study were to estimate genetic correlations of MCP with body condition score (BCS) and type traits using data from first-parity Italian Holstein-Friesian cattle. The data analyzed consisted of 18,460 MCP records from 4,036 cows with information on both BCS and conformation traits. The cows were daughters of 246 sires and the pedigree file included a total of 37,559 animals. Genetic relationships of MCP with BCS and type traits were estimated using bivariate animal models. The model for MCP included fixed effects of stage of lactation, and random effects of herd-test-date, cow permanent environment, additive genetic animal, and residual. Fixed factors considered in the model for BCS and type traits were herd-date of evaluation and interaction between age at scoring and stage of lactation of the cow, and random terms were additive genetic animal, cow permanent environment, and residual. Genetic relationships between MCP and BCS, and MCP and type traits were generally low and significant only in a few cases, suggesting that MCP can be selected for without detrimental effects on BCS and linear type traits. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Báez, Selene; Homeier, Jürgen
2018-01-01
Trait-response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long-term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait-based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long-term experimental evidence that trait-based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest. © 2017 John Wiley & Sons Ltd.
Interactions between plants and primates shape community diversity in a rainforest in Madagascar.
Herrera, James P
2016-07-01
Models of ecological community assembly predict how communities of interacting organisms may be shaped by abiotic and biotic factors. Competition and environmental filtering are the predominant factors hypothesized to explain community assembly. This study tested the effects of habitat, phylogenetic and phenotypic trait predictors on species co-occurrence patterns and abundances, with the endemic primates of Madagascar as an empirical system. The abundance of 11 primate species was estimated along gradients of elevation, food resource abundance and anthropogenic habitat disturbance at local scales in south-east Madagascar. Community composition was compared to null models to test for phylogenetic and functional structure, and the effects of phylogenetic relatedness of co-occurring species, their trait similarity and environmental variables on species' abundances were tested using mixed models and quantile regressions. Resource abundance was the strongest predictor of community structure. Where food tree abundance was high, closely related species with similar traits dominated communities. High-elevation communities with lower food tree abundance consisted of species that were distantly related and had divergent traits. Closely related species had dissimilar abundances where they co-occurred, partially driven by trait dissimilarity, indicating character displacement. By integrating local-scale variation in primate community composition, evolutionary relatedness and functional diversity, this study found strong evidence that community assembly in this system can be explained by competition and character displacement along ecological gradients. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Ben Sadok, Inès; Martinez, Sebastien; Moutier, Nathalie; Garcia, Gilbert; Leon, Lorenzo; Belaj, Angelina; De La Rosa, Raúl; Khadari, Bouchaib; Costes, Evelyne
2015-01-01
Climatic changes impact fruit tree growth and severely limit their production. Investigating the tree ability to cope with environmental variations is thus necessary to adapt breeding and management strategies in order to ensure sustainable production. In this study, we assessed the genetic parameters and genotype by environment interaction (GxE) during the early tree growth. One hundred and twenty olive seedlings derived from the cross 'Olivière' x 'Arbequina' were examined across two sites with contrasted environments, accounting for ontogenetic trends over three years. Models including the year of growth, branching order, environment, genotype effects, and their interactions were built with variance function and covariance structure of residuals when necessary. After selection of a model, broad sense heritabilities were estimated. Despite strong environmental effect on most traits, no GxE was found. Moreover, the internal structure of traits co-variation was similar in both sites. Ontogenetic growth variation, related to (i) the overall tree form and (ii) the growth and branching habit at growth unit scale, was not altered by the environment. Finally, a moderate to strong genetic control was identified for traits at the whole tree scale and at internode scale. Among all studied traits, the maximal internode length exhibited the highest heritability (H2 = 0.74). Considering the determinant role of this trait in tree architecture and its stability across environments, this study consolidates its relevance for breeding.
Ben Sadok, Inès; Martinez, Sebastien; Moutier, Nathalie; Garcia, Gilbert; Leon, Lorenzo; Belaj, Angelina; De La Rosa, Raúl; Khadari, Bouchaib; Costes, Evelyne
2015-01-01
Climatic changes impact fruit tree growth and severely limit their production. Investigating the tree ability to cope with environmental variations is thus necessary to adapt breeding and management strategies in order to ensure sustainable production. In this study, we assessed the genetic parameters and genotype by environment interaction (GxE) during the early tree growth. One hundred and twenty olive seedlings derived from the cross ‘Olivière’ x ‘Arbequina’ were examined across two sites with contrasted environments, accounting for ontogenetic trends over three years. Models including the year of growth, branching order, environment, genotype effects, and their interactions were built with variance function and covariance structure of residuals when necessary. After selection of a model, broad sense heritabilities were estimated. Despite strong environmental effect on most traits, no GxE was found. Moreover, the internal structure of traits co-variation was similar in both sites. Ontogenetic growth variation, related to (i) the overall tree form and (ii) the growth and branching habit at growth unit scale, was not altered by the environment. Finally, a moderate to strong genetic control was identified for traits at the whole tree scale and at internode scale. Among all studied traits, the maximal internode length exhibited the highest heritability (H2 = 0.74). Considering the determinant role of this trait in tree architecture and its stability across environments, this study consolidates its relevance for breeding. PMID:26062090
Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Fu, Chengxin; Dong, Ming
2017-01-01
To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits. PMID:28644876
Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Li, Junmin; Fu, Chengxin; Dong, Ming
2017-01-01
To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits.
Parental effects alter the adaptive value of an adult behavioural trait.
Kilner, Rebecca M; Boncoraglio, Giuseppe; Henshaw, Jonathan M; Jarrett, Benjamin J M; De Gasperin, Ornela; Attisano, Alfredo; Kokko, Hanna
2015-09-22
The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet, virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early-life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods and suffered greater mortality as a result: they were low-quality parents. Furthermore, (2) high-quality males that raised offspring with low-quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects.
Pan, Yu; Cai, Wenpeng; Dong, Wei; Xiao, Jie; Yan, Jin; Cheng, Qi
2017-01-01
Abstract Converging evidence reveals significant increase in both state anxiety and trait anxiety during the past 2 decades among military servicemen and servicewomen in China. In the present study, we employed the Chinese version of the State-trait Anxiety Inventory (STAI) to examine trait and state anxiety in Chinese military servicemen and servicewomen. We further evaluated orienting, alerting and execution inhibition using the attention network test. Healthy military servicemen and servicewomen were recruited for the present study. The STAI was used to measure both state and trait anxiety and the attention network test was done to determine reaction time and accuracy rate. Fifty-seven subjects were eligible for the study. Their mean STAI score was 3.2 ± 2.8 (range, 1–17) and 29 (50.9%) subjects were categorized into the high trait anxiety group and 28 (49.1%) subjects into the low trait anxiety group. The reaction time of the high trait anxiety group to incongruent, congruent, and neutral target was significantly longer than that of the low trait anxiety group (P < .05). Moreover, the accurate rate of the high trait anxiety group for incongruent, congruent, and neutral target was significantly higher than that of the low trait anxiety group (P < .05). Repeated analysis of variance showed marked effect of trait anxiety, cue types, and target types on reaction time. There was significant interaction among trait anxiety, target types, and cue types. Trait anxiety and target types also had marked effect on the accurate rate. Multivariate analysis showed no marked effect of trait anxiety on the alerting, orienting, and execution inhibition subnetwork. The present study has demonstrated that military service personnel with high trait anxiety requires more time for cognitive processing of external information but exhibits enhanced reaction accuracy rate compared to those with low trait anxiety. Our findings indicate that interventional strategies to improve the psychological wellbeing of military service personnel should be implemented to improve combat mission performance. PMID:28445261
Damian, Rodica Ioana; Su, Rong; Shanahan, Michael; Trautwein, Ulrich; Roberts, Brent W
2015-09-01
This study investigated the interplay of family background and individual differences, such as personality traits and intelligence (measured in a large U.S. representative sample of high school students; N = 81,000) in predicting educational attainment, annual income, and occupational prestige 11 years later. Specifically, we tested whether individual differences followed 1 of 3 patterns in relation to parental socioeconomic status (SES) when predicting attained status: (a) the independent effects hypothesis (i.e., individual differences predict attainments independent of parental SES level), (b) the resource substitution hypothesis (i.e., individual differences are stronger predictors of attainments at lower levels of parental SES), and (c) the Matthew effect hypothesis (i.e., "the rich get richer"; individual differences are stronger predictors of attainments at higher levels of parental SES). We found that personality traits and intelligence in adolescence predicted later attained status above and beyond parental SES. A standard deviation increase in individual differences translated to up to 8 additional months of education, $4,233 annually, and more prestigious occupations. Furthermore, although we did find some evidence for both the resource substitution and the Matthew effect hypotheses, the most robust pattern across all models supported the independent effects hypothesis. Intelligence was the exception, the interaction models being more robust. Finally, we found that although personality traits may help compensate for background disadvantage to a small extent, they do not usually lead to a "full catch-up" effect, unlike intelligence. This was the first longitudinal study of status attainment to test interactive models of individual differences and background factors. (c) 2015 APA, all rights reserved).
Damian, Rodica Ioana; Su, Rong; Shanahan, Michael; Trautwein, Ulrich; Roberts, Brent W.
2014-01-01
This paper investigates the interplay of family background and individual differences, such as personality traits and intelligence (measured in a large US representative sample of high school students; N = 81,000) in predicting educational attainment, annual income, and occupational prestige eleven years later. Specifically, we tested whether individual differences followed one of three patterns in relation to parental SES when predicting attained status: (a) the independent effects hypothesis (i.e., individual differences predict attainments independent of parental SES level), (b) the resource substitution hypothesis (i.e., individual differences are stronger predictors of attainments at lower levels of parental SES), and (c) the Matthew effect hypothesis (i.e., “the rich get richer,” individual differences are stronger predictors of attainments at higher levels of parental SES). We found that personality traits and intelligence in adolescence predicted later attained status above and beyond parental SES. A standard deviation increase in individual differences translated to up to 8 additional months of education, $4,233 annually, and more prestigious occupations. Furthermore, although we did find some evidence for both the resource substitution and the Matthew effect hypotheses, the most robust pattern across all models supported the independent effects hypothesis. Intelligence was the exception, where interaction models were more robust. Finally, we found that although personality traits may help compensate for background disadvantage to a small extent, they do not usually lead to a “full catch up” effect, unlike intelligence. This was the first longitudinal study of status attainment to test interactive models of individual differences and background factors. PMID:25402679
Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G
2011-06-01
Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.
Shifts in water availability mediate plant-pollinator interactions.
Gallagher, M Kate; Campbell, Diane R
2017-07-01
Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Penson, Brittany N; Ruchensky, Jared R; Morey, Leslie C; Edens, John F
2016-11-01
A substantial amount of research has examined the developmental trajectory of antisocial behavior and, in particular, the relationship between antisocial behavior and maladaptive personality traits. However, research typically has not controlled for previous behavior (e.g., past violence) when examining the utility of personality measures, such as self-report scales of antisocial and borderline traits, in predicting future behavior (e.g., subsequent violence). Examination of the potential interactive effects of measures of both antisocial and borderline traits also is relatively rare in longitudinal research predicting adverse outcomes. The current study utilizes a large sample of youthful offenders ( N = 1,354) from the Pathways to Desistance project to examine the separate effects of the Personality Assessment Inventory Antisocial Features (ANT) and Borderline Features (BOR) scales in predicting future offending behavior as well as trends in other negative outcomes (e.g., substance abuse, violence, employment difficulties) over a 1-year follow-up period. In addition, an ANT × BOR interaction term was created to explore the predictive effects of secondary psychopathy. ANT and BOR both explained unique variance in the prediction of various negative outcomes even after controlling for past indicators of those same behaviors during the preceding year.
Johansson, Ada; Westberg, Lars; Sandnabba, Kenneth; Jern, Patrick; Salo, Benny; Santtila, Pekka
2012-09-01
Oxytocin has been implicated in the regulation of social as well as aggressive behaviors, and in a recent study we found that the effect of alcohol on aggressive behavior was moderated by the individual's genotype on an oxytocin receptor gene (OXTR) polymorphism (Johansson et al., 2012). In this study we wanted to deepen and expand the analysis by exploring associations between three (rs1488467, rs4564970, rs1042778) OXTR polymorphisms and aggressive behavior, trait anger as well as anger control in a population-based sample of Finnish men and women (N=3577) aged between 18 and 49 years (M=26.45 years, SD=5.02). A specific aim was to investigate if the polymorphisms would show interactive effects with alcohol consumption on aggressive behavior and trait anger, as well as to explore whether these polymorphisms affect differences in anger control between self-reported sober and intoxicated states. The results showed no main effects of the polymorphisms, however, three interactions between the polymorphisms and alcohol consumption were found. The effect of alcohol consumption on aggressive behavior was moderated by the genotype of the individual on the rs4564970 polymorphism, in line with previous results (Johansson et al., 2012). For trait anger, both the rs1488467 and the rs4564970 polymorphisms interacted with alcohol consumption. It appears that the region of the OXTR gene including both the rs4564970 and the rs1488467 polymorphisms may be involved in the regulation of the relationship between alcohol and aggressive behavior as well as between alcohol and the propensity to react to situations with elevated levels of anger. Copyright © 2012 Elsevier Ltd. All rights reserved.
Janicki Deverts, Denise; Cohen, Sheldon; Doyle, William J
2017-10-01
The aim was to examine whether trait positive and negative affect (PA, NA) moderate the stress-buffering effect of perceived social support on risk for developing a cold subsequent to being exposed to a virus that causes mild upper respiratory illness. Analyses were based on archival data from 694 healthy adults (M age = 31.0 years, SD = 10.7 years; 49.0% female; 64.6% Caucasian). Perceived social support and perceived stress were assessed by self-report questionnaire and trait affect by aggregating responses to daily mood items administered by telephone interview across several days. Subsequently, participants were exposed to a virus that causes the common cold and monitored for 5 days for clinical illness (infection + objective signs of illness). Two 3-way interactions emerged-Support × Stress × PA and Support × Stress × NA. The nature of these effects was such that among persons with high trait PA or low trait NA, greater social support attenuated the risk of developing a cold when under high but not low perceived stress; this stress-buffering effect did not emerge among persons with low trait PA or high trait NA. Dispositional affect might be used to identify individuals who may be most responsive to social support and support-based interventions. © 2016 Wiley Periodicals, Inc.
Differential impact of personality traits on distracted driving behaviors in teens and older adults.
Parr, Morgan N; Ross, Lesley A; McManus, Benjamin; Bishop, Haley J; Wittig, Shannon M O; Stavrinos, Despina
2016-07-01
To determine the impact of personality on distracted driving behaviors. Participants included 120 drivers (48 teens, 72 older adults) who completed the 45-item Big Five Personality questionnaire assessing self-reported personality factors and the Questionnaire Assessing Distracted Driving (QUADD) assessing the frequency of distracted driving behaviors. Associations for all five personality traits with each outcome (e.g., number of times texting on the phone, talking on the phone, and interacting with the phone while driving) were analyzed separately for teens and older adults using negative binomial or Poisson regressions that controlled for age, gender and education. In teens, higher levels of openness and conscientiousness were predictive of greater reported texting frequency and interacting with a phone while driving, while lower levels of agreeableness was predictive of fewer reported instances of texting and interacting with a phone while driving. In older adults, greater extraversion was predictive of greater reported talking on and interacting with a phone while driving. Other personality factors were not significantly associated with distracted driving behaviors. Personality traits may be important predictors of distracted driving behaviors, though specific traits associated with distracted driving may vary across age groups. The relationship between personality and distracted driving behaviors provides a unique opportunity to target drivers who are more likely to engage in distracted driving behavior, thereby increasing the effectiveness of educational campaigns and improving driving safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of ecology in speciation by sexual selection: a systematic empirical review.
Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J
2014-01-01
Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Kennealy, Patrick J.; Skeem, Jennifer L.; Walters, Glenn D.; Camp, Jacqueline
2010-01-01
The utility of psychopathy measures in predicting violence is largely explained by their assessment of social deviance (e.g., antisocial behavior; disinhibition). A key question is whether social deviance "interacts" with the core interpersonal-affective traits of psychopathy to predict violence. Do core psychopathic traits multiply the (already…
Frugivore-Mediated Selection in A Habitat Transformation Scenario
Fontúrbel, Francisco E.; Medel, Rodrigo
2017-01-01
Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942
Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien
2014-01-01
Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382
Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien
2014-09-23
Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.
Chenu, Karine; Chapman, Scott C.; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L.
2009-01-01
Under drought, substantial genotype–environment (G × E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this “gene-to-phenotype” gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G × E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such “leafy” genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G × E interactions for complex traits such as drought tolerance. PMID:19786622
Valla, Jeffrey M; Maendel, Jeffrey W; Ganzel, Barbara L; Barsky, Andrew R; Belmonte, Matthew K
2013-01-01
Autistic face processing difficulties are either uniquely social or due to a piecemeal cognitive "style." Co-morbidity of social deficits and piecemeal cognition in autism makes teasing apart these accounts difficult. These traits vary normally, and are more separable in the general population, suggesting another way to compare accounts. Participants completed the Autism Quotient survey of autistic traits, and one of three face recognition tests: full-face, eyes-only, or mouth-only. Social traits predicted performance in the full-face condition in both sexes. Eyes-only males' performance was predicted by a social × cognitive trait interaction: attention to detail boosted face recognition in males with few social traits, but hindered performance in those reporting many social traits. This suggests social/non-social Autism Spectrum Conditions (ASC) trait interactions at the behavioral level. In the presence of few ASC-like difficulties in social reciprocity, an ASC-like attention to detail may confer advantages on typical males' face recognition skills. On the other hand, when attention to detail co-occurs with difficulties in social reciprocity, a detailed focus may exacerbate such already present social difficulties, as is thought to occur in autism.
Boege, Karina
2010-09-01
Herbivory and competition are two of the most common biotic stressors for plants. When occurring simultaneously, responses to one interaction can constrain the induction of responses to the other interaction due to resource limitation and other interactive effects. Thus, to maximize fitness when interacting with competitors and herbivores, plants are likely to express particular combinations of plastic responses. This study reports the interactive effects of herbivory and competition on responses induced in Tithonia tubaeformis plants and describes how natural selection acts on particular plastic responses and on their different combinations. Competition induced a stem elongation response, expressed through an increase in height and mean internode length, together with a decrease in basal diameter. Interestingly, realized resistance increased in both competition and herbivory treatments, suggesting a plastic response in both constitutive and induced resistance traits. Particular combinations of plastic responses defined three plant phenotypes: vigorous, elongated, and resistant plants. The ecological context in which plants grew modified the traits and the particular combinations of plastic responses that were favored by selection. Vigorous plants were favored by selection in all environments, except when they were damaged by herbivores in the absence of neighbors. The combination of responses defining an elongated plant phenotype was favored by selection in crowded conditions. Resistance was negatively selected in the absence of competition and herbivory but favored in the presence of both interactions. In addition, contextual analyses detected that population structure in heterogeneous environments can also influence the outcomes of selection. These findings suggest that natural selection can act on particular combinations of plastic responses, which may allow plants to adjust their phenotypes to those that promote greater fitness under particular ecological conditions.
NASA Astrophysics Data System (ADS)
Chang, Gang; Zhang, Zhibin
2014-02-01
Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.
Edwards, Elizabeth J; Edwards, Mark S; Lyvers, Michael
2016-08-01
Attentional control theory (ACT) describes the mechanisms associated with the relationship between anxiety and cognitive performance. We investigated the relationship between cognitive trait anxiety, situational stress and mental effort on phonological performance using a simple (forward-) and complex (backward-) word span task. Ninety undergraduate students participated in the study. Predictor variables were cognitive trait anxiety, indexed using questionnaire scores; situational stress, manipulated using ego threat instructions; and perceived level of mental effort, measured using a visual analogue scale. Criterion variables (a) performance effectiveness (accuracy) and (b) processing efficiency (accuracy divided by response time) were analyzed in separate multiple moderated-regression analyses. The results revealed (a) no relationship between the predictors and performance effectiveness, and (b) a significant 3-way interaction on processing efficiency for both the simple and complex tasks, such that at higher effort, trait anxiety and situational stress did not predict processing efficiency, whereas at lower effort, higher trait anxiety was associated with lower efficiency at high situational stress, but not at low situational stress. Our results were in full support of the assumptions of ACT and implications for future research are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Using phenotypic manipulations to study multivariate selection of floral trait associations.
Campbell, Diane R
2009-06-01
A basic theme in the study of plant-pollinator interactions is that pollinators select not just for single floral traits, but for associations of traits. Responses of pollinators to sets of traits are inherent in the idea of pollinator syndromes. In its most extreme form, selection on a suite of traits can take the form of correlational selection, in which a response to one trait depends on the value of another, thereby favouring floral integration. Despite the importance of selection for combinations of traits in the evolution of flowers, evidence is relatively sparse and relies mostly on observational approaches. Here, methods for measuring selection on multivariate suites of floral traits are presented, and the studies to date are reviewed. It is argued that phenotypic manipulations present a powerful, but rarely used, approach to teasing apart the separate and combined effects of particular traits. The approach is illustrated with data from studies of alpine plants in Colorado and New Zealand, and recommendations are made about several features of the design of such experiments. Phenotypic manipulations of two or more traits in combination provide a direct way of testing for selection of floral trait associations. Such experiments will be particularly valuable if rooted in hypotheses about differences between types of pollinators and tied to a proposed evolutionary history.
Evolution of spatially structured host-parasite interactions.
Lion, S; Gandon, S
2015-01-01
Spatial structure has dramatic effects on the demography and the evolution of species. A large variety of theoretical models have attempted to understand how local dispersal may shape the coevolution of interacting species such as host-parasite interactions. The lack of a unifying framework is a serious impediment for anyone willing to understand current theory. Here, we review previous theoretical studies in the light of a single epidemiological model that allows us to explore the effects of both host and parasite migration rates on the evolution and coevolution of various life-history traits. We discuss the impact of local dispersal on parasite virulence, various host defence strategies and local adaptation. Our analysis shows that evolutionary and coevolutionary outcomes crucially depend on the details of the host-parasite life cycle and on which life-history trait is involved in the interaction. We also discuss experimental studies that support the effects of spatial structure on the evolution of host-parasite interactions. This review highlights major similarities between some theoretical results, but it also reveals an important gap between evolutionary and coevolutionary models. We discuss possible ways to bridge this gap within a more unified framework that would reconcile spatial epidemiology, evolution and coevolution. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
USDA-ARS?s Scientific Manuscript database
While genome-wide association studies (GWAS) and candidate gene approach have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. The present study aimed to examine variance contribu...
Vabalas, Andrius; Freeth, Megan
2016-01-01
The current study investigated whether the amount of autistic traits shown by an individual is associated with viewing behaviour during a face-to-face interaction. The eye movements of 36 neurotypical university students were recorded using a mobile eye-tracking device. High amounts of autistic traits were neither associated with reduced looking to the social partner overall, nor with reduced looking to the face. However, individuals who were high in autistic traits exhibited reduced visual exploration during the face-to-face interaction overall, as demonstrated by shorter and less frequent saccades. Visual exploration was not related to social anxiety. This study suggests that there are systematic individual differences in visual exploration during social interactions and these are related to amount of autistic traits.
D'Andrea, Rafael; Ostling, Annette; O'Dwyer, James P
2018-06-01
Traits can provide a window into the mechanisms that maintain coexistence among competing species. Recent theory suggests that competitive interactions will lead to groups, or clusters, of species with similar traits. However, theoretical predictions typically assume complete knowledge of the map between competition and measured traits. These assumptions limit the plausible application of these patterns for inferring competitive interactions in nature. Here, we relax these restrictions and find that the clustering pattern is robust to contributions of unknown or unobserved niche axes. However, it may not be visible unless measured traits are close proxies for niche strategies. We conclude that patterns along single niche axes may reveal properties of interspecific competition in nature, but detecting these patterns requires natural history expertise firmly tying traits to niches. © 2018 John Wiley & Sons Ltd/CNRS.
Kneitel, Jamie M
2012-01-01
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.
