Sample records for transcriptome uncovers unique

  1. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures

    PubMed Central

    Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.

    2017-01-01

    Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719

  2. Cell type transcriptome atlas for the planarian Schmidtea mediterranea.

    PubMed

    Fincher, Christopher T; Wurtzel, Omri; de Hoog, Thom; Kravarik, Kellie M; Reddien, Peter W

    2018-05-25

    The transcriptome of a cell dictates its unique cell type biology. We used single-cell RNA sequencing to determine the transcriptomes for essentially every cell type of a complete animal: the regenerative planarian Schmidtea mediterranea. Planarians contain a diverse array of cell types, possess lineage progenitors for differentiated cells (including pluripotent stem cells), and constitutively express positional information, making them ideal for this undertaking. We generated data for 66,783 cells, defining transcriptomes for known and many previously unknown planarian cell types and for putative transition states between stem and differentiated cells. We also uncovered regionally expressed genes in muscle, which harbors positional information. Identifying the transcriptomes for potentially all cell types for many organisms should be readily attainable and represents a powerful approach to metazoan biology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Cross-disease transcriptomics: Unique IL-17A signaling in psoriasis lesions and an autoimmune PBMC signature

    PubMed Central

    Sarkar, Mrinal K.; Liang, Yun; Xing, Xianying; Gudjonsson, Johann E.

    2016-01-01

    Transcriptome studies of psoriasis have identified robust changes in mRNA expression through large-scale analysis of patient cohorts. These studies, however, have analyzed all mRNA changes in aggregate, without distinguishing between disease-specific and non-specific differentially expressed genes (DEGs). In this study, RNA-seq meta-analysis was used to identify (1) psoriasis-specific DEGs altered in few diseases besides psoriasis and (2) non-specific DEGs similarly altered in many other skin conditions. We show that few cutaneous DEGs are psoriasis-specific and that the two DEG classes differ in their cell type and cytokine associations. Psoriasis-specific DEGs are expressed by keratinocytes and induced by IL-17A, whereas non-specific DEGs are expressed by inflammatory cells and induced by IFN-gamma and TNF. PBMC-derived DEGs were more psoriasis-specific than cutaneous DEGs. Nonetheless, PBMC DEGs associated with MHC class I and NK cells were commonly downregulated in psoriasis and other autoimmune diseases (e.g., multiple sclerosis, sarcoidosis and juvenile rheumatoid arthritis). These findings demonstrate “cross-disease” transcriptomics as an approach to gain insights into the cutaneous and non-cutaneous psoriasis transcriptomes. This highlighted unique contributions of IL-17A to the cytokine network and uncovered a blood-based gene signature that links psoriasis to other diseases of autoimmunity. PMID:27206706

  4. Advanced Applications of Next-Generation Sequencing Technologies to Orchid Biology.

    PubMed

    Yeh, Chuan-Ming; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2018-01-01

    Next-generation sequencing technologies are revolutionizing biology by permitting, transcriptome sequencing, whole-genome sequencing and resequencing, and genome-wide single nucleotide polymorphism profiling. Orchid research has benefited from this breakthrough, and a few orchid genomes are now available; new biological questions can be approached and new breeding strategies can be designed. The first part of this review describes the unique features of orchid biology. The second part provides an overview of the current next-generation sequencing platforms, many of which are already used in plant laboratories. The third part summarizes the state of orchid transcriptome and genome sequencing and illustrates current achievements. The genetic sequences currently obtained will not only provide a broad scope for the study of orchid biology, but also serves as a starting point for uncovering the mystery of orchid evolution.

  5. The role of saliva in tick feeding.

    PubMed

    Francischetti, Ivo M B; Sa-Nunes, Anderson; Mans, Ben J; Santos, Isabel M; Ribeiro, Jose M C

    2009-01-01

    When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.

  6. N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes.

    PubMed

    Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A

    2017-05-24

    Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.

  7. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states

    PubMed Central

    Jang, Sumin; Choubey, Sandeep; Furchtgott, Leon; Zou, Ling-Nan; Doyle, Adele; Menon, Vilas; Loew, Ethan B; Krostag, Anne-Rachel; Martinez, Refugio A; Madisen, Linda; Levi, Boaz P; Ramanathan, Sharad

    2017-01-01

    The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI: http://dx.doi.org/10.7554/eLife.20487.001 PMID:28296635

  8. Molecular characteristics of the KCNJ5 mutated aldosterone-producing adenomas.

    PubMed

    Murakami, Masanori; Yoshimoto, Takanobu; Nakabayashi, Kazuhiko; Nakano, Yujiro; Fukaishi, Takahiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Okamura, Kohji; Fujii, Yasuhisa; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2017-10-01

    The pathophysiology of aldosterone-producing adenomas (APAs) has been investigated via genetic approaches and the pathogenic significance of a series of somatic mutations, including KCNJ5 , has been uncovered. However, how the mutational status of an APA is associated with its molecular characteristics, including its transcriptome and methylome, has not been fully understood. This study was undertaken to explore the molecular characteristics of APAs, specifically focusing on APAs with KCNJ5 mutations as opposed to those without KCNJ5 mutations, by comparing their transcriptome and methylome status. Cortisol-producing adenomas (CPAs) were used as reference. We conducted transcriptome and methylome analyses of 29 APAs with KCNJ5 mutations, 8 APAs without KCNJ5 mutations and 5 CPAs. Genome-wide gene expression and CpG methylation profiles were obtained from RNA and DNA samples extracted from these 42 adrenal tumors. Cluster analysis of the transcriptome and methylome revealed molecular heterogeneity in APAs depending on their mutational status. DNA hypomethylation and gene expression changes in Wnt signaling and inflammatory response pathways were characteristic of APAs with KCNJ5 mutations. Comparisons between transcriptome data from our APAs and that from normal adrenal cortex obtained from the Gene Expression Omnibus suggested similarities between APAs with KCNJ5 mutations and zona glomerulosa. The present study, which is based on transcriptome and methylome analyses, indicates the molecular heterogeneity of APAs depends on their mutational status. Here, we report the unique characteristics of APAs with KCNJ5 mutations. © 2017 Society for Endocrinology.

  9. CEM-designer: design of custom expression microarrays in the post-ENCODE Era.

    PubMed

    Arnold, Christian; Externbrink, Fabian; Hackermüller, Jörg; Reiche, Kristin

    2014-11-10

    Microarrays are widely used in gene expression studies, and custom expression microarrays are popular to monitor expression changes of a customer-defined set of genes. However, the complexity of transcriptomes uncovered recently make custom expression microarray design a non-trivial task. Pervasive transcription and alternative processing of transcripts generate a wealth of interweaved transcripts that requires well-considered probe design strategies and is largely neglected in existing approaches. We developed the web server CEM-Designer that facilitates microarray platform independent design of custom expression microarrays for complex transcriptomes. CEM-Designer covers (i) the collection and generation of a set of unique target sequences from different sources and (ii) the selection of a set of sensitive and specific probes that optimally represents the target sequences. Probe design itself is left to third party software to ensure that probes meet provider-specific constraints. CEM-Designer is available at http://designpipeline.bioinf.uni-leipzig.de. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle

    PubMed Central

    2011-01-01

    The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23 632 bovine genes were expressed in the fundic abomasum. Of these, 13 758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427) with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%), Complement C3 (0.7%), and Immunoglobulin J chain (0.5%) were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR < 5%). Among the 94 224 splice junctions identified, 133 were uniquely present: 90 were observed only in resistant animals, and 43 were present only in susceptible animals. Gene Ontology (GO) enrichment of the genes under study uncovered an association with lipid metabolism, which was confirmed by an independent pathway analysis. Several pathways, such as FXR/RXR activation, LXR/RXR activation, LPS/IL-1 mediated inhibition of RXR function, and arachidonic acid metabolism, were impacted in resistant animals, which are potentially involved in the development of parasite resistance in cattle. Our results provide insights into the development of host immunity to gastrointestinal nematode infection and will facilitate understanding of mechanism underlying host resistance. PMID:22129081

  11. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows.

    PubMed

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.

  12. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows

    PubMed Central

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules. PMID:28291785

  13. The chromatin accessibility signature of human immune aging stems from CD8+ T cells.

    PubMed

    Ucar, Duygu; Márquez, Eladio J; Chung, Cheng-Han; Marches, Radu; Rossi, Robert J; Uyar, Asli; Wu, Te-Chia; George, Joshy; Stitzel, Michael L; Palucka, A Karolina; Kuchel, George A; Banchereau, Jacques

    2017-10-02

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 + T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. © 2017 Ucar et al.

  14. The chromatin accessibility signature of human immune aging stems from CD8+ T cells

    PubMed Central

    Marches, Radu; Rossi, Robert J.; Uyar, Asli; Wu, Te-Chia; Stitzel, Michael L.; Palucka, A. Karolina

    2017-01-01

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. PMID:28904110

  15. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus.

    PubMed

    Madio, Bruno; Undheim, Eivind A B; King, Glenn F

    2017-08-23

    More than a century of research on sea anemone venoms has shown that they contain a diversity of biologically active proteins and peptides. However, recent omics studies have revealed that much of the venom proteome remains unexplored. We used, for the first time, a combination of proteomic and transcriptomic techniques to obtain a holistic overview of the venom arsenal of the well-studied sea anemone Stichodactyla haddoni. A purely search-based approach to identify putative toxins in a transcriptome from tentacles regenerating after venom extraction identified 508 unique toxin-like transcripts grouped into 63 families. However, proteomic analysis of venom revealed that 52 of these toxin families are likely false positives. In contrast, the combination of transcriptomic and proteomic data enabled positive identification of 23 families of putative toxins, 12 of which have no homology known proteins or peptides. Our data highlight the importance of using proteomics of milked venom to correctly identify venom proteins/peptides, both known and novel, while minimizing false positive identifications from non-toxin homologues identified in transcriptomes of venom-producing tissues. This work lays the foundation for uncovering the role of individual toxins in sea anemone venom and how they contribute to the envenomation of prey, predators, and competitors. Proteomic analysis of milked venom combined with analysis of a tentacle transcriptome revealed the full extent of the venom arsenal of the sea anemone Stichodactyla haddoni. This combined approach led to the discovery of 12 entirely new families of disulfide-rich peptides and proteins in a genus of anemones that have been studied for over a century. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The draft genome and transcriptome of Cannabis sativa

    PubMed Central

    2011-01-01

    Background Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics. PMID:22014239

  17. The draft genome and transcriptome of Cannabis sativa.

    PubMed

    van Bakel, Harm; Stout, Jake M; Cote, Atina G; Tallon, Carling M; Sharpe, Andrew G; Hughes, Timothy R; Page, Jonathan E

    2011-10-20

    Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

  18. Combined Proteomic and Transcriptomic Interrogation of the Venom Gland of Conus geographus Uncovers Novel Components and Functional Compartmentalization*

    PubMed Central

    Safavi-Hemami, Helena; Hu, Hao; Gorasia, Dhana G.; Bandyopadhyay, Pradip K.; Veith, Paul D.; Young, Neil D.; Reynolds, Eric C.; Yandell, Mark; Olivera, Baldomero M.; Purcell, Anthony W.

    2014-01-01

    Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snail's body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities. PMID:24478445

  19. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange.

    PubMed

    Qiao, Liang; Cao, Minghao; Zheng, Jian; Zhao, Yihong; Zheng, Zhi-Liang

    2017-10-30

    The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.

  20. Uncovering the pathways underlying whole body regeneration in a chordate model, Botrylloides leachi using de novo transcriptome analysis.

    PubMed

    Zondag, Lisa E; Rutherford, Kim; Gemmell, Neil J; Wilson, Megan J

    2016-02-16

    Regenerative capacity differs greatly between animals. In vertebrates regenerative abilities are highly limited and tissue or organ specific. However the closest related chordate to the vertebrate clade, Botrylloides leachi, can undergo whole body regeneration (WBR). Therefore, research on WBR in B. leachi has focused on pathways known to be important for regeneration in vertebrates. To obtain a comprehensive vision of this unique process we have carried out the first de novo transcriptome sequencing for multiple stages of WBR occurring in B. leachi. The identified changes in gene expression during B. leachi WBR offer novel insights into this remarkable ability to regenerate. The transcriptome of B. leachi tissue undergoing WBR were analysed using differential gene expression, gene ontology and pathway analyses. We observed up-regulation in the expression of genes involved in wound healing and known developmental pathways including WNT, TGF-β and Notch, during the earliest stages of WBR. Later in WBR, the expression patterns in several pathways required for protein synthesis, biogenesis and the organisation of cellular components were up-regulated. While the genes expressed early on are characteristic of a necessary wound healing response to an otherwise lethal injury, the subsequent vast increase in protein synthesis conceivably sustains the reestablishment of the tissue complexity and body axis polarity within the regenerating zooid. We have, for the first time, provided a global overview of the genes and their corresponding pathways that are modulated during WBR in B. leachi.

  1. Assessing the utility of transcriptome data for inferring phylogenetic relationships among coleoid cephalopods.

    PubMed

    Lindgren, Annie R; Anderson, Frank E

    2018-01-01

    Historically, deep-level relationships within the molluscan class Cephalopoda (squids, cuttlefishes, octopods and their relatives) have remained elusive due in part to the considerable morphological diversity of extant taxa, a limited fossil record for species that lack a calcareous shell and difficulties in sampling open ocean taxa. Many conflicts identified by morphologists in the early 1900s remain unresolved today in spite of advances in morphological, molecular and analytical methods. In this study we assess the utility of transcriptome data for resolving cephalopod phylogeny, with special focus on the orders of Decapodiformes (open-eye squids, bobtail squids, cuttlefishes and relatives). To do so, we took new and previously published transcriptome data and used a unique cephalopod core ortholog set to generate a dataset that was subjected to an array of filtering and analytical methods to assess the impacts of: taxon sampling, ortholog number, compositional and rate heterogeneity and incongruence across loci. Analyses indicated that datasets that maximized taxonomic coverage but included fewer orthologs were less stable than datasets that sacrificed taxon sampling to increase the number of orthologs. Clades recovered irrespective of dataset, filtering or analytical method included Octopodiformes (Vampyroteuthis infernalis + octopods), Decapodiformes (squids, cuttlefishes and their relatives), and orders Oegopsida (open-eyed squids) and Myopsida (e.g., loliginid squids). Ordinal-level relationships within Decapodiformes were the most susceptible to dataset perturbation, further emphasizing the challenges associated with uncovering relationships at deep nodes in the cephalopod tree of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Predicted Arabidopsis Interactome Resource and Gene Set Linkage Analysis: A Transcriptomic Analysis Resource.

    PubMed

    Yao, Heng; Wang, Xiaoxuan; Chen, Pengcheng; Hai, Ling; Jin, Kang; Yao, Lixia; Mao, Chuanzao; Chen, Xin

    2018-05-01

    An advanced functional understanding of omics data is important for elucidating the design logic of physiological processes in plants and effectively controlling desired traits in plants. We present the latest versions of the Predicted Arabidopsis Interactome Resource (PAIR) and of the gene set linkage analysis (GSLA) tool, which enable the interpretation of an observed transcriptomic change (differentially expressed genes [DEGs]) in Arabidopsis ( Arabidopsis thaliana ) with respect to its functional impact for biological processes. PAIR version 5.0 integrates functional association data between genes in multiple forms and infers 335,301 putative functional interactions. GSLA relies on this high-confidence inferred functional association network to expand our perception of the functional impacts of an observed transcriptomic change. GSLA then interprets the biological significance of the observed DEGs using established biological concepts (annotation terms), describing not only the DEGs themselves but also their potential functional impacts. This unique analytical capability can help researchers gain deeper insights into their experimental results and highlight prospective directions for further investigation. We demonstrate the utility of GSLA with two case studies in which GSLA uncovered how molecular events may have caused physiological changes through their collective functional influence on biological processes. Furthermore, we showed that typical annotation-enrichment tools were unable to produce similar insights to PAIR/GSLA. The PAIR version 5.0-inferred interactome and GSLA Web tool both can be accessed at http://public.synergylab.cn/pair/. © 2018 American Society of Plant Biologists. All Rights Reserved.