Gore, K L; Carter, M M; Parker, S
2002-06-01
Trait anxiety is believed to be a hierarchical construct composed of several lower-order factors (Adv. Behav. Res. Therapy, 15 (1993) 147; J. Anxiety Disorders, 9 (1995) 163). Assessment devices such as the Social Interaction Anxiety Scale, the Social Phobia Scale (SIAS and SPS; Behav. Res. Therapy, 36 (4) (1998) 455), and the Anxiety Sensitivity Index (ASI; Behav. Res. Therapy, 24 (1986) 1) are good measures of the presumably separate lower-order factors. This study compared the effectiveness of the SIAS, SPS, ASI-physical scale and STAI-T (State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press (1970)) as predictors of anxious response to a social challenge (asking an aloof confederate out on a date). Consistent with the hierarchical model of anxiety, the measures of trait anxiety were moderately correlated with each other and each was a significant predictor of anxious response. The specific measures of trait social anxiety were slightly better predictors of anxious response to the social challenge than was either the ASI-physical scale or the STAI-T. The results provide evidence of the predictive validity of these social trait measures and some support for their specificity in the prediction of anxious response to a social challenge.
Lynam, Donald R; Miller, Joshua D; Miller, Drew J; Bornovalova, Marina A; Lejuez, C W
2011-04-01
Borderline personality disorder (BPD) has received significant attention as a predictor of suicidal behavior (SB) and nonsuicidal self-injury (NSSI). Despite significant promise, trait impulsivity has received less attention. Understanding the relations between impulsivity and SB and NSSI is confounded, unfortunately, by the heterogeneous nature of impulsivity. This study examined the relations among 4 personality pathways to impulsive behavior studied via the UPPS model of impulsivity and SB and NSSI in a residential sample of drug abusers (N = 76). In this study, we tested whether these 4 impulsivity-related traits (i.e., Negative Urgency, Sensation Seeking, Lack of Premeditation, and Lack of Perseverance) provide incremental validity in the statistical prediction of SB and NSSI above and beyond BPD; they do. We also tested whether BPD symptoms provide incremental validity in the prediction of SB and NSSI above and beyond these impulsivity-related traits; they do not. In addition to the main effects of Lack of Premeditation and Negative Urgency, we found evidence of a robust interaction between these 2 personality traits. The current results argue strongly for the consideration of these 2 impulsivity-related domains--alone and in interaction--when attempting to understand and predict SB and NSSI.
Sipes, Megan; Matson, Johnny L; Horovitz, Max
2011-01-01
To examine the effects of ASD diagnosis and motor skills on socialization in young children. Two samples were used: gross motor skills sample (n = 408) and fine motor skills sample (n = 402). The Battelle Developmental Inventory-Second Edition assessed motor skills, while the Baby and Infant Screen for Children with aUtIsm Traits, Part 1 assessed socialization. A main effect of diagnosis was found for both samples on socialization such that those with autism exhibited the most severe deficits followed by those with PDD-NOS and then atypically developing children. There was a main effect for gross motor skills, with high gross motor skills showing less social impairment. The interaction term was only significant in regards to fine motor skills. The individual effects of ASD diagnosis and motor impairment as well as the interaction have implications for the assessment and treatment in these individuals.
Genetic Architecture of Nest Building in Mice LG/J × SM/J
Sauce, Bruno; de Brito, Reinaldo Alves; Peripato, Andrea Cristina
2012-01-01
Maternal care is critical to offspring growth and survival, which is greatly improved by building an effective nest. Some suggest that genetic variation and underlying genetic effects differ between fitness-related traits and other phenotypes. We investigated the genetic architecture of a fitness-related trait, nest building, in F2 female mice intercrossed from inbred strains SM/J and LG/J using a QTL analysis for six related nest phenotypes (Presence and Structure pre- and postpartum, prepartum Material Used and postpartum Temperature). We found 15 direct-effect QTLs explaining from 4 to 13% of the phenotypic variation in nest building, mostly with non-additive effect. Epistatic analyses revealed 71 significant epistatic interactions which together explain from 28.4 to 75.5% of the variation, indicating an important role for epistasis in the adaptive process of nest building behavior in mice. Our results suggest a genetic architecture with small direct effects and a larger number of epistatic interactions as expected for fitness-related phenotypes. PMID:22654894
Fish predators reduce kelp frond loss via a trait-mediated trophic cascade.
Haggerty, Miranda B; Anderson, Todd W; Long, Jeremy D
2018-05-05
Although trophic cascades were originally believed to be driven only by predators eating prey, there is mounting evidence that such cascades can be generated in large part via non-consumptive effects. This is especially important in cascades affecting habitat-forming foundation species that in turn, influence associated communities. Here, we use laboratory and field experiments to identify a trait-mediated indirect interaction between predators and an abundant kelp in a marine temperate reef system. Predation risk from a microcarnivorous fish, the señorita, suppressed grazing by the host-specific seaweed limpet, which in turn, influenced frond loss of the habitat-forming feather boa kelp. This trophic cascade was pronounced because minor amounts of limpet grazing decreased the strength required to break kelp fronds. Cues from fish predators mitigated kelp loss by decreasing limpet grazing; we found 86% of this indirect interaction between predator and kelp was attributed to the non-consumptive effect in the laboratory and 56% when applying the same effect size calculations to the field. In field manipulations, the non-consumptive effect of señorita was as strong as the total predator effect and most importantly, as strong as the uncaged, "open" treatment with natural levels of predators. Our findings demonstrate that the mere presence of this fish reduces frond loss of the feather boa kelp through a trait-mediated trophic cascade. Moreover, despite large volumes of water, current flow, and wave energy, we clearly demonstrate a strong non-consumptive effect via an apparent chemical cue from señorita, suggesting that chemically mediated trait-driven cascades may be more prevalent in subtidal marine systems than we are currently aware. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Effects of Fat and Protein Levels on Foraging Preferences of Tannin in Scatter-Hoarding Rodents
Wang, Bo; Chen, Jin
2012-01-01
Both as consumers and dispersers of seeds, scatter-hoarding rodents often play an important role in the reproductive ecology of many plant species. However, the seeds of many plant species contain tannins, which are a diverse group of water-soluble phenolic compounds that have a high affinity for proteins. The amount of tannins in seeds is expected to affect rodent foraging preferences because of their major impact on rodent physiology and survival. However, variable results have been obtained in studies that evaluated the effects of tannin on rodent foraging behavior. Hence, in this study, we aimed to explain these inconsistent results and proposed that a combination of seed traits might be important in rodent foraging behavior, because it is difficult to distinguish between the effects of individual traits on rodent foraging behavior and the interactions among them. By using a novel artificial seed system, we manipulated seed tannin and fat/protein levels to examine directly the univariate effects of each component on the seed preferences of free-ranging forest rats (Apodemus latronum and Apodemus chevrieri) during the behavioral process of scatter hoarding. Our results showed that both tannin and fat/protein had significant effects on rodent foraging behavior. Although only a few interactive effects of tannin and fat/protein were recorded, higher concentrations of both fat and protein could attenuate the exclusion of seeds with higher tannin concentrations by rodents, thus influencing seed fate. Furthermore, aside from the concentrations of tannin, fat, and protein, numerous other traits of plant seeds may also influence rodent foraging behavior. We suggest that by clarifying rodent foraging preferences, a better understanding of the evolution of plant seed traits may be obtained because of their strong potential for selective pressure. PMID:22808217
Hasegawa, Masaru; Arai, Emi; Sato, Megumi; Sakai, Hidetsugu
2017-08-01
Recent experimental studies involving the manipulation of sexual traits have demonstrated that sexual trait expression feeds back to testosterone levels, perhaps via social interactions, reinforcing the linkage between sexual trait expression and testosterone levels during the mating period. However, information on this reinforcement under the natural variation of sexual traits remains limited. Using Japanese barn swallows, Hirundo rustica gutturalis, in which extra-pair paternity is quite rare (< 3%), we studied the relationship between plasma testosterone level and a male sexual trait, throat patch size, during the mating and incubation periods. Given the importance of social interaction, we predicted that this relationship should be intense during the mating period, but not the incubation period, due to reduced social interaction during the latter. We found low plasma testosterone levels during the incubation period compared with those in the mating period, and plasma testosterone levels were significantly positively related to throat patch area during the mating period, but not the incubation period. Similar relationships were found in another sexual trait, the size of white tail spots. During the incubation period, body condition, instead of male sexual trait expression, was negatively related to plasma testosterone level, indicating that an intrinsic link, rather than reinforcement, is important during this period. These relationships are consistent with the hypothesis that social interaction reinforces the relationship between sexual traits and plasma testosterone levels. The current study provides evidence for a highly variable relationship between testosterone and ornamentation across breeding periods in the natural variation of sexual traits.
Characterizing Male–Female Interactions Using Natural Genetic Variation in Drosophila melanogaster
Reinhart, Michael; Carney, Tara; Clark, Andrew G.
2015-01-01
Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be “generalists” and performed consistently across the different females; other males appeared to be “specialists” and performed very well with a particular female and poorly with others. “Specialist” males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male–female interactions. PMID:25425680
Xu, Liang; Freitas, Sofia M A; Yu, Fei-Hai; Dong, Ming; Anten, Niels P R; Werger, Marinus J A
2013-01-01
In semiarid drylands water shortage and trampling by large herbivores are two factors limiting plant growth and distribution. Trampling can strongly affect plant performance, but little is known about responses of morphological and mechanical traits of woody plants to trampling and their possible interaction with water availability. Seedlings of four shrubs (Caragana intermedia, Cynanchum komarovi, Hedysarum laeve and Hippophae rhamnoides) common in the semiarid Mu Us Sandland were grown at 4% and 10% soil water content and exposed to either simulated trampling or not. Growth, morphological and mechanical traits were measured. Trampling decreased vertical height and increased basal diameter and stem resistance to bending and rupture (as indicated by the increased minimum bend and break force) in all species. Increasing water availability increased biomass, stem length, basal diameter, leaf thickness and rigidity of stems in all species except C. komarovii. However, there were no interactive effects of trampling and water content on any of these traits among species except for minimum bend force and the ratio between stem resistance to rupture and bending. Overall shrub species have a high degree of trampling resistance by morphological and mechanical modifications, and the effects of trampling do not depend on water availability. However, the increasing water availability can also affect trade-off between stem strength and flexibility caused by trampling, which differs among species. Water plays an important role not only in growth but also in trampling adaptation in drylands.
Carroll, A B; Pallardy, S G; Galen, C
2001-03-01
In a controlled environment, we artificially induced drought during flowering of Epilobium angustifolium, an animal-pollinated plant. Leaf water potential (ψ(l)) and floral traits were monitored over a 12-d period of soil moisture depletion. Soil moisture depletion induced drought stress over time, as revealed by significant treatment × day interactions for predawn and midday ψ(l). Nectar volume and flower size showed significant negative responses to drought stress, but nectar sugar concentration did not vary between treatments. Floral traits were more buffered from drought than leaf water potentials. We used path analysis to examine direct and indirect effects of ψ(l) on floral traits for plants in well-watered (control) vs. drought treatments. According to the best-fit path models, midday ψ(l) has significant positive effects on flower size and nectar volume in both environments. However, for controls midday ψ(l) also had a significant negative effect on nectar sugar concentration. Results indicate that traits influencing floral attractiveness to pollinators in E. angustifolium vary with plant water status, such that pollinator-mediated selection could indirectly target physiological or biochemical controls on ψ(l). Moreover, under mesic conditions selection for greater nectar sugar reward may be constrained by the antagonistic effects of plant water status on nectar volume and sugar concentration.
Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532
Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
Ryan, Calen P; Georgiev, Alexander V; McDade, Thomas W; Gettler, Lee T; Eisenberg, Dan T A; Rzhetskaya, Margarita; Agustin, Sonny S; Hayes, M Geoffrey; Kuzawa, Christopher W
2017-06-01
The androgen receptor (AR) mediates expression of androgen-associated somatic traits such as muscle mass and strength. Within the human AR is a highly variable glutamine short-tandem repeat (AR-CAGn), and CAG repeat number has been inversely correlated to AR transcriptional activity in vitro. However, evidence for an attenuating effect of long AR-CAGn on androgen-associated somatic traits has been inconsistent in human populations. One possible explanation for this lack of consistency is that the effect of AR-CAGn on AR bioactivity in target tissues likely varies in relation to circulating androgen levels. We tested whether relationships between AR-CAGn and several androgen-associated somatic traits (waist circumference, lean mass, arm muscle area, and grip strength) were modified by salivary (waking and pre-bed) and circulating (total) testosterone (T) levels in young adult males living in metropolitan Cebu, Philippines (n = 675). When men's waking T was low, they had a reduction in three out of four androgen-associated somatic traits with lengthening AR-CAGn (p < .1), consistent with in vitro research. However, when waking T was high, we observed the opposite effect-lengthening AR-CAGn was associated with an increase in these same somatic traits. Our finding that longer AR-CAGn predicts greater androgen-associated trait expression among high-T men runs counter to in vitro work, but is generally consistent with the few prior studies to evaluate similar interactions in human populations. Collectively, these results raise questions about the applicability of findings derived from in vitro AR-CAGn studies to the receptor's role in maintaining androgen-associated somatic traits in human populations. © 2017 Wiley Periodicals, Inc.
Rukh, Gull; Ericson, Ulrika; Andersson-Assarsson, Johanna; Orho-Melander, Marju; Sonestedt, Emily
2017-07-01
Background: Studies have shown conflicting associations between the salivary amylase gene ( AMY1 ) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet. Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits. Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage. Results: AMY1 copy number was not associated with BMI ( P = 0.80) or body fat percentage ( P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI ( P -interaction = 0.007) and body fat percentage ( P -interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group ( P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group ( P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch. Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch. © 2017 American Society for Nutrition.
Non-additive genetic variation in growth, carcass and fertility traits of beef cattle.
Bolormaa, Sunduimijid; Pryce, Jennie E; Zhang, Yuandan; Reverter, Antonio; Barendse, William; Hayes, Ben J; Goddard, Michael E
2015-04-02
A better understanding of non-additive variance could lead to increased knowledge on the genetic control and physiology of quantitative traits, and to improved prediction of the genetic value and phenotype of individuals. Genome-wide panels of single nucleotide polymorphisms (SNPs) have been mainly used to map additive effects for quantitative traits, but they can also be used to investigate non-additive effects. We estimated dominance and epistatic effects of SNPs on various traits in beef cattle and the variance explained by dominance, and quantified the increase in accuracy of phenotype prediction by including dominance deviations in its estimation. Genotype data (729 068 real or imputed SNPs) and phenotypes on up to 16 traits of 10 191 individuals from Bos taurus, Bos indicus and composite breeds were used. A genome-wide association study was performed by fitting the additive and dominance effects of single SNPs. The dominance variance was estimated by fitting a dominance relationship matrix constructed from the 729 068 SNPs. The accuracy of predicted phenotypic values was evaluated by best linear unbiased prediction using the additive and dominance relationship matrices. Epistatic interactions (additive × additive) were tested between each of the 28 SNPs that are known to have additive effects on multiple traits, and each of the other remaining 729 067 SNPs. The number of significant dominance effects was greater than expected by chance and most of them were in the direction that is presumed to increase fitness and in the opposite direction to inbreeding depression. Estimates of dominance variance explained by SNPs varied widely between traits, but had large standard errors. The median dominance variance across the 16 traits was equal to 5% of the phenotypic variance. Including a dominance deviation in the prediction did not significantly increase its accuracy for any of the phenotypes. The number of additive × additive epistatic effects that were statistically significant was greater than expected by chance. Significant dominance and epistatic effects occur for growth, carcass and fertility traits in beef cattle but they are difficult to estimate precisely and including them in phenotype prediction does not increase its accuracy.
Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
Snelling, W M; Cushman, R A; Keele, J W; Maltecca, C; Thomas, M G; Fortes, M R S; Reverter, A
2013-02-01
Many traits affecting profitability and sustainability of meat, milk, and fiber production are polygenic, with no single gene having an overwhelming influence on observed variation. No knowledge of the specific genes controlling these traits has been needed to make substantial improvement through selection. Significant gains have been made through phenotypic selection enhanced by pedigree relationships and continually improving statistical methodology. Genomic selection, recently enabled by assays for dense SNP located throughout the genome, promises to increase selection accuracy and accelerate genetic improvement by emphasizing the SNP most strongly correlated to phenotype although the genes and sequence variants affecting phenotype remain largely unknown. These genomic predictions theoretically rely on linkage disequilibrium (LD) between genotyped SNP and unknown functional variants, but familial linkage may increase effectiveness when predicting individuals related to those in the training data. Genomic selection with functional SNP genotypes should be less reliant on LD patterns shared by training and target populations, possibly allowing robust prediction across unrelated populations. Although the specific variants causing polygenic variation may never be known with certainty, a number of tools and resources can be used to identify those most likely to affect phenotype. Associations of dense SNP genotypes with phenotype provide a 1-dimensional approach for identifying genes affecting specific traits; in contrast, associations with multiple traits allow defining networks of genes interacting to affect correlated traits. Such networks are especially compelling when corroborated by existing functional annotation and established molecular pathways. The SNP occurring within network genes, obtained from public databases or derived from genome and transcriptome sequences, may be classified according to expected effects on gene products. As illustrated by functionally informed genomic predictions being more accurate than naive whole-genome predictions of beef tenderness, coupling evidence from livestock genotypes, phenotypes, gene expression, and genomic variants with existing knowledge of gene functions and interactions may provide greater insight into the genes and genomic mechanisms affecting polygenic traits and facilitate functional genomic selection for economically important traits.
Santana, M L; Eler, J P; Bignardi, A B; Ferraz, J B S
2014-03-01
The objectives of the present study were: (1) to evaluate the importance of genotype × production environment interaction for the genetic evaluation of birth weight (BW) and weaning weight (WW) in a population of composite beef cattle in Brazil, and (2) to investigate the importance of sire × contemporary group interaction (S × CG) to model G × E and improve the accuracy of prediction in routine genetic evaluations of this population. Analyses were performed with one, two (favorable and unfavorable) or three (favorable, intermediate, unfavorable) different definitions of production environments. Thus, BW and WW records of animals in a favorable environment were assigned to either trait 1, in an intermediate environment to trait 2 or in an unfavorable environment to trait 3. The (co)variance components were estimated using Gibbs sampling in single-, bi- or three-trait animal models according to the definition of number of production environments. In general, the estimates of genetic parameters for BW and WW were similar between environments. The additive genetic correlations between production environments were close to unity for BW; however, when examining the highest posterior density intervals, the correlation between favorable and unfavorable environments reached a value of only 0.70, a fact that may lead to changes in the ranking of sires across environments. The posterior mean genetic correlation between direct effects was 0.63 in favorable and unfavorable environments for WW. When S × CG was included in two- or three-trait analyses, all direct genetic correlations were close to unity, suggesting that there was no evidence of a genotype × production environment interaction. Furthermore, the model including S × CG contributed to prevent overestimation of the accuracy of breeding values of sires, provided a lower error of prediction for both direct and maternal breeding values, lower squared bias, residual variance and deviance information criterion than the model omitting S × CG. Thus, the model that included S × CG can therefore be considered the best model on the basis of these criteria. The genotype × production environment interaction should not be neglected in the genetic evaluation of BW and WW in the present population of beef cattle. The inclusion of S × CG in the model is a feasible and plausible alternative to model the effects of G × E in the genetic evaluations.
Personality Profiles of Effective Leadership Performance in Assessment Centers.
Parr, Alissa D; Lanza, Stephanie T; Bernthal, Paul
2016-01-01
Most research examining the relationship between effective leadership and personality has focused on individual personality traits. However, profiles of personality traits more fully describe individuals, and these profiles may be important as they relate to leadership. This study used latent class analysis to examine how personality traits combine and interact to form subpopulations of leaders, and how these subpopulations relate to performance criteria. Using a sample of 2,461 executive-level leaders, six personality profiles were identified: Unpredictable Leaders with Low Diligence (7.3%); Conscientious, Backend Leaders (3.6%); Unpredictable Leaders (8.6%); Creative Communicators (20.8%); Power Players (32.4%); and Protocol Followers (27.1%). One profile performed well on all criteria in an assessment center; remaining profiles exhibited strengths and weaknesses across criteria. Implications and future directions for research are highlighted.
Liu, Shiwei; Liu, Yihui; Zhao, Jiawei; Cai, Shitao; Qian, Hongmei; Zuo, Kaijing; Zhao, Lingxia; Zhang, Lida
2017-04-01
Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Laycock, Robin; Chan, Daniel; Crewther, Sheila G
2017-01-01
One aspect of the social communication impairments that characterize autism spectrum disorder (ASD) include reduced use of often subtle non-verbal social cues. People with ASD, and those with self-reported sub-threshold autistic traits, also show impairments in rapid visual processing of stimuli unrelated to social or emotional properties. Hence, this study sought to investigate whether perceptually non-conscious visual processing is related to autistic traits. A neurotypical sample of thirty young adults completed the Subthreshold Autism Trait Questionnaire and a Posner-like attention cueing task. Continuous Flash Suppression (CFS) was employed to render incongruous hierarchical arrow cues perceptually invisible prior to consciously presented targets. This was achieved via a 10 Hz masking stimulus presented to the dominant eye that suppressed information presented to the non-dominant eye. Non-conscious arrows consisted of local arrow elements pointing in one direction, and forming a global arrow shape pointing in the opposite direction. On each trial, the cue provided either a valid or invalid cue for the spatial location of the subsequent target, depending on which level (global or local) received privileged attention. A significant autism-trait group by global cue validity interaction indicated a difference in the extent of non-conscious local/global cueing between groups. Simple effect analyses revealed that whilst participants with lower autistic traits showed a global arrow cueing effect, those with higher autistic traits demonstrated a small local arrow cueing effect. These results suggest that non-conscious processing biases in local/global attention may be related to individual differences in autistic traits.
Mensch, Julián; Lavagnino, Nicolás; Carreira, Valeria Paula; Massaldi, Ana; Hasson, Esteban; Fanara, Juan José
2008-01-01
Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait. PMID:18687152
Genotype by environment interactions for behavioral reactivity in sheep.
Hazard, D; Bouix, J; Chassier, M; Delval, E; Foulquié, D; Fassier, T; Bourdillon, Y; François, D; Boissy, A
2016-04-01
In sheep, social reactivity and reactivity to humans are relevant behavioral responses that are used to investigate the behavioral adaptation of farm animals to various rearing conditions. Such traits were previously reported as heritable and associated with several QTLs. However, few behavior-related genotype by environment (G × E) interactions have been reported to date. The experiment was performed on 2,989 male and female lambs issued from 30 sires. Every sire had progeny reared under both intensive and extensive conditions. After weaning, all lambs were individually exposed to two standardized behavioral tests. A broad range of behaviors including vocalizations, locomotion, localization, vigilance, and flight distance were assessed. Two complementary statistic approaches, with and without assumptions on the biological significance of behaviors, were performed to investigate social reactivity and reactivity to humans. G × E interactions were investigated based on the genetic correlations estimated for each factor or trait between farming conditions; those significantly different from 1 indicating a G × E. Environmental effects showed that social reactivity and reactivity to humans were higher in intensively reared lambs. The heritability of factors or traits used to measure social reactivity and reactivity to humans was similar in both rearing conditions. Estimated heritabilities were high for vocalizations in response to social isolation, moderate for locomotion and vigilance in response to social isolation, and low for both flight distance to an approaching human and proximity to a motionless human. No significant G × E interaction was found for vocalizations. G × E interactions were found for locomotion, vigilance and flight distance. Genetic correlations between both environments were low to moderate for vigilance, locomotion and flight distance. Vocalization in response to social isolation with or without human presence was identified as a robust trait and could be used to improve sheep sociability, independently of the environment. A G × E interaction was observed for behavioral reactivity to humans. Although moderate, the genetic correlation for this trait between intensive and extensive conditions could be used to select sires in the same environment by taking into account the G × E and to produce in different environments progenies that are less reactive to humans.
Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments
Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito
2016-01-01
Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html. PMID:28066557
Subcomponents of Psychopathy have Opposing Correlations with Punishment Judgments
Borg, Jana Schaich; Kahn, Rachel E.; Sinnott-Armstrong, Walter; Kurzban, Robert; Robinson, Paul H.; Kiehl, Kent A.
2013-01-01
Psychopathy research is plagued by an enigma: Psychopaths reliably act immorally, but they also accurately report whether an action is morally wrong. The current study revealed that cooperative suppressor effects and conflicting subsets of personality traits within the construct of psychopathy might help explain this conundrum. Among a sample of adult male offenders (n = 100) who ranked deserved punishment of crimes, Psychopathy Checklist-Revised (PCL-R) total scores were not linearly correlated with deserved punishment task performance. However, these null results masked significant opposing associations between task performance and factors of psychopathy: the PCL-R Interpersonal/Affective (i.e. manipulative and callous) factor was positively associated with task performance, while the PCL-R Social Deviance (i.e. impulsive and antisocial) factor was simultaneously negatively associated with task performance. Importantly, these relationships were qualified by a significant interaction where the Interpersonal/Affective traits were positively associated with task performance when Social Deviance traits were high, but Social Deviance traits were negatively associated with task performance when Interpersonal/Affective traits were low. This interaction helped reveal a significant non-linear relationship between PCL-R total scores and task performance such that individuals with very low or very high PCL-R total scores performed better than those with middle-range PCL-R total scores. These results may explain the enigma of why individuals with very high psychopathic traits, but not other groups of anti-social individuals, usually have normal moral judgment in laboratory settings, but still behave immorally, especially in contexts where Social Deviance traits have strong influence. PMID:23834639
Baskin-Sommers, Arielle R; Waller, Rebecca; Fish, Ari M; Hyde, Luke W
2015-11-01
Callous-unemotional (CU) traits, conduct problems (CP), and deficits in executive control are all linked to the development of more severe antisocial behavior, including violence and substance use. Though previous research has examined the impact of these factors on antisocial outcomes, little work has examined trajectories of CU traits across adolescence and how these trajectories predict greater antisocial behavior in adulthood. Moreover, no study has assessed how severity of early CP and executive control may exacerbate these pathways and increase risk for later violence and substance use. The current study (a) identified trajectories of CU traits among a large, high-risk sample of adolescent males, (b) examined the relationship between CU traits trajectories and future violence and substance use, and (c) examined whether early CP and executive control moderated the effects of a high CU traits trajectory membership and high CP on violence and substance use. Results indicated that: (a) CU traits could be grouped into three stable trajectories across adolescence, (b) the 'high' CU traits trajectory, particularly in the presence of 'elevated' CP, was related to higher violence and substance use, over and above a variety of environmental risk factors, and (c) the effects the 'high' CU traits trajectory on both violence and substance and in the presence of 'elevated' CP was stronger among youth with high executive control. These findings highlight the utility of identifying subgroups of youth who differ on trajectories of CU traits for understanding the development and maintenance of severe antisocial behavior.
Vertebrate defense against parasites: Interactions between avoidance, resistance, and tolerance.
Klemme, Ines; Karvonen, Anssi
2017-01-01
Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade-offs with other life-history traits. Trade-offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host-parasite system, the trematode eye-fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta ) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species-specific variation in resistance and tolerance and population-specific variation in resistance. Further, we demonstrate evidence for a trade-off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host-parasite interactions.
Wu, Lili; Zhang, Dajun; Cheng, Gang; Hu, Tianqiang
2018-02-01
Research examining the relationship between bullying victimization and social anxiety has mainly been conducted in Western countries, and little is known about the mechanisms underlying this relationship. This study explores the correlation between bullying victimization and social anxiety in a Chinese context and determines the moderating roles of psychological suzhi (a mental quality characterized by being steady, essential and implicit that affects adaptive, developmental, and creative behavior) and trait resilience among victims of bullying. Data were obtained from a stratified sample of 1903 children in the fourth, fifth, and sixth grades. All participants completed measures of bullying victimization, social anxiety, trait resilience, and psychological suzhi. The results indicated that, after controlling for grade, residential area, and parental marital status, bullying victimization positively predicted children's social anxiety. In addition, multi-group analysis suggested that the association in girls was stronger relative to that observed in boys. Regarding underlying processes, trait resilience moderated the effect of bullying victimization on social anxiety only in girls. Further assessment of the latent interaction effects indicated that the protective effect of trait resilience was stronger for girls experiencing high, relative to low, levels of bullying victimization, and psychological suzhi buffered against the detrimental effects of bullying on children's social anxiety. Most notably, unlike the moderating effect of resilience, the buffering effect of psychological suzhi against social anxiety was most prominent when bullying victimization was low. Findings underscore the importance of enhancing trait resilience and psychological suzhi in interventions designed to reduce children's social anxiety. Copyright © 2017 Elsevier Ltd. All rights reserved.
How do people respond to health news? The role of personality traits.
Weston, Sara J; Jackson, Joshua J
2016-06-01
When a patient receives a health diagnosis, their response (e.g. changes in behaviour, seeking support) can have significant consequences for long-term health and well-being. Characteristics of health news are known to influence these responses, but personality traits have been omitted from this line of research. The current study examines the role of personality traits in predicting response to health news. Participants (N = 298) read scenarios in which they received health news that was manipulated to vary in severity, controllability and likelihood of outcomes. Participants then rated how likely they were to engage in a number of response behaviours. We examined the main effects and interaction of situational manipulations and personality traits on ratings of these behaviours. Both situations and personality traits influenced behavioural responses to health events. In particular, conscientiousness predicted taking action and seeking social support. Neuroticism predicted both maladaptive and adaptive behavioural responses, providing support for the 'healthy neurotic' hypothesis. Moreover, personality traits predicted best in weak (unlikely, controllable) situations. Both personality traits and situational characteristics contribute to behavioural responses to health news.
Plant-plant interactions in the restoration of Mediterranean drylands
NASA Astrophysics Data System (ADS)
Valdecantos, Alejandro; Fuentes, David; Smanis, Athanasios
2014-05-01
Plant-plant interactions are complex and dependent of both local abiotic features of the ecosystem and biotic relationships with other plants and animals. The net result of these interactions may be positive, negative or neutral resulting in facilitation, competition or neutralism, respectively (role of phylogeny). It has been proposed that competition is stronger between those individuals that share functional traits than between unrelated ones. The relative interaction effect of one plant on a neighbour may change in relation to resource availability - especially water in drylands. In addition, plants develop above and belowground biomass with time increasing the level and, eventually, changing the intensity and/or the direction of the interaction. In the framework of the restoration of degraded drylands, many studies have focused on the positive (nurse) effects of adult trees, shrubs and even grasses on artificially planted seedlings by improving the microclimate or providing protection against herbivores, but little is known about the interactions between seedlings of different life traits planted together under natural field conditions. In 2010 we established planting plots in two contrasted sites under semiarid Mediterranean climate and introduced one year old seedlings in different combinations of three species, two shrubs (Olea europaea and Pistacia lentiscus) and one grass (Stipa tenacissima). Half of the planting holes in each site were implemented with low-cost ecotechnological inputs to increase water availability by forcing runoff production and promoting deep infiltration (small plastic fabric + dry well). This resulted in four levels of abiotic stress. Biotic interactions were assessed by monitoring seedling survival and growth for three years after planting. The Relative Interaction Index (RII) of S. tenacissima on O. europaea was almost flat and close to 0 along the stress gradient since the beginning of the study suggesting limited interaction. Pistacia lentiscus showed facilitation on O. europaea in the most stressed situations and competition under the most favourable ones. We also observed mutual negative net effects between S. tenacissima and P. lentiscus as abiotic stress increased but with different sign of the slopes of RII with time: positive in the grass and negative in the shrub as plants become bigger in the most stressed conditions. These net effects and their temporal dynamics are discussed according to the specific life traits of the studied species as well as the implications for the restoration of semiarid lands.
Van den Wyngaert, Silke; Vanholsbeeck, Olivier; Spaak, Piet; Ibelings, Bas W
2014-10-01
Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.
Kamboj, Sunjeev K; Oldfield, Lucy; Loewenberger, Alana; Das, Ravi K; Bisby, James; Brewin, Chris R
2014-12-01
Men and women show differences in performance on emotional processing tasks. Sex also interacts with personality traits to affect information processing. Here we examine effects of sex, and two personality traits that are differentially expressed in men and women - instrumentality and communality - on voluntary and involuntary memory for distressing video-footage. On session one, participants (n = 39 men; 40 women) completed the Bem Sex-Role Inventory, which assesses communal and instrumental traits. After viewing film-footage of death/serious injury, participants recorded daily involuntary memories (intrusions) relating to the footage on an online diary for seven days, returning on day eight for a second session to perform a voluntary memory task relating to the film. Communality interacted with sex such that men with higher levels of communality reported more frequent involuntary memories. Alternatively, a communality × sex interaction reflected a tendency for women with high levels of communality to perform more poorly on the voluntary recognition memory task. The study involved healthy volunteers with no history of significant psychological disorder. Future research with clinical populations will help to determine the generalizability of the current findings. Communality has separate effects on voluntary and involuntary emotional memory. We suggest that high levels of communality in men and women may confer vulnerability to the negative effects of stressful events either through the over-encoding of sensory/perceptual-information in men or the reduced encoding of contextualised, verbally-based, voluntarily accessible representations in women. Copyright © 2014 Elsevier Ltd. All rights reserved.
Warne, Robin W.; Kardon, Adam; Crespi, Erica J.
2013-01-01
Size variance among similarly aged individuals within populations is a pattern common to many organisms that is a result of interactions between intrinsic and extrinsic traits of individuals. While genetic and maternal effects, as well as physiological and behavioral traits have been shown to contribute to size variation in animal populations, teasing apart the influence of such factors on individual growth rates remain a challenge. Furthermore, tracing the effects of these interactions across life stages and in shaping adult phenotypes also requires further exploration. In this study we investigated the relationship between genetics, hatching patterns, behaviors, neuroendocrine stress axis activity and variance in growth and metamorphosis among same-aged larval amphibians. Through parallel experiments we found that in the absence of conspecific interactions, hatch time and to a lesser extent egg clutch identity (i.e. genetics and maternal effects) influenced the propensity for growth and development in individual tadpoles and determined metamorphic traits. Within experimental groups we found that variance in growth rates was associated with size-dependent foraging behaviors and responses to food restriction. We also found an inverse relationship between glucocorticoid (GC) hormone levels and body mass and developmental stage among group-reared tadpoles, which suggests that GC expression plays a role in regulating differing within-population growth trajectories in response to density-dependent conditions. Taken together these findings suggest that factors that influence hatching conditions can have long-term effects on growth and development. These results also raise compelling questions regarding the extent to which maternal and genetic factors influence physiological and behavioral profiles in amphibians. PMID:24143188
Plant-animal interactions in suburban environments: implications for floral evolution.
Irwin, Rebecca E; Warren, Paige S; Carper, Adrian L; Adler, Lynn S
2014-03-01
Plant interactions with mutualists and antagonists vary remarkably across space, and have played key roles in the ecology and evolution of flowering plants. One dominant form of spatial variation is human modification of the landscape, including urbanization and suburbanization. Our goal was to assess how suburbanization affected plant-animal interactions in Gelsemium sempervirens in the southeastern United States, including interactions with mutualists (pollination) and antagonists (nectar robbing and florivory). Based on differences in plant-animal interactions measured in multiple replicate sites, we then developed predictions for how these differences would affect patterns of natural selection, and we explored the patterns using measurements of floral and defensive traits in the field and in a common garden. We found that Gelsemium growing in suburban sites experienced more robbing and florivory as well as more heterospecific but not conspecific pollen transfer. Floral traits, particularly corolla length and width, influenced the susceptibility of plants to particular interactors. Observational data of floral traits measured in the field and in a common garden provided some supporting but also some conflicting evidence for the hypothesis that floral traits evolved in response to differences in species interactions in suburban vs. wild sites. However, the degree to which plants can respond to any one interactor may be constrained by correlations among floral morphological traits. Taken together, consideration of the broader geographic context in which organisms interact, in both suburban and wild areas, is fundamental to our understanding of the forces that shape contemporary plant-animal interactions and selection pressures in native species.
Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y
2006-06-01
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.
Ghyselen, C; Bonte, D; Brys, R
2016-01-01
Herbivores can have a major influence on plant fitness. The direct impact of herbivory on plant reproductive output has long been studied, and recently also indirect effects of herbivory on plant traits and pollinator attraction have received increasing attention. However, the link between these direct and indirect effects has seldom been studied. In this study, we investigated effects of root herbivory on plant and floral traits, pollination success and reproductive outcome in the monocarpic perennial Cynoglossum officinale. We exposed 119 C. officinale plants to a range of root herbivore damage by its specialist herbivore Mogulones cruciger. We assessed the effect of herbivory on several plant traits, pollinator foraging behaviour and reproductive output, and to elucidate the link between these last two we also quantified pollen deposition and pollen tube growth and applied a pollination experiment to test whether seed set was pollen-limited. Larval root herbivory induced significant changes in plant traits and had a negative impact on pollinator visitation. Infested plants were reduced in size, had fewer flowers and received fewer pollinator visits at plant and flower level than non-infested plants. Also, seed set was negatively affected by root herbivory, but this could not be attributed to pollen limitation since neither stigmatic pollen loads and pollen tube growth nor the results of the hand-pollination experiment differed between infested and non-infested plants. Our observations demonstrate that although herbivory may induce significant changes in flowering behaviour and resulting plant-pollinator interactions, it does not necessarily translate into higher rates of pollen limitation. The observed reductions in reproductive output following infection can mainly be attributed to higher resource limitation compared to non-infested plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Parental effects alter the adaptive value of an adult behavioural trait
Kilner, Rebecca M; Boncoraglio, Giuseppe; Henshaw, Jonathan M; Jarrett, Benjamin JM; De Gasperin, Ornela; Attisano, Alfredo; Kokko, Hanna
2015-01-01
The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet, virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early-life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods and suffered greater mortality as a result: they were low-quality parents. Furthermore, (2) high-quality males that raised offspring with low-quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects. DOI: http://dx.doi.org/10.7554/eLife.07340.001 PMID:26393686
Li, Nan; Hein, Sascha; Ye, Lin; Liu, Yangyang
2018-04-06
The goal of this study was to test the mediating effect of social decision making in the relations of anger and anger control to externalising and internalising problems. A sample of 174 Chinese adolescents (mean age = 15.36 years) completed self-reports of trait anger, anger control, externalising problems, internalising problems and social decision making, which was operationalized as situational judgement reflecting an individual's ability to interact effectively with parents, teachers and peers. Findings indicated that adolescents' trait anger and anger control were positively related to both externalising and internalising problems. In addition, path analysis revealed that social decision making mediated the relationship between trait anger, anger control and externalising problems. Findings on the mediating effect will be discussed by referencing appraisal tendency theory and response evaluation and decision. © 2018 International Union of Psychological Science.
Association mapping across numerous traits reveals patterns of functional variation in maize
USDA-ARS?s Scientific Manuscript database
Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie funct...
Tabak, Benjamin A.; Vrshek-Schallhorn, Suzanne; Zinbarg, Richard E.; Prenoveau, Jason M.; Mineka, Susan; Redei, Eva E.; Adam, Emma K.; Craske, Michelle G.
2015-01-01
Variation in the CD38 gene, which regulates secretion of the neuropeptide oxytocin, has been associated with several social phenotypes. Specifically, rs3796863 A allele carriers have demonstrated increased social sensitivity. In 400 older adolescents, we used trait-state-occasion modeling to investigate how rs3796863 genotype, baseline ratings of chronic interpersonal stress, and their gene-environment (GxE) interaction predicted trait social anxiety and depression symptoms over six years. We found significant GxE effects for CD38 A-carrier genotypes and chronic interpersonal stress at baseline predicting greater social anxiety and depression symptoms. A significant GxE effect of smaller magnitude was also found for C/C genotype and chronic interpersonal stress predicting greater depression; however, this effect was small compared to the main effect of chronic interpersonal stress. Thus, in the context of chronic interpersonal stress, heightened social sensitivity associated with the rs3796863 A allele may prospectively predict risk for social anxiety and (to a lesser extent) depression. PMID:26958455
Are litter decomposition and fire linked through plant species traits?
Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien
2017-11-01
Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Terranova, Carl J.; Nadeau, Joseph H.
2007-01-01
We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality. PMID:17557179
Automatic prediction of facial trait judgments: appearance vs. structural models.
Rojas, Mario; Masip, David; Todorov, Alexander; Vitria, Jordi
2011-01-01
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe
2017-12-01
Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Wu, Xinwei; Griffin, John N; Sun, Shucun
2014-05-01
Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these indirect interactions depend not just on the relative habitat domains of predators and prey, but also on environmental conditions that can predictably constrain the behavioural response of detritivores to predation risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Libberton, Ben; Coates, Rosanna E.
2014-01-01
Nasal carriage of Staphylococcus aureus is a risk factor for infection, yet the bacterial determinants required for carriage are poorly defined. Interactions between S. aureus and other members of the bacterial flora may determine colonization and have been inferred in previous studies by using correlated species distributions. However, traits mediating species interactions are often polymorphic, suggesting that understanding how interactions structure communities requires a trait-based approach. We characterized S. aureus growth inhibition by the culturable bacterial aerobe consortia of 60 nasal microbiomes, and this revealed intraspecific variation in growth inhibition and that inhibitory isolates clustered within communities that were culture negative for S. aureus. Across microbiomes, the cumulative community-level growth inhibition was negatively associated with S. aureus incidence. To fully understand the ecological processes structuring microbiomes, it will be crucial to account for intraspecific variation in the traits that mediate species interactions. PMID:24980973
Functional Responses and Resilience of Boreal Forest Ecosystem after Reduction of Deer Density
Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D.; Poulin, Monique
2014-01-01
The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years. PMID:24587362
Effects and interactions of myostatin and callipyge mutations: I. Growth and carcass traits.
Freking, Brad A; King, David A; Shackelford, Steven D; Wheeler, Tommy L; Smith, Tim P L
2018-03-06
Objectives were to document effects of the Texel myostatin mutation (MSTN) on growth and carcass traits and also test whether or not interactions with the callipyge mutation (CLPG) could be detected. Twelve rams heterozygous at both loci on the two different chromosomes were mated to 215 terminal-sire type composite crossbred ewes genotyped as non-carriers for both loci. A total of 365 lambs were born, 362 of those were genotyped and 236 lambs contributed carcass data to estimate effects and interactions among the four genotype combinations produced. The four genotype combinations were defined as follows: ++/++ for wild-type at both loci; ++/C+ for wild-type at MSTN and heterozygous at CLPG; M+/++ for heterozygous at MSTN and wild-type at CLPG; and M+/C+ for heterozygous at both loci. The two independently segregating sire-derived alleles represent different breed-of-origin contrasts at each locus (Texel vs. composite origin for MSTN and Dorset vs. Texel origin for CLPG). Birth weight was recorded on all lambs, and subsequent body weights were adjusted to 56 (weaning), 70, and 140 d of age. Within sire-sex-genotype subgroups, naturally reared lambs were assigned to one of eight slaughter groups accounting for variation in birth date. Lambs were serially slaughtered at weekly intervals, 30 lambs per group, from roughly 26 to 33 wk of age. In addition to standard carcass traits, subjective leg scores were assigned and widths of carcasses were measured at the widest points of the shoulder and rump. Differences in birth weight were detected (P < 0.01) for the combination of the two loci and birth type, with single-born differences among genotypes exceeding differences among twin born progeny. Those interaction differences among genotypes were not as important at weaning (P = 0.36). Impact on growth rate differences among the genotypes during the post-weaning period were variable and dependent on sex of the lamb (P < 0.01). A synergistic interaction between MSTN and CLPG was observed for leg muscling scores (P < 0.05) but no other measures of carcass shape were affected. One copy of MSTN had a more modest impact on fat deposition and muscle conformation than did CLPG and did not interact (all values P > 0.20). Although some non-additive interactions that vary by trait and sex were detected, in general the data are consistent with the two mutations acting on muscle growth through independent pathways.
Familiarity does indeed promote attraction in live interaction.
Reis, Harry T; Maniaci, Michael R; Caprariello, Peter A; Eastwick, Paul W; Finkel, Eli J
2011-09-01
Does familiarity promote attraction? Prior research has generally suggested that it does, but a recent set of studies by Norton, Frost, and Ariely (2007) challenged that assumption. Instead, they found that more information about another person, when that information was randomly selected from lists of trait adjectives, using a trait evaluation paradigm, promoted perceptions of dissimilarity and, hence, disliking. The present research began with the assumption that natural social interaction involves contexts and processes not present in Norton et al.'s research or in the typical familiarity experiment. We theorized that these processes imply a favorable impact of familiarity on attraction. Two experiments are reported using a live interaction paradigm in which two previously unacquainted same-sex persons interacted with each other for varying amounts of time. Findings strongly supported the "familiarity leads to attraction" hypothesis: The more participants interacted, the more attracted they were to each other. Mediation analyses identified three processes that contribute to this effect: perceived responsiveness, increased comfort and satisfaction during interaction, and perceived knowledge. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Miller, Lisa K; Brooks, Robert
2005-11-01
The traits thought to advertise genetic quality are often highly susceptible to environmental variation and prone to change with age. These factors may either undermine or reinforce the potential for advertisement traits to signal quality depending on the magnitude of age-dependent expression, environmental variation, and genotype-age and genotype-environment interaction. Measurements of the magnitude of these effects are thus a necessary step toward assessing the implications of age dependence and environmental variability for the evolution of signals of quality. We conducted a longitudinal study of male guppies (Poecilia reticulata) from 22 full-sibling families. Each fish was assigned at maturity to one of three treatments in order to manipulate his allocation of resources to reproduction: a control in which the male was kept alone, a courtship-only treatment in which he could see and court a female across a clear partition, and a mating treatment in which he interacted freely with a female. We measured each male's size, ornamental color patterns, courtship, attractiveness to females, and mating success at three ages. Size was influenced by treatment and age-treatment interactions, indicating that courtship and mating may impose costs on growth. Tail size and color patterns were influenced by age but not by treatment, suggesting fixed age-dependent trajectories in these advertisement traits. By contrast, display rate and attempted sneak copulation rate differed among treatments but not among ages, suggesting greater plasticity of these behavioral traits. As a result of the different patterns of variation in ornamentation and behavior, male attractiveness and mating success responded to male age, treatment, and the interaction between age and treatment. Neither age nor treatment obscured the presence of genetic variation, and the genetic relationship between male ornamentation and attractiveness remained the same among treatments. Our findings suggest that neither age-dependent variation nor environmentally induced variation in reproductive effort is likely to undermine the reliability of male signaling.
Shahriari, Zolfaghar; Dadkhodaie, Ali
2018-01-01
Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014–2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars. PMID:29715274
Shahriari, Zolfaghar; Heidari, Bahram; Dadkhodaie, Ali
2018-01-01
Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014-2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars.
Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice
Pavlicev, Mihaela; Wagner, Günter P.; Noonan, James P.; Hallgrímsson, Benedikt; Cheverud, James M.
2013-01-01
Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation. PMID:24065733
Using phenotypic manipulations to study multivariate selection of floral trait associations
Campbell, Diane R.
2009-01-01
Background A basic theme in the study of plant–pollinator interactions is that pollinators select not just for single floral traits, but for associations of traits. Responses of pollinators to sets of traits are inherent in the idea of pollinator syndromes. In its most extreme form, selection on a suite of traits can take the form of correlational selection, in which a response to one trait depends on the value of another, thereby favouring floral integration. Despite the importance of selection for combinations of traits in the evolution of flowers, evidence is relatively sparse and relies mostly on observational approaches. Scope Here, methods for measuring selection on multivariate suites of floral traits are presented, and the studies to date are reviewed. It is argued that phenotypic manipulations present a powerful, but rarely used, approach to teasing apart the separate and combined effects of particular traits. The approach is illustrated with data from studies of alpine plants in Colorado and New Zealand, and recommendations are made about several features of the design of such experiments. Conclusions Phenotypic manipulations of two or more traits in combination provide a direct way of testing for selection of floral trait associations. Such experiments will be particularly valuable if rooted in hypotheses about differences between types of pollinators and tied to a proposed evolutionary history. PMID:19218579
The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression
Verhoeven, Floor E A; Booij, Linda; Kruijt, Anne-Wil; Cerit, Hilâl; Antypa, Niki; Does, Willem
2012-01-01
Monoamine oxidase A (MAOA) genotypic variation has been associated with variation in aggression, especially in interaction with childhood trauma or other early adverse events. Male carriers of the low-expressing variant (MAOA-L) with childhood trauma or other early adverse events seem to be more aggressive, whereas female carriers with the high-expressing variant (MAOA-H) with childhood trauma or other early adverse events may be more aggressive. We further investigated the effects of MAOA genotype and its interaction with sex and childhood trauma or other early adverse events on aggression in a young adult sample. We hypothesized that the association between genotype, childhood trauma, and aggression would be different for men and women. We also explored whether this association is different for dispositional (trait) aggression versus aggression in the context of dysphoric mood. In all, 432 Western European students (332 women, 100 men; mean age 20.2) were genotyped for the MAOA gene. They completed measures of childhood trauma, state and trait measures of aggression-related behaviors (STAXI), and cognitive reactivity to sad mood (LEIDS-R), including aggression reactivity. Women with the MAOA-H had higher aggression reactivity scores than women with the MAOA-L. This effect was not observed in men, although the nonsignificant findings in men may be a result of low power. Effects on the STAXI were not observed, nor were there gene by environment interactions on any of the aggression measures. A protective effect of the low-expression variant in women on aggression reactivity is consistent with previous observations in adolescent girls. In females, the MAOA-H may predispose to aggression-related problems during sad mood. PMID:23170243
The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression.