  3. BRIC-21: Global Transcriptome Profiling to Identify Cellular Stress Mechanisms Responsible for Spaceflight-Induced Antibiotic Resistance

    NASA Technical Reports Server (NTRS)

    Nicholson, Wayne L.; Fajardo-Cavazos, Patricia

    2015-01-01

    Comparisons of spaceflight stress responses in Bacillus subtilis spores and Staphylococcus epidermidis cells to ground-based controls will be conducted to uncover alterations in their antibiotic susceptibility.

  4. A survey of the sorghum transcriptome using single-molecule long reads

    DOE PAGES

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...

    2016-06-24

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less

  5. A survey of the sorghum transcriptome using single-molecule long reads

    PubMed Central

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.

    2016-01-01

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290

  6. Transcriptomic responses to high water temperature in two species of Pacific salmon

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Pavlidis, Paul; Miller, Kristi M

    2014-01-01

    Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant ‘cool’ or ‘warm’ water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon. PMID:24567748

  7. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  8. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.

    PubMed

    Fish, Rachel N; Bostick, Magnolia; Lehman, Alisa; Farmer, Andrew

    2016-10-10

    RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  9. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome

    PubMed Central

    Hanriot, Lucie; Keime, Céline; Gay, Nadine; Faure, Claudine; Dossat, Carole; Wincker, Patrick; Scoté-Blachon, Céline; Peyron, Christelle; Gandrillon, Olivier

    2008-01-01

    Background "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression), LongSAGE and MPSS (Massively Parallel Signature Sequencing) are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. Results In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. Conclusion We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method. PMID:18796152

  10. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE PAGES

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; ...

    2016-03-03

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  11. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  12. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger

    PubMed Central

    Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; van den Hondel, Cees A.; Ram, Arthur F.; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. PMID:27835655

  13. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger.

    PubMed

    Paege, Norman; Jung, Sascha; Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; Nitsche, Benjamin M; van den Hondel, Cees A; Ram, Arthur F; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.

  14. Probing the Xenopus laevis inner ear transcriptome for biological function

    PubMed Central

    2012-01-01

    Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the impediment imposed by insufficient gene annotation. These findings heighten the relevance of Xenopus as a model organism for genetic investigations of inner ear organogenesis, morphogenesis, and regeneration. PMID:22676585

  15. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear

    PubMed Central

    Corneveaux, Jason J.; Ohmen, Jeffrey; White, Cory; Allen, April N.; Lusis, Aldons J.; Van Camp, Guy; Huentelman, Matthew J.; Friedman, Rick A.

    2015-01-01

    The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https://www.tgen.org/home/research/research-divisions/neurogenomics/supplementary-data/inner-ear-transcriptome.aspx PMID:26341477

  16. The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    PubMed Central

    Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane

    2012-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937

  17. Transcriptomic analysis of two Beauveria bassiana strains grown on cuticle extracts of the silkworm uncovers their different metabolic response at early infection stage.

    PubMed

    Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji

    2017-05-01

    Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.

    PubMed

    Fernandez-Valverde, Selene L; Calcino, Andrew D; Degnan, Bernard M

    2015-05-15

    The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.

  19. Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

    PubMed Central

    Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-01-01

    Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042

  20. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities.

    PubMed

    Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D

    2013-01-01

    Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.

  1. ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes

    PubMed Central

    Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra

    2016-01-01

    Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients’ clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing – a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis. PMID:27528797

  2. Global impact of RNA splicing on transcriptome remodeling in the heart.

    PubMed

    Gao, Chen; Wang, Yibin

    2012-08-01

    In the eukaryotic transcriptome, both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity. These RNA species are generated by the utilization of different transcriptional initiation or termination sites, or more commonly, from different messenger RNA (mRNA) splicing events. Among the 30,000+ genes in human genome, it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing. The protein products generated from different RNA splicing variants can have different intracellular localization, activity, or tissue-distribution. Therefore, alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types. In this review, we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach, and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  3. Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation in vivo.

    PubMed

    Olivera-Martinez, Isabel; Schurch, Nick; Li, Roman A; Song, Junfang; Halley, Pamela A; Das, Raman M; Burt, Dave W; Barton, Geoffrey J; Storey, Kate G

    2014-08-01

    Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFβ). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation. © 2014. Published by The Company of Biologists Ltd.

  4. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions

    PubMed Central

    2012-01-01

    Background Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. Results Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. Conclusions Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. PMID:23034163

  5. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    USDA-ARS?s Scientific Manuscript database

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  6. De novo assembly and annotation of the Antarctic copepod (Tigriopus kingsejongensis) transcriptome.

    PubMed

    Kim, Hui-Su; Lee, Bo-Young; Han, Jeonghoon; Lee, Young Hwan; Min, Gi-Sik; Kim, Sanghee; Lee, Jae-Seong

    2016-08-01

    The whole transcriptome of the Antarctic copepod (Tigriopus kingsejongensis) was sequenced using Illumina RNA-seq. De novo assembly was performed with 64,785,098 raw reads using Trinity, which assembled into 81,653 contigs. TransDecoder found 38,250 candidate coding contigs which showed homology to other species by BLAST analysis. Functional gene annotation was performed by Gene Ontology (GO), InterProScan, and KEGG pathway analyses. Finally, we identified a number of expressed gene catalog for T. kingsejongensis that is a useful model animal for gene information-based polar research to uncover molecular mechanisms of environmental adaptation on harsh environments. In particular, we observed highly developing lipid metabolism in T. kingsejongensis directly compared to those of the Far East Pacific coast copepod Tigriopus japonicus at the transcriptome level. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome.

    PubMed

    Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A

    2017-01-01

    RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.

  8. Single cell transcriptome profiling of developing chick retinal cells.

    PubMed

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  9. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation

    USDA-ARS?s Scientific Manuscript database

    The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate Zn and Cd in its leaves to extremely high levels. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and toleran...

  10. Characterization of a new endogenous endo-ß-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus)

    USDA-ARS?s Scientific Manuscript database

    The present work characterized a second endogenous cellulase (endo-ß-1,4-glucanase) gene, CfEG4, uncovered in the transcriptome of Formosan subterranean termite (Coptotermes formosanus). The full-length gene was cloned and sequenced. It is similar to the CfEG3a described earlier (Zhang et al. 2009) ...

  11. Transcriptome analysis of a Ustilago maydis ust1 deletion mutant uncovers involvement of laccase and polyketide synthase genes in spore development

    USDA-ARS?s Scientific Manuscript database

    Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, produ...

  12. Transcriptome analysis and identification of genes associated with omega-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens

    USDA-ARS?s Scientific Manuscript database

    Background: Perilla (Perilla frutescens (L.) var frutescens) produces high levels of a-linolenic acid (ALA), an omega-3 fatty acid important to health and development. To uncover key genes involved in fatty acid (FA) and triacylglycerol (TAG) synthesis in perilla, we conducted deep sequencing of cD...

  13. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis.

    PubMed

    Ma, Yibao; Zhao, Yong; Zhao, Ruiming; Zhang, Weiping; He, Yawen; Wu, Yingliang; Cao, Zhijian; Guo, Lin; Li, Wenxin

    2010-07-01

    Scorpion venoms contain a vast untapped reservoir of natural products, which have the potential for medicinal value in drug discovery. In this study, toxin components from the scorpion Heterometrus petersii venom were evaluated by transcriptome and proteome analysis.Ten known families of venom peptides and proteins were identified, which include: two families of potassium channel toxins, four families of antimicrobial and cytolytic peptides,and one family from each of the calcium channel toxins, La1-like peptides, phospholipase A2,and the serine proteases. In addition, we also identified 12 atypical families, which include the acid phosphatases, diuretic peptides, and ten orphan families. From the data presented here, the extreme diversity and convergence of toxic components in scorpion venom was uncovered. Our work demonstrates the power of combining transcriptomic and proteomic approaches in the study of animal venoms.

  14. A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer

    NASA Astrophysics Data System (ADS)

    Auslander, Noam; Yizhak, Keren; Weinstock, Adam; Budhu, Anuradha; Tang, Wei; Wang, Xin Wei; Ambs, Stefan; Ruppin, Eytan

    2016-07-01

    Disrupted regulation of cellular processes is considered one of the hallmarks of cancer. We analyze metabolomic and transcriptomic profiles jointly collected from breast cancer and hepatocellular carcinoma patients to explore the associations between the expression of metabolic enzymes and the levels of the metabolites participating in the reactions they catalyze. Surprisingly, both breast cancer and hepatocellular tumors exhibit an increase in their gene-metabolites associations compared to noncancerous adjacent tissues. Following, we build predictors of metabolite levels from the expression of the enzyme genes catalyzing them. Applying these predictors to a large cohort of breast cancer samples we find that depleted levels of key cancer-related metabolites including glucose, glycine, serine and acetate are significantly associated with improved patient survival. Thus, we show that the levels of a wide range of metabolites in breast cancer can be successfully predicted from the transcriptome, going beyond the limited set of those measured.

  15. A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes.

    PubMed

    Perron, Gabrielle; Jandaghi, Pouria; Solanki, Shraddha; Safisamghabadi, Maryam; Storoz, Cristina; Karimzadeh, Mehran; Papadakis, Andreas I; Arseneault, Madeleine; Scelo, Ghislaine; Banks, Rosamonde E; Tost, Jorg; Lathrop, Mark; Tanguay, Simon; Brazma, Alvis; Huang, Sidong; Brimo, Fadi; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-08

    Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Sulfate-Dependent Repression of Genes That Function in Organosulfur Metabolism in Bacillus subtilis Requires Spx

    PubMed Central

    Erwin, Kyle N.; Nakano, Shunji; Zuber, Peter

    2005-01-01

    Oxidative stress in Bacillus subtilis results in the accumulation of Spx protein, which exerts both positive and negative transcriptional control over a genome-wide scale through its interaction with the RNA polymerase α subunit. Previous microarray transcriptome studies uncovered a unique class of genes that are controlled by Spx-RNA polymerase interaction under normal growth conditions that do not promote Spx overproduction. These genes were repressed by Spx when sulfate was present as a sole sulfur source. The genes include those of the ytmI, yxeI, and ssu operons, which encode products resembling proteins that function in the uptake and desulfurization of organic sulfur compounds. Primer extension and analysis of operon-lacZ fusion expression revealed that the operons are repressed by sulfate and cysteine; however, Spx functioned only in sulfate-dependent repression. Both the ytmI operon and the divergently transcribed ytlI, encoding a LysR-type regulator that positively controls ytmI operon transcription, are repressed by Spx in sulfate-containing media. The CXXC motif of Spx, which is necessary for redox sensitive control of Spx activity in response to oxidative stress, is not required for sulfate-dependent repression. The yxeL-lacZ and ssu-lacZ fusions were also repressed in an Spx-dependent manner in media containing sulfate as the sole sulfur source. This work uncovers a new role for Spx in the control of sulfur metabolism in a gram-positive bacterium under nonstressful growth conditions. PMID:15937167

  17. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    PubMed Central

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate. Conclusions Our results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency. PMID:21554708

  18. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    USDA-ARS?s Scientific Manuscript database

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  19. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.

    PubMed

    Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin

    2018-04-01

    The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.

  20. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation.

    PubMed

    Salisbury, Joseph P; Sîrbulescu, Ruxandra F; Moran, Benjamin M; Auclair, Jared R; Zupanc, Günther K H; Agar, Jeffrey N

    2015-03-11

    The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a versatile model system for a variety of research areas in neuroscience and biology. The comprehensive information available on the neurophysiology and neuroanatomy of this organism has enabled significant advances in such areas as the study of the neural basis of behavior, the development of adult-born neurons in the central nervous system and their involvement in the regeneration of nervous tissue, as well as brain aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. Here, we report the de novo assembly and annotation of the A. leptorhynchus transcriptome. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered 42,459 unique contigs containing at least a partial protein-coding sequence based on alignment to a reference set of known Actinopterygii sequences. As many as 11,847 of these contigs contained full or near-full length protein sequences, providing broad coverage of the proteome. A variety of non-coding RNA sequences were also identified and annotated, including conserved long intergenic non-coding RNA and other long non-coding RNA observed previously to be expressed in adult zebrafish (Danio rerio) brain, as well as a variety of miRNA, snRNA, and snoRNA. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra was greatly improved by use of the assembly compared to databases of sequences from closely related organisms. The assembly and raw reads have been deposited at DDBJ/EMBL/GenBank under the accession number GBKR00000000. Tandem mass spectrometry data is available via ProteomeXchange with identifier PXD001285. Presented here is the first release of an annotated de novo transcriptome assembly from Apteronotus leptorhynchus, providing a broad overview of RNA expressed in central nervous system tissue. The assembly, which includes substantial coverage of a wide variety of both protein coding and non-coding transcripts, will allow the development of better tools to understand the mechanisms underlying unique characteristics of the knifefish model system, such as their tremendous regenerative capacity and negligible brain senescence.

  1. Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease

    PubMed Central

    Rusniok, Christophe; Lomma, Mariella; Dervins-Ravault, Delphine; Newton, Hayley J.; Sansom, Fiona M.; Jarraud, Sophie; Zidane, Nora; Ma, Laurence; Bouchier, Christiane; Etienne, Jerôme; Hartland, Elizabeth L.; Buchrieser, Carmen

    2010-01-01

    Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species. PMID:20174605

  2. Novel Insights into the Transcriptome of Dirofilaria immitis

    PubMed Central

    Zhang, Zhihe; Hou, Rong; Wu, Xuhang; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Yang, Zhi; Wang, Chengdong; Luo, Li; Liu, Li; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2012-01-01

    Background The heartworm Dirofilaria immitis is the causal agent of cardiopulmonary dirofilariosis in dogs and cats, and also infects a wide range of wild mammals as well as humans. One bottleneck for the design of fundamentally new intervention and management strategies against D. immitis may be the currently limited knowledge of fundamental molecular aspects of D. immitis. Methodology/Principal Findings A next-generation sequencing platform combining computational approaches was employed to assess a global view of the heartworm transcriptome. A total of 20,810 unigenes (mean length  = 1,270 bp) were assembled from 22.3 million clean reads. From these, 15,698 coding sequences (CDS) were inferred, and about 85% of the unigenes had orthologs/homologs in public databases. Comparative transcriptomic study uncovered 4,157 filarial-specific genes as well as 3,795 genes potentially involved in filarial-Wolbachia symbiosis. In addition, the potential intestine transcriptome of D. immitis (1,101 genes) was mined for the first time, which might help to discover ‘hidden antigens’. Conclusions/Significance This study provides novel insights into the transcriptome of D. immitis and sheds light on its molecular processes and survival mechanisms. Furthermore, it provides a platform to discover new vaccine candidates and potential targets for new drugs against dirofilariosis. PMID:22911833

  3. Genome and Transcriptome Analyses Provide Insight into the Euryhaline Adaptation Mechanism of Crassostrea gigas

    PubMed Central

    Zhang, Linlin; Li, Chunyan; Li, Li; She, Zhicai; Huang, Baoyu; Zhang, Guofan

    2013-01-01

    Background The Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster’s euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR. Results Transcriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na+/K+ channel and aquaporin but increased calcium-activated K+ channel and Ca2+ channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster’s powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas. Conclusions Our results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas. PMID:23554902

  4. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  5. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  6. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    PubMed

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  7. Transcriptional response of Musca domestica larvae to bacterial infection.

    PubMed

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.

  8. The non-coding RNA landscape of human hematopoiesis and leukemia.

    PubMed

    Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning

    2017-08-09

    Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.

  9. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    PubMed

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transcriptomes of Eight Arabidopsis thaliana Accessions Reveal Core Conserved, Genotype- and Organ-Specific Responses to Flooding Stress1[OPEN

    PubMed Central

    van Veen, Hans; Vashisht, Divya; Akman, Melis; Girke, Thomas; Mustroph, Angelika; Reinen, Emilie; Kooiker, Maarten; van Tienderen, Peter; Voesenek, Laurentius A.C.J.

    2016-01-01

    Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress. PMID:27208254

  11. Early Detection of NSCLC Using Stromal Markers in Peripheral Blood

    DTIC Science & Technology

    2017-11-01

    transcriptionally altered and the alteration is tumor dependent . The specific transcriptomic signature of circulating myeloid cells may provide us unique...signature, which may be useful for early lung cancer diagnosis. The specific aims are: Aim 1. To identify a NSCLC- dependent transcriptomic signature in...circulating myeloid cells are transcriptionally altered and the alteration is tumor dependent . The specific transcriptomic signature of circulating

  12. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells

    PubMed Central

    Sagawa, Janelle M.; Fritz, Heather M.; Boothroyd, John C.

    2017-01-01

    Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world’s human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection. PMID:28362800

  13. Comparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae).

    PubMed

    Guo, Shaokun; Zhao, Zihua; Liu, Lijun; Li, Zhihong; Shen, Jie

    2018-01-30

    Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta . RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor ( EGFR ), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects.

  14. Comparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae)

    PubMed Central

    Zhao, Zihua; Liu, Lijun; Li, Zhihong; Shen, Jie

    2018-01-01

    Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta. RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor (EGFR), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects. PMID:29385681

  15. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes.

    PubMed

    Shatsky, Ivan N; Dmitriev, Sergey E; Andreev, Dmitri E; Terenin, Ilya M

    2014-01-01

    The conventional paradigm of translation initiation in eukaryotes states that the cap-binding protein complex eIF4F (consisting of eIF4E, eIF4G and eIF4A) plays a central role in the recruitment of capped mRNAs to ribosomes. However, a growing body of evidence indicates that this paradigm should be revised. This review summarizes the data which have been mostly accumulated in a post-genomic era owing to revolutionary techniques of transcriptome-wide analysis. Unexpectedly, these techniques have uncovered remarkable diversity in the recruitment of cellular mRNAs to eukaryotic ribosomes. These data enable a preliminary classification of mRNAs into several groups based on their requirement for particular components of eIF4F. They challenge the widely accepted concept which relates eIF4E-dependence to the extent of secondary structure in the 5' untranslated regions of mRNAs. Moreover, some mRNA species presumably recruit ribosomes to their 5' ends without the involvement of either the 5' m(7)G-cap or eIF4F but instead utilize eIF4G or eIF4G-like auxiliary factors. The long-standing concept of internal ribosome entry site (IRES)-elements in cellular mRNAs is also discussed.

  16. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    PubMed Central

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  17. Transcriptional pathway and de novo network-based approaches to effects-based monitoring in the Great Lakes

    EPA Science Inventory

    Transcriptomics provides unique solutions for understanding the impact of complex mixtures and their components on aquatic systems. Here we describe the application of transcriptomics analysis of in situ fathead minnow exposures for assessing biological impacts of wastewater trea...

  18. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    The yeast Saccharomyces cerevisiae is able to adapt and in situ detoxify lignocellulose derived inhibitors such as furfural and hydroxymethylfurfural (HMF). The length of lag phase for cell growth in response to the inhibitor challenge has been used to measure tolerance of strain performance. Mechan...

  19. A Novel Approach to Assay DNA Methylation in Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    genome; a recent study comprehensively examined over 7000 RNA-seq libraries and uncovered nearly 60,000 lncRNAs from the human transcriptome.6 Out of...patients, development of tamoxifen resistance (TamR) is persistently seen in the clinic and is a major cause of breast cancer recurrence and mortality ...all breast cancers.12 Despite its initial success in reducing disease mortality and improving survival, tamoxifen therapy frequently led to the onset of

  20. De Novo Transcriptome of the Hemimetabolous German Cockroach (Blattella germanica)

    PubMed Central

    Zhou, Xiaojie; Qian, Kun; Tong, Ying; Zhu, Junwei Jerry; Qiu, Xinghui; Zeng, Xiaopeng

    2014-01-01

    Background The German cockroach, Blattella germanica, is an important insect pest that transmits various pathogens mechanically and causes severe allergic diseases. This insect has long served as a model system for studies of insect biology, physiology and ecology. However, the lack of genome or transcriptome information heavily hinder our further understanding about the German cockroach in every aspect at a molecular level and on a genome-wide scale. To explore the transcriptome and identify unique sequences of interest, we subjected the B. germanica transcriptome to massively parallel pyrosequencing and generated the first reference transcriptome for B. germanica. Methodology/Principal Findings A total of 1,365,609 raw reads with an average length of 529 bp were generated via pyrosequencing the mixed cDNA library from different life stages of German cockroach including maturing oothecae, nymphs, adult females and males. The raw reads were de novo assembled to 48,800 contigs and 3,961 singletons with high-quality unique sequences. These sequences were annotated and classified functionally in terms of BLAST, GO and KEGG, and the genes putatively coding detoxification enzyme systems, insecticide targets, key components in systematic RNA interference, immunity and chemoreception pathways were identified. A total of 3,601 SSRs (Simple Sequence Repeats) loci were also predicted. Conclusions/Significance The whole transcriptome pyrosequencing data from this study provides a usable genetic resource for future identification of potential functional genes involved in various biological processes. PMID:25265537

  1. Genome-wide methylomic and transcriptomic analyses identify subtype-specific epigenetic signatures commonly dysregulated in glioma stem cells and glioblastoma.

    PubMed

    Pangeni, Rajendra P; Zhang, Zhou; Alvarez, Angel A; Wan, Xuechao; Sastry, Namratha; Lu, Songjian; Shi, Taiping; Huang, Tianzhi; Lei, Charles X; James, C David; Kessler, John A; Brennan, Cameron W; Nakano, Ichiro; Lu, Xinghua; Hu, Bo; Zhang, Wei; Cheng, Shi-Yuan

    2018-06-21

    Glioma stem cells (GSCs), a subpopulation of tumor cells, contribute to tumor heterogeneity and therapy resistance. Gene expression profiling classified glioblastoma (GBM) and GSCs into four transcriptomically-defined subtypes. Here, we determined the DNA methylation signatures in transcriptomically pre-classified GSC and GBM bulk tumors subtypes. We hypothesized that these DNA methylation signatures correlate with gene expression and are uniquely associated either with only GSCs or only GBM bulk tumors. Additional methylation signatures may be commonly associated with both GSCs and GBM bulk tumors, i.e., common to non-stem-like and stem-like tumor cell populations and correlating with the clinical prognosis of glioma patients. We analyzed Illumina 450K methylation array and expression data from a panel of 23 patient-derived GSCs. We referenced these results with The Cancer Genome Atlas (TCGA) GBM datasets to generate methylomic and transcriptomic signatures for GSCs and GBM bulk tumors of each transcriptomically pre-defined tumor subtype. Survival analyses were carried out for these signature genes using publicly available datasets, including from TCGA. We report that DNA methylation signatures in proneural and mesenchymal tumor subtypes are either unique to GSCs, unique to GBM bulk tumors, or common to both. Further, dysregulated DNA methylation correlates with gene expression and clinical prognoses. Additionally, many previously identified transcriptionally-regulated markers are also dysregulated due to DNA methylation. The subtype-specific DNA methylation signatures described in this study could be useful for refining GBM sub-classification, improving prognostic accuracy, and making therapeutic decisions.

  2. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  3. RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes.

    PubMed

    Chen, Bei Jun; Ueberham, Uwe; Mills, James D; Kirazov, Ludmil; Kirazov, Evgeni; Knobloch, Mara; Bochmann, Jana; Jendrek, Renate; Takenaka, Konii; Bliim, Nicola; Arendt, Thomas; Janitz, Michael

    2017-08-01

    Normal aging is associated with impairments in cognitive functions. These alterations are caused by diminutive changes in the biology of synapses, and ineffective neurotransmission, rather than loss of neurons. Hitherto, only a few studies, exploring molecular mechanisms of healthy brain aging in higher vertebrates, utilized synaptosomal fractions to survey local changes in aging-related transcriptome dynamics. Here we present, for the first time, a comparative analysis of the synaptosomes transcriptome in the aging mouse brain using RNA sequencing. Our results show changes in the expression of genes contributing to biological pathways related to neurite guidance, synaptosomal physiology, and RNA splicing. More intriguingly, we also discovered alterations in the expression of thousands of novel, unannotated lincRNAs during aging. Further, detailed characterization of the cleavage and polyadenylation factor I subunit 1 (Clp1) mRNA and protein expression indicates its increased expression in neuronal processes of hippocampal stratum radiatum in aging mice. Together, our study uncovers a new layer of transcriptional regulation which is targeted by aging within the local environment of interconnecting neuronal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  5. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes.

    PubMed

    Ribas, Laia; Liew, Woei Chang; Díaz, Noèlia; Sreenivasan, Rajini; Orbán, László; Piferrer, Francesc

    2017-02-07

    Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.

  6. Information Theoretical Analysis of a Bovine Gene Atlas Reveals Chromosomal Regions with Tissue Specific Gene Expression.

    USDA-ARS?s Scientific Manuscript database

    An essential step to understanding the genomic biology of any organism is to comprehensively survey its transcriptome. We present the Bovine Gene Atlas (BGA) a compendium of over 7.2 million unique 20 base Illumina DGE tags representing 100 tissue transcriptomes collected primarily from L1 Dominette...

  7. Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis1[OPEN

    PubMed Central

    Lim, Sun-Hyung; Kim, Jae Kwang; Ha, Sun-Hwa

    2015-01-01

    Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes’ promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems. PMID:26453433

  8. Genes and networks regulating root anatomy and architecture.

    PubMed

    Wachsman, Guy; Sparks, Erin E; Benfey, Philip N

    2015-10-01

    The root is an excellent model for studying developmental processes that underlie plant anatomy and architecture. Its modular structure, the lack of cell movement and relative accessibility to microscopic visualization facilitate research in a number of areas of plant biology. In this review, we describe several examples that demonstrate how cell type-specific developmental mechanisms determine cell fate and the formation of defined tissues with unique characteristics. In the last 10 yr, advances in genome-wide technologies have led to the sequencing of thousands of plant genomes, transcriptomes and proteomes. In parallel with the development of these high-throughput technologies, biologists have had to establish computational, statistical and bioinformatic tools that can deal with the wealth of data generated by them. These resources provide a foundation for posing more complex questions about molecular interactions, and have led to the discovery of new mechanisms that control phenotypic differences. Here we review several recent studies that shed new light on developmental processes, which are involved in establishing root anatomy and architecture. We highlight the power of combining large-scale experiments with classical techniques to uncover new pathways in root development. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.

    PubMed

    Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong

    2015-06-09

    Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.

  10. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order.

    PubMed

    Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí

    2005-03-05

    We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.

  11. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order

    PubMed Central

    Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří

    2005-01-01

    Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293

  12. Plant stress biomarkers from biosimulations: the Transcriptome-To-Metabolome (TTM) technology - effects of drought stress on rice.

    PubMed

    Phelix, C F; Feltus, F A

    2015-01-01

    Measuring biomarkers from plant tissue samples is challenging and expensive when the desire is to integrate transcriptomics, fluxomics, metabolomics, lipidomics, proteomics, physiomics and phenomics. We present a computational biology method where only the transcriptome needs to be measured and is used to derive a set of parameters for deterministic kinetic models of metabolic pathways. The technology is called Transcriptome-To-Metabolome (TTM) biosimulations, currently under commercial development, but available for non-commercial use by researchers. The simulated results on metabolites of 30 primary and secondary metabolic pathways in rice (Oryza sativa) were used as the biomarkers to predict whether the transcriptome was from a plant that had been under drought conditions. The rice transcriptomes were accessed from public archives and each individual plant was simulated. This unique quality of the TTM technology allows standard analyses on biomarker assessments, i.e. sensitivity, specificity, positive and negative predictive values, accuracy, receiver operator characteristics (ROC) curve and area under the ROC curve (AUC). Two validation methods were also used, the holdout and 10-fold cross validations. Initially 17 metabolites were identified as candidate biomarkers based on either statistical significance on binary phenotype when compared with control samples or recognition from the literature. The top three biomarkers based on AUC were gibberellic acid 12 (0.89), trehalose (0.80) and sn1-palmitate-sn2-oleic-phosphatidylglycerol (0.70). Neither heat map analyses of transcriptomes nor all 300 metabolites clustered the stressed and control groups effectively. The TTM technology allows the emergent properties of the integrated system to generate unique and useful 'Omics' information. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. International network of cancer genome projects

    PubMed Central

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of over 25,000 cancer genomes at the genomic, epigenomic, and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically-relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554

  14. Transcriptomics exposes the uniqueness of parasitic plants.

    PubMed

    Ichihashi, Yasunori; Mutuku, J Musembi; Yoshida, Satoko; Shirasu, Ken

    2015-07-01

    Parasitic plants have the ability to obtain nutrients directly from other plants, and several species are serious biological threats to agriculture by parasitizing crops of high economic importance. The uniqueness of parasitic plants is characterized by the presence of a multicellular organ called a haustorium, which facilitates plant-plant interactions, and shutting down or reducing their own photosynthesis. Current technical advances in next-generation sequencing and bioinformatics have allowed us to dissect the molecular mechanisms behind the uniqueness of parasitic plants at the genome-wide level. In this review, we summarize recent key findings mainly in transcriptomics that will give us insights into the future direction of parasitic plant research. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  16. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    PubMed

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  17. De novo transcriptomic analysis during Lentinula edodes fruiting body growth.

    PubMed

    Wang, Yingzhu; Zeng, Xianlu; Liu, Wenguang

    2018-01-30

    The fruiting body of Lentinula edodes is a popular edible mushroom, and extracts from the mycelium and the fruiting body of this species have diverse therapeutic potential. To gain insights into the molecular mechanisms underlying the fruiting body growth of L. edodes from the early bud stage (EBS), through the intermediate developing stage (IDS), to the fully developed stage (FDS), we performed de novo transcriptomic analysis using high-throughput Illumina RNA-sequencing. First, we generated three cDNA libraries representative of the three respective stages. We then obtained 38,933,148, 44,594,472, and 37,905,646 high-quality reads from the respective libraries and assembled the reads into 25,104 transcriptional contigs, containing 15,199 unigenes. We found that only 9331 of the unigenes had been annotated in the NCBI non-redundant protein database, and we functionally annotated 4758 of them through Gene Ontology (GO) analysis and 2921 of them through Clusters of Orthologous Groups of proteins (COGs) analysis. We also assigned 3995 unigenes to metabolic pathways by using the Kyoto Encyclopedia of Genes and Genomes (KEGG). We further identified 399 differentially expressed genes (DEGs) between EBS and IDS, 1428 between IDS and FDS, and 1830 between EBS and FDS, uncovering 769 DEGs in multiple metabolic and signaling pathways. Interestingly, there were a limited number of DEGs whose expression was dramatically associated with FDS. Finally, genes, whose expression was either highly up-regulated in FDS or remained at a high level during fruiting body growth, were annotated specifically in the pathways of purine metabolism, unsaturated fatty acid metabolism and meiosis, suggesting that these key molecular events were actively occurring in the fruiting body. Our work is the first high-throughput transcriptome study on the growth of L. edodes fruiting bodies, and the results uncovered candidate genes for future gene identification and utilization of this commercially and medically important mushroom. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes

    PubMed Central

    2017-01-01

    Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a “male-like” gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario. PMID:28115725

  19. A Unique Model Platform for C4 Plant Systems and Synthetic Biology

    DTIC Science & Technology

    2015-12-10

    International Conference in Bioinformatics , Sydney, Australia, July 31 - August 2, 2014.  Nielsen LK (2015) Genome scale metabolic and regulatory...the comparison of transcriptome proteome and central metabolome in mature and immature tissue. Preliminary data were obtained suggesting successful...guide the comparison of transcriptome, proteome and central metabolome in mature and immature tissue. Preliminary data were obtained suggesting

  20. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

  1. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    PubMed

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  2. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.