Verhoeven, Floor E A; Booij, Linda; Kruijt, Anne-Wil; Cerit, Hilâl; Antypa, Niki; Does, Willem
2012-11-01
Monoamine oxidase A (MAOA) genotypic variation has been associated with variation in aggression, especially in interaction with childhood trauma or other early adverse events. Male carriers of the low-expressing variant (MAOA-L) with childhood trauma or other early adverse events seem to be more aggressive, whereas female carriers with the high-expressing variant (MAOA-H) with childhood trauma or other early adverse events may be more aggressive. We further investigated the effects of MAOA genotype and its interaction with sex and childhood trauma or other early adverse events on aggression in a young adult sample. We hypothesized that the association between genotype, childhood trauma, and aggression would be different for men and women. We also explored whether this association is different for dispositional (trait) aggression versus aggression in the context of dysphoric mood. In all, 432 Western European students (332 women, 100 men; mean age 20.2) were genotyped for the MAOA gene. They completed measures of childhood trauma, state and trait measures of aggression-related behaviors (STAXI), and cognitive reactivity to sad mood (LEIDS-R), including aggression reactivity. Women with the MAOA-H had higher aggression reactivity scores than women with the MAOA-L. This effect was not observed in men, although the nonsignificant findings in men may be a result of low power. Effects on the STAXI were not observed, nor were there gene by environment interactions on any of the aggression measures. A protective effect of the low-expression variant in women on aggression reactivity is consistent with previous observations in adolescent girls. In females, the MAOA-H may predispose to aggression-related problems during sad mood.
Cerin, E; Barnett, A
2011-01-01
The aims of this study were to examine (a) the effects of competition-related and competition-extraneous concerns on affective states; (b) the relationships of primary and secondary appraisal with affective states and (c) the main and moderating effects of personality traits on pre- and post-competition affects. Thirty-nine male elite martial artists were assessed on 12 affective states, concerns and dimensions of primary and secondary appraisal at five random times a day across 1 week before and 3 days after a competition. On the competition day, they were assessed 1 h before and immediately after the contest. Competitive trait anxiety, neuroticism and extraversion were measured at the start of the study. The competition was the most significant and stressful event experienced in the examined period and had a pervasive influence on athletes' affective states. All examined appraisal and personality factors were somewhat associated with pre- and post-competition affective states. Competitive trait anxiety was a key moderator of the relationship between cognitive appraisal and affective states. This study supports the idea that cognitive appraisal and situational and personality factors exert main and interactive effects on athletes' pre- and post-competition affects. These factors need to be accounted for in planning of emotion regulation interventions. PMID:19883381
Mozley, Michaela M; Modrowski, Crosby A; Kerig, Patricia K
2018-05-01
Research has demonstrated an association between childhood trauma exposure and adolescent aggression. This association may be explained by rejection sensitivity, defined as anger, or anxiety in the anticipation of rejection, which can be a consequence of trauma exposure. Callous-unemotional (CU) traits also are associated with trauma exposure and aggressive behavior; however, research has not yet investigated the interactive roles that rejection sensitivity and CU traits play in the relation between trauma exposure and aggression. Therefore, this study sought to investigate the role of rejection sensitivity in the association between trauma exposure and aggression, and whether this indirect effect was moderated by CU traits. Participants included 380 detained youth (98 girls, 282 boys) who completed self-report measures of trauma exposure, angry, and anxious rejection sensitivity, CU traits, and aggression. Results of moderated mediation demonstrated that the relation between trauma exposure and aggression exhibited an indirect effect through angry rejection sensitivity, but only at moderate or high levels of CU traits. This pattern was not found for anxious rejection sensitivity. Results suggest that interventions aimed to decrease aggressive behavior in traumatized adolescents may benefit from considering how youth respond to rejection, as well as whether youth endorse CU traits, as this may help to limit further involvement in the juvenile justice system after release. © 2018 Wiley Periodicals, Inc.
Marie-Orleach, Lucas; Vogt-Burri, Nadja; Mouginot, Pierick; Schlatter, Aline; Vizoso, Dita B; Bailey, Nathan W; Schärer, Lukas
2017-05-01
The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals-varying up to 2.4-fold-suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Green, Stephanie J; Côté, Isabelle M
2014-11-01
Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly greater risk. Together, vulnerable traits heighten the risk of predation by a factor of nearly 200. Our study reveals that a trait-based approach yields insights into predator-prey interactions that are robust across prey assemblages. Importantly, in situ observations of selection yield similar results to broadscale comparisons of prey use and availability, which are more typically gathered for predator species. A trait-based approach could therefore be of use across predator species and ecosystems to predict the outcomes of changing predator-prey interactions on community dynamics. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.
Dao, Abdalla; Sanou, Jacob; V S Traore, Edgar; Gracen, Vernon; Danquah, Eric Y
2017-01-01
In drought-prone environments, direct selection for yield is not adequate because of the variable environment and genotype x environment interaction. Therefore, the use of secondary traits in addition to yield has been suggested. The relative usefulness of secondary traits as indirect selection criteria for maize grain yield is determined by the magnitudes of their genetic variance, heritability and genetic correlation with the grain yield. Forty eight testcross hybrids derived from lines with different genetic background and geographical origins plus 7 checks were evaluated in both well-watered and water-stressed conditions over two years for grain yield and secondary traits to determine the most appropriate secondary traits and select drought tolerant hybrids. Study found that broad-sense heritability of grain yield and Ear Per Plant (EPP) increased under drought stress. Ear aspect (EASP) and ear height (EHT) had larger correlation coefficients and direct effect on grain yield but in opposite direction, negative and positive respectively. Traits like, EPP, Tassel Size (TS) and Plant Recovery (PR) contributed to increase yield via EASP by a large negative indirect effect. Under drought stress, EHT had positive and high direct effect and negative indirect effect via plant height on grain yield indicating that the ratio between ear and plant heights (R-EPH) was associated to grain yield. Path coefficient analysis showed that traits EPP, TS, PR, EASP, R-EPH were important secondary traits in the present experiment. These traits were used in a selection index to classify hybrids according to their performance under drought. The selection procedure included also a Relative Decrease in Yield (RDY) index. Some secondary traits reported as significant selection criteria for selection under drought stress were not finally established in the present study. This is because the relationship between grain and secondary traits can be affected by various factors including germplasm, environment and applied statistical analysis. Therefore, different traits and selection procedure should be applied in the selection process of drought tolerant genotypes for diverse genetic materials and growing conditions.
Crous, Kristine Y; O'Sullivan, Odhran S; Zaragoza-Castells, Joana; Bloomfield, Keith J; Negrini, A Clarissa A; Meir, Patrick; Turnbull, Matthew H; Griffin, Kevin L; Atkin, Owen K
2017-08-01
Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier
2012-01-01
Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125
Wilson, John Paul; Remedios, Jessica D; Rule, Nicholas O
2017-06-01
Easily perceived identities (e.g., race) may interact with perceptually ambiguous identities (e.g., sexual orientation) in meaningful but elusive ways. Here, we investigated how intersecting identities impact impressions of leadership. People perceived gay Black men as better leaders than members of either single-minority group (i.e., gay or Black). Yet, different traits supported judgments of the leadership abilities of Black and White targets; for instance, warmth positively predicted leadership judgments for Black men but dominance positively predicted leadership judgments for White men. These differences partly occurred because of different perceptions of masculinity across the intersection of race and sexual orientation. Indeed, both categorical (race and sex) and noncategorical (trait) social information contributed to leadership judgments. These findings highlight differences in the traits associated with leadership in Black and White men, as well as the importance of considering how intersecting cues associated with obvious and ambiguous groups moderate perceptions.
Nicholls, James A; Melika, George; Stone, Graham N
2017-01-01
Many herbivores employ reward-based mutualisms with ants to gain protection from natural enemies. We examine the evolutionary dynamics of a tetra-trophic interaction in which gall wasp herbivores induce their host oaks to produce nectar-secreting galls, which attract ants that provide protection from parasitoids. We show that, consistent with other gall defensive traits, nectar secretion has evolved repeatedly across the oak gall wasp tribe and also within a single genus (Disholcaspis) that includes many nectar-inducing species. Once evolved, nectar secretion is never lost in Disholcaspis, consistent with high defensive value of this trait. We also show that evolution of nectar secretion is correlated with a transition from solitary to aggregated oviposition, resulting in clustered nectar-secreting galls, which produce a resource that ants can more easily monopolize. Such clustering is commonly seen in ant guard mutualisms. We suggest that correlated evolution between maternal oviposition and larval nectar induction traits has enhanced the effectiveness of this gall defense strategy.
Fitness consequences of larval traits persist across the metamorphic boundary.
Crean, Angela J; Monro, Keyne; Marshall, Dustin J
2011-11-01
Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Batres, Carlota; Re, Daniel E; Perrett, David I
2015-01-01
Several studies have examined the individual effects of facial cues to height, masculinity, and age on interpersonal interactions and partner preferences. We know much less about the influence of these traits on each other. We, therefore, examined how facial cues to height, masculinity, and age influence perceptions of each other and found significant overlap. This suggests that studies investigating the effects of one of these traits in isolation may need to account for the influence of the other two traits. Additionally, there is inconsistent evidence on how each of these three facial traits affects dominance. We, therefore, investigated how varying such traits influences perceptions of dominance in male faces. We found that increases in perceived height, masculinity, and age (up to 35 years) all increased facial dominance. Our results may reflect perceptual generalizations from sex differences as men are on average taller, more dominant, and age faster than women. Furthermore, we found that the influences of height and age on perceptions of dominance are mediated by masculinity. These results give us a better understanding of the facial characteristics that convey the appearance of dominance, a trait that is linked to a wealth of real-world outcomes. © The Author(s) 2015.
McGlothlin, Joel W; Parker, Patricia G; Nolan, Val; Ketterson, Ellen D
2005-03-01
When a trait's effect on fitness depends on its interaction with other traits, the resultant selection is correlational and may lead to the integration of functionally related traits. In relation to sexual selection, when an ornamental trait interacts with phenotypic quality to determine mating success, correlational sexual selection should generate genetic correlations between the ornament and quality, leading to the evolution of honest signals. Despite its potential importance in the evolution of signal honesty, correlational sexual selection has rarely been measured in natural populations. In the dark-eyed junco (Junco hyemalis), males with experimentally elevated values of a plumage trait (whiteness in the tail or "tail white") are more attractive to females and dominant in aggressive encounters over resources. We used restricted maximum-likelihood analysis of a long-term dataset to measure the heritability of tail white and two components of body size (wing length and tail length), as well as genetic correlations between pairs of these traits. We then used multiple regression to assess directional, quadratic, and correlational selection as they acted on tail white and body size via four components of lifetime fitness (juvenile and adult survival, mating success, and fecundity). We found a positive genetic correlation between tail white and body size (as measured by wing length), which indicates past correlational selection. Correlational selection, which was largely due to sexual selection on males, was also found to be currently acting on the same pair of traits. Larger males with whiter tails sired young with more females, most likely due to a combination of female choice, which favors males with whiter tails, and male-male competition, which favors both tail white and larger body size. To our knowledge, this is the first study to show both genetic correlations between sexually selected traits and currently acting correlational sexual selection, and we suggest that correlational sexual selection frequently may be an important mechanism for maintaining the honesty of sexual signals.
Saunders, D G
1996-01-01
At a community-based domestic violence program, 218 men with a history of partner abuse were randomly assigned to either feminist-cognitive-behavioral or process-psychodynamic group treatments. The treatments were not hypothesized to differ in outcome. However, men with particular characteristics were expected to have lower recidivism rates depending on the type of treatment received. Treatment integrity was verified through audio-taped codings of each session. The partners of 79% of the 136 treatment completers gave reports of the men's behavior an average of 2 years post-treatment. These reports were supplemented with arrest records and self-reports. Rates of violence did not differ significantly between the two types of treatment nor did reports from the women of their fear level, general changes perceived in the men, and conflict resolution methods. However, interaction effects were found between some offender traits and the two treatments. As predicted, men with dependent personalities had better outcomes in the process-psychodynamic groups and those with antisocial traits had better outcomes in the cognitive-behavioral groups. The results suggest that more effective treatment may occur if it is tailored to specific characteristics of offenders.
Fanara, Juan Jose; Werenkraut, Victoria
2017-08-01
Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Grossman, Jake J; Cavender-Bares, Jeannine; Hobbie, Sarah E; Reich, Peter B; Montgomery, Rebecca A
2017-10-01
Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth 3 yr after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m 2 ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m 2 ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding. © 2017 by the Ecological Society of America.
Oliveira, Tássia Boeno de; Azevedo Peixoto, Leonardo de; Teodoro, Paulo Eduardo; Alvarenga, Amauri Alves de; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability.
de Oliveira, Tássia Boeno; Teodoro, Paulo Eduardo; de Alvarenga, Amauri Alves; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability. PMID:29438380
Determination of nonlinear genetic architecture using compressed sensing.
Ho, Chiu Man; Hsu, Stephen D H
2015-01-01
One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate that predictive models for many complex traits, including a variety of human disease susceptibilities (e.g., with additive heritability h (2)∼0.5), can be extracted from data sets comprised of n ⋆∼100s individuals, where s is the number of distinct causal variants influencing the trait. For example, given a trait controlled by ∼10 k loci, roughly a million individuals would be sufficient for application of the method.
Keiser, Carl N; Pinter-Wollman, Noa; Ziemba, Michael J; Kothamasu, Krishna S; Pruitt, Jonathan N
2018-03-01
The traits of the primary case of an infectious disease outbreak, and the circumstances for their aetiology, potentially influence the trajectory of transmission dynamics. However, these dynamics likely also depend on the traits of the individuals with whom the primary case interacts. We used the social spider Stegodyphus dumicola to test how the traits of the primary case, group phenotypic composition and group size interact to facilitate the transmission of a GFP-labelled cuticular bacterium. We also compared bacterial transmission across experimentally generated "daisy-chain" vs. "star" networks of social interactions. Finally, we compared social network structure across groups of different sizes. Groups of 10 spiders experienced more bacterial transmission events compared to groups of 30 spiders, regardless of groups' behavioural composition. Groups containing only one bold spider experienced the lowest levels of bacterial transmission regardless of group size. We found no evidence for the traits of the primary case influencing any transmission dynamics. In a second experiment, bacteria were transmitted to more individuals in experimentally induced star networks than in daisy-chains, on which transmission never exceeded three steps. In both experimental network types, transmission success depended jointly on the behavioural traits of the interacting individuals; however, the behavioural traits of the primary case were only important for transmission on star networks. Larger social groups exhibited lower interaction density (i.e. had a low ratio of observed to possible connections) and were more modular, i.e. they had more connections between nodes within a subgroup and fewer connections across subgroups. Thus, larger groups may restrict transmission by forming fewer interactions and by isolating subgroups that interacted with the primary case. These findings suggest that accounting for the traits of single exposed hosts has less power in predicting transmission dynamics compared to the larger scale factors of the social groups in which they reside. Factors like group size and phenotypic composition appear to alter social interaction patterns, which leads to differential transmission of microbes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.
2016-01-01
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions. PMID:27065966
Personality Profiles of Effective Leadership Performance in Assessment Centers
Parr, Alissa D.; Lanza, Stephanie T.; Bernthal, Paul
2016-01-01
Most research examining the relationship between effective leadership and personality has focused on individual personality traits. However, profiles of personality traits more fully describe individuals, and these profiles may be important as they relate to leadership. This study used latent class analysis to examine how personality traits combine and interact to form subpopulations of leaders, and how these subpopulations relate to performance criteria. Using a sample of 2,461 executive-level leaders, six personality profiles were identified: Unpredictable Leaders with Low Diligence (7.3%); Conscientious, Backend Leaders (3.6%); Unpredictable Leaders (8.6%); Creative Communicators (20.8%); Power Players (32.4%); and Protocol Followers (27.1%). One profile performed well on all criteria in an assessment center; remaining profiles exhibited strengths and weaknesses across criteria. Implications and future directions for research are highlighted. PMID:27746587
Kneitel, Jamie M.
2012-01-01
Trade-offs among species’ ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species’ ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species’ traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure. PMID:22844526
Drury, Douglas W.; Wade, Michael J.
2010-01-01
Hybrids from crosses between populations of the flour beetle, Tribolium castaneum, express varying degrees of inviability and morphological abnormalities. The proportion of allopatric population hybrids exhibiting these negative hybrid phenotypes varies widely, from 3% to 100%, depending upon the pair of populations crossed. We crossed three populations and measured two fitness components, fertility and adult offspring numbers from successful crosses, to determine how genes segregating within populations interact in inter-population hybrids to cause the negative phenotypes. With data from crosses of 40 sires from each of three populations to groups of 5 dams from their own and two divergent populations, we estimated the genetic variance and covariance for breeding value of fitness between the intra- and inter-population backgrounds and the sire × dam-population interaction variance. The latter component of the variance in breeding values estimates the change in genic effects between backgrounds owing to epistasis. Interacting genes with a positive effect, prior to fixation, in the sympatric background but a negative effect in the hybrid background cause reproductive incompatibility in the Dobzhansky-Muller speciation model. Thus, the sire × dam-population interaction provides a way to measure the progress toward speciation of genetically differentiating populations on a trait by trait basis using inter-population hybrids. PMID:21044199
Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress.
Fernandes, Isabel; Pascoal, Cláudia; Cássio, Fernanda
2011-08-01
Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass accumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.
Are personality traits associated with white-coat and masked hypertension?
Terracciano, Antonio; Scuteri, Angelo; Strait, James; Sutin, Angelina R; Meirelles, Osorio; Marongiu, Michele; Orru, Marco; Pilia, Maria Grazia; Ferrucci, Luigi; Cucca, Francesco; Schlessinger, David; Lakatta, Edward
2014-10-01
Anxiety and other psychological dispositions are thought to be associated with blood pressure. This study tests whether personality traits have long-term associations with masked and white-coat effects. A community-based sample of 2838 adults from Sardinia (Italy) completed the Revised NEO Personality Inventory, and 7 years later, blood pressure was assessed in the clinic and with ambulatory monitoring. Logistic regressions were used to test whether anxiety, neuroticism, extraversion, openness, agreeableness, and conscientiousness predicted the white-coat and masked hypertension phenomena. Age, sex, and antihypertensive medication use were tested as moderators. Significant interactions were found between personality traits and antihypertensive medications in predicting masked and white-coat effects. Only among those taking antihypertensive medication, higher anxiety was associated with a higher risk of pseudo-resistant hypertension due to white-coat effect (odds ratio 1.39, 95% confidence interval 1.01-1.91) and higher conscientiousness was associated with a lower risk of masked uncontrolled hypertension (odds ratio 0.70, 95% confidence interval 0.49-0.99). There were no significant interactions with age or sex. Among those on antihypertensive medications, anxious individuals were more likely to have pseudo-resistant hypertension due to white-coat effect and less conscientious individuals were at increased risk of masked uncontrolled hypertension. Particularly among anxious and less conscientious individuals, ambulatory monitoring may improve the tailoring of pharmacological treatments.
Anderson, Sarah L; Zheng, Yao; McMahon, Robert J
2017-08-01
Conduct disorder (CD) symptoms and callous-unemotional (CU) traits have been shown to be uniquely associated with risky sexual behavior (RSB) in adolescence and early adulthood, yet their interactive role in predicting RSB remains largely unknown. This study aimed to investigate the predictive value of CD symptoms and CU traits, as well as their interaction, on several RSB outcomes in adolescence and early adulthood. A total of 683 participants (41.7 % female, 47.4 % African American) were followed annually and self-reported age of first sexual intercourse, frequency of condom use, pregnancy, contraction of sexually transmitted infections, and engagement in sexual solicitation from grade 7 to 2-years post-high school. CD symptoms predicted age of first sexual intercourse, condom use, and sexual solicitation. CU traits predicted age of first sexual intercourse and pregnancy. Their interaction predicted a composite score of these RSBs such that CD symptoms positively predicted the composite score among those with high levels of CU traits but not among those with low levels of CU traits. The current findings provide information regarding the importance of both CD symptoms and CU traits in understanding adolescent and early adulthood RSB, as well as the benefits of examining multiple RSB outcomes during this developmental period. These findings have implications for the development and implementation of preventive efforts to target these risky behaviors among adolescents and young adults.
Constitutional mechanisms of vulnerability and resilience to nicotine dependence
Hiroi, N; Scott, D
2017-01-01
The core nature of nicotine dependence is evident in wide variations in how individuals become and remain smokers. Individuals with pre-existing behavioral traits are more likely to develop nicotine dependence and experience difficulty when attempting to quit. Many molecular factors likely contribute to individual variations in the development of nicotine dependence and behavioral traits in complex manners. However, the identification of such molecules has been hampered by the phenotypic complexity of nicotine dependence and the complex ways molecules affect elements of nicotine dependence. We hypothesize that nicotine dependence is, in part, a result of interactions between nicotine and pre-existing behavioral traits. This perspective suggests that the identification of the molecular bases of such pre-existing behavioral traits will contribute to the development of effective methods for reducing smoking dependence and for helping smokers to quit. PMID:19238150
Johnson, M T J; Agrawal, A A; Maron, J L; Salminen, J-P
2009-06-01
This study explored genetic variation and co-variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life-history traits and secondary chemistry together explained a large proportion of variation in herbivory (r(2) = 0.73). At the same time, selection acted on lifetime biomass, life-history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant-herbivore interactions.
Stephenson, Jessica F; van Oosterhout, Cock; Mohammed, Ryan S; Cable, Joanne
2015-02-01
Predation pressure can alter the morphology, physiology, life history, and behavior of prey; each of these in turn can change how surviving prey interact with parasites. These trait-mediated indirect effects may change in direction or intensity during growth or, in sexually dimorphic species, between the sexes. The Trinidadian guppy, Poecilia reticulata presents a unique opportunity to examine these interactions; its behavioral ecology has been intensively studied in wild populations with well-characterized predator faunas. Predation pressure is known to have driven the evolution of many guppy traits; for example, in high-predation sites, females (but not males) tend to shoal, and this anti-predator behavior facilitates parasite transmission. To test for evidence of predator-driven differences in infection in natural populations, we collected 4715 guppies from 62 sites across Trinidad between 2003 and 2009 and screened them for ectosymbionts, including Gyrodactylus. A novel model-averaging analysis revealed that females were more likely to be infected with Gyrodactylus parasites than males, but only in populations with both high predation pressure and high infection prevalence. We propose that the difference in shoaling tendency between the sexes could explain the observed difference in infection prevalence between males and females in high-predation sites. The infection rate of juveniles did not vary with predation regime, probably because juveniles face constant predation pressure from conspecific adults and therefore tend to shoal in both high- and low-predation sites. This represents the first evidence for age- and sex-specific trait-mediated indirect effects of predators on the probability of infection in their prey.
Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu
2016-12-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Yadav, Anupama; Dhole, Kaustubh
2016-01-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852
Martínez-García, Pedro J; Fresnedo-Ramírez, Jonathan; Parfitt, Dan E; Gradziel, Thomas M; Crisosto, Carlos H
2013-01-01
Single nucleotide polymorphisms (SNPs) are a fundamental source of genomic variation. Large SNP panels have been developed for Prunus species. Fruit quality traits are essential peach breeding program objectives since they determine consumer acceptance, fruit consumption, industry trends and cultivar adoption. For many cultivars, these traits are negatively impacted by cold storage, used to extend fruit market life. The major symptoms of chilling injury are lack of flavor, off flavor, mealiness, flesh browning, and flesh bleeding. A set of 1,109 SNPs was mapped previously and 67 were linked with these complex traits. The prediction of the effects associated with these SNPs on downstream products from the 'peach v1.0' genome sequence was carried out. A total of 2,163 effects were detected, 282 effects (non-synonymous, synonymous or stop codon gained) were located in exonic regions (13.04 %) and 294 placed in intronic regions (13.59 %). An extended list of genes and proteins that could be related to these traits was developed. Two SNP markers that explain a high percentage of the observed phenotypic variance, UCD_SNP_1084 and UCD_SNP_46, are associated with zinc finger (C3HC4-type RING finger) family protein and AOX1A (alternative oxidase 1a) protein groups, respectively. In addition, phenotypic variation suggests that the observed polymorphism for SNP UCD_SNP_1084 [A/G] mutation could be a candidate quantitative trait nucleotide affecting quantitative trait loci for mealiness. The interaction and expression of affected proteins could explain the variation observed in each individual and facilitate understanding of gene regulatory networks for fruit quality traits in peach.