  3. RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the Cork Oak Root Response to Drought

    PubMed Central

    Magalhães, Alexandre P.; Verde, Nuno; Reis, Francisca; Martins, Inês; Costa, Daniela; Lino-Neto, Teresa; Castro, Pedro H.; Tavares, Rui M.; Azevedo, Herlânder

    2016-01-01

    Quercus suber (cork oak) is a West Mediterranean species of key economic interest, being extensively explored for its ability to generate cork. Like other Mediterranean plants, Q. suber is significantly threatened by climatic changes, imposing the need to quickly understand its physiological and molecular adaptability to drought stress imposition. In the present report, we uncovered the differential transcriptome of Q. suber roots exposed to long-term drought, using an RNA-Seq approach. 454-sequencing reads were used to de novo assemble a reference transcriptome, and mapping of reads allowed the identification of 546 differentially expressed unigenes. These were enriched in both effector genes (e.g., LEA, chaperones, transporters) as well as regulatory genes, including transcription factors (TFs) belonging to various different classes, and genes associated with protein turnover. To further extend functional characterization, we identified the orthologs of differentially expressed unigenes in the model species Arabidopsis thaliana, which then allowed us to perform in silico functional inference, including gene network analysis for protein function, protein subcellular localization and gene co-expression, and in silico enrichment analysis for TFs and cis-elements. Results indicated the existence of extensive transcriptional regulatory events, including activation of ABA-responsive genes and ABF-dependent signaling. We were then able to establish that a core ABA-signaling pathway involving PP2C-SnRK2-ABF components was induced in stressed Q. suber roots, identifying a key mechanism in this species’ response to drought. PMID:26793200

  4. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta

    PubMed Central

    Paviala, Jenni; Morandin, Claire; Wheat, Christopher; Sundström, Liselotte; Helanterä, Heikki

    2017-01-01

    Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon. PMID:29177112

  5. Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe

    PubMed Central

    Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael

    2013-01-01

    The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939

  6. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  7. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing.

    PubMed

    Hu, Zhuang; Zhang, Tian; Gao, Xiao-Xiao; Wang, Yang; Zhang, Qiang; Zhou, Hui-Juan; Zhao, Gui-Fang; Wang, Ma-Li; Woeste, Keith E; Zhao, Peng

    2016-04-01

    Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome information from RNA-Seq to understand development in J. mandshurica and develop polymorphic simple sequence repeats (SSRs, microsatellites) to understand the species' population genetics. In this study, more than 47.7 million clean reads were generated using Illumina sequencing technology. De novo assembly yielded 99,869 unigenes with an average length of 747 bp. Based on sequence similarity search with known proteins, a total of 39,708 (42.32 %) genes were identified. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) identified 15,903 (16.9 %) unigenes. Further, we identified and characterized 63 new transcriptome-derived microsatellite markers. By testing the markers on 4 to 14 individuals from four populations, we found that 20 were polymorphic and easily amplified. The number of alleles per locus ranged from 2 to 8. The observed and expected heterozygosity per locus ranged from 0.209 to 0.813 and 0.335 to 0.842, respectively. These twenty microsatellite markers will be useful for studies of population genetics, diversity, and genetic structure, and they will undoubtedly benefit future breeding studies of this walnut species. Moreover, the information uncovered in this research will also serve as a useful genetic resource for understanding the transcriptome and development of J. mandshurica and other Juglans species.

  8. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales.

    PubMed

    Walker, Joseph F; Yang, Ya; Feng, Tao; Timoneda, Alfonso; Mikenas, Jessica; Hutchison, Vera; Edwards, Caroline; Wang, Ning; Ahluwalia, Sonia; Olivieri, Julia; Walker-Hale, Nathanael; Majure, Lucas C; Puente, Raúl; Kadereit, Gudrun; Lauterbach, Maximilian; Eggli, Urs; Flores-Olvera, Hilda; Ochoterena, Helga; Brockington, Samuel F; Moore, Michael J; Smith, Stephen A

    2018-03-01

    The Caryophyllales contain ~12,500 species and are known for their cosmopolitan distribution, convergence of trait evolution, and extreme adaptations. Some relationships within the Caryophyllales, like those of many large plant clades, remain unclear, and phylogenetic studies often recover alternative hypotheses. We explore the utility of broad and dense transcriptome sampling across the order for resolving evolutionary relationships in Caryophyllales. We generated 84 transcriptomes and combined these with 224 publicly available transcriptomes to perform a phylogenomic analysis of Caryophyllales. To overcome the computational challenge of ortholog detection in such a large data set, we developed an approach for clustering gene families that allowed us to analyze >300 transcriptomes and genomes. We then inferred the species relationships using multiple methods and performed gene-tree conflict analyses. Our phylogenetic analyses resolved many clades with strong support, but also showed significant gene-tree discordance. This discordance is not only a common feature of phylogenomic studies, but also represents an opportunity to understand processes that have structured phylogenies. We also found taxon sampling influences species-tree inference, highlighting the importance of more focused studies with additional taxon sampling. Transcriptomes are useful both for species-tree inference and for uncovering evolutionary complexity within lineages. Through analyses of gene-tree conflict and multiple methods of species-tree inference, we demonstrate that phylogenomic data can provide unparalleled insight into the evolutionary history of Caryophyllales. We also discuss a method for overcoming computational challenges associated with homolog clustering in large data sets. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  9. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID:26714172

  10. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.

  11. De Novo Assembly and Annotation of the Transcriptome of the Agricultural Weed Ipomoea purpurea Uncovers Gene Expression Changes Associated with Herbicide Resistance

    PubMed Central

    Leslie, Trent; Baucom, Regina S.

    2014-01-01

    Human-mediated selection can lead to rapid evolution in very short time scales, and the evolution of herbicide resistance in agricultural weeds is an excellent example of this phenomenon. The common morning glory, Ipomoea purpurea, is resistant to the herbicide glyphosate, but genetic investigations of this trait have been hampered by the lack of genomic resources for this species. Here, we present the annotated transcriptome of the common morning glory, Ipomoea purpurea, along with an examination of whole genome expression profiling to assess potential gene expression differences between three artificially selected herbicide resistant lines and three susceptible lines. The assembled Ipomoea transcriptome reported in this work contains 65,459 assembled transcripts, ~28,000 of which were functionally annotated by assignment to Gene Ontology categories. Our RNA-seq survey using this reference transcriptome identified 19 differentially expressed genes associated with resistance—one of which, a cytochrome P450, belongs to a large plant family of genes involved in xenobiotic detoxification. The differentially expressed genes also broadly implicated receptor-like kinases, which were down-regulated in the resistant lines, and other growth and defense genes, which were up-regulated in resistant lines. Interestingly, the target of glyphosate—EPSP synthase—was not overexpressed in the resistant Ipomoea lines as in other glyphosate resistant weeds. Overall, this work identifies potential candidate resistance loci for future investigations and dramatically increases genomic resources for this species. The assembled transcriptome presented herein will also provide a valuable resource to the Ipomoea community, as well as to those interested in utilizing the close relationship between the Convolvulaceae and the Solanaceae for phylogenetic and comparative genomics examinations. PMID:25155274

  12. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance.

    PubMed

    Leslie, Trent; Baucom, Regina S

    2014-08-25

    Human-mediated selection can lead to rapid evolution in very short time scales, and the evolution of herbicide resistance in agricultural weeds is an excellent example of this phenomenon. The common morning glory, Ipomoea purpurea, is resistant to the herbicide glyphosate, but genetic investigations of this trait have been hampered by the lack of genomic resources for this species. Here, we present the annotated transcriptome of the common morning glory, Ipomoea purpurea, along with an examination of whole genome expression profiling to assess potential gene expression differences between three artificially selected herbicide resistant lines and three susceptible lines. The assembled Ipomoea transcriptome reported in this work contains 65,459 assembled transcripts, ~28,000 of which were functionally annotated by assignment to Gene Ontology categories. Our RNA-seq survey using this reference transcriptome identified 19 differentially expressed genes associated with resistance-one of which, a cytochrome P450, belongs to a large plant family of genes involved in xenobiotic detoxification. The differentially expressed genes also broadly implicated receptor-like kinases, which were down-regulated in the resistant lines, and other growth and defense genes, which were up-regulated in resistant lines. Interestingly, the target of glyphosate-EPSP synthase-was not overexpressed in the resistant Ipomoea lines as in other glyphosate resistant weeds. Overall, this work identifies potential candidate resistance loci for future investigations and dramatically increases genomic resources for this species. The assembled transcriptome presented herein will also provide a valuable resource to the Ipomoea community, as well as to those interested in utilizing the close relationship between the Convolvulaceae and the Solanaceae for phylogenetic and comparative genomics examinations. Copyright © 2014 Leslie and Baucom.

  13. Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.

    PubMed

    Loor, Juan J; Moyes, Kasey M; Bionaz, Massimo

    2011-12-01

    Application of microarrays to the study of intramammary infections in recent years has provided a wealth of fundamental information on the transcriptomics adaptation of tissue/cells to the disease. Due to its heavy toll on productivity and health of the animal, in vivo and in vitro transcriptomics works involving different mastitis-causing pathogens have been conducted on the mammary gland, primarily on livestock species such as cow and sheep, with few studies in non-ruminants. However, the response to an infectious challenge originating in the mammary gland elicits systemic responses in the animal and encompasses tissues such as liver and immune cells in the circulation, with also potential effects on other tissues such as adipose. The susceptibility of the animal to develop mastitis likely is affected by factors beyond the mammary gland, e.g. negative energy balance as it occurs around parturition. Objectives of this review are to discuss the use of systems biology concepts for the holistic study of animal responses to intramammary infection; providing an update of recent work using transcriptomics to study mammary and peripheral tissue (i.e. liver) as well as neutrophils and macrophage responses to mastitis-causing pathogens; discuss the effect of negative energy balance on mastitis predisposition; and analyze the bovine and murine mammary innate-immune responses during lactation and involution using a novel functional analysis approach to uncover potential predisposing factors to mastitis throughout an animal's productive life.

  14. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    PubMed Central

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  15. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.

    PubMed

    Zhang, Zijun; Xing, Yi

    2017-09-19

    Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein-RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

    PubMed Central

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518

  17. Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

    PubMed

    Zuo, Chunman; Blow, Matthew; Sreedasyam, Avinash; Kuo, Rita C; Ramamoorthy, Govindarajan Kunde; Torres-Jerez, Ivone; Li, Guifen; Wang, Mei; Dilworth, David; Barry, Kerrie; Udvardi, Michael; Schmutz, Jeremy; Tang, Yuhong; Xu, Ying

    2018-01-01

    Switchgrass ( Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.

  18. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  19. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics.

    PubMed

    Haney, Robert A; Ayoub, Nadia A; Clarke, Thomas H; Hayashi, Cheryl Y; Garb, Jessica E

    2014-06-11

    Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity.

  20. Uncovering clinical knowledge and caring practices.

    PubMed

    Feldman, M E

    1993-06-01

    Narrative storytelling is a means by which knowledge embedded in nursing practice is uncovered and examined. Benner uses this method to study and explore skill acquisition and experience-based knowledge in nursing practice. By sharing these stories, knowledge that is unique to the experienced clinician is preserved and extended. The narrative presented here describes the expert coaching, discretionary judgment, and skilled involvement in the care of a patient in the PACU.

  1. Morphological Characters and Transcriptome Profiles Associated with Black Skin and Red Skin in Crimson Snapper (Lutjanus erythropterus)

    PubMed Central

    Zhang, Yan-Ping; Wang, Zhong-Duo; Guo, Yu-Song; Liu, Li; Yu, Juan; Zhang, Shun; Liu, Shao-Jun; Liu, Chu-Wu

    2015-01-01

    In this study, morphology observation and illumina sequencing were performed on two different coloration skins of crimson snapper (Lutjanus erythropterus), the black zone and the red zone. Three types of chromatophores, melanophores, iridophores and xanthophores, were organized in the skins. The main differences between the two colorations were in the amount and distribution of the three chromatophores. After comparing the two transcriptomes, 9200 unigenes with significantly different expressions (ratio change ≥ 2 and q-value ≤ 0.05) were found, of which 5972 were up-regulated in black skin and 3228 were up-regulated in red skin. Through the function annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially transcribed genes, we excavated a number of uncharacterized candidate pigment genes as well as found the conserved genes affecting pigmentation in crimson snapper. The patterns of expression of 14 pigment genes were confirmed by the Quantitative real-time PCR analysis between the two color skins. Overall, this study shows a global survey of the morphological characters and transcriptome analysis of the different coloration skins in crimson snapper, and provides valuable cellular and genetic information to uncover the mechanism of the formation of pigment patterns in snappers. PMID:26569232

  2. The elucidation of stress memory inheritance in Brassica rapa plants.

    PubMed

    Bilichak, Andriy; Ilnytskyy, Yaroslav; Wóycicki, Rafal; Kepeshchuk, Nina; Fogen, Dawson; Kovalchuk, Igor

    2015-01-01

    Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.

  3. Morphological Characters and Transcriptome Profiles Associated with Black Skin and Red Skin in Crimson Snapper (Lutjanus erythropterus).

    PubMed

    Zhang, Yan-Ping; Wang, Zhong-Duo; Guo, Yu-Song; Liu, Li; Yu, Juan; Zhang, Shun; Liu, Shao-Jun; Liu, Chu-Wu

    2015-11-12

    In this study, morphology observation and illumina sequencing were performed on two different coloration skins of crimson snapper (Lutjanus erythropterus), the black zone and the red zone. Three types of chromatophores, melanophores, iridophores and xanthophores, were organized in the skins. The main differences between the two colorations were in the amount and distribution of the three chromatophores. After comparing the two transcriptomes, 9200 unigenes with significantly different expressions (ratio change ≥ 2 and q-value ≤ 0.05) were found, of which 5972 were up-regulated in black skin and 3228 were up-regulated in red skin. Through the function annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially transcribed genes, we excavated a number of uncharacterized candidate pigment genes as well as found the conserved genes affecting pigmentation in crimson snapper. The patterns of expression of 14 pigment genes were confirmed by the Quantitative real-time PCR analysis between the two color skins. Overall, this study shows a global survey of the morphological characters and transcriptome analysis of the different coloration skins in crimson snapper, and provides valuable cellular and genetic information to uncover the mechanism of the formation of pigment patterns in snappers.

  4. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome.

    PubMed

    Wenger, Yvan; Galliot, Brigitte

    2013-03-25

    Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.

  5. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  6. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation.

    PubMed

    Huang, Ming-Der; Wei, Fu-Jin; Wu, Cheng-Cheih; Hsing, Yue-Ie Caroline; Huang, Anthony H C

    2009-02-01

    The anthers in flowers perform important functions in sexual reproduction. Several recent studies used microarrays to study anther transcriptomes to explore genes controlling anther development. To analyze the secretion and other functions of the tapetum, we produced transcriptomes of anthers of rice (Oryza sativa subsp. japonica) at six progressive developmental stages and pollen with sequencing-by-synthesis technology. The transcriptomes included at least 18,000 unique transcripts, about 25% of which had antisense transcripts. In silico anther-minus-pollen subtraction produced transcripts largely unique to the tapetum; these transcripts include all the reported tapetum-specific transcripts of orthologs in other species. The differential developmental profiles of the transcripts and their antisense transcripts signify extensive regulation of gene expression in the anther, especially the tapetum, during development. The transcriptomes were used to dissect two major cell/biochemical functions of the tapetum. First, we categorized and charted the developmental profiles of all transcripts encoding secretory proteins present in the cellular exterior; these transcripts represent about 12% and 30% of the those transcripts having more than 100 and 1,000 transcripts per million, respectively. Second, we successfully selected from hundreds of transcripts several transcripts encoding potential proteins for lipid exine synthesis during early anther development. These proteins include cytochrome P450, acyltransferases, and lipid transfer proteins in our hypothesized mechanism of exine synthesis in and export from the tapetum. Putative functioning of these proteins in exine formation is consistent with proteins and metabolites detected in the anther locule fluid obtained by micropipetting.

  7. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    PubMed

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  8. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  9. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model.

    PubMed

    Lösing, Pascal; Niturad, Cristina Elena; Harrer, Merle; Reckendorf, Christopher Meyer Zu; Schatz, Theresa; Sinske, Daniela; Lerche, Holger; Maljevic, Snezana; Knöll, Bernd

    2017-07-17

    A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1.We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (Srf CaMKCreERT2 ) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals.Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.

  10. An insight into the sialome of the bed bug, Cimex lectularius

    PubMed Central

    Francischetti, Ivo M.B.; Calvo, Eric; Andersen, John F.; Pham, Van M.; Favreau, Amanda J.; Barbian, Kent D.; Romero, Alvaro; Valenzuela, Jesus G.; Ribeiro., José M.C.

    2010-01-01

    The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion comprised of dozens or near one hundred different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy creating unique salivary potions in the form of novel pharmacological use of endogenous substances, and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls PMID:20441151

  11. Insight into the Sialome of the Bed Bug, Cimex lectularius.

    PubMed

    Francischetti, Ivo M B; Calvo, Eric; Andersen, John F; Pham, Van M; Favreau, Amanda J; Barbian, Kent D; Romero, Alvaro; Valenzuela, Jesus G; Ribeiro, José M C

    2010-08-06

    The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion composed of dozens or near 100 different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy, creating unique salivary potions in the form of novel pharmacological use of endogenous substances and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls.

  12. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes

    PubMed Central

    Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676

  13. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation.

    PubMed

    Zeng, Fan-Song; Menardo, Fabrizio; Xue, Min-Feng; Zhang, Xue-Jiang; Gong, Shuang-Jun; Yang, Li-Jun; Shi, Wen-Qi; Yu, Da-Zhao

    2017-01-01

    Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici ( Bgt ) play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth), 4 (foot cells initiation), and 5 (conidiophore erection) days post-inoculation (dpi). RNA-seq analyses identified 556 and 404 (combined 685) differentially expressed genes (DEGs) at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC), the electron transport chain (ETC), and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca 2+ ), H 2 O 2 , and phosphoinositide (PIP) signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H 2 O 2 in developing conidiophores was detected. Application of EGTA, a Ca 2+ chelator, and trifluoperazine dihydrochloride (TFP), a calmodulin (CaM) antagonist, markedly suppressed the generation of H 2 O 2 , affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca 2+ and H 2 O 2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis -specific genes that have not been previously found to be implicated in fungal conidiation, reflecting a unique molecular mechanism underlying asexual development of cereal powdery mildews.

  14. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation

    PubMed Central

    Zeng, Fan-Song; Menardo, Fabrizio; Xue, Min-Feng; Zhang, Xue-Jiang; Gong, Shuang-Jun; Yang, Li-Jun; Shi, Wen-Qi; Yu, Da-Zhao

    2017-01-01

    Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt) play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth), 4 (foot cells initiation), and 5 (conidiophore erection) days post-inoculation (dpi). RNA-seq analyses identified 556 and 404 (combined 685) differentially expressed genes (DEGs) at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC), the electron transport chain (ETC), and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca2+), H2O2, and phosphoinositide (PIP) signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H2O2 in developing conidiophores was detected. Application of EGTA, a Ca2+ chelator, and trifluoperazine dihydrochloride (TFP), a calmodulin (CaM) antagonist, markedly suppressed the generation of H2O2, affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca2+ and H2O2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis-specific genes that have not been previously found to be implicated in fungal conidiation, reflecting a unique molecular mechanism underlying asexual development of cereal powdery mildews. PMID:28713408

  15. The Embryonic Transcriptome of the Red-Eared Slider Turtle (Trachemys scripta)

    PubMed Central

    Kaplinsky, Nicholas J.; Gilbert, Scott F.; Cebra-Thomas, Judith; Lilleväli, Kersti; Saare, Merly; Chang, Eric Y.; Edelman, Hannah E.; Frick, Melissa A.; Guan, Yin; Hammond, Rebecca M.; Hampilos, Nicholas H.; Opoku, David S. B.; Sariahmed, Karim; Sherman, Eric A.; Watson, Ray

    2013-01-01

    The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences. PMID:23840449

  16. CXCL4 induces a unique transcriptome in monocyte-derived macrophages

    PubMed Central

    Gleissner, Christian A.; Shaked, Iftach; Little, Kristina M.; Ley, Klaus

    2012-01-01

    In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors like macrophage colony-stimulation factor (MCSF) and chemokines like platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with MCSF-induced macrophages or macrophages polarized with IFN-γ/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for six days. mRNA expression was measured by Affymetrix gene chips and differences were analyzed by Local Pooled Error test, Profile of Complex Functionality and Gene Set Enrichment Analysis. 375 genes were differentially expressed between MCSF- and CXCL4-induced macrophages, 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, antigen processing/presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the protein level, however, their transcriptome clustered with neither M1 nor M2 transcriptomes. They almost completely lost the ability to phagocytose zymosan beads. Genes linked to atherosclerosis were not consistently up- or downregulated. Scavenger receptors showed lower and cholesterol efflux transporters higher expression in CXCL4- than MCSF-induced macrophages, resulting in lower LDL content. We conclude that CXCL4 induces a unique macrophage transcriptome distinct from known macrophage types, defining a new macrophage differentiation that we propose to call M4. PMID:20335529

  17. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    PubMed

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Uncovering the hidden: complexity and strategies for diagnosing latent tuberculosis.

    PubMed

    Flores-Valdez, Mario Alberto

    2017-10-24

    Tuberculosis produces two clinical manifestations: active and latent (non-apparent) disease. The latter is estimated to affect one-third of the world population and constitutes a source of continued transmission should the disease emerge from its hidden state (reactivation). Methods to diagnose latent TB have been evolving and aim to detect the disease in people who are truly infected with M. tuberculosis , versus those where other mycobacteria, or even other pathologies not related to TB, are present. The current use of proteomic and transcriptomic approaches may lead to improved detection methods in the coming years.

  19. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production.

    PubMed

    Roth, Melissa S; Cokus, Shawn J; Gallaher, Sean D; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A; Merchant, Sabeeha S; Pellegrini, Matteo; Niyogi, Krishna K

    2017-05-23

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase ( BKT ), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.

  20. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    DOE PAGES

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; ...

    2017-05-08

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less

  1. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less

  2. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    PubMed Central

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A.; Merchant, Sabeeha S.; Pellegrini, Matteo

    2017-01-01

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production. PMID:28484037

  3. Developmental Transcriptome Analysis and Identification of Genes Involved in Larval Metamorphosis of the Razor Clam, Sinonovacula constricta.

    PubMed

    Niu, Donghong; Wang, Fei; Xie, Shumei; Sun, Fanyue; Wang, Ze; Peng, Maoxiao; Li, Jiale

    2016-04-01

    The razor clam Sinonovacula constricta is an important commercial species. The deficiency of developmental transcriptomic data is becoming the bottleneck of further researches on the mechanisms underlying settlement and metamorphosis in early development. In this study, de novo transcriptome sequencing was performed for S. constricta at different early developmental stages by using Illumina HiSeq 2000 paired-end (PE) sequencing technology. A total of 112,209,077 PE clean reads were generated. De novo assembly generated 249,795 contigs with an average length of 585 bp. Gene annotation resulted in the identification of 22,870 unigene hits against the NCBI database. Eight unique sequences related to metamorphosis were identified and analyzed using real-time PCR. The razor clam reference transcriptome would provide useful information on early developmental and metamorphosis mechanisms and could be used in the genetic breeding of shellfish.

  4. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    PubMed Central

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  5. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome

    PubMed Central

    Kim, Gunjune

    2017-01-01

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is “leaves of three, let it be”, which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species. PMID:29125533

  6. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome.

    PubMed

    Weisberg, Alexandra J; Kim, Gunjune; Westwood, James H; Jelesko, John G

    2017-11-10

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is "leaves of three, let it be", which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species.

  7. RNA-seq Transcriptome Analysis of Panax japonicus, and Its Comparison with Other Panax Species to Identify Potential Genes Involved in the Saponins Biosynthesis

    PubMed Central

    Rai, Amit; Yamazaki, Mami; Takahashi, Hiroki; Nakamura, Michimi; Kojoma, Mareshige; Suzuki, Hideyuki; Saito, Kazuki

    2016-01-01

    The Panax genus has been a source of natural medicine, benefitting human health over the ages, among which the Panax japonicus represents an important species. Our understanding of several key pathways and enzymes involved in the biosynthesis of ginsenosides, a pharmacologically active class of metabolites and a major chemical constituents of the rhizome extracts from the Panax species, are limited. Limited genomic information, and lack of studies on comparative transcriptomics across the Panax species have restricted our understanding of the biosynthetic mechanisms of these and many other important classes of phytochemicals. Herein, we describe Illumina based RNA sequencing analysis to characterize the transcriptome and expression profiles of genes expressed in the five tissues of P. japonicus, and its comparison with other Panax species. RNA sequencing and de novo transcriptome assembly for P. japonicus resulted in a total of 135,235 unigenes with 78,794 (58.24%) unigenes being annotated using NCBI-nr database. Transcriptome profiling, and gene ontology enrichment analysis for five tissues of P. japonicus showed that although overall processes were evenly conserved across all tissues. However, each tissue was characterized by several unique unigenes with the leaves showing the most unique unigenes among the tissues studied. A comparative analysis of the P. japonicus transcriptome assembly with publically available transcripts from other Panax species, namely, P. ginseng, P. notoginseng, and P. quinquefolius also displayed high sequence similarity across all Panax species, with P. japonicus showing highest similarity with P. ginseng. Annotation of P. japonicus transcriptome resulted in the identification of putative genes encoding all enzymes from the triterpene backbone biosynthetic pathways, and identified 24 and 48 unigenes annotated as cytochrome P450 (CYP) and glycosyltransferases (GT), respectively. These CYPs and GTs annotated unigenes were conserved across all Panax species and co-expressed with other the transcripts involved in the triterpenoid backbone biosynthesis pathways. Unigenes identified in this study represent strong candidates for being involved in the triterpenoid saponins biosynthesis, and can serve as a basis for future validation studies. PMID:27148308

  8. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    PubMed

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Responses of Murine and Human Macrophages to Leptospiral Infection: A Study Using Comparative Array Analysis

    PubMed Central

    Yang, Yingchao; Zhao, Jinping; Yang, Yutao; Cao, Yongguo; Hong, Cailing; Liu, Yuan; Sun, Lan; Huang, Minjun; Gu, Junchao

    2013-01-01

    Leptospirosis is a re-emerging tropical infectious disease caused by pathogenic Leptospira spp. The different host innate immune responses are partially related to the different severities of leptospirosis. In this study, we employed transcriptomics and cytokine arrays to comparatively calculate the responses of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HBMs) to leptospiral infection. We uncovered a series of different expression profiles of these two immune cells. The percentages of regulated genes in several biological processes of MPMs, such as antigen processing and presentation, membrane potential regulation, and the innate immune response, etc., were much greater than those of HBMs (>2-fold). In MPMs and HBMs, the caspase-8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator genes were significantly up-regulated, which supported previous results that the caspase-8 and caspase-3 pathways play an important role in macrophage apoptosis during leptospiral infection. In addition, the key component of the complement pathway, C3, was only up-regulated in MPMs. Furthermore, several cytokines, e.g. interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-alpha), were differentially expressed at both mRNA and protein levels in MPMs and HBMs. Some of the differential expressions were proved to be pathogenic Leptospira-specific regulations at mRNA level or protein level. Though it is still unclear why some animals are resistant and others are susceptible to leptospiral infection, this comparative study based on transcriptomics and cytokine arrays partially uncovered the differences of murine resistance and human susceptibility to leptospirosis. Taken together, these findings will facilitate further molecular studies on the innate immune response to leptospiral infection. PMID:24130911

  10. Principle considerations for the use of transcriptomics in doping research.

    PubMed

    Neuberger, Elmo W I; Moser, Dirk A; Simon, Perikles

    2011-10-01

    Over the course of the past decade, technical progress has enabled scientists to investigate genome-wide RNA expression using microarray platforms. This transcriptomic approach represents a promising tool for the discovery of basic gene expression patterns and for identification of cellular signalling pathways under various conditions. Since doping substances have been shown to influence mRNA expression, it has been suggested that these changes can be detected by screening the blood transcriptome. In this review, we critically discuss the potential but also the pitfalls of this application as a tool in doping research. Transcriptomic approaches were considered to potentially provide researchers with a unique gene expression signature or with a specific biomarker for various physiological and pathophysiological conditions. Since transcriptomic approaches are considerably prone to biological and technical confounding factors that act on study subjects or samples, very strict guidelines for the use of transcriptomics in human study subjects have been developed. Typical field conditions associated with doping controls limit the feasibility of following these strict guidelines as there are too many variables counteracting a standardized procedure. After almost a decade of research using transcriptomic tools, it still remains a matter of future technological progress to identify the ultimate biomarker using technologies and/or methodologies that are sufficiently robust against typical biological and technical bias and that are valid in a court of law. Copyright © 2011 John Wiley & Sons, Ltd.

  11. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  12. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages.

    PubMed

    Gleissner, Christian A; Shaked, Iftach; Little, Kristina M; Ley, Klaus

    2010-05-01

    In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors, such as macrophage colony-stimulation factor (M-CSF), and chemokines, such as platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with M-CSF-induced macrophages or macrophages polarized with IFN-gamma/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for 6 d. mRNA expression was measured by Affymetrix gene chips, and differences were analyzed by local pooled error test, profile of complex functionality, and gene set enrichment analysis. Three hundred seventy-five genes were differentially expressed between M-CSF- and CXCL4-induced macrophages; 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, Ag processing and presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the protein level; however, their transcriptome clustered with neither M1 nor M2 transcriptomes. They almost completely lost the ability to phagocytose zymosan beads. Genes linked to atherosclerosis were not consistently upregulated or downregulated. Scavenger receptors showed lower and cholesterol efflux transporters showed higher expression in CXCL4- than M-CSF-induced macrophages, resulting in lower low-density lipoprotein content. We conclude that CXCL4 induces a unique macrophage transcriptome distinct from known macrophage types, defining a new macrophage differentiation that we propose to call M4.