Effects of temperature on consumer-resource interactions.
Amarasekare, Priyanga
2015-05-01
Understanding how temperature variation influences the negative (e.g. self-limitation) and positive (e.g. saturating functional responses) feedback processes that characterize consumer-resource interactions is an important research priority. Previous work on this topic has yielded conflicting outcomes with some studies predicting that warming should increase consumer-resource oscillations and others predicting that warming should decrease consumer-resource oscillations. Here, I develop a consumer-resource model that both synthesizes previous findings in a common framework and yields novel insights about temperature effects on consumer-resource dynamics. I report three key findings. First, when the resource species' birth rate exhibits a unimodal temperature response, as demonstrated by a large number of empirical studies, the temperature range over which the consumer-resource interaction can persist is determined by the lower and upper temperature limits to the resource species' reproduction. This contrasts with the predictions of previous studies, which assume that the birth rate exhibits a monotonic temperature response, that consumer extinction is determined by temperature effects on consumer species' traits, rather than the resource species' traits. Secondly, the comparative analysis I have conducted shows that whether warming leads to an increase or decrease in consumer-resource oscillations depends on the manner in which temperature affects intraspecific competition. When the strength of self-limitation increases monotonically with temperature, warming causes a decrease in consumer-resource oscillations. However, if self-limitation is strongest at temperatures physiologically optimal for reproduction, a scenario previously unanalysed by theory but amply substantiated by empirical data, warming can cause an increase in consumer-resource oscillations. Thirdly, the model yields testable comparative predictions about consumer-resource dynamics under alternative hypotheses for how temperature affects competitive and resource acquisition traits. Importantly, it does so through empirically quantifiable metrics for predicting temperature effects on consumer viability and consumer-resource oscillations, which obviates the need for parameterizing complex dynamical models. Tests of these metrics with empirical data on a host-parasitoid interaction yield realistic estimates of temperature limits for consumer persistence and the propensity for consumer-resource oscillations, highlighting their utility in predicting temperature effects, particularly warming, on consumer-resource interactions in both natural and agricultural settings. © 2014 The Author. Journal of Animal Ecology © 2014 British Ecological Society.
Fadda, Daniela; Scalas, L Francesca
2016-02-01
Among personality traits, extraversion has received major theoretical and empirical attention as predictor of subjective well-being (SWB), whereas the role of emotional stability-neuroticism has been partially neglected. The present study aims to study the role of neuroticism in the relationship between introversion-extraversion and SWB. In particular, we explored if the trait of neuroticism moderates the relationships between introversion-extraversion and SWB dimensions (Satisfaction with life, Mastery, Vigour, Social Cheerfulness), directly and by mediation of self-esteem. Indeed, previous studies have suggested that self-esteem is positively associated with high extraversion and low neuroticism and that it positively mediates the relationship between SWB and personality traits in adolescents. For this purpose, a sample of high school students (N = 1173) completed the Oxford Happiness Inventory, the Rosenberg Self-Esteem Scale and the Big Five Questionnaire. In a latent variable model, we examined the interaction effects (direct and indirect) of extraversion and neuroticism on SWB dimensions. Our results showed that the nature of differences between introverts and extraverts on SWB could be related to the level of neuroticism in relation to Satisfaction with life. Moreover, self-esteem mediated the relationship between personality traits and SWB. In particular, mediated moderation effect analysis showed that self-esteem mediates completely the relationship between the interaction term (extraversion x neuroticism) and Mastery, and partially the relationship with Satisfaction with life. Moreover, moderated mediation effect analysis showed that high levels of neuroticism moderate the effect of extraversion on Satisfaction with life and Mastery through the mediation of self-esteem. In conclusion, our results suggest that although extraversion has a cardinal role on SWB dimensions related to Vigour and Social Cheerfulness, neuroticism and the mediating role of self-esteem should more properly considered in relation to Satisfaction with life and Mastery.
Madjidian, Josefin A; Andersson, Stefan; Lankinen, Asa
2012-07-01
Heritable genetic variation is crucial for selection to operate, yet there is a paucity of studies quantifying such variation in interactive male/female sexual traits, especially those of plants. Previous work on the annual plant Collinsia heterophylla, a mixed-mating species, suggests that delayed stigma receptivity is involved in a sexual conflict: pollen from certain donors fertilize ovules earlier than others at the expense of reduced maternal seed set and lower levels of pollen competition. Parent-offspring regressions and sib analyses were performed to test for heritable genetic variation and co-variation in male and female interactive traits related to the sexual conflict. SOME heritable variation and evolvability were found for the female trait (delayed stigma receptivity in presence of pollen), but no evidence was found for genetic variation in the male trait (ability to fertilize ovules early). The results further indicated a marginally significant correlation between a male's ability to fertilize early and early stigma receptivity in offspring. However, despite potential indirect selection of these traits, antagonistic co-evolution may not occur given the lack of heritability of the male trait. To our knowledge, this is the first study of a plant or any hermaphrodite that examines patterns of genetic correlation between two interactive sexual traits, and also the first to assess heritabilities of plant traits putatively involved in a sexual conflict. It is concluded that the ability to delay fertilization in presence of pollen can respond to selection, while the pollen trait has lower evolutionary potential.
Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard
2015-01-01
The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141
Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range
Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I.
2016-01-01
Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions. PMID:27242863
Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range.
Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I
2016-01-01
Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.
Vaughan, Laura Kelly; Wiener, Howard W.; Aslibekyan, Stella; Allison, David B.; Havel, Peter J.; Stanhope, Kimber L.; O’Brien, Diane M.; Hopkins, Scarlett E.; Lemas, Dominick J.; Boyer, Bert B.; Tiwari, Hemant K.
2015-01-01
Objective To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup’ik people. Material and Methods We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. Results We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). Conclusions This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup’ik people. PMID:25772781
Vaughan, Laura Kelly; Wiener, Howard W; Aslibekyan, Stella; Allison, David B; Havel, Peter J; Stanhope, Kimber L; O'Brien, Diane M; Hopkins, Scarlett E; Lemas, Dominick J; Boyer, Bert B; Tiwari, Hemant K
2015-06-01
To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup'ik people. We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup'ik people. Copyright © 2015 Elsevier Inc. All rights reserved.
Aerobic fitness does not modify the effect of FTO variation on body composition traits.
Huuskonen, Antti; Lappalainen, Jani; Oksala, Niku; Santtila, Matti; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa
2012-01-01
Poor physical fitness and obesity are risk factors for all cause morbidity and mortality. We aimed to clarify whether common genetic variants of key energy intake determinants in leptin (LEP), leptin receptor (LEPR), and fat mass and obesity-associated (FTO) are associated with aerobic and neuromuscular performance, and whether aerobic fitness can alter the effect of these genotypes on body composition. 846 healthy Finnish males of Caucasian origin were genotyped for FTO (rs8050136), LEP (rs7799039) and LEPR (rs8179183 and rs1137101) single nucleotide polymorphisms (SNPs), and studied for associations with maximal oxygen consumption, body fat percent, serum leptin levels, waist circumference and maximal force of leg extensor muscles. Genotype AA of the FTO SNP rs8050136 associated with higher BMI and greater waist circumference compared to the genotype CC. In general linear model, no significant interaction for FTO genotype-relative VO(2)max (mL·kg(-1)·min(-1)) or FTO genotype-absolute VO(2)max (L·min(-1)) on BMI or waist circumference was found. Main effects of aerobic performance on body composition traits were significant (p<0.001). Logistic regression modelling found no significant interaction between aerobic fitness and FTO genotype. LEP SNP rs7799039, LEPR SNPs rs8179183 and rs1137101 did not associate with any of the measured variables, and no significant interactions of LEP or LEPR genotype with aerobic fitness were observed. In addition, none of the studied SNPs associated with aerobic or neuromuscular performance. Aerobic fitness may not modify the effect of FTO variation on body composition traits. However, relative aerobic capacity associates with lower BMI and waist circumference regardless of the FTO genotype. FTO, LEP and LEPR genotypes unlikely associate with physical performance.
Effect of split marketing on the welfare, performance, and carcass traits of finishing pigs.
Conte, S; Lawlor, P G; O'Connell, N; Boyle, L A
2012-01-01
The aim of this study was to compare a split marketing (SM) strategy, in which the heaviest pigs in a group are removed and slaughtered earlier than the others, with an all-out (AO) marketing strategy, in which all pigs are removed from the pen simultaneously and slaughtered on the same day, in terms of welfare, performance, and carcass traits of noncastrated (i.e., intact) male and female pigs. The experimental treatments were arranged in a 2 × 2 factorial array with 1) marketing strategy (SM vs. AO) and 2) sex (males vs. females), which yielded 4 treatment groups of 14 pigs (73.1 ± 4.8 kg): male SM, male AO, female SM, and female AO (7 replicates/group). Pigs in AO groups were all slaughtered after 6 wk on trial, whereas in SM groups the 3 heaviest pigs were removed and slaughtered 2 wk before the remainder of the group, which were slaughtered at the same time as the AO pigs. Pigs were fed a liquid diet from a long trough 3 times daily. Behavioral observations were conducted before and after SM, the day of SM, and 1 and 2 wk later. Behavior was recorded both during and between feed events, and skin lesions were scored on all, except the 3 pigs removed from SM groups before and 2 wk after SM. Growth performance, feed efficiency, and carcass traits were recorded. The number of aggressive interactions during feed events decreased after the 3 pigs were removed from SM groups. This reduction in aggressive interactions was observed on the day of SM in male groups (before SM: 24.3 vs. the day of SM: 14.7, SED = 3.31, P < 0.05 for interaction) and in subsequent observations in female groups (before SM: 21.4 vs. days after SM: 13.4, SED = 3.31, P < 0.05 for interaction). However, SM had no effect on behaviors recorded between feed events or on the number and severity of skin lesions (P > 0.10). There were no differences between the 11 remaining pigs in SM groups and the 14 pigs in AO groups in terms of growth performance, feed efficiency, and carcass traits of female or intact male pigs (P > 0.10). However, reduced within-pen CV in carcass weight was detected in pigs from SM groups compared with pigs from AO groups (8.6 vs. 10.9, SEM = 0.72, P < 0.05). Therefore, in restrictively fed pigs, a SM strategy improved the welfare of both female and intact male pigs by reducing aggressive interactions during feeding but had no effect on performance or carcass traits.
Mason, Tyler B.; Lavender, Jason M.; Wonderlich, Stephen A.; Crosby, Ross D.; Joiner, Thomas E.; Mitchell, James E.; Crow, Scott J.; Klein, Marjorie H.; Le Grange, Daniel; Bardone-Cone, Anna M.; Peterson, Carol B.
2017-01-01
Introduction The role of interpersonal factors has been proposed in various models of eating disorder (ED) psychopathology and treatment. We examined the independent and interactive contributions of two interpersonal-focused personality traits (i.e., social avoidance and insecure attachment) and reassurance seeking in relation to global ED psychopathology and depressive symptoms among women with bulimia nervosa (BN). Method Participants were 204 adult women with full or subclinical BN who completed a battery of self-report questionnaires. Hierarchical multiple OLS regressions including main effects and interaction terms were used to analyze the data. Results Main effects were found for social avoidance and insecure attachment in association with global ED psychopathology and depressive symptoms. In addition, two-way interactions between social avoidance and reassurance seeking were observed for both global ED psychopathology and depressive symptoms. In general, reassurance seeking strengthened the association between social avoidance and global ED psychopathology and depressive symptoms. Conclusion These results demonstrate the importance of reassurance seeking in psychopathology among women with BN who display personality features characterized by social avoidance. PMID:27234198
Density-dependence interacts with extrinsic mortality in shaping life histories
Burger, Oskar; Kozłowski, Jan
2017-01-01
The role of extrinsic mortality in shaping life histories is poorly understood. However, substantial evidence suggests that extrinsic mortality interacts with density-dependence in crucial ways. We develop a model combining Evolutionarily Stable Strategies with a projection matrix that allows resource allocation to growth, tissue repairs, and reproduction. Our model examines three cases, with density-dependence acting on: (i) mortality, (ii) fecundity, and (iii) production rate. We demonstrate that density-independent extrinsic mortality influences the rate of aging, age at maturity, growth rate, and adult size provided that density-dependence acts on fertility or juvenile mortality. However, density-independent extrinsic mortality has no effect on these life history traits when density-dependence acts on survival. We show that extrinsic mortality interacts with density-dependence via a compensation mechanism: the higher the extrinsic mortality the lower the strength of density-dependence. However, this compensation fully offsets the effect of extrinsic mortality only if density-dependence acts on survival independently of age. Both the age-pattern and the type of density-dependence are crucial for shaping life history traits. PMID:29049399
Mason, Tyler B; Lavender, Jason M; Wonderlich, Stephen A; Crosby, Ross D; Joiner, Thomas E; Mitchell, James E; Crow, Scott J; Klein, Marjorie H; Le Grange, Daniel; Bardone-Cone, Anna M; Peterson, Carol B
2016-07-01
The role of interpersonal factors has been proposed in various models of eating disorder (ED) psychopathology and treatment. We examined the independent and interactive contributions of two interpersonal-focused personality traits (i.e., social avoidance and insecure attachment) and reassurance seeking in relation to global ED psychopathology and depressive symptoms among women with bulimia nervosa (BN). Participants were 204 adult women with full or subclinical BN who completed a battery of self-report questionnaires. Hierarchical multiple OLS regressions including main effects and interaction terms were used to analyze the data. Main effects were found for social avoidance and insecure attachment in association with global ED psychopathology and depressive symptoms. In addition, two-way interactions between social avoidance and reassurance seeking were observed for both global ED psychopathology and depressive symptoms. In general, reassurance seeking strengthened the association between social avoidance and global ED psychopathology and depressive symptoms. These results demonstrate the importance of reassurance seeking in psychopathology among women with BN who display personality features characterized by social avoidance. Copyright © 2016. Published by Elsevier Inc.
Gossner, Martin M.; Grass, Ingo; Arnstadt, Tobias; Hofrichter, Martin; Floren, Andreas; Linsenmair, Karl Eduard; Weisser, Wolfgang W.; Steffan-Dewenter, Ingolf
2017-01-01
The specialization of ecological networks provides important insights into possible consequences of biodiversity loss for ecosystem functioning. However, mostly mutualistic and antagonistic interactions of living organisms have been studied, whereas detritivore networks and their successional changes are largely unexplored. We studied the interactions of saproxylic (deadwood-dependent) beetles with their dead host trees. In a large-scale experiment, 764 logs of 13 tree species were exposed to analyse network structure of three trophic groups of saproxylic beetles over 3 successional years. We found remarkably high specialization of deadwood-feeding xylophages and lower specialization of fungivorous and predatory species. During deadwood succession, community composition, network specialization and network robustness changed differently for the functional groups. To reveal potential drivers of network specialization, we linked species' functional traits to their network roles, and tested for trait matching between plant (i.e. chemical compounds) and beetle (i.e. body size) traits. We found that both plant and animal traits are major drivers of species specialization, and that trait matching can be more important in explaining interactions than neutral processes reflecting species abundance distributions. High network specialization in the early successional stage and decreasing network robustness during succession indicate vulnerability of detritivore networks to reduced tree species diversity and beetle extinctions, with unknown consequences for wood decomposition and nutrient cycling. PMID:28469020
Much more than a ratio: multivariate selection on female bodies.
Brooks, R; Shelly, J P; Fan, J; Zhai, L; Chau, D K P
2010-10-01
Studies of the attractiveness of female bodies have focussed strongly on the waist, hips and bust, but sexual selection operates on whole phenotypes rather than the relative proportions of just two or three body parts. Here, we use body scanners to extract computer-generated images of 96 Chinese women's bodies with all traits unrelated to body shape removed. We first show that Chinese and Australian men and women rate the attractiveness of these bodies the same. We then statistically explore the roles of age, body weight and a range of length and girth measures on ratings of attractiveness. Last, we use nonlinear selection analysis, a statistical approach developed by evolutionary biologists to explore the interacting effects of suites of traits on fitness, to study how body traits interact to determine attractiveness. Established proxies of adiposity and reproductive value, including age, body mass index and waist-to-hip ratio, were all correlated with attractiveness. Nonlinear response surface methods using the original traits consistently outperform all of these indices and ratios, suggesting that indices of youth and abdominal adiposity tell only part of the story of body attractiveness. In particular, our findings draw attention to the importance of integration between abdominal measures, including the bust, and the length and girth of limbs. Our results provide the most comprehensive analysis to date of the effect of body shape and fat deposition on female attractiveness. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.
Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives
Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.
2014-01-01
The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535
Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A
2013-01-01
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities.
Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.
2013-01-01
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735
Belluau, Michaël; Shipley, Bill
2018-01-01
Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.
Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel
2017-11-19
The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).
Holliday, Jason A; Wang, Tongli; Aitken, Sally
2012-09-01
Climate is the primary driver of the distribution of tree species worldwide, and the potential for adaptive evolution will be an important factor determining the response of forests to anthropogenic climate change. Although association mapping has the potential to improve our understanding of the genomic underpinnings of climatically relevant traits, the utility of adaptive polymorphisms uncovered by such studies would be greatly enhanced by the development of integrated models that account for the phenotypic effects of multiple single-nucleotide polymorphisms (SNPs) and their interactions simultaneously. We previously reported the results of association mapping in the widespread conifer Sitka spruce (Picea sitchensis). In the current study we used the recursive partitioning algorithm 'Random Forest' to identify optimized combinations of SNPs to predict adaptive phenotypes. After adjusting for population structure, we were able to explain 37% and 30% of the phenotypic variation, respectively, in two locally adaptive traits--autumn budset timing and cold hardiness. For each trait, the leading five SNPs captured much of the phenotypic variation. To determine the role of epistasis in shaping these phenotypes, we also used a novel approach to quantify the strength and direction of pairwise interactions between SNPs and found such interactions to be common. Our results demonstrate the power of Random Forest to identify subsets of markers that are most important to climatic adaptation, and suggest that interactions among these loci may be widespread.
Monteiro, Angelo Barbosa; Faria, Lucas Del Bianco
2018-06-06
For decades, food web theory has proposed phenomenological models for the underlying structure of ecological networks. Generally, these models rely on latent niche variables that match the feeding behaviour of consumers with their resource traits. In this paper, we used a comprehensive database to evaluate different hypotheses on the best dependency structure of trait-matching patterns between consumers and resource traits. We found that consumer feeding behaviours had complex interactions with resource traits; however, few dimensions (i.e. latent variables) could reproduce the trait-matching patterns. We discuss our findings in the light of three food web models designed to reproduce the multidimensionality of food web data; additionally, we discuss how using species traits clarify food webs beyond species pairwise interactions and enable studies to infer ecological generality at larger scales, despite potential taxonomic differences, variations in ecological conditions and differences in species abundance between communities. © 2018 John Wiley & Sons Ltd/CNRS.
Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn
2015-01-01
In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.
Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn
2015-01-01
In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced. PMID:26367004
Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III
Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale
2003-01-01
Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...
Rogers, Katherine H; Le, Marina T; Buckels, Erin E; Kim, Mikayla; Biesanz, Jeremy C
2018-02-19
The Dark Tetrad traits (subclinical psychopathy, narcissism, Machiavellianism, and everyday sadism) have interpersonal consequences. At present, however, how these traits are associated with the accuracy and positivity of first impressions is not well understood. The present article addresses three primary questions. First, to what extent are perceiver levels of Dark Tetrad traits associated with differing levels of perceptive accuracy? Second, to what extent are target levels of Dark Tetrad traits associated with differing levels of expressive accuracy? Finally, to what extent can Dark Tetrad traits be differentiated when examining perceptions of and by others? In a round-robin design, undergraduate participants (N = 412) in small groups engaged in brief, naturalistic, unstructured dyadic interactions before providing impressions of their partner. Dark Tetrad traits were associated with being viewed and viewing others less distinctively accurately and more negatively. Interpersonal perceptions that included an individual scoring highly on one of the Dark Tetrad traits differed in important ways from interactions among individuals with more benevolent personalities. Notably, despite the similarities between the Dark Tetrad, traits had unique associations with interpersonal perceptions. © 2018 Wiley Periodicals, Inc.
Jablonski, David
2017-01-01
Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting-sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties-can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailing edges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology.
Bácskai, Erika; Czobor, Pál; Gerevich, József
2011-07-01
Data in gender differences in aggression among alcohol and drug dependent subjects are lacking, and no published data are available about gender differences among various subtypes of substance using populations. The goal of this cross-sectional study was to investigate gender differences with regard to types of trait aggression in substance dependent young populations (age: 20-35 years) compared to the general population. Subjects were selected from two clinical samples with a diagnosis of alcohol and drug dependence as well as from a representative sample of the general population. Trait aggression was measured by the four individual subscales of the Buss Perry Aggression Questionnaire (physical-PA, verbal aggression-VA, hostility-H and anger AN) whereas alcohol and drug use were characterized by the AUDIT and EuroADAD scales, respectively. Alcohol and drug dependent subjects showed higher severity on all four subscales of trait aggression compared to the general population. The male-female difference was the highest in the cannabis group. General Linear Model analysis for PA indicated a significant main effect of gender (higher PA for males, p=0.034) with no interaction between substance dependence and gender. For VA, no main effect or interaction for gender was found. Effect sizes for gender difference indicated that while males and females were similar in the control group in the severity in H and A, the level of H and AN was substantially higher in females than in males in the clinical group. These differences between the two genders reached statistical significance in the marijuana group, where female subjects showed a significantly higher severity in these two domains. Compared to the normal sample chronic substance use is associated with higher scores on certain factors of trait aggression, including hostility and anger, in females than in males. Our data suggest that aggression in substance dependent females is more provocable by chronic use of alcohol and drugs than in males. Copyright © 2011 Elsevier Inc. All rights reserved.
Elouafi, I; Nachit, M M
2004-02-01
Durum wheat ( Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5 /Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites x years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTLxE interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.
A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects
Marigorta, Urko M.; Gibson, Greg
2014-01-01
The switch to a modern lifestyle in recent decades has coincided with a rapid increase in prevalence of obesity and other diseases. These shifts in prevalence could be explained by the release of genetic susceptibility for disease in the form of gene-by-environment (GxE) interactions. Yet, the detection of interaction effects requires large sample sizes, little replication has been reported, and a few studies have demonstrated environmental effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We performed extensive simulations of a quantitative trait controlled by 2500 causal variants to inspect the feasibility to detect gene-by-environment interactions in the context of GWAS. The simulated individuals were assigned either to an ancestral or a modern setting that alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of realistic scenarios, highly significant GRSxE is detected despite the absence of individual genotype GxE evidence at the contributing loci. Second, an increase in phenotypic variance after environmental perturbation reduces the power to discover susceptibility variants by GWAS in mixed cohorts with individuals from both ancestral and modern environments. We conclude that a pervasive presence of gene-by-environment effects can remain hidden even though it contributes to the genetic architecture of complex traits. PMID:25101110
The promise of genomics in the study of plant-pollinator interactions
2013-01-01
Flowers exist in exceedingly complex fitness landscapes, in which subtle variation in each trait can affect the pollinators, herbivores and pleiotropically linked traits in other plant tissues. A whole-genome approach to flower evolution will help our understanding of plant-pollinator interactions. PMID:23796166
Effects of the "affectionless control" parenting style on personality traits in healthy subjects.