  13. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae.

    PubMed

    Barker, Michael S; Li, Zheng; Kidder, Thomas I; Reardon, Chris R; Lai, Zhao; Oliveira, Luiz O; Scascitelli, Moira; Rieseberg, Loren H

    2016-07-01

    Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels. © 2016 Botanical Society of America.

  14. Effectors involved in fungal-fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent-powdery mildew-plant.

    PubMed

    Laur, Joan; Ramakrishnan, Gowsica Bojarajan; Labbé, Caroline; Lefebvre, François; Spanu, Pietro D; Bélanger, Richard R

    2018-01-01

    Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis.

    PubMed

    Wysocki, William P; Clark, Lynn G; Attigala, Lakshmi; Ruiz-Sanchez, Eduardo; Duvall, Melvin R

    2015-03-18

    Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae. Here a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots. Phylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues.

  16. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  17. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    PubMed Central

    2011-01-01

    Background Panax notoginseng (Burk) F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST) similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS), which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158) and UDP-glycosyltransferase (Pn00082) gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH), and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR) were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next-generation sequencing (NGS) technology. The candidate genes involved in triterpene saponin biosynthesis, including the putative CYP450s and UGTs, were obtained in this study. Additionally, the identification of SSRs provided plenty of genetic makers for molecular breeding and genetics applications in this species. These data will provide information on gene discovery, transcriptional regulation and marker-assisted selection for P. notoginseng. The dataset establishes an important foundation for the study with the purpose of ensuring adequate drug resources for this species. PMID:22369100

  18. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  19. The Secret Life of RNA: Lessons from Emerging Methodologies.

    PubMed

    Medioni, Caroline; Besse, Florence

    2018-01-01

    The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.

  20. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection.

    PubMed

    Nejat, Naghmeh; Cahill, David M; Vadamalai, Ganesan; Ziemann, Mark; Rookes, James; Naderali, Neda

    2015-10-01

    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

  2. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities

    PubMed Central

    Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta

    2016-01-01

    Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients’ subsets. This ‘sub-grouping’ approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics. PMID:27835693

  3. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci

    PubMed Central

    Shelburne, Samuel A.; Davenport, Michael T.; Keith, David B.; Musser, James M.

    2009-01-01

    Historically, the study of bacterial catabolism of complex carbohydrates has contributed to understanding basic bacterial physiology. Recently, however, genome-wide screens of streptococcal pathogenesis have identified genes encoding proteins involved in complex carbohydrate catabolism as participating in pathogen infectivity. Subsequent studies have focused on specific mechanisms by which carbohydrate utilization proteins might contribute to the ability of streptococci to colonize and infect the host. Moreover, transcriptome and biochemical analyses have uncovered novel regulatory pathways by which streptococci link environmental carbohydrate availability to virulence factor production. Herein we review new insights into the role of complex carbohydrates in streptococcal host-pathogen interaction. PMID:18508271

  4. Dawn of the in vivo RNA structurome and interactome.

    PubMed

    Kwok, Chun Kit

    2016-10-15

    RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species.

    PubMed

    Hezroni, Hadas; Koppstein, David; Schwartz, Matthew G; Avrutin, Alexandra; Bartel, David P; Ulitsky, Igor

    2015-05-19

    The inability to predict long noncoding RNAs from genomic sequence has impeded the use of comparative genomics for studying their biology. Here, we develop methods that use RNA sequencing (RNA-seq) data to annotate the transcriptomes of 16 vertebrates and the echinoid sea urchin, uncovering thousands of previously unannotated genes, most of which produce long intervening noncoding RNAs (lincRNAs). Although in each species, >70% of lincRNAs cannot be traced to homologs in species that diverged >50 million years ago, thousands of human lincRNAs have homologs with similar expression patterns in other species. These homologs share short, 5'-biased patches of sequence conservation nested in exonic architectures that have been extensively rewired, in part by transposable element exonization. Thus, over a thousand human lincRNAs are likely to have conserved functions in mammals, and hundreds beyond mammals, but those functions require only short patches of specific sequences and can tolerate major changes in gene architecture. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

    PubMed

    Tang, Qin; Iyer, Sowmya; Lobbardi, Riadh; Moore, John C; Chen, Huidong; Lareau, Caleb; Hebert, Christine; Shaw, McKenzie L; Neftel, Cyril; Suva, Mario L; Ceol, Craig J; Bernards, Andre; Aryee, Martin; Pinello, Luca; Drummond, Iain A; Langenau, David M

    2017-10-02

    Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA-protein kinase catalytic subunit ( prkdc ), interleukin-2 receptor γ a ( il2rga ), and double-homozygous-mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish. © 2017 Tang et al.

  8. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing

    PubMed Central

    Iyer, Sowmya; Lobbardi, Riadh; Chen, Huidong; Hebert, Christine; Shaw, McKenzie L.; Neftel, Cyril; Suva, Mario L.; Bernards, Andre; Aryee, Martin; Drummond, Iain A.

    2017-01-01

    Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA–protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous–mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish. PMID:28878000

  9. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.

    PubMed

    Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H

    2014-03-12

    The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.

  10. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons

    PubMed Central

    Krishnaswami, Suguna Rani; Grindberg, Rashel V; Novotny, Mark; Venepally, Pratap; Lacar, Benjamin; Bhutani, Kunal; Linker, Sara B; Pham, Son; Erwin, Jennifer A; Miller, Jeremy A; Hodge, Rebecca; McCarthy, James K; Kelder, Martin; McCorrison, Jamison; Aevermann, Brian D; Fuertes, Francisco Diez; Scheuermann, Richard H; Lee, Jun; Lein, Ed S; Schork, Nicholas; McConnell, Michael J; Gage, Fred H; Lasken, Roger S

    2016-01-01

    A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at −80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing. PMID:26890679

  11. Single-cell Transcriptome Study as Big Data

    PubMed Central

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  12. Uncovering an Existential Barrier to Breast Self-exam Behavior

    PubMed Central

    Goldenberg, Jamie L.; Arndt, Jamie; Hart, Joshua; Routledge, Clay

    2008-01-01

    The present research applies an analysis derived from terror management theory to the health domain of breast examination, and in doing so uncovers previously unrecognized factors that may contribute to women’s reluctance to perform breast self-examinations (BSEs). In Study 1, when concerns about mortality were primed, reminders of human beings’ physical nature (i.e., creatureliness) reduced intentions to conduct BSEs compared to reminders of humans’ uniqueness. In Study 2, women conducted shorter exams on a breast model (an experience found to increase death-thought accessibility) when creatureliness was primed compared to a uniqueness and no essay condition. In Study 3, after a creatureliness prime, women performed shorter BSEs when a placebo did not provide an alternative explanation for their discomfort compared to when it did. Advances for theory and breast self-exam promotion are discussed. PMID:19255593

  13. De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology.

    PubMed

    Canales, Javier; Bautista, Rocio; Label, Philippe; Gómez-Maldonado, Josefa; Lesur, Isabelle; Fernández-Pozo, Noe; Rueda-López, Marina; Guerrero-Fernández, Dario; Castro-Rodríguez, Vanessa; Benzekri, Hicham; Cañas, Rafael A; Guevara, María-Angeles; Rodrigues, Andreia; Seoane, Pedro; Teyssier, Caroline; Morel, Alexandre; Ehrenmann, François; Le Provost, Grégoire; Lalanne, Céline; Noirot, Céline; Klopp, Christophe; Reymond, Isabelle; García-Gutiérrez, Angel; Trontin, Jean-François; Lelu-Walter, Marie-Anne; Miguel, Celia; Cervera, María Teresa; Cantón, Francisco R; Plomion, Christophe; Harvengt, Luc; Avila, Concepción; Gonzalo Claros, M; Cánovas, Francisco M

    2014-04-01

    Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity.

    PubMed

    Hobbs, Matthew; Pavasovic, Ana; King, Andrew G; Prentis, Peter J; Eldridge, Mark D B; Chen, Zhiliang; Colgan, Donald J; Polkinghorne, Adam; Wilkins, Marc R; Flanagan, Cheyne; Gillett, Amber; Hanger, Jon; Johnson, Rebecca N; Timms, Peter

    2014-09-11

    The koala, Phascolarctos cinereus, is a biologically unique and evolutionarily distinct Australian arboreal marsupial. The goal of this study was to sequence the transcriptome from several tissues of two geographically separate koalas, and to create the first comprehensive catalog of annotated transcripts for this species, enabling detailed analysis of the unique attributes of this threatened native marsupial, including infection by the koala retrovirus. RNA-Seq data was generated from a range of tissues from one male and one female koala and assembled de novo into transcripts using Velvet-Oases. Transcript abundance in each tissue was estimated. Transcripts were searched for likely protein-coding regions and a non-redundant set of 117,563 putative protein sequences was produced. In similarity searches there were 84,907 (72%) sequences that aligned to at least one sequence in the NCBI nr protein database. The best alignments were to sequences from other marsupials. After applying a reciprocal best hit requirement of koala sequences to those from tammar wallaby, Tasmanian devil and the gray short-tailed opossum, we estimate that our transcriptome dataset represents approximately 15,000 koala genes. The marsupial alignment information was used to look for potential gene duplications and we report evidence for copy number expansion of the alpha amylase gene, and of an aldehyde reductase gene.Koala retrovirus (KoRV) transcripts were detected in the transcriptomes. These were analysed in detail and the structure of the spliced envelope gene transcript was determined. There was appreciable sequence diversity within KoRV, with 233 sites in the KoRV genome showing small insertions/deletions or single nucleotide polymorphisms. Both koalas had sequences from the KoRV-A subtype, but the male koala transcriptome has, in addition, sequences more closely related to the KoRV-B subtype. This is the first report of a KoRV-B-like sequence in a wild population. This transcriptomic dataset is a useful resource for molecular genetic studies of the koala, for evolutionary genetic studies of marsupials, for validation and annotation of the koala genome sequence, and for investigation of koala retrovirus. Annotated transcripts can be browsed and queried at http://koalagenome.org.

  15. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.

    PubMed

    Cerveau, Nicolas; Jackson, Daniel J

    2016-12-09

    Next-generation sequencing (NGS) technologies are arguably the most revolutionary technical development to join the list of tools available to molecular biologists since PCR. For researchers working with nonconventional model organisms one major problem with the currently dominant NGS platform (Illumina) stems from the obligatory fragmentation of nucleic acid material that occurs prior to sequencing during library preparation. This step creates a significant bioinformatic challenge for accurate de novo assembly of novel transcriptome data. This challenge becomes apparent when a variety of modern assembly tools (of which there is no shortage) are applied to the same raw NGS dataset. With the same assembly parameters these tools can generate markedly different assembly outputs. In this study we present an approach that generates an optimized consensus de novo assembly of eukaryotic coding transcriptomes. This approach does not represent a new assembler, rather it combines the outputs of a variety of established assembly packages, and removes redundancy via a series of clustering steps. We test and validate our approach using Illumina datasets from six phylogenetically diverse eukaryotes (three metazoans, two plants and a yeast) and two simulated datasets derived from metazoan reference genome annotations. All of these datasets were assembled using three currently popular assembly packages (CLC, Trinity and IDBA-tran). In addition, we experimentally demonstrate that transcripts unique to one particular assembly package are likely to be bioinformatic artefacts. For all eight datasets our pipeline generates more concise transcriptomes that in fact possess more unique annotatable protein domains than any of the three individual assemblers we employed. Another measure of assembly completeness (using the purpose built BUSCO databases) also confirmed that our approach yields more information. Our approach yields coding transcriptome assemblies that are more likely to be closer to biological reality than any of the three individual assembly packages we investigated. This approach (freely available as a simple perl script) will be of use to researchers working with species for which there is little or no reference data against which the assembly of a transcriptome can be performed.

  16. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi.

    PubMed

    Feldmesser, Ester; Rosenwasser, Shilo; Vardi, Assaf; Ben-Dor, Shifra

    2014-02-22

    The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated. Several approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and protein levels, and resulted in an improvement of 20% versus any of the read-based approaches alone. To the best of our knowledge, this is the first time that an automated transcript definition is subjected to quality control using manually defined and curated genes and thereafter the process is improved. We recommend using a set of manually curated genes to troubleshoot transcriptome reconstruction.

  17. Transcriptomic changes throughout post-hatch development in Gallus gallus pituitary

    PubMed Central

    Lamont, Susan J; Schmidt, Carl J

    2016-01-01

    The pituitary gland is a neuroendocrine organ that works closely with the hypothalamus to affect multiple processes within the body including the stress response, metabolism, growth and immune function. Relative tissue expression (rEx) is a transcriptome analysis method that compares the genes expressed in a particular tissue to the genes expressed in all other tissues with available data. Using rEx, the aim of this study was to identify genes that are uniquely or more abundantly expressed in the pituitary when compared to all other collected chicken tissues. We applied rEx to define genes enriched in the chicken pituitaries at days 21, 22 and 42 post-hatch. rEx analysis identified 25 genes shared between all time points, 295 genes shared between days 21 and 22 and 407 genes unique to day 42. The 25 genes shared by all time points are involved in morphogenesis and general nervous tissue development. The 295 shared genes between days 21 and 22 are involved in neurogenesis and nervous system development and differentiation. The 407 unique day 42 genes are involved in pituitary development, endocrine system development and other hormonally related gene ontology terms. Overall, rEx analysis indicates a focus on nervous system/tissue development at days 21 and 22. By day 42, in addition to nervous tissue development, there is expression of genes involved in the endocrine system, possibly for maturation and preparation for reproduction. This study defines the transcriptome of the chicken pituitary gland and aids in understanding the expressed genes critical to its function and maturation. PMID:27856505

  18. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    PubMed

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  19. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    PubMed

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation.

  20. Transcriptome and Proteome Data Reveal Candidate Genes for Pollinator Attraction in Sexually Deceptive Orchids

    PubMed Central

    Sedeek, Khalid E. M.; Qi, Weihong; Schauer, Monica A.; Gupta, Alok K.; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P.; Schlüter, Philipp M.

    2013-01-01

    Background Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. Results We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Conclusion Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation. PMID:23734209

  1. Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes.

    PubMed

    Magnanou, Elodie; Klopp, Christophe; Noirot, Celine; Besseau, Laurence; Falcón, Jack

    2014-07-01

    The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate further functional approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation

    PubMed Central

    Tiedje, Christopher; Diaz-Muñoz, Manuel D.; Trulley, Philipp; Ahlfors, Helena; Laaß, Kathrin; Blackshear, Perry J.; Turner, Martin; Gaestel, Matthias

    2016-01-01

    RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1 h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptomes of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2, whereas retained RNA-binding capacity of TTP-AA to 3′UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3′UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role of TTP as a suppressor of feedback inhibitors of inflammation and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control the pro-inflammatory response. PMID:27220464

  3. An Approach to Function Annotation for Proteins of Unknown Function (PUFs) in the Transcriptome of Indian Mulberry.

    PubMed

    Dhanyalakshmi, K H; Naika, Mahantesha B N; Sajeevan, R S; Mathew, Oommen K; Shafi, K Mohamed; Sowdhamini, Ramanathan; N Nataraja, Karaba

    2016-01-01

    The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.