Otani, Koichi; Suzuki, Akihito; Oshino, Shingo; Ishii, Genki; Matsumoto, Yoshihiko
2009-01-30
The effects of the affectionless control (AC) parenting style on personality traits were studied in 414 Japanese healthy subjects. Perceived parental rearing was assessed by the Parental Bonding Instrument, which comprises care and protection factors, and personality traits were assessed by the Temperament and Character Inventory, which has seven dimensions. Parental rearing was classified into four types, i.e., optimal parenting (high care/low protection), affectionate constraint (high care/high protection), neglectful parenting (low care/low protection), and AC (low care/high protection). Males with maternal AC showed significantly higher harm avoidance (HA) scores and lower scores of persistence and cooperativeness than those with maternal optimal parenting. Females with maternal AC showed significantly higher HA scores and lower self-directedness scores than those with maternal optimal parenting. Paternal AC was not significantly related to any personality score. In females, the interaction between paternal rearing and maternal rearing was significant; the effect of maternal AC on HA scores was strongest when combined with paternal neglectful parenting. The present study suggests that the AC type parenting by mothers is associated with specific personality traits, especially high HA, in healthy subjects.
Hu, Jia; Judge, Timothy A
2017-06-01
Integrating the leader trait perspective with dominance complementarity theory, we propose team power distance as an important boundary condition for the indirect impact of leader extraversion, agreeableness, and conscientiousness on team performance through a team's potency beliefs and through relational identification with the leader. Using time-lagged, 3-source data from 71 teams, we found that leader extraversion had a positive indirect impact on team in-role and extrarole performance through relational identification, but only for high power distance teams; leader conscientiousness had a positive influence on team in-role performance through team potency, but only for high power distance teams; and leader agreeableness had a positive effect on team in-role and extrarole performance via relational identification and on team in-role performance via team potency, but only for low power distance teams. The findings address prior inconsistencies regarding the relationships between leader traits and team effectiveness, identify an important boundary condition and key team processes that bridge the links, and provide a deeper understanding of the role of leader traits in teams. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Johnson, Megan; Vitacco, Michael J; Shirtcliff, Elizabeth A
2018-03-01
The stress response system is highly plastic, and hormone rhythms may "adaptively calibrate" in response to treatment. This investigation assessed whether stress and sex hormone diurnal rhythms changed over the course of behavioral treatment, and whether callous-unemotional (CU) traits and history of early adversity affected treatment results on diurnal hormone functioning in a sample of 28 incarcerated adolescent males. It was hypothesized that the treatment would have beneficial effects, such that healthier diurnal rhythms would emerge post-treatment. Diurnal cortisol, testosterone, and dehydroepiandrosterone (DHEA) were sampled two weeks after admission to the correctional/treatment facility, and again approximately four months later. Positive treatment effects were detected for the whole sample, such that testosterone dampened across treatment. CU traits predicted a non-optimal hormone response to treatment, potentially indicating biological preparedness to respond to acts of social dominance and aggression. The interaction between CU traits and adversity predicted a promising and sensitized response to treatment including increased cortisol and a steeper testosterone drop across treatment. Results suggest that stress and sex hormones are highly receptive to treatment during this window of development.
Mapping of epistatic quantitative trait loci in four-way crosses.
He, Xiao-Hong; Qin, Hongde; Hu, Zhongli; Zhang, Tianzhen; Zhang, Yuan-Ming
2011-01-01
Four-way crosses (4WC) involving four different inbred lines often appear in plant and animal commercial breeding programs. Direct mapping of quantitative trait loci (QTL) in these commercial populations is both economical and practical. However, the existing statistical methods for mapping QTL in a 4WC population are built on the single-QTL genetic model. This simple genetic model fails to take into account QTL interactions, which play an important role in the genetic architecture of complex traits. In this paper, therefore, we attempted to develop a statistical method to detect epistatic QTL in 4WC population. Conditional probabilities of QTL genotypes, computed by the multi-point single locus method, were used to sample the genotypes of all putative QTL in the entire genome. The sampled genotypes were used to construct the design matrix for QTL effects. All QTL effects, including main and epistatic effects, were simultaneously estimated by the penalized maximum likelihood method. The proposed method was confirmed by a series of Monte Carlo simulation studies and real data analysis of cotton. The new method will provide novel tools for the genetic dissection of complex traits, construction of QTL networks, and analysis of heterosis.
Bruehl, Stephen; Liu, Xiaoxia; Burns, John W.; Chont, Melissa; Jamison, Robert N.
2013-01-01
Links between elevated trait anger expressiveness (anger-out) and greater chronic pain intensity are well documented, but pain-related effects of expressive behaviors actually used to regulate anger when it is experienced have been little explored. This study used ecological momentary assessment methods to explore prospective associations between daily behavioral anger expression and daily chronic pain intensity. Forty-eight chronic low back pain (LBP) patients and 36 healthy controls completed electronic diary ratings of momentary pain and behavioral anger expression in response to random prompts 4 times daily for 7 days. Across groups, greater trait anger-out was associated with greater daily behavioral anger expression (P < 0.001). LBP participants showed higher levels of daily anger expression than controls (P < 0.001). Generalized estimating equation analyses in the LBP group revealed a lagged main effect of greater behavioral anger expression on increased chronic pain intensity in the subsequent assessment period (P < 0.05). Examination of a trait × situation model for anger-out revealed prospective associations between elevated chronic pain intensity and later increases in behavioral anger expression that were restricted largely to individuals low in trait anger-out (P < 0.001). Trait × situation interactions for trait anger suppression (anger-in) indicated similar influences of pain intensity on subsequent behavioral anger expression occurring among low anger-in persons (P < 0.001). Overlap with trait and state negative affect did not account for study findings. This study for the first time documents lagged within-day influences of behavioral anger expression on subsequent chronic pain intensity. Trait anger regulation style may moderate associations between behavioral anger expression and chronic pain intensity. PMID:22940462
Campbell, D R; Forster, M; Bischoff, M
2014-02-01
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator-mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Novel host plant leads to the loss of sexual dimorphism in a sexually selected male weapon.
Allen, Pablo E; Miller, Christine W
2017-08-16
In this time of massive global change, species are now frequently interacting with novel players. Greater insight into the impact of these novel interactions on traits linked to fitness is essential, because effects on these traits can hinder population existence or promote rapid adaptation. Sexually selected weapons and ornaments frequently influence fitness and often have heightened condition-dependence in response to nutrition. Condition-dependence in response to different ecological conditions, a form of developmental plasticity, may be responsible for much of the intraspecific variation in sexually selected ornaments and weapons in wild populations. Here we examined the consequences of developing on a novel plant for the expression of size and shape in the leaf-footed cactus bug Narnia femorata (Hemiptera: Coreidae). The males of this species possess enlarged, sexually dimorphic femurs on their hind legs. These legs are used as weapons in male-male contests. Females are typically larger in overall body size. Our study revealed that developing upon a novel host can lead to pronounced phenotypically plastic change in sexually dimorphic traits. Male hind femurs were greatly impacted by the novel diet to the extent that the sexual dimorphism in hind femurs was lost. Further, dimorphism in body size increased, as males became tiny adults while females better maintained their body size. These patterns underscore the complex effects that novel species interactions may have on sexual phenotypes. © 2017 The Author(s).
Navarro-Meléndez, Ariana L; Heil, Martin
2014-07-01
Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.
Thoresen, John C; Francelet, Rebecca; Coltekin, Arzu; Richter, Kai-Florian; Fabrikant, Sara I; Sandi, Carmen
2016-07-01
Navigation through an environment is a fundamental human activity. Although group differences in navigational ability are documented (e.g., gender), little is known about traits that predict these abilities. Apart from a well-established link between mental rotational abilities and navigational learning abilities, recent studies point to an influence of trait anxiety on the formation of internal cognitive spatial representations. However, it is unknown whether trait anxiety affects the processing of information obtained through externalized representations such as maps. Here, we addressed this question by taking into account emerging evidence indicating impaired performance in executive tasks by high trait anxiety specifically in individuals with lower executive capacities. For this purpose, we tested 104 male participants, previously characterised on trait anxiety and mental rotation ability, on a newly-designed map-based route learning task, where participants matched routes presented dynamically on a city map to one presented immediately before (same/different judgments). We predicted an interaction between trait anxiety and mental rotation ability, specifically that performance in the route learning task would be negatively affected by anxiety in participants with low mental rotation ability. Importantly, and as predicted, an interaction between anxiety and mental rotation ability was observed: trait anxiety negatively affected participants with low-but not high-mental rotation ability. Our study reveals a detrimental role of trait anxiety in map-based route learning and specifies a disadvantage in the processing of map representations for high-anxious individuals with low mental rotation abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew
2017-03-01
Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Zhu, Jingwen; Loos, Ruth J. F.; Lu, Ling; Zong, Geng; Gan, Wei; Ye, Xingwang; Sun, Liang; Li, Huaixing; Lin, Xu
2014-01-01
Background/Objectives Recent large-scale genome-wide association studies have identified multiple loci robustly associated with BMI, predominantly in European ancestry (EA) populations. However, associations of these loci with obesity and related traits have not been well described in Chinese Hans. This study aimed to investigate whether BMI-associated loci are, individually and collectively, associated with adiposity-related traits and obesity in Chinese Hans and whether these associations are modified by physical activity (PA). Subjects/Methods We genotyped 28 BMI-associated single nucleotide polymorphisms (SNPs) in a population-based cohort including 2,894 unrelated Han Chinese. Genetic risk score (GRS), EA and East Asian ancestry (EAA) GRSs were calculated by adding BMI-increasing alleles based on all, EA and EAA identified SNPs, respectively. Interactions of GRS and PA were examined by including the interaction-term in the regression model. Results Individually, 26 of 28 SNPs showed directionally consistent effects on BMI, and associations of four loci (TMEM18, PCSK1, BDNF and MAP2K5) reached nominal significance (P<0.05). The GRS was associated with increased BMI, trunk fat and body fat percentages; and increased risk of obesity and overweight (all P<0.05). Effect sizes (0.11 vs. 0.17 kg/m2) and explained variance (0.90% vs. 1.45%) of GRS for BMI tended to be lower in Chinese Hans than in Europeans. The EA GRS and EAA GRS were associated with 0.11 and 0.13 kg/m2 higher BMI, respectively. In addition, we found that PA attenuated the effect of the GRS on BMI (P interaction = 0.022). Conclusions Our observations suggest that the combined effect of obesity-susceptibility loci on BMI tended to be lower in Han Chinese than in EA. The overall, EA and EAA GRSs exert similar effects on adiposity traits. Genetic predisposition to increased BMI is attenuated by PA in this population of Han Chinese. PMID:24626232
Semino, Laura N; Marksteiner, Josef; Brauchle, Gernot; Danay, Erik
2017-04-13
Associations between depression, personality traits, and emotions are complex and reciprocal. The aim of this study is to explore these interactions in dynamical networks and in a linear way over time depending on the severity of depression. Participants included 110 patients with depressive symptoms (DSM-5 criteria) who were recruited between October 2015 and February 2016 during their inpatient stay in a general psychiatric hospital in Hall in Tyrol, Austria. The patients filled out the Beck Depression Inventory-II, a German emotional competence questionnaire (Emotionale Kompetenz Fragebogen), Positive and Negative Affect Schedule, and the German versions of the Big Five Inventory-short form and State-Trait-Anxiety-Depression Inventory regarding symptoms, emotions, and personality during their inpatient stay and at a 3-month follow-up by mail. Network and regression analyses were performed to explore interactions both in a linear and a dynamical way at baseline and 3 months later. Regression analyses showed that emotions and personality traits gain importance for the prediction of depressive symptoms with decreasing symptomatology at follow-up (personality: baseline, adjusted R2 = 0.24, P < .001; follow-up, adjusted R2 = 0.65, P < .001). Network analyses additionally showed that the interaction network of depression, emotions, and personality traits is significantly denser and more interconnected (network comparison test: P = .03) at follow-up than at baseline, meaning that with decreased symptoms interconnections get stronger. During depression, personality traits and emotions are walled off and not strongly interconnected with depressive symptoms in networks. With decreasing depressive symptomatology, interfusing of these areas begins and interconnections become stronger. This finding has practical implications for interventions in an acute depressive state and with decreased symptoms. The network approach offers a new perspective on interactions and is a way to make the complexity of these interactions more tangible. © Copyright 2017 Physicians Postgraduate Press, Inc.
Dispersal polymorphism in an invasive forest pest affects its ability to establish
Christelle Robinet; Andrew M. Liebhold
2009-01-01
Given the increasing number of biological invasions, there is a crucial need to identify life history traits that promote invasion. Invasiveness reflects capabilities for both establishment after introduction and spread following establishment. In this paper, we explore, via simulation, the interacting effects of dispersal and Allee effects on both invasion processes....
The Interactive Effects of Temperament and Maternal Parenting on Toddlers' Externalizing Behaviours
ERIC Educational Resources Information Center
van Aken, C.; Junger, M.; Verhoeven, M.; van Aken, M. A. G.; Dekovic, M.
2007-01-01
The present study aimed to determine the potential moderating effects of temperamental traits on the relation between parenting and toddlers' externalizing behaviours. For that purpose, this study examined the interplay between temperament and maternal parenting behaviours in predicting the level as well as the development of toddlers'…
Impact of Widowhood on Parent-Child Relations: Does Parents' Personality Matter?
ERIC Educational Resources Information Center
Pai, Manacy; Ha, Jung-Hwa
2012-01-01
The authors evaluated the extent to which the short-term effect of late life widowhood on parent-child relationships is moderated by 5 personality traits--Extraversion, Agreeableness, Conscientiousness, Emotional Stability, and Openness to Experience--and how these interactive effects differ by gender. Data were from the Changing Lives of Older…
ERIC Educational Resources Information Center
Krus, Patricia H.
Trait-Treatment Interaction (TTI), a research method for observing experimental effects of treatments on subjects of different aptitudes and learning characteristics, is suggested as an effective evaluation tool to provide evaluators and educators in compensatory education programs with information about which program is best for different kinds…
Ivy, T M
2007-03-01
Genetic benefits can enhance the fitness of polyandrous females through the high intrinsic genetic quality of females' mates or through the interaction between female and male genes. I used a full diallel cross, a quantitative genetics design that involves all possible crosses among a set of genetically homogeneous lines, to determine the mechanism through which polyandrous female decorated crickets (Gryllodes sigillatus) obtain genetic benefits. I measured several traits related to fitness and partitioned the phenotypic variance into components representing the contribution of additive genetic variance ('good genes'), nonadditive genetic variance (genetic compatibility), as well as maternal and paternal effects. The results reveal a significant variance attributable to both nonadditive and additive sources in the measured traits, and their influence depended on which trait was considered. The lack of congruence in sources of phenotypic variance among these fitness-related traits suggests that the evolution and maintenance of polyandry are unlikely to have resulted from one selective influence, but rather are the result of the collective effects of a number of factors.
Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K
2015-04-01
Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.
"Avoiding or approaching eyes"? Introversion/extraversion affects the gaze-cueing effect.
Ponari, Marta; Trojano, Luigi; Grossi, Dario; Conson, Massimiliano
2013-08-01
We investigated whether the extra-/introversion personality dimension can influence processing of others' eye gaze direction and emotional facial expression during a target detection task. On the basis of previous evidence showing that self-reported trait anxiety can affect gaze-cueing with emotional faces, we also verified whether trait anxiety can modulate the influence of intro-/extraversion on behavioral performance. Fearful, happy, angry or neutral faces, with either direct or averted gaze, were presented before the target appeared in spatial locations congruent or incongruent with stimuli's eye gaze direction. Results showed a significant influence of intra-/extraversion dimension on gaze-cueing effect for angry, happy, and neutral faces with averted gaze. Introverts did not show the gaze congruency effect when viewing angry expressions, but did so with happy and neutral faces; extraverts showed the opposite pattern. Importantly, the influence of intro-/extraversion on gaze-cueing was not mediated by trait anxiety. These findings demonstrated that personality differences can shape processing of interactions between relevant social signals.
Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan
2017-09-04
Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.
Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon
2012-08-01
Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.
Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde
2016-01-01
Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. PMID:27856709
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity
Bailey, Matthew; Kauwe, John S. K.; Maxwell, Taylor J.
2014-01-01
Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (GxG), or gene-by-environment (GxE) interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others we found that all parametric tests were sensitive to non-normality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant we demonstrate how linkage disequilibrium (LD) can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D’ and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect gene-by-gene interactions and also how vQTL are related to relationship loci (rQTL) and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait. PMID:24482837
Miranda, J A; Pires, A V; Abreu, L R A; Mota, L F M; Silva, M A; Bonafé, C M; Lima, H J D; Martins, P G M A
2016-12-01
Our objective was to evaluate changes in breeding values for carcass traits of two meat-type quail (Coturnix coturnix) strains (LF1 and LF2) to changes in the dietary (methionine + cystine):lysine ([Met + Cys]:Lys) ratio due to genotype by environment (G × E) interaction via reaction norm. A total of 7000 records of carcass weight and yield were used for analyses. During the initial phase (from hatching to day 21), five diets with increasing (Met + Cys):Lys ratios (0.61, 0.66, 0.71, 0.76 and 0.81), containing 26.1% crude protein and 2900 kcal ME/kg, were evaluated. Analyses were performed using random regression models that included linear functions of sex (fixed effect) and breeding value (random effect) for carcass weight and yield, without and with heterogeneous residual variance adjustment. Both fixed and random effects were modelled using Legendre polynomials of second order. Genetic variance and heritability estimates were affected by both (Met + Cys):Lys ratio and strain. We observed that a G × E interaction was present, with changes in the breeding value ranking. Therefore, genetic evaluation for carcass traits should be performed under the same (Met + Cys):Lys ratio in which quails are raised. © 2016 Blackwell Verlag GmbH.
Interacting Effects of Trait Anger and Acute Anger Arousal on Pain: The Role of Endogenous Opioids
Bruehl, Stephen; Burns, John W.; Chung, Ok Yung; Chont, Melissa
2011-01-01
Objective Elevated trait anger (TRANG; heightened propensity to experience anger) is associated with greater pain responsiveness, possibly via associations with deficient endogenous opioid analgesia. This study tested whether acute anger arousal moderates the impact of TRANG on endogenous opioid analgesia. Methods 94 chronic low back pain participants (LBP) and 85 healthy controls received opioid blockade (8mg naloxone) or placebo in randomized, counterbalanced order in separate sessions. Participants were randomly assigned to undergo either a 5-minute anger recall interview (ARI) or neutral control interview (NCI) across both drug conditions. Immediately following the assigned interview, participants engaged sequentially in finger pressure and ischemic forearm pain tasks. Opioid blockade effects were derived (blockade minus placebo condition pain ratings) to index opioid antinociceptive function. Results Placebo condition TRANG × Interview interactions (p’s<.05) indicated that TRANG was hyperalgesic only in the context of acute anger arousal (ARI condition; p’s<.05). Blockade effect analyses suggested these hyperalgesic effects were related to deficient opioid analgesia. Significant TRANG × Interview interactions (p’s<.05) for both pain tasks indicated that elevated TRANG was associated with smaller blockade effects (less endogenous opioid analgesia) only in the ARI condition (p’s<.05). Results for ischemic task VAS intensity blockade effects suggested that associations between TRANG and impaired opioid function were most evident in LBP participants when experiencing anger (Type × Interview × TRANG Interaction; p<.05). Conclusions Results indicate that hyperalgesic effects of TRANG are most prominent when acute anger is aroused, and suggest that endogenous opioid mechanisms contribute. PMID:21862829
Orue, Izaskun; Calvete, Esther
2016-07-01
The aim of this study was to test a model in which psychopathic traits (callous-unemotional, grandiose-manipulative, and impulsive-irresponsible) and moral disengagement individually and interactively predict two types of bullying (traditional and cyberbullying) in a community sample of adolescents. A total of 765 adolescents (464 girls and 301 boys) completed measures of moral disengagement and psychopathic traits at Time 1, and measures of bullying and cyberbullying at Time 1 and 1 year later, at Time 2. The results showed that callous-unemotional traits predicted both traditional bullying and cyberbullying, grandiose-manipulative and impulsive-irresponsible traits only predicted traditional bullying, and moral disengagement only predicted cyberbullying. Callous-Unemotional Traits × Moral Disengagement and Grandiose-Manipulative × Moral Disengagement were significantly correlated with the residual change in cyberbullying. Callous-unemotional traits were positively related to cyberbullying at high levels of moral disengagement but not when moral disengagement was low. In contrast, grandiose-manipulative traits were positively related to cyberbullying at low levels of moral disengagement but not when moral disengagement was high. These findings have implications for both prevention and intervention. Integrative approaches that promote moral growth are needed, including a deeper understanding of why bullying is morally wrong and ways to stimulate personality traits that counteract psychopathic traits.
Predicting the Creativity of Design Majors Based on the Interaction of Diverse Personality Traits
ERIC Educational Resources Information Center
Chang, Chi-Cheng; Peng, Li-Pei; Lin, Ju-Sen; Liang, Chaoyun
2015-01-01
In this study, design majors were analysed to examine how diverse personality traits interact and influence student creativity. The study participants comprised 476 design majors. The results indicated that openness predicted the originality of creativity, whereas openness, conscientiousness and agreeableness predicted the usefulness of…
USDA-ARS?s Scientific Manuscript database
Resource availability has long been recognized for playing a major role in structuring plant communities. Nonetheless, a functional understanding of root traits and interactions with soil organisms involved in acquiring those resources has largely remained out of focus and outside mainstream ecolog...
Trait-Treatment Interactions (TTI), Cognitive Processes and Research on Communication Media.
ERIC Educational Resources Information Center
Di Vesta, Francis J.
The Trait Treatment Interaction (TTI) Process approach is particularly adapted to the study of information-processing by receivers of information presented in the media. Differences in people's experiences do lead to different cognitive structures. Different people use the same machinery of perceiving, coding, storing, and retrieving. Neverthless,…
de la Peña, Eduardo; Bonte, Dries
2014-08-01
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.
Sarkar, Amar; Dowker, Ann; Cohen Kadosh, Roi
2014-12-10
The surge in noninvasive brain stimulation studies investigating cognitive enhancement has neglected the effect of interindividual differences, such as traits, on stimulation outcomes. Using the case of mathematics anxiety in a sample of healthy human participants in a placebo-controlled, double-blind, crossover experiment, we show that identical transcranial direct current stimulation (tDCS) exerts opposite behavioral and physiological effects depending on individual trait levels. Mathematics anxiety is the negative emotional response elicited by numerical tasks, impairing mathematical achievement. tDCS was applied to the dorsolateral prefrontal cortex, a frequent target for modulating emotional regulation. It improved reaction times on simple arithmetic decisions and decreased cortisol concentrations (a biomarker of stress) in high mathematics anxiety individuals. In contrast, tDCS impaired reaction times for low mathematics anxiety individuals and prevented a decrease in cortisol concentration compared with sham stimulation. Both groups showed a tDCS-induced side effect-impaired executive control in a flanker task-a cognitive function subserved by the stimulated region. These behavioral and physiological double dissociations have implications for brain stimulation research by highlighting the role of individual traits in experimental findings. Brain stimulation clearly does not produce uniform benefits, even applied in the same configuration during the same tasks, but may interact with traits to produce markedly opposed outcomes. Copyright © 2014 Sarkar et al.
Qiao-Tasserit, Emilie; Garcia Quesada, Maria; Antico, Lia; Bavelier, Daphne; Vuilleumier, Patrik; Pichon, Swann
2017-01-01
Both affective states and personality traits shape how we perceive the social world and interpret emotions. The literature on affective priming has mostly focused on brief influences of emotional stimuli and emotional states on perceptual and cognitive processes. Yet this approach does not fully capture more dynamic processes at the root of emotional states, with such states lingering beyond the duration of the inducing external stimuli. Our goal was to put in perspective three different types of affective states (induced affective states, more sustained mood states and affective traits such as depression and anxiety) and investigate how they may interact and influence emotion perception. Here, we hypothesized that absorption into positive and negative emotional episodes generate sustained affective states that outlast the episode period and bias the interpretation of facial expressions in a perceptual decision-making task. We also investigated how such effects are influenced by more sustained mood states and by individual affect traits (depression and anxiety) and whether they interact. Transient emotional states were induced using movie-clips, after which participants performed a forced-choice emotion classification task with morphed facial expressions ranging from fear to happiness. Using a psychometric approach, we show that negative (vs. neutral) clips increased participants' propensity to classify ambiguous faces as fearful during several minutes. In contrast, positive movies biased classification toward happiness only for those clips perceived as most absorbing. Negative mood, anxiety and depression had a stronger effect than transient states and increased the propensity to classify ambiguous faces as fearful. These results provide the first evidence that absorption and different temporal dimensions of emotions have a significant effect on how we perceive facial expressions.
Garcia Quesada, Maria; Antico, Lia; Bavelier, Daphne; Vuilleumier, Patrik; Pichon, Swann
2017-01-01
Both affective states and personality traits shape how we perceive the social world and interpret emotions. The literature on affective priming has mostly focused on brief influences of emotional stimuli and emotional states on perceptual and cognitive processes. Yet this approach does not fully capture more dynamic processes at the root of emotional states, with such states lingering beyond the duration of the inducing external stimuli. Our goal was to put in perspective three different types of affective states (induced affective states, more sustained mood states and affective traits such as depression and anxiety) and investigate how they may interact and influence emotion perception. Here, we hypothesized that absorption into positive and negative emotional episodes generate sustained affective states that outlast the episode period and bias the interpretation of facial expressions in a perceptual decision-making task. We also investigated how such effects are influenced by more sustained mood states and by individual affect traits (depression and anxiety) and whether they interact. Transient emotional states were induced using movie-clips, after which participants performed a forced-choice emotion classification task with morphed facial expressions ranging from fear to happiness. Using a psychometric approach, we show that negative (vs. neutral) clips increased participants’ propensity to classify ambiguous faces as fearful during several minutes. In contrast, positive movies biased classification toward happiness only for those clips perceived as most absorbing. Negative mood, anxiety and depression had a stronger effect than transient states and increased the propensity to classify ambiguous faces as fearful. These results provide the first evidence that absorption and different temporal dimensions of emotions have a significant effect on how we perceive facial expressions. PMID:28151976
Coutellec, Marie-Agnès; Lagadic, Laurent
2006-03-01
Genetic and ecological factors may interact in their effects on fitness. Such interactions are thus to be expected between inbreeding and exposure of a population to a toxicant. The magnitude of inbreeding depression is thought to increase in stressful environments. To test this hypothesis, we investigated the combined effects of environmental conditions and inbreeding on fitness in the self-fertile snail Lymnaea stagnalis, using a stress gradient (0-2) applied to a 100 isolated and paired lineages: laboratory control (0), outdoor microcosm control (1) and pesticide exposure under outdoor microcosm conditions (2). Outdoor stress conditions were maintained for 28 days prior to measurements of fitness traits (fecundity, hatching success, and size at hatching) under laboratory conditions, so that delayed environmental effects could be estimated. Under laboratory control conditions, we found significant initial family level heterogeneity for most measured traits, including physiological performances as assessed through energetic biomarkers. Whatever the environmental conditions, inbreeding depression was very low for progeny performances. Negative values of self-fertilization depression (SFD) were obtained. Unexpectedly, SFD showed a negative relationship with the assumed stress intensity, reflecting a higher sensitivity under pairing than under selfing, mostly due to parental fecundity. This suggests that stressful conditions may favour selfing. Stress intensity increased the distribution limits of both depression indices, suggesting that changes in fitness are less predictable in a population under stress. Implications of such findings for environmental risk assessment of pesticides are discussed.
Alcantara, Suzana; Ree, Richard H.; Martins, Fernando R.; Lohmann, Lúcia G.
2014-01-01
The influence of ecological traits to the distribution and abundance of species is a prevalent issue in biodiversity science. Most studies of plant community assembly have focused on traits related to abiotic aspects or direct interactions among plants, with less attention paid to ignore indirect interactions, as those mediated by pollinators. Here, we assessed the influence of phylogeny, habitat, and floral morphology on ecological community structure in a clade of Neotropical lianas (tribe Bignonieae, Bignoniaceae). Our investigation was guided by the long-standing hypothesis that habitat specialization has promoted speciation in Bignonieae, while competition for shared pollinators influences species co-occurrence within communities. We analyzed a geo-referenced database for 94 local communities occurring across the Neotropics. The effect of floral morphological traits and abiotic variables on species co-occurrence was investigated, taking into account phylogenetic relationships. Habitat filtering seems to be the main process driving community assembly in Bignonieae, with environmental conditions limiting species distributions. Differing specialization to abiotic conditions might have evolved recently, in contrast to the general pattern of phylogenetic clustering found in communities of other diverse regions. We find no evidence that competition for pollinators affects species co-occurrence; instead, pollinator occurrence seems to have acted as an “environmental filter” in some habitats. PMID:24594706
USDA-ARS?s Scientific Manuscript database
Three separate studies were conducted to investigate the life-long effect of creep feeding, creep feeding energy source (soybean hulls, SC, or corn, CC) and interactive effects of creep feed with backgrounding dietary energy source (soybean hulls, SBR, or corn, CBR) on calf growth performance, carca...
A Systems Approach to Diagnostic Prescriptive Instruction.
ERIC Educational Resources Information Center
Kozma, Robert B.; And Others
This five-part document presents three approaches to research on instructional improvement, with the final two sections concentrating on problems and implications for diagnostic prescriptive instruction. Part 1 reviews comparative instructional effectiveness studies. Part 2 discusses the Trait-Treatment Interaction Approach (TTI) which is…
Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.
2013-01-01
The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628
Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.
Burrow, H M
2012-05-01
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.
2010-01-01
Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103
Human Activity Helps Prey Win the Predator-Prey Space Race
Muhly, Tyler B.; Semeniuk, Christina; Massolo, Alessandro; Hickman, Laura; Musiani, Marco
2011-01-01
Predator-prey interactions, including between large mammalian wildlife species, can be represented as a “space race”, where prey try to minimize and predators maximize spatial overlap. Human activity can also influence the distribution of wildlife species. In particular, high-human disturbance can displace large carnivore predators, a trait-mediated direct effect. Predator displacement by humans could then indirectly benefit prey species by reducing predation risk, a trait-mediated indirect effect of humans that spatially decouples predators from prey. The purpose of this research was to test the hypothesis that high-human activity was displacing predators and thus indirectly creating spatial refuge for prey species, helping prey win the “space race”. We measured the occurrence of eleven large mammal species (including humans and cattle) at 43 camera traps deployed on roads and trails in southwest Alberta, Canada. We tested species co-occurrence at camera sites using hierarchical cluster and nonmetric multidimensional scaling (NMS) analyses; and tested whether human activity, food and/or habitat influenced predator and prey species counts at camera sites using regression tree analysis. Cluster and NMS analysis indicated that at camera sites humans co-occurred with prey species more than predator species and predator species had relatively low co-occurrence with prey species. Regression tree analysis indicated that prey species were three times more abundant on roads and trails with >32 humans/day. However, predators were less abundant on roads and trails that exceeded 18 humans/day. Our results support the hypothesis that high-human activity displaced predators but not prey species, creating spatial refuge from predation. High-human activity on roads and trails (i.e., >18 humans/day) has the potential to interfere with predator-prey interactions via trait-mediated direct and indirect effects. We urge scientist and managers to carefully consider and quantify the trait-mediated indirect effects of humans, in addition to direct effects, when assessing human impacts on wildlife and ecosystems. PMID:21399682
Ramos-Robles, Michelle; Dáttilo, Wesley; Díaz-Castelazo, Cecilia; Andresen, Ellen
2018-04-02
Interactions between fleshy fruited plants and frugivores are crucial for the structuring and functioning of biotic communities, particularly in tropical forests where both groups are diverse and play different roles in network organization. However, it remains poorly understood how different groups of frugivore species and fruit traits contribute to network structure. We recorded interactions among 28 plant species and three groups of frugivores (birds, bats, and non-flying mammals) in a seasonal forest in Mexico to determine which species contribute more to network structure and evaluate the importance of each species. We also determined whether fruit abundance, water content, morphology traits, and fruiting phenology are related to network parameters: the number of interactions, species contribution to nestedness, and species strength. We found that plants did not depend on a single group of frugivores, but rather on one species of each group: the bird Pitangus sulphuratus, the bat Sturnira parvidens, and the non-flying mammal Procyon lotor. The abundance, size, and water content of the fruits were significantly related to the contribution to nestedness, number of interactions, and species strength index of plant species. Tree species and birds contributed mainly to the nested structure of the network. We show that the structure of plant-frugivore networks in this seasonal forest is non-random and that fruit traits (i.e., abundance, phenology, size, and water content) are important factors shaping plant-frugivore networks. Identification of the key species and their traits that maintain the complex structure of species interactions is therefore fundamental for the integral conservation of tropical forests.
Fruit Self-Thinning: A Trait to Consider for Genetic Improvement of Apple Tree
Celton, Jean-Marc; Kelner, Jean-Jacques; Martinez, Sébastien; Bechti, Abdel; Khelifi Touhami, Amina; James, Marie José; Durel, Charles-Eric; Laurens, François; Costes, Evelyne
2014-01-01
In apple (Malus×domestica Borkh), as in many fruiting crops, fruit maintenance vs abscission is a major criteria for production profitability. Growers routinely make use of chemical thinning agents to control total fruit load. However, serious threats for the environment lead to the demand for new apple cultivars with self-thinning properties. In this project, we studied the genetic determinism of this trait using a F1 progeny derived from the cross between the hybrid INRA X3263, assumed to possess the self-thinning trait, and the cultivar ‘Belrène’. Both counting and percentage variables were considered to capture the fruiting behaviour on different shoot types and over three consecutive years. Besides low to moderate but significant genetic effects, mixed models showed considerable effects of the year and the shoot type, as well as an interaction effect. Year effect resulted mainly from biennial fruiting. Eight Quantitative Trait Locus (QTL) were detected on several linkage groups (LG), either independent or specific of the year of observation or the shoot type. The QTL with highest LOD value was located on the top third of LG10. The screening of three QTL zones for candidate genes revealed a list of transcription factors and genes involved in fruit nutrition, xylem differentiation, plant responses to starvation and organ abscission that open new avenues for further molecular investigations. The detailed phenotyping performed revealed the dependency between the self-thinning trait and the fruiting status of the trees. Despite a moderate genetic control of the self-thinning trait, QTL and candidate genes were identified which will need further analyses involving other progenies and molecular investigations. PMID:24625529
Trait Anxiety Has Effect on Decision Making under Ambiguity but Not Decision Making under Risk
Zhang, Long; Wang, Kai; Zhu, Chunyan; Yu, Fengqiong; Chen, Xingui
2015-01-01
Previous studies have reported that trait anxiety (TA) affects decision making. However, results remain largely inconsistent across studies. The aim of the current study was to further address the interaction between TA and decision making. 304 subjects without depression from a sample consisting of 642 participants were grouped into high TA (HTA), medium TA (MTA) and low TA (LTA) groups based on their TA scores from State Trait Anxiety Inventory. All subjects were assessed with the Iowa Gambling Task (IGT) that measures decision making under ambiguity and the Game of Dice Task (GDT) that measures decision making under risk. While the HTA and LTA groups performed worse on the IGT compared to the MTA group, performances on the GDT between the three groups did not differ. Furthermore, the LTA and HTA groups showed different individual deck level preferences in the IGT: the former showed a preference for deck B indicating that these subjects focused more on the magnitude of rewards, and the latter showed a preference for deck A indicating significant decision making impairment. Our findings suggest that trait anxiety has effect on decision making under ambiguity but not decision making under risk and different levels of trait anxiety related differently to individual deck level preferences in the IGT. PMID:26000629
Douglas, Angela E.
2014-01-01
The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes. PMID:24242251
DeYoung, Colin G; Cicchetti, Dante; Rogosch, Fred A
2011-08-01
Neuroticism is a personality trait reflecting the tendency to experience negative affect. It is a major risk for psychopathology, especially depression and anxiety disorders. Childhood maltreatment is another major risk factor for psychopathology and may influence personality. Maltreatment may interact with genotype to predict developmental outcomes. Variation in three polymorphisms of the CRHR1 gene has been found to moderate the association of childhood maltreatment with depression, and we hypothesized that it would also be linked to neuroticism. Variation in three CRHR1 SNPs (rs110402, rs242924, rs7209436) was assessed in 339 maltreated and 275 demographically similar nonmaltreated children, who participated in a day camp research program. Maltreated children were further categorized based on the number of types of maltreatment they had experienced and the most severe form of maltreatment experienced. Genotype and maltreatment status were used to predict the Big Five personality traits, as assessed by camp counselors following a week of interaction with children. CRHR1 genotype significantly moderated the association of maltreatment with neuroticism but none of the other traits. Having two copies of the TAT haplotype of CRHR1 was associated with higher levels of neuroticism among maltreated children relative to nonmaltreated children, with the exception of sexually abused children and children who had experienced 3 or 4 types of abuse. Effects sizes of these interactions ranged from η2=.01 (p=.02) to η2=.03 (p=.006). Variation in CRHR1 moderates the association of maltreatment with neuroticism. The effects of specific types of maltreatment on neuroticism are differentially moderated by CRHR1 genotype, as are the effects of experiencing more or fewer types of maltreatment. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.
Vasudeva, R; Deeming, D C; Eady, P E
2014-09-01
The outcome of post-copulatory sexual selection is determined by a complex set of interactions between the primary reproductive traits of two or more males and their interactions with the reproductive traits of the female. Recently, a number of studies have shown the primary reproductive traits of both males and females express phenotypic plasticity in response to the thermal environment experienced during ontogeny. However, how plasticity in these traits affects the dynamics of sperm competition remains largely unknown. Here, we demonstrate plasticity in testes size, sperm size and sperm number in response to developmental temperature in the bruchid beetle Callosobruchus maculatus. Males reared at the highest temperature eclosed at the smallest body size and had the smallest absolute and relative testes size. Males reared at both the high- and low-temperature extremes produced both fewer and smaller sperm than males reared at intermediate temperatures. In the absence of sperm competition, developmental temperature had no effect on male fertility. However, under conditions of sperm competition, males reared at either temperature extreme were less competitive in terms of sperm offence (P(2)), whereas those reared at the lowest temperature were less competitive in terms of sperm defence (P(1)). This suggests the developmental pathways that regulate the phenotypic expression of these ejaculatory traits are subject to both natural and sexual selection: natural selection in the pre-ejaculatory environment and sexual selection in the post-ejaculatory environment. In nature, thermal heterogeneity during development is commonplace. Therefore, we suggest the interplay between ecology and development represents an important, yet hitherto underestimated component of male fitness via post-copulatory sexual selection. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Predator Diversity Effects in an Exotic Freshwater Food Web
Naddafi, Rahmat; Rudstam, Lars G.
2013-01-01
Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity. PMID:23991126
Personality Change following Internet-Based Cognitive Behavior Therapy for Severe Health Anxiety
Hedman, Erik; Andersson, Gerhard; Lindefors, Nils; Gustavsson, Petter; Lekander, Mats; Rück, Christian; Andersson, Erik; Ljótsson, Brjánn
2014-01-01
Personality traits have traditionally been viewed as stable, but recent studies suggest that they could be affected through psychological treatment. Internet-based cognitive behavior therapy (ICBT) for severe health anxiety (DSM-IV hypochondriasis) has been shown to be effective in reducing health anxiety, but its effect on measures of personality traits has not been investigated. The main aim of this study was to investigate the impact of ICBT on personality traits in the three broad dimensions - neuroticism, extraversion and aggression. We hypothesized that participants in ICBT would reduce their level of neuroticism compared to controls that did not receive the active treatment. No specific predictions were made regarding extraversion and aggression. Data from a randomized controlled trial were used in which participants were allocated to 12 weeks of ICBT (n = 40) or to a basic attention control condition (n = 41). Personality traits were assessed with the Swedish Universities Scales of Personality and the primary outcome of health anxiety was the Health Anxiety Inventory. There was a significant interaction effect of group and time on neuroticism-related scales, indicating larger pre- to post-treatment reductions in the Internet-based CBT group compared to the control condition. Analyses at 6-month follow-up showed that changes were stable. Traits relating to extraversion and aggression were largely unchanged. This study is the first to demonstrate that a brief ICBT intervention for severe health anxiety causes long-term changes in measures of personality traits related to neuroticism. The treatment thus has a broader impact than just reducing health anxiety. Trial Registration Clinicaltrials.gov (ID NCT00828152) PMID:25437150
Garland, Eric L.; Carter, Kristin; Ropes, Katie; Howard, Matthew O.
2011-01-01
Abstinent alcohol dependent individuals commonly employ thought suppression to cope with stress and intrusive cognitions about alcohol. This strategy may inadvertently bias attention toward alcohol-related stimuli while depleting neurocognitive resources needed to regulate urges, manifested as decreased heart rate variability (HRV) responsivity to alcohol cues. The present study tested the hypothesis that trait and state thought suppression, impaired regulation of urges, and alcohol attentional bias as measured by the Addiction-Stroop would have significant effects on the HRV responsivity of 58 adults in residential treatment for alcohol dependence (mean age = 39.6 ± 9.4, 81% female) who participated in an affect-modulated cue-reactivity protocol. Regression analyses controlling for age, level of pre-treatment alcohol consumption, and baseline HRV indicated that higher levels of trait thought suppression, impaired regulation of alcohol urges, and attentional fixation on alcohol cues were associated with lower HRV responsivity during stress-primed alcohol cue-exposure. Moreover, there was a significant state X trait suppression interaction on HRV cue-responsivity, such that alcohol dependent persons reporting high levels of state and trait suppression exhibited less HRV during cue-exposure than persons reporting low levels of state and trait suppression. Results suggest that chronic thought suppression taxes regulatory resources reflected in reduced HRV responsivity, an effect that is particularly evident when high trait suppressors engage in intensive suppression of drinking-related thoughts under conditions of stress. Treatment approaches that offer effective alternatives to the maladaptive strategy of suppressing alcohol urges may be crucial for relapse prevention. PMID:21967855
Garland, Eric L; Carter, Kristin; Ropes, Katie; Howard, Matthew O
2012-01-01
Abstinent alcohol dependent individuals commonly employ thought suppression to cope with stress and intrusive cognitions about alcohol. This strategy may inadvertently bias attention towards alcohol-related stimuli while depleting neurocognitive resources needed to regulate urges, manifested as decreased heart rate variability (HRV) responsivity to alcohol cues. The present study tested the hypothesis that trait and state thought suppression, impaired regulation of urges, and alcohol attentional bias as measured by the Addiction-Stroop would have significant effects on the HRV responsivity of 58 adults in residential treatment for alcohol dependence (mean age=39.6 ± 9.4, 81% female) who participated in an affect-modulated cue-reactivity protocol. Regression analyses controlling for age, level of pre-treatment alcohol consumption, and baseline HRV indicated that higher levels of trait thought suppression, impaired regulation of alcohol urges, and attentional fixation on alcohol cues were associated with lower HRV responsivity during stress-primed alcohol cue-exposure. Moreover, there was a significant state × trait suppression interaction on HRV cue-responsivity, such that alcohol dependent persons reporting high levels of state and trait suppression exhibited less HRV during cue-exposure than persons reporting low levels of state and trait suppression. Results suggest that chronic thought suppression taxes regulatory resources reflected in reduced HRV responsivity, an effect that is particularly evident when high trait suppressors engage in intensive suppression of drinking-related thoughts under conditions of stress. Treatment approaches that offer effective alternatives to the maladaptive strategy of suppressing alcohol urges may be crucial for relapse prevention. Copyright © 2011 Elsevier B.V. All rights reserved.
Leenarts, L E W; Dölitzsch, C; Pérez, T; Schmeck, K; Fegert, J M; Schmid, M
2017-01-01
Studies have shown that youths with high psychopathic traits have an earlier onset of delinquent behavior, have higher levels of delinquent behavior, and show higher rates of recidivism than youths with low psychopathic traits. Furthermore, psychopathic traits have received much attention as a robust indicator for delinquent and aggressive behavior in both boys and girls. However, there is a notable lack of research on gender differences in the relationship between psychopathic traits and delinquent behavior. In addition, most of the studies on psychopathic traits and delinquent behavior were conducted in high-risk samples. Therefore, the first objective of the current study was to investigate the relationship between psychopathic traits and specific forms of self-reported delinquency in a high-risk sample for juvenile delinquency as well as in a general population sample. The second objective was to examine the influence of gender on this relationship. Finally, we investigated whether the moderating effect of gender was comparable in the high-risk sample for juvenile delinquency and the general population sample. Participants were 1220 adolescents of the German-speaking part of Switzerland (N = 351 high-risk sample, N = 869 general population sample) who were between 13 and 21 years of age. The Youth Psychopathic traits Inventory (YPI) was used to assess psychopathic traits. To assess the lifetime prevalence of the adolescents' delinquent behavior, 15 items derived from a self-report delinquency instrument were used. Logistic regression analyses were used to examine the relationship between gender, psychopathic traits and self-reported delinquency across both samples. Our results demonstrated that psychopathic traits are related to non-violent and violent offenses. We found no moderating effect of gender and therefore we could not detect differences in the moderating effect of gender between the samples. However, there was a moderating effect of sample for the relationship between the callous and unemotional YPI scale and non-violent offenses. In addition, the regression weights of gender and sample were, for non-violent offenses, reduced to non-significance when adding the interaction terms. Psychopathic traits were found to be present in a wide range of youths (i.e., high-risk as well as general population sample, young children as well as adolescents, boys as well as girls) and were related to delinquent behavior. The influence of age and YPI scales on self-reported delinquency was more robust than the influence of gender and sample. Therefore, screening for psychopathic traits among young children with psychosocial adjustment problems seems relevant for developing effective intervention strategies.
Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation.
Spronk, Desirée B; De Bruijn, Ellen R A; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J
2016-11-01
Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of impulsivity and novelty seeking. This study investigated the effects of cocaine and cannabis on behavioural and event-related potential (ERP) correlates of response inhibition in 38 healthy drug using volunteers. A double-blind placebo-controlled randomized three-way crossover design was used. All subjects completed a standard Go/NoGo task after administration of the drugs. Compared with a placebo, cocaine yielded improved accuracy, quicker reaction times and an increased prefrontal NoGo-P3 ERP. Cannabis produced opposing results; slower reaction times, impaired accuracy and a reduction in the amplitude of the prefrontal NoGo-P3. Cannabis in addition decreased the amplitude of the parietally recorded P3, while cocaine did not affect this. Neither drugs specifically affected the N2 component, suggesting that pre-motor response inhibitory processes remain unaffected. Neither trait impulsivity nor novelty seeking interacted with drug-induced effects on measures of response inhibition. We conclude that acute drug effects on response inhibition seem to be specific to the later, evaluative stages of response inhibition. The acute effects of cannabis appeared less specific to response inhibition than those of cocaine. Together, the results show that the behavioural effects on response inhibition are reflected in electrophysiological correlates. This study did not support a substantial role of vulnerability personality traits in the acute intoxication stage. © 2015 Society for the Study of Addiction.
USDA-ARS?s Scientific Manuscript database
Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...
USDA-ARS?s Scientific Manuscript database
We provide here a comparative genome analysis of the Pseudomonas fluorescens group, including seven new genomic sequences for plant-associated strains. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and ins...
Parasitism and the biodiversity-functioning relationship
Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.
2018-01-01
Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.
Rahm-Knigge, Ryan L; Prince, Mark A; Conner, Bradley T
2018-06-01
Individuals with social interaction anxiety, a facet of social anxiety disorder, withdraw from or avoid social encounters and generally avoid risks. However, a subset engages in health risk sexual behavior (HRSB). Because sensation seeking, emotion dysregulation, and impulsivity predict engagement in HRSB among adolescents and young adults, the present study hypothesized that latent classes of social interaction anxiety and these personality traits would differentially predict likelihood of engagement in HRSB. Finite mixture modeling was used to discern four classes: two low social interaction anxiety classes distinguished by facets of emotion dysregulation, positive urgency, and negative urgency (Low SIAS High Urgency and Low SIAS Low Urgency) and two high social interaction anxiety classes distinguished by positive urgency, negative urgency, risk seeking, and facets of emotion dysregulation (High SIAS High Urgency and High SIAS Low Urgency). HRSB were entered into the model as auxiliary distal outcomes. Of importance to this study were findings that the High SIAS High Urgency class was more likely to engage in most identified HRSB than the High SIAS Low Urgency class. This study extends previous findings on the heterogeneity of social interaction anxiety by identifying the effects of social interaction anxiety and personality on engagement in HRSB. Copyright © 2018 Elsevier Ltd. All rights reserved.
Divergent morphological and acoustic traits in sympatric communities of Asian barbets
Tamma, Krishnapriya
2016-01-01
The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589
Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W
2007-08-01
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.
Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja
2017-02-01
UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.