  4. Developing a 'personalome' for precision medicine: emerging methods that compute interpretable effect sizes from single-subject transcriptomes.

    PubMed

    Vitali, Francesca; Li, Qike; Schissler, A Grant; Berghout, Joanne; Kenost, Colleen; Lussier, Yves A

    2017-12-18

    The development of computational methods capable of analyzing -omics data at the individual level is critical for the success of precision medicine. Although unprecedented opportunities now exist to gather data on an individual's -omics profile ('personalome'), interpreting and extracting meaningful information from single-subject -omics remain underdeveloped, particularly for quantitative non-sequence measurements, including complete transcriptome or proteome expression and metabolite abundance. Conventional bioinformatics approaches have largely been designed for making population-level inferences about 'average' disease processes; thus, they may not adequately capture and describe individual variability. Novel approaches intended to exploit a variety of -omics data are required for identifying individualized signals for meaningful interpretation. In this review-intended for biomedical researchers, computational biologists and bioinformaticians-we survey emerging computational and translational informatics methods capable of constructing a single subject's 'personalome' for predicting clinical outcomes or therapeutic responses, with an emphasis on methods that provide interpretable readouts. (i) the single-subject analytics of the transcriptome shows the greatest development to date and, (ii) the methods were all validated in simulations, cross-validations or independent retrospective data sets. This survey uncovers a growing field that offers numerous opportunities for the development of novel validation methods and opens the door for future studies focusing on the interpretation of comprehensive 'personalomes' through the integration of multiple -omics, providing valuable insights into individual patient outcomes and treatments. © The Author 2017. Published by Oxford University Press.

  5. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation.

    PubMed

    Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C

    2017-09-01

    Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.

  6. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome.

    PubMed

    Zheng, Huajun; Liu, Enuo; Shi, Tao; Ye, Luyi; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2016-02-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (Lb. bulgaricus 2038) is an industrial bacterium that is used as a starter for dairy products. We proposed several hypotheses concerning its industrial features previously. Here, we utilized RNA-seq to explore the transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey conditions. The most abundantly expressed genes in the four stages were mainly involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production (for the stationary stage). The high expression of genes like d-lactate dehydrogenase was thought as a result of energy production, and consistent expression of EPS synthesis genes, the restriction-modification (RM) system and the CRISPR/Cas system were validated for explaining the advantage of this strain in yoghurt production. Several postulations, like NADPH production through GapN bypass, converting aspartate into carbon-skeleton intermediates, and formate production through degrading GTP, were proved not working under these culture conditions. The high expression of helicase genes and co-expressed amino acids/oligopeptides transporting proteins indicated that the helicase might mediate the strain obtaining nitrogen source from the environment. The transport system of Lb. bulgaricus 2038 was found to be regulated by antisense RNA, hinting the potential application of non-coding RNA in regulating lactic acid bacteria (LAB) gene expression. Our study has primarily uncovered Lb. bulgaricus 2038 transcriptome, which could gain a better understanding of the regulation system in Lb. bulgaricus and promote its industrial application.

  7. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    PubMed

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  8. Uncovering the Biology of Cancers in Adolescents and Young Adults

    Cancer.gov

    Evidence suggests that some adolescent and young adult cancers may have unique genetic and biological features. Researchers are trying to better understand the biology of these cancers in order to identify potential therapeutic targets.

  9. Burkitt lymphoma is molecularly distinct from other lymphomas

    Cancer.gov

    Scientists have uncovered a number of molecular signatures in Burkitt lymphoma, including unique genetic alterations that promote cell survival, that are not found in other lymphomas. These findings provide the first genetic evidence that Burkitt lymphoma

  10. Optimization of De Novo Short Read Assembly of Seabuckthorn (Hippophae rhamnoides L.) Transcriptome

    PubMed Central

    Ghangal, Rajesh; Chaudhary, Saurabh; Jain, Mukesh; Purty, Ram Singh; Chand Sharma, Prakash

    2013-01-01

    Seabuckthorn ( Hippophae rhamnoides L.) is known for its medicinal, nutritional and environmental importance since ancient times. However, very limited efforts have been made to characterize the genome and transcriptome of this wonder plant. Here, we report the use of next generation massive parallel sequencing technology (Illumina platform) and de novo assembly to gain a comprehensive view of the seabuckthorn transcriptome. We assembled 86,253,874 high quality short reads using six assembly tools. At our hand, assembly of non-redundant short reads following a two-step procedure was found to be the best considering various assembly quality parameters. Initially, ABySS tool was used following an additive k-mer approach. The assembled transcripts were subsequently subjected to TGICL suite. Finally, de novo short read assembly yielded 88,297 transcripts (> 100 bp), representing about 53 Mb of seabuckthorn transcriptome. The average length of transcripts was 610 bp, N50 length 1198 BP and 91% of the short reads uniquely mapped back to seabuckthorn transcriptome. A total of 41,340 (46.8%) transcripts showed significant similarity with sequences present in nr protein databases of NCBI (E-value < 1E-06). We also screened the assembled transcripts for the presence of transcription factors and simple sequence repeats. Our strategy involving the use of short read assembler (ABySS) followed by TGICL will be useful for the researchers working with a non-model organism’s transcriptome in terms of saving time and reducing complexity in data management. The seabuckthorn transcriptome data generated here provide a valuable resource for gene discovery and development of functional molecular markers. PMID:23991119

  11. Functional genomics of root growth and development in Arabidopsis

    PubMed Central

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N.

    2009-01-01

    Summary Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal. PMID:19117793

  12. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  13. Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. “Dashehari”) unravels ripening associated genes

    PubMed Central

    Srivastava, Smriti; Singh, Rajesh K.; Pathak, Garima; Goel, Ridhi; Asif, Mehar Hasan; Sane, Aniruddha P.; Sane, Vidhu A.

    2016-01-01

    Ripening in mango is under a complex control of ethylene. In an effort to understand the complex spatio-temporal control of ripening we have made use of a popular N. Indian variety “Dashehari” This variety ripens from the stone inside towards the peel outside and forms jelly in the pulp in ripe fruits. Through a combination of 454 and Illumina sequencing, a transcriptomic analysis of gene expression from unripe and midripe stages have been performed in triplicates. Overall 74,312 unique transcripts with ≥1 FPKM were obtained. The transcripts related to 127 pathways were identified in “Dashehari” mango transcriptome by the KEGG analysis. These pathways ranged from detoxification, ethylene biosynthesis, carbon metabolism and aromatic amino acid degradation. The transcriptome study reveals differences not only in expression of softening associated genes but also those that govern ethylene biosynthesis and other nutritional characteristics. This study could help to develop ripening related markers for selective breeding to reduce the problems of excess jelly formation during softening in the “Dashehari” variety. PMID:27586495

  14. Systematic Identification of Druggable Epithelial-Stromal Crosstalk Signaling Networks in Ovarian Cancer.

    PubMed

    Yeung, Tsz-Lun; Sheng, Jianting; Leung, Cecilia S; Li, Fuhai; Kim, Jaeyeon; Ho, Samuel Y; Matzuk, Martin M; Lu, Karen H; Wong, Stephen T C; Mok, Samuel C

    2018-05-31

    Bulk tumor tissue samples are used for generating gene expression profiles in most research studies, making it difficult to decipher the stroma-cancer crosstalk networks. In the present study, we describe the use of microdissected transcriptome profiles for the identification of cancer-stroma crosstalk networks with prognostic value, which presents a unique opportunity for developing new treatment strategies for ovarian cancer. Transcriptome profiles from microdissected ovarian cancer-associated fibroblasts (CAFs) and ovarian cancer cells from patients with high-grade serous ovarian cancer (n = 70) were used as input data for the computational systems biology program CCCExplorer to uncover crosstalk networks between various cell types within the tumor microenvironment. The crosstalk analysis results were subsequently used for discovery of new indications for old drugs in ovarian cancer by computational ranking of candidate agents. Survival analysis was performed on ovarian tumor-bearing Dicer/Pten double-knockout mice treated with calcitriol, a US Food and Drug Administration-approved agent that suppresses the Smad signaling cascade, or vehicle control (9-11 mice per group). All statistical tests were two-sided. Activation of TGF-β-dependent and TGF-β-independent Smad signaling was identified in a particular subtype of CAFs and was associated with poor patient survival (patients with higher levels of Smad-regulated gene expression by CAFs: median overall survival = 15 months, 95% confidence interval [CI] = 12.7 to 17.3 months; vs patients with lower levels of Smad-regulated gene expression: median overall survival = 26 months, 95% CI = 15.9 to 36.1 months, P = .02). In addition, the activated Smad signaling identified in CAFs was found to be targeted by repositioning calcitriol. Calcitriol suppressed Smad signaling in CAFs, inhibited tumor progression in mice, and prolonged the median survival duration of ovarian cancer-bearing mice from 36 to 48 weeks (P = .04). Our findings suggest the feasibility of using novel multicellular systems biology modeling to identify and repurpose known drugs targeting cancer-stroma crosstalk networks, potentially leading to faster and more effective cures for cancers.

  15. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program.

    PubMed

    Fasoli, Marianna; Dal Santo, Silvia; Zenoni, Sara; Tornielli, Giovanni Battista; Farina, Lorenzo; Zamboni, Anita; Porceddu, Andrea; Venturini, Luca; Bicego, Manuele; Murino, Vittorio; Ferrarini, Alberto; Delledonne, Massimo; Pezzotti, Mario

    2012-09-01

    We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.

  16. Accessing the genomic effects of naked nanoceria in murine neuronal cells.

    PubMed

    Lee, Tin-Lap; Raitano, Joan M; Rennert, Owen M; Chan, Siu-Wai; Chan, Wai-Yee

    2012-07-01

    Cerium oxide nanoparticles (nanoceria) are engineered nanoparticles whose versatility is due to their unique redox properties. We and others have demonstrated that naked nanoceria can act as antioxidants to protect cells against oxidative damage. Although the redox properties may be beneficial, the genome-wide effects of nanoceria on gene transcription and associated biological processes remain elusive. Here we applied a functional genomic approach to examine the genome-wide effects of nanoceria on global gene transcription and cellular functions in mouse neuronal cells. Importantly, we demonstrated that nanoceria induced chemical- and size-specific changes in the murine neuronal cell transcriptome. The nanoceria contributed more than 83% of the population of uniquely altered genes and were associated with a unique spectrum of genes related to neurological disease, cell cycle control, and growth. These observations suggest that an in-depth assessment of potential health effects of naked nanoceria and other naked nanoparticles is both necessary and imminent. Cerium oxide nanoparticles are important antioxidants, with potential applications in neurodegenerative conditions. This team of investigators demonstrated the genomic effects of nanoceria, showing that it induced chemical- and size-specific changes in the murine neuronal cell transcriptome. Published by Elsevier Inc.

  17. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome

    PubMed Central

    White, Michael A.; Kitano, Jun; Peichel, Catherine L.

    2015-01-01

    Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858

  18. De Novo Transcriptome Sequencing Reveals Important Molecular Networks and Metabolic Pathways of the Plant, Chlorophytum borivilianum

    PubMed Central

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum. PMID:24376689

  19. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host

    PubMed Central

    Leontovyč, Roman; Young, Neil D.; Korhonen, Pasi K.; Hall, Ross S.; Tan, Patrick; Mikeš, Libor; Kašný, Martin; Horák, Petr; Gasser, Robin B.

    2016-01-01

    To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts’ immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. PMID:26863542

  20. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families

    PubMed Central

    Rombauts, Stephane; Chrisargiris, Antonis; Van Leeuwen, Thomas; Vontas, John

    2013-01-01

    The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology. PMID:23824998

  1. De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress.

    PubMed

    Zeng, Tao; Zhang, Liping; Li, Jinjun; Wang, Deqian; Tian, Yong; Lu, Lizhi

    2015-05-01

    High temperature is a major abiotic stress limiting animal growth and productivity worldwide. The Muscovy duck (Cairina moschata), sometimes called the Barbary drake, is a type of duck with a fairly unusual domestication history. In Southeast Asia, duck meat is one of the top meats consumed, and as such, the production of the meat is an important topic of research. The transcriptomic and genomic data presently available are insufficient to understanding the molecular mechanism underlying the heat tolerance of Muscovy ducks. Thus, transcriptome and expression profiling data for this species are required as important resource for identifying genes and developing molecular marker. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. More than 225 million clean reads were generated and assembled into 36,903 unique transcripts with an average length of 1,135 bp. A total of 21,221 (57.50 %) unigenes were annotated. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with transcription, signal transduction, and apoptosis. We also performed gene expression profiling analysis upon heat treatment in Muscovy ducks and identified 470 heat-response unique transcripts. GO term enrichment showed that protein folding and chaperone binding were significant enrichment, whereas KEGG pathway analyses showed that Ras and MAPKs were activated after heat stress in Muscovy ducks. Our research enriched sequences information of Muscovy duck, provided novel insights into responses to heat stress in these ducks, and serve as candidate genes or markers that can be used to guide future efforts to breed heat-tolerant duck strains.

  2. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    PubMed

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  3. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haggard, Derik E.; Noyes, Pamela D.; Waters, Katrina M.

    There is a need to develop novel, high-throughput screening and prioritization methods to identify chemicals with adverse estrogen, androgen, and thyroid activity to protect human health and the environment and is of interest to the Endocrine Disruptor Screening Program. The current aim is to explore the utility of zebrafish as a testing paradigm to classify endocrine activity using phenotypically anchored transcriptome profiling. Transcriptome analysis was conducted on embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at a concentration that elicited adverse malformations or mortality at 120 hours post-fertilization in 80% of the animals exposed. Analysis of the top 1000more » significant differentially expressed transcripts across all treatments identified a unique transcriptional and phenotypic profile for thyroid hormone receptor agonists, which can be used as a biomarker screen for potential thyroid hormone agonists.« less

  4. International Students at Community Colleges: Challenges and Opportunities for This Unique Segment of U.S. Higher Education

    ERIC Educational Resources Information Center

    Jennings, Ross

    2017-01-01

    In unprecedented numbers, American community colleges are seeking to boost their recruitment and retention of international students. This chapter uncovers the challenges and opportunities based on successful experiences in community college efforts.

  5. Multi-omics analysis reveals that ornithine decarboxylase contributes to erlotinib resistance in pancreatic cancer cells

    PubMed Central

    Song, Sang-Hoon; Lee, Naeun; Kim, Dong-Joon; Lee, Sooyeun; Jeong, Chul-Ho

    2017-01-01

    Molecular and metabolic alterations in cancer cells are one of the leading causes of acquired resistance to chemotherapeutics. In this study, we explored an experimental strategy to identify which of these alterations can induce erlotinib resistance in human pancreatic cancer. Using genetically matched erlotinib-sensitive (BxPC-3) and erlotinib-resistant (BxPC-3ER) pancreatic cancer cells, we conducted a multi-omics analysis of metabolomes and transcriptomes in these cells. Untargeted and targeted metabolomic analyses revealed significant changes in metabolic pathways involved in the regulation of polyamines, amino acids, and fatty acids. Further transcriptomic analysis identified that ornithine decarboxylase (ODC) and its major metabolite, putrescine, contribute to the acquisition of erlotinib resistance in BxPC-3ER cells. Notably, either pharmacological or genetic blockage of ODC was able to restore erlotinib sensitivity, and this could be rescued by treatment with exogenous putrescine in erlotinib-resistant BxPC-3ER cells. Moreover, using a panel of cancer cells we demonstrated that ODC expression levels in cancer cells are inversely correlated with sensitivity to chemotherapeutics. Taken together, our findings will begin to uncover mechanisms of acquired drug resistance and ultimately help to identify potential therapeutic markers in cancer. PMID:29190951

  6. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    PubMed Central

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  7. Multivariate inference of pathway activity in host immunity and response to therapeutics

    PubMed Central

    Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.