Winham, S J; Cuellar-Barboza, A B; Oliveros, A; McElroy, S L; Crow, S; Colby, C; Choi, D-S; Chauhan, M; Frye, M; Biernacka, J M
2014-09-01
Bipolar disorder (BD) is associated with higher body mass index (BMI) and increased metabolic comorbidity. Considering the associated phenotypic traits in genetic studies of complex diseases, either by adjusting for covariates or by investigating interactions between genetic variants and covariates, may help to uncover the missing heritability. However, obesity-related traits have not been incorporated in prior genome-wide analyses of BD as covariates or potential interacting factors. To investigate the genetic factors underlying BD while considering BMI, we conducted genome-wide analyses using data from the Genetic Association Information Network BD study. We analyzed 729,454 genotyped single-nucleotide polymorphism (SNP) markers on 388 European-American BD cases and 1020 healthy controls with available data for maximum BMI. We performed genome-wide association analyses of the genetic effects while accounting for the effect of maximum BMI, and also evaluated SNP-BMI interactions. A joint test of main and interaction effects demonstrated significant evidence of association at the genome-wide level with rs12772424 in an intron of TCF7L2 (P=2.85E-8). This SNP exhibited interaction effects, indicating that the bipolar susceptibility risk of this SNP is dependent on BMI. TCF7L2 codes for the transcription factor TCF/LF, part of the Wnt canonical pathway, and is one of the strongest genetic risk variants for type 2 diabetes (T2D). This is consistent with BD pathophysiology, as the Wnt pathway has crucial implications in neurodevelopment, neurogenesis and neuroplasticity, and is involved in the mechanisms of action of BD and depression treatments. We hypothesize that genetic risk for BD is BMI dependent, possibly related to common genetic risk with T2D.
Shame, pride, and suicidal ideation in a military clinical sample.
Bryan, Craig J; Ray-Sannerud, Bobbie; Morrow, Chad E; Etienne, Neysa
2013-05-01
Suicide risk among U.S. military personnel has been increasing over the past decade. Fluid vulnerability theory (FVT; Rudd, 2006) posits that acute suicidal episodes increase in severity when trait-based (e.g., shame) and state-based (e.g., hopelessness) risk factors interact, especially among individuals who have been previously suicidal. In contrast, trait-based protective factors (e.g., pride) should buffer the deleterious effects of risk factors. 77 active duty military personnel (95% Air Force; 58.4% male, 39.0% female; 67.5% Caucasian, 19.5% African-American, 1.3% Native American, 1.3% Native Hawaiian/Pacific Islander, 1.3% Asian, and 5.2% other) engaged in outpatient mental health treatment completed self-report surveys of shame, hopelessness, pride, and suicidal ideation. Multiple generalized regression was utilized to test the associations and interactive effects of shame, hopelessness, and worst-point past suicidal ideation on severity of current suicidal ideation. Shame significantly interacted with hopelessness (B=-0.013, SE=0.004, p<0.001) and worst-point suicidal ideation (B=0.027, SE=0.010, p=0.010), augmenting each variable's effect on severity of current suicidal ideation. A significant three-way interaction among shame, worst-point suicidal ideation, and pride was also observed (B=-0.010, SE=0.0043, p=0.021), indicating that pride buffered the interactive effects of shame with worst-point suicidal ideation. Small sample size, cross-sectional design, and primarily Air Force sample. Among military outpatients with histories of severe suicidal episodes, pride buffers the effects of hopelessness on current suicidal ideation. Results are consistent with FVT. Copyright © 2013 Elsevier B.V. All rights reserved.
Truzzi, Anna; Setoh, Peipei; Shinohara, Kazuyuki; Esposito, Gianluca
2016-10-15
Autistic traits are distributed on a continuum that ranges from non-clinical to clinical condition. Atypical responses to social situations represent a core feature of the Autism Spectrum Disorders phenotype. Here, we hypothesize that atypical physiological responses to social stimuli may predict non-clinical autistic and empathy traits levels. We measured physiological responses (heart rate, facial temperature) of 40 adults (20F) while showing them 24 movies representing dyadic interactions. Autistic traits were assessed through Autism Quotient questionnaire (AQ), while empathy traits were measured using the Empathy Quotient questionnaire (EQ). Opposite correlations between AQ and EQ scores and physiological responses were found. Analysis of physiological responses revealed that individuals with better social abilities, low AQ and high EQ, show opposite activation patterns compared to people with high AQ and low EQ. Findings show that physiological responses could be biomarkers for people's autistic traits and social abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Evans, Jonathan P; Simmons, Leigh W
2008-09-01
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.
MacNeil, Sasha; Deschênes, Sonya S; Caldwell, Warren; Brouillard, Melanie; Dang-Vu, Thien-Thanh; Gouin, Jean-Philippe
2017-12-01
High-frequency heart rate variability (HF-HRV) reactivity was proposed as a vulnerability factor for stress-induced sleep disturbances. Its effect may be amplified among individuals with high trait worry or sleep reactivity. This study evaluated whether HF-HRV reactivity to a worry induction, sleep reactivity, and trait worry predict increases in sleep disturbances in response to academic stress, a naturalistic stressor. A longitudinal study following 102 undergraduate students during an academic semester with well-defined periods of lower and higher academic stress was conducted. HF-HRV reactivity to a worry induction, trait worry using the Penn State Worry Questionnaire, and sleep reactivity using the Ford Insomnia Stress Reactivity Test were measured during the low stress period. Sleep disturbances using the Pittsburgh Sleep Quality Index were assessed twice during the lower stress period and three times during the higher stress period. Greater reductions in HF-HRV in response to the worry induction predicted increases in sleep disturbances from the lower to the higher academic stress period. Trait worry moderated this association: individuals with both higher trait worry and greater HF-HRV reactivity to worry had larger increases in stress-related sleep disturbances over time, compared to participants with lower trait worry and HF-HRV reactivity. A similar, but marginally significant effect was found for sleep reactivity. This study supports the role of HF-HRV reactivity as a vulnerability factor for stress-induced sleep disturbances. The combination of high trait worry and high HF-HRV reactivity to worry might identify a subgroup of individuals most vulnerable to stress-related sleep disturbances.
Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster
Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José
2016-01-01
Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710
USDA-ARS?s Scientific Manuscript database
The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...
Salisbury, Sarah J; McCracken, Gregory R; Keefe, Donald; Perry, Robert; Ruzzante, Daniel E
2016-09-01
Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration-drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T-Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature. © 2016 John Wiley & Sons Ltd.
Evaluation and comparison of insulation efficiency of three enhancer-blocking insulators in plants
USDA-ARS?s Scientific Manuscript database
Enhancer-promoter interactions potentially compromise the precise engineering of gene function and agronomically important traits in crops, which demands the adoption of strong, effective enhancer-blocking insulators to block such communication in a transgene construct. In this study, we evaluated ...
Parenting and social competence in school: The role of preadolescents' personality traits.
Lianos, Panayiotis G
2015-06-01
In a study of 230 preadolescent students (mean age 11.3 years) from the wider area of Athens, Greece, the role of Big Five personality traits (i.e. Neuroticism, Conscientiousness, Openness to Experience, Agreeableness and Extraversion) in the relation between parenting dimensions (overprotection, emotional warmth, rejection, anxious rearing) and social competence in school was examined. Multiple sets of regression analyses were performed. Main effects of Conscientiousness and Openness to Experience were identified. Limited evidence for moderation and some support of gender-specific parenting was found. Agreeableness and Extraversion interacted with paternal overprotection, whereas Neuroticism interacted with maternal and paternal rejection in predicting social competence. Mean differences in gender and educational grade were reported. The relationship between environmental effects (such as parenting during early adolescence) and social adjustment in school is discussed in terms of the plasticity and malleability of the preadolescents' personality characteristics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy
2014-01-01
A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments. PMID:25478157
Jang, Yikweon; Hahm, Eun Hye; Lee, Hyun-Jung; Park, Soyeon; Won, Yong-Jin; Choe, Jae C.
2011-01-01
Background In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation. Methodology We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length. Results The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters. Conclusions Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene flow. PMID:21858061
Garza-Brenner, E; Sifuentes-Rincón, A M; Randel, R D; Paredes-Sánchez, F A; Parra-Bracamonte, G M; Arellano Vera, W; Rodríguez Almeida, F A; Segura Cabrera, A
2017-08-01
Cattle temperament is a complex trait, and molecular studies aimed at defining this trait are scarce. We used an interaction networks approach to identify new genes (interacting genes) and to estimate their effects and those of 19 dopamine- and serotonin-related genes on the temperament traits of Charolais cattle. The genes proopiomelanocortin (POMC), neuropeptide Y (NPY), solute carrier family 18, member 2 (SLC18A2) and FBJ murine osteosarcoma viral oncogene homologue (FOSFBJ) were identified as new candidates. Their potential to be associated with temperament was estimated according to their reported biological activities, which included interactions with neural activity, receptor function, targeting or synthesis of neurotransmitters and association with behaviour. Pen score (PS) and exit velocity (EV) measures were determined from 412 Charolais cows to calculate their temperament score (TS). Based on the TS, calm (n = 55; TS, 1.09 ± 0.33) and temperamental (n = 58; TS, 2.27 ± 0.639) cows were selected and genotyped using a 248 single-nucleotide variation (SNV) panel. Of the 248 variations in the panel, only 151 were confirmed to be polymorphic (single-nucleotide polymorphisms; SNPs) in the tested population. Single-marker association analyses between genotypes and temperament measures (EV, PS and/or TS) indicated significant associations of six SNPs from four candidate genes. The markers rs109576799 and rs43696138, located in the DRD3 and HTR2A genes, respectively, were significantly associated with both EV and TS traits. Four markers, rs110365063 and rs137756569 from the POMC gene and rs110365063 and rs135155082 located in SLC18A2 and DRD2, respectively, were associated with PS. The variant rs110365063 located in bovine SLC18A2 causes a change in the amino acid sequence from Ala to Thr. Further studies are needed to confirm the association of genetic profile with cattle temperament; however, our study represents important progress in understanding the regulation of cattle temperament by different genes with divergent functions.
Cayetano, L; Bonduriansky, R
2015-07-01
Theory predicts that costly secondary sexual traits will evolve heightened condition dependence, and many studies have reported strong condition dependence of signal and weapon traits in a variety of species. However, although genital structures often play key roles in intersexual interactions and appear to be subject to sexual or sexually antagonistic selection, few studies have examined the condition dependence of genital structures, especially in both sexes simultaneously. We investigated the responses of male and female genital structures to manipulation of larval diet quality (new versus once-used mung beans) in the bruchid seed beetle Callosobruchus maculatus. We quantified effects on mean relative size and static allometry of the male aedeagus, aedeagal spines, flap and paramere and the female reproductive tract and bursal spines. None of the male traits showed a significant effect of diet quality. In females, we found that longer bursal spines (relative to body size) were expressed on low-quality diet. Although the function of bursal spines is poorly understood, we suggest that greater bursal spine length in low-condition females may represent a sexually antagonistic adaptation. Overall, we found no evidence that genital traits in C. maculatus are expressed to a greater extent when nutrients are more abundant. This suggests that, even though some genital traits appear to function as secondary sexual traits, genital traits do not exhibit heightened condition dependence in this species. We discuss possible reasons for this finding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Bontrager, Megan; Angert, Amy L
2016-01-01
Plant mating systems and geographic range limits are conceptually linked by shared underlying drivers, including landscape-level heterogeneity in climate and in species' abundance. Studies of how geography and climate interact to affect plant traits that influence mating system and population dynamics can lend insight to ecological and evolutionary processes shaping ranges. Here, we examined how spatiotemporal variation in climate affects reproductive output of a mixed-mating annual, Clarkia pulchella. We also tested the effects of population isolation and climate on mating-system-related floral traits across the range. We measured reproductive output and floral traits on herbarium specimens collected across the range of C. pulchella. We extracted climate data associated with specimens and derived a population isolation metric from a species distribution model. We then examined how predictors of reproductive output and floral traits vary among populations of increasing distance from the range center. Finally, we tested whether reproductive output and floral traits vary with increasing distance from the center of the range. Reproductive output decreased as summer precipitation decreased, and low precipitation may contribute to limiting the southern and western range edges of C. pulchella. High spring and summer temperatures are correlated with low herkogamy, but these climatic factors show contrasting spatial patterns in different quadrants of the range. Limiting factors differ among different parts of the range. Due to the partial decoupling of geography and environment, examining relationships between climate, reproductive output, and mating-system-related floral traits reveals spatial patterns that might be missed when focusing solely on geographic position. © 2016 Botanical Society of America.
There is more to pollinator-mediated selection than pollen limitation.
Sletvold, Nina; Agren, Jon
2014-07-01
Spatial variation in pollinator-mediated selection (Δβpoll ) is a major driver of floral diversification, but we lack a quantitative understanding of its link to pollen limitation (PL) and net selection on floral traits. For 2-5 years, we quantified Δβpoll on floral traits in two populations each of two orchid species differing in PL. In both species, spatiotemporal variation in Δβpoll explained much of the variation in net selection. Selection was consistently stronger and the proportion that was pollinator-mediated was higher in the severely pollen-limited deceptive species than in the rewarding species. Within species, variation in PL could not explain variation in Δβpoll for any trait, indicating that factors influencing the functional relationship between trait variation and pollination success govern a major part of the observed variation in Δβpoll . Separating the effects of variation in mean interaction intensity and in the functional significance of traits will be necessary to understand spatiotemporal variation in selection exerted by the biotic environment. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Kunstler, Georges; Lavergne, Sébastien; Courbaud, Benoît; Thuiller, Wilfried; Vieilledent, Ghislain; Zimmermann, Niklaus E; Kattge, Jens; Coomes, David A
2012-08-01
The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view. © 2012 Blackwell Publishing Ltd/CNRS.
Additive-Multiplicative Approximation of Genotype-Environment Interaction
Gimelfarb, A.
1994-01-01
A model of genotype-environment interaction in quantitative traits is considered. The model represents an expansion of the traditional additive (first degree polynomial) approximation of genotypic and environmental effects to a second degree polynomial incorporating a multiplicative term besides the additive terms. An experimental evaluation of the model is suggested and applied to a trait in Drosophila melanogaster. The environmental variance of a genotype in the model is shown to be a function of the genotypic value: it is a convex parabola. The broad sense heritability in a population depends not only on the genotypic and environmental variances, but also on the position of the genotypic mean in the population relative to the minimum of the parabola. It is demonstrated, using the model, that GXE interaction rectional may cause a substantial non-linearity in offspring-parent regression and a reversed response to directional selection. It is also shown that directional selection may be accompanied by an increase in the heritability. PMID:7896113
Linkage mapping of beta 2 EEG waves via non-parametric regression.
Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore
2003-04-01
Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.
Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal
2016-04-01
The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.
The relationship of post-event processing to self-evaluation of performance in social anxiety.
Brozovich, Faith; Heimberg, Richard G
2011-06-01
Socially anxious and control participants engaged in a social interaction with a confederate and then wrote about themselves or the other person (i.e., self-focused post-event processing [SF-PEP] vs. other-focused post-event processing [OF-PEP]) and completed several questionnaires. One week later, participants completed measures concerning their evaluation of their performance in the social interaction and the degree to which they engaged in post-event processing (PEP) during the week. Socially anxious individuals evaluated their performance in the social interaction more poorly than control participants, both immediately after and 1 week later. Socially anxious individuals assigned to the SF-PEP condition displayed fewer positive feelings about their performance compared to the socially anxious individuals in the OF-PEP condition as well as controls in either condition. Also, the trait tendency to engage in PEP moderated the effect of social anxiety on participants' evaluation of their performance in the interaction, such that high socially anxious individuals with high trait PEP scores evaluated themselves in the interaction more negatively at the later assessment. These results suggest that PEP and other self-evaluative processes may perpetuate the cycle of social anxiety. Copyright © 2011. Published by Elsevier Ltd.
Effects of parent loss: interaction with family size and sibling order.
Sklar, A D; Harris, R F
1985-06-01
The authors studied the effect of parent loss during the first 18 years of life and its interactions with family size and sibling order in a nonpsychiatric population of 247 men. Groups defined by loss type, family size, and sibling order were compared using MMPI scale scores. The results strongly suggest that parent loss and family size and their interaction have an important impact on adult personality traits as measured by MMPI scores. The strong adverse impact of intermittent loss and temporary loss in large families (much greater than that of permanent loss) is a crucial finding not previously noted in the literature.
Meffert, Harma; Thornton, Laura C; Tyler, Patrick M; Botkin, Mary L; Erway, Anna K; Kolli, Venkata; Pope, Kayla; White, Stuart F; Blair, R James R
2018-02-12
Previous work has shown that amygdala responsiveness to fearful expressions is inversely related to level of callous-unemotional (CU) traits (i.e. reduced guilt and empathy) in youth with conduct problems. However, some research has suggested that the relationship between pathophysiology and CU traits may be different in those youth with significant prior trauma exposure. In experiment 1, 72 youth with varying levels of disruptive behavior and trauma exposure performed a gender discrimination task while viewing morphed fear expressions (0, 50, 100, 150 fear) and Blood Oxygenation Level Dependent responses were recorded. In experiment 2, 66 of these youth performed the Social Goals Task, which measures self-reports of the importance of specific social goals to the participant in provoking social situations. In experiment 1, a significant CU traits-by-trauma exposure interaction was observed within right amygdala; fear intensity-modulated amygdala responses negatively predicted CU traits for those youth with low levels of trauma but positively predicted CU traits for those with high levels of trauma. In experiment 2, a bootstrapped model revealed that the indirect effect of fear intensity amygdala response on social goal importance through CU traits is moderated by prior trauma exposure. This study, while exploratory, indicates that the pathophysiology associated with CU traits differs in youth as a function of prior trauma exposure. These data suggest that prior trauma exposure should be considered when evaluating potential interventions for youth with high CU traits.
Modelling the co-evolution of indirect genetic effects and inherited variability.
Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter
2018-03-28
When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.
Assessment of gene-by-sex interaction effect on bone mineral density.
Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M; Amin, Najaf; Evangelou, Evangelos; Li, Guo; Minster, Ryan L; Carless, Melanie A; Kammerer, Candace M; Oei, Ling; Zhou, Yanhua; Alonso, Nerea; Dailiana, Zoe; Eriksson, Joel; García-Giralt, Natalia; Giroux, Sylvie; Husted, Lise Bjerre; Khusainova, Rita I; Koromila, Theodora; Kung, Annie Waichee; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Richards, J Brent; Sham, Pak Chung; Spector, Timothy; Vandenput, Liesbeth; Xiao, Su-Mei; Zheng, Hou-Feng; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Frost, Morten; Goltzman, David; González-Macías, Jesús; Karlsson, Magnus; Khusnutdinova, Elza K; Kollia, Panagoula; Langdahl, Bente Lomholt; Ljunggren, Osten; Lorentzon, Mattias; Marc, Janja; Mellström, Dan; Ohlsson, Claes; Olmos, José M; Ralston, Stuart H; Riancho, José A; Rousseau, François; Urreizti, Roser; Van Hul, Wim; Zarrabeitia, María T; Castano-Betancourt, Martha; Demissie, Serkalem; Grundberg, Elin; Herrera, Lizbeth; Kwan, Tony; Medina-Gómez, Carolina; Pastinen, Tomi; Sigurdsson, Gunnar; Thorleifsson, Gudmar; Vanmeurs, Joyce Bj; Blangero, John; Hofman, Albert; Liu, Yongmei; Mitchell, Braxton D; O'Connell, Jeffrey R; Oostra, Ben A; Rotter, Jerome I; Stefansson, Kari; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Thorsteinsdottir, Unnur; Tylavsky, Frances A; Uitterlinden, Andre; Cauley, Jane A; Harris, Tamara B; Ioannidis, John Pa; Psaty, Bruce M; Robbins, John A; Zillikens, M Carola; Vanduijn, Cornelia M; Prince, Richard L; Karasik, David; Rivadeneira, Fernando; Kiel, Douglas P; Cupples, L Adrienne; Hsu, Yi-Hsiang
2012-10-01
Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p < 1 × 10(-5) ) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 and p = 3.0 × 10(-5) ; female effect = -0.007 and p = 3.3 × 10(-2) ), and 11 suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (p < 5 × 10(-8) ) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found to influence BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. © 2012 American Society for Bone and Mineral Research. Copyright © 2012 American Society for Bone and Mineral Research.
Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.
Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.
Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice
Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study. PMID:24415945
Ecological interactions and the Netflix problem.
Desjardins-Proulx, Philippe; Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species' phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species' interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species' interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.
Ecological interactions and the Netflix problem
Laigle, Idaline; Poisot, Timothée; Gravel, Dominique
2017-01-01
Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species. PMID:28828250
Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.
De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H
2016-06-01
Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers.
Zhu, Dan; Zhou, Gang; Xu, Caiguo; Zhang, Qifa
2016-02-20
Utilization of heterosis has greatly contributed to rice productivity in China and many Asian countries. Superior hybrids usually show heterosis at two stages: canopy development at vegetative stage and panicle development at reproductive stage resulting in heterosis in yield. Although the genetic basis of heterosis in rice has been extensively investigated, all the previous studies focused on yield traits at maturity stage. In this study, we analyzed the genetic basis of heterosis at seedling stage making use of an "immortalized F2" population composed of 105 hybrids produced by intercrossing recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of Shanyou 63, which is an elite hybrid widely grown in China. Eight seedling traits, seedling height, tiller number, leaf number, root number, maximum root length, root dry weight, shoot dry weight and total dry weight, were investigated using hydroponic culture. We analyzed single-locus and digenic genetic effects at the whole genome level using an ultrahigh-density SNP bin map obtained by population re-sequencing. The analysis revealed large numbers of heterotic effects for seedling traits including dominance, overdominance and digenic dominance (epistasis) in both positive and negative directions. Overdominance effects were prevalent for all the traits, and digenic dominance effects also accounted for a large portion of the genetic effects. The results suggested that cumulative small advantages of the single-locus effects and two-locus interactions, most of which could not be detected statistically, could explain the genetic basis of seedling heterosis of the F1 hybrid. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Nadeau, Christopher P.; Fuller, Angela K.
2016-01-01
Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.
NASA Astrophysics Data System (ADS)
Tai, X.; Mackay, D. S.
2015-12-01
Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.
NASA Astrophysics Data System (ADS)
Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.
2017-12-01
Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (P<0.01). The Wild and Old genotype had a more positive response to compost for root length and diameter, N-cycling enzyme activities, microbial biomass, and soil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts should consider incorporating root traits of older genotypes to better support the beneficial interactions between crop roots and their rhizosphere microbiome.
Seddigh, Aram; Berntson, Erik; Platts, Loretta G; Westerlund, Hugo
2016-01-01
This study investigates the joint effect of office type (cell, shared room, open-plan, and flex) and personality, measured by the Big Five personality traits, on self-rated measures of distraction, job satisfaction, and job performance (measured by professional efficacy). Regression analyses with interactions between personality and office type were conducted on 1205 participants working in 5 organizations from both the private and public sectors. While few interactions were observed in the cases of professional efficacy and job satisfaction, several were observed between personality traits and office type on the level of distraction reported. Specifically, more emotionally stable participants reported lower distraction, particularly those working in flex offices. Both agreeableness and openness to experience were associated with higher levels of distraction among participants in open-plan compared to cell offices.
Seddigh, Aram; Berntson, Erik; Platts, Loretta G.; Westerlund, Hugo
2016-01-01
This study investigates the joint effect of office type (cell, shared room, open-plan, and flex) and personality, measured by the Big Five personality traits, on self-rated measures of distraction, job satisfaction, and job performance (measured by professional efficacy). Regression analyses with interactions between personality and office type were conducted on 1205 participants working in 5 organizations from both the private and public sectors. While few interactions were observed in the cases of professional efficacy and job satisfaction, several were observed between personality traits and office type on the level of distraction reported. Specifically, more emotionally stable participants reported lower distraction, particularly those working in flex offices. Both agreeableness and openness to experience were associated with higher levels of distraction among participants in open-plan compared to cell offices. PMID:27223898
Social evolution and genetic interactions in the short and long term.
Van Cleve, Jeremy
2015-08-01
The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Genetic marker effects and interactions are estimated with poor precision when minor marker allele frequencies are low. An Angus population was subjected to marker assisted selection for multiple years to increase divergent haplotype and minor marker allele frequencies to 1) estimate effect size an...