    2014-01-01

    Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207

  8. Analysis of transcriptome in hickory (Carya cathayensis), and uncover the dynamics in the hormonal signaling pathway during graft process.

    PubMed

    Qiu, Lingling; Jiang, Bo; Fang, Jia; Shen, Yike; Fang, Zhongxiang; Rm, Saravana Kumar; Yi, Keke; Shen, Chenjia; Yan, Daoliang; Zheng, Bingsong

    2016-11-17

    Hickory (Carya cathayensis), a woody plant with high nutritional and economic value, is widely planted in China. Due to its long juvenile phase, grafting is a useful technique for large-scale cultivation of hickory. To reveal the molecular mechanism during the graft process, we sequenced the transcriptomes of graft union in hickory. In our study, six RNA-seq libraries yielded a total of 83,676,860 clean short reads comprising 4.19 Gb of sequence data. A large number of differentially expressed genes (DEGs) at three time points during the graft process were identified. In detail, 777 DEGs in the 7 d vs 0 d (day after grafting) comparison were classified into 11 enriched Gene Ontology (GO) categories, and 262 DEGs in the 14 d vs 0 d comparison were classified into 15 enriched GO categories. Furthermore, an overview of the PPI network was constructed by these DEGs. In addition, 20 genes related to the auxin-and cytokinin-signaling pathways were identified, and some were validated by qRT-PCR analysis. Our comprehensive analysis provides basic information on the candidate genes and hormone signaling pathways involved in the graft process in hickory and other woody plants.

  9. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana).

    PubMed

    Xu, Kai; Niu, Qingsheng; Zhao, Huiting; Du, Yali; Jiang, Yusuo

    2017-01-01

    The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  10. In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon.

    PubMed

    Tarifeño-Saldivia, E; Valenzuela-Miranda, D; Gallardo-Escárate, C

    2017-08-01

    The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata.

    PubMed

    Krishna, Srikar; Nair, Aparna; Cheedipudi, Sirisha; Poduval, Deepak; Dhawan, Jyotsna; Palakodeti, Dasaradhi; Ghanekar, Yashoda

    2013-01-07

    Small non-coding RNAs such as miRNAs, piRNAs and endo-siRNAs fine-tune gene expression through post-transcriptional regulation, modulating important processes in development, differentiation, homeostasis and regeneration. Using deep sequencing, we have profiled small non-coding RNAs in Hydra magnipapillata and investigated changes in small RNA expression pattern during head regeneration. Our results reveal a unique repertoire of small RNAs in hydra. We have identified 126 miRNA loci; 123 of these miRNAs are unique to hydra. Less than 50% are conserved across two different strains of Hydra vulgaris tested in this study, indicating a highly diverse nature of hydra miRNAs in contrast to bilaterian miRNAs. We also identified siRNAs derived from precursors with perfect stem-loop structure and that arise from inverted repeats. piRNAs were the most abundant small RNAs in hydra, mapping to transposable elements, the annotated transcriptome and unique non-coding regions on the genome. piRNAs that map to transposable elements and the annotated transcriptome display a ping-pong signature. Further, we have identified several miRNAs and piRNAs whose expression is regulated during hydra head regeneration. Our study defines different classes of small RNAs in this cnidarian model system, which may play a role in orchestrating gene expression essential for hydra regeneration.

  12. Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata

    PubMed Central

    Krishna, Srikar; Nair, Aparna; Cheedipudi, Sirisha; Poduval, Deepak; Dhawan, Jyotsna; Palakodeti, Dasaradhi; Ghanekar, Yashoda

    2013-01-01

    Small non-coding RNAs such as miRNAs, piRNAs and endo-siRNAs fine-tune gene expression through post-transcriptional regulation, modulating important processes in development, differentiation, homeostasis and regeneration. Using deep sequencing, we have profiled small non-coding RNAs in Hydra magnipapillata and investigated changes in small RNA expression pattern during head regeneration. Our results reveal a unique repertoire of small RNAs in hydra. We have identified 126 miRNA loci; 123 of these miRNAs are unique to hydra. Less than 50% are conserved across two different strains of Hydra vulgaris tested in this study, indicating a highly diverse nature of hydra miRNAs in contrast to bilaterian miRNAs. We also identified siRNAs derived from precursors with perfect stem–loop structure and that arise from inverted repeats. piRNAs were the most abundant small RNAs in hydra, mapping to transposable elements, the annotated transcriptome and unique non-coding regions on the genome. piRNAs that map to transposable elements and the annotated transcriptome display a ping–pong signature. Further, we have identified several miRNAs and piRNAs whose expression is regulated during hydra head regeneration. Our study defines different classes of small RNAs in this cnidarian model system, which may play a role in orchestrating gene expression essential for hydra regeneration. PMID:23166307

  13. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome.

    PubMed

    Anesi, Andrea; Stocchero, Matteo; Dal Santo, Silvia; Commisso, Mauro; Zenoni, Sara; Ceoldo, Stefania; Tornielli, Giovanni Battista; Siebert, Tracey E; Herderich, Markus; Pezzotti, Mario; Guzzo, Flavia

    2015-08-07

    The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.

  14. Massively parallel nanowell-based single-cell gene expression profiling.

    PubMed

    Goldstein, Leonard D; Chen, Ying-Jiun Jasmine; Dunne, Jude; Mir, Alain; Hubschle, Hermann; Guillory, Joseph; Yuan, Wenlin; Zhang, Jingli; Stinson, Jeremy; Jaiswal, Bijay; Pahuja, Kanika Bajaj; Mann, Ishminder; Schaal, Thomas; Chan, Leo; Anandakrishnan, Sangeetha; Lin, Chun-Wah; Espinoza, Patricio; Husain, Syed; Shapiro, Harris; Swaminathan, Karthikeyan; Wei, Sherry; Srinivasan, Maithreyan; Seshagiri, Somasekar; Modrusan, Zora

    2017-07-07

    Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.

  15. De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis

    PubMed Central

    2012-01-01

    Background Chinese fir (Cunninghamia lanceolata) is an important timber species that accounts for 20–30% of the total commercial timber production in China. However, the available genomic information of Chinese fir is limited, and this severely encumbers functional genomic analysis and molecular breeding in Chinese fir. Recently, major advances in transcriptome sequencing have provided fast and cost-effective approaches to generate large expression datasets that have proven to be powerful tools to profile the transcriptomes of non-model organisms with undetermined genomes. Results In this study, the transcriptomes of nine tissues from Chinese fir were analyzed using the Illumina HiSeq™ 2000 sequencing platform. Approximately 40 million paired-end reads were obtained, generating 3.62 gigabase pairs of sequencing data. These reads were assembled into 83,248 unique sequences (i.e. Unigenes) with an average length of 449 bp, amounting to 37.40 Mb. A total of 73,779 Unigenes were supported by more than 5 reads, 42,663 (57.83%) had homologs in the NCBI non-redundant and Swiss-Prot protein databases, corresponding to 27,224 unique protein entries. Of these Unigenes, 16,750 were assigned to Gene Ontology classes, and 14,877 were clustered into orthologous groups. A total of 21,689 (29.40%) were mapped to 119 pathways by BLAST comparison against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The majority of the genes encoding the enzymes in the biosynthetic pathways of cellulose and lignin were identified in the Unigene dataset by targeted searches of their annotations. And a number of candidate Chinese fir genes in the two metabolic pathways were discovered firstly. Eighteen genes related to cellulose and lignin biosynthesis were cloned for experimental validating of transcriptome data. Overall 49 Unigenes, covering different regions of these selected genes, were found by alignment. Their expression patterns in different tissues were analyzed by qRT-PCR to explore their putative functions. Conclusions A substantial fraction of transcript sequences was obtained from the deep sequencing of Chinese fir. The assembled Unigene dataset was used to discover candidate genes of cellulose and lignin biosynthesis. This transcriptome dataset will provide a comprehensive sequence resource for molecular genetics research of C. lanceolata. PMID:23171398

  16. Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus

    PubMed Central

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567

  17. Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes.

    PubMed

    Jiao, Chen; Gao, Min; Wang, Xiping; Fei, Zhangjun

    2015-03-21

    Grape is one of the most valuable fruit crops and can serve for both fresh consumption and wine production. Grape cultivars have been selected and evolved to produce high-quality fruits during their domestication over thousands of years. However, current widely planted grape cultivars suffer extensive loss to many diseases while most wild species show resistance to various pathogens. Therefore, a comprehensive evaluation of wild grapes would contribute to the improvement of disease resistance in grape breeding programs. We performed deep transcriptome sequencing of three Chinese wild grapes using the Illumina strand-specific RNA-Seq technology. High quality transcriptomes were assembled de novo and more than 93% transcripts were shared with the reference PN40024 genome. Over 1,600 distinct transcripts, which were absent or highly divergent from sequences in the reference PN40024 genome, were identified in each of the three wild grapes, among which more than 1,000 were potential protein-coding genes. Gene Ontology (GO) and pathway annotations of these distinct genes showed those involved in defense responses and plant secondary metabolisms were highly enriched. More than 87,000 single nucleotide polymorphisms (SNPs) and 2,000 small insertions or deletions (indels) were identified between each genotype and PN40024, and approximately 20% of the SNPs caused nonsynonymous mutations. Finally, we discovered 100 to 200 highly confident cis-natural antisense transcript (cis-NAT) pairs in each genotype. These transcripts were significantly enriched with genes involved in secondary metabolisms and plant responses to abiotic stresses. The three de novo assembled transcriptomes provide a comprehensive sequence resource for molecular genetic research in grape. The newly discovered genes from wild Vitis, as well as SNPs and small indels we identified, may facilitate future studies on the molecular mechanisms related to valuable traits possessed by these wild Vitis and contribute to the grape breeding programs. Furthermore, we identified hundreds of cis-NAT pairs which showed their potential regulatory roles in secondary metabolism and abiotic stress responses.

  18. Transcriptome Analysis of the Arabidopsis Megaspore Mother Cell Uncovers the Importance of RNA Helicases for Plant Germline Development

    PubMed Central

    Schmidt, Anja; Wuest, Samuel E.; Vijverberg, Kitty; Baroux, Célia; Kleen, Daniela; Grossniklaus, Ueli

    2011-01-01

    Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant “germline” lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate. PMID:21949639

  19. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    PubMed Central

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis. PMID:23091412

  20. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    PubMed

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis.

  1. A comprehensive resource of genomic, epigenomic and transcriptomic sequencing data for the black truffle Tuber melanosporum

    PubMed Central

    2014-01-01

    Background Tuber melanosporum, also known in the gastronomic community as “truffle”, features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. Findings We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody (“truffle”), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. Conclusions The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles. PMID:25392735

  2. A comprehensive resource of genomic, epigenomic and transcriptomic sequencing data for the black truffle Tuber melanosporum.

    PubMed

    Chen, Pao-Yang; Montanini, Barbara; Liao, Wen-Wei; Morselli, Marco; Jaroszewicz, Artur; Lopez, David; Ottonello, Simone; Pellegrini, Matteo

    2014-01-01

    Tuber melanosporum, also known in the gastronomic community as "truffle", features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody ("truffle"), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles.

  3. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance.

    PubMed

    Sapeta, Helena; Lourenço, Tiago; Lorenz, Stefan; Grumaz, Christian; Kirstahler, Philipp; Barros, Pedro M; Costa, Joaquim Miguel; Sohn, Kai; Oliveira, M Margarida

    2016-02-01

    Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  5. Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations.

    PubMed

    Detree, Camille; Núñez-Acuña, Gustavo; Roberts, Steven; Gallardo-Escárate, Cristian

    2016-01-01

    Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX's toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations.

  6. Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations

    PubMed Central

    Detree, Camille; Núñez-Acuña, Gustavo; Roberts, Steven; Gallardo-Escárate, Cristian

    2016-01-01

    Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX’s toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations. PMID:27764234

  7. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants

    PubMed Central

    De La Torre, Amanda R.; Sterck, Lieven; Cánovas, Francisco M.; Avila, Concepción; Merino, Irene; Cabezas, José Antonio; Cervera, María Teresa; Ingvarsson, Pär K.

    2017-01-01

    Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny. PMID:28460034

  8. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  9. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  10. Psychophysical Reverse Correlation with Multiple Response Alternatives

    ERIC Educational Resources Information Center

    Dai, Huanping; Micheyl, Christophe

    2010-01-01

    Psychophysical reverse-correlation methods such as the "classification image" technique provide a unique tool to uncover the internal representations and decision strategies of individual participants in perceptual tasks. Over the past 30 years, these techniques have gained increasing popularity among both visual and auditory psychophysicists.…

  11. The Cage-Busting Teacher

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2015-01-01

    "The Cage-Busting Teacher" adopts the logic of "Cage-Busting Leadership" and applies it to the unique challenges and opportunities of classroom teachers. Detailed, accessible, and thoroughly engaging, it uncovers the many ways in which teachers can break out of familiar constraints in order to influence school and classroom…

  12. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  13. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    PubMed

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  14. Light and temperature shape nuclear architecture and gene expression.

    PubMed

    Kaiserli, Eirini; Perrella, Giorgio; Davidson, Mhairi Lh

    2018-06-14

    Environmental stimuli play a major role in modulating growth and development throughout the life-cycle of a plant. Quantitative and qualitative variations in light and temperature trigger changes in gene expression that ultimately shape plant morphology for adaptation and survival. Although the phenotypic and transcriptomic basis of plant responses to the constantly changing environment have been examined for decades, the relationship between global changes in nuclear architecture and adaption to environmental stimuli is just being uncovered. This review presents recent discoveries investigating how changes in light and temperature trigger changes in chromatin structure and nuclear organization with a focus on the role of gene repositioning and chromatin accessibility in regulating gene expression. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  15. Extraction of Molecular Features through Exome to Transcriptome Alignment

    PubMed Central

    Mudvari, Prakriti; Kowsari, Kamran; Cole, Charles; Mazumder, Raja; Horvath, Anelia

    2014-01-01

    Integrative Next Generation Sequencing (NGS) DNA and RNA analyses have very recently become feasible, and the published to date studies have discovered critical disease implicated pathways, and diagnostic and therapeutic targets. A growing number of exomes, genomes and transcriptomes from the same individual are quickly accumulating, providing unique venues for mechanistic and regulatory features analysis, and, at the same time, requiring new exploration strategies. In this study, we have integrated variation and expression information of four NGS datasets from the same individual: normal and tumor breast exomes and transcriptomes. Focusing on SNPcentered variant allelic prevalence, we illustrate analytical algorithms that can be applied to extract or validate potential regulatory elements, such as expression or growth advantage, imprinting, loss of heterozygosity (LOH), somatic changes, and RNA editing. In addition, we point to some critical elements that might bias the output and recommend alternative measures to maximize the confidence of findings. The need for such strategies is especially recognized within the growing appreciation of the concept of systems biology: integrative exploration of genome and transcriptome features reveal mechanistic and regulatory insights that reach far beyond linear addition of the individual datasets. PMID:24791251

  16. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea

    PubMed Central

    2013-01-01

    Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea. PMID:23514374

  17. Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus.

    PubMed

    Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix C; Storch, Daniela; Pörtner, Hans-Otto; Held, Christoph; Lucassen, Magnus

    2013-12-01

    Research investigating the genetic basis of physiological responses has significantly broadened our understanding of the mechanisms underlying organismic response to environmental change. However, genomic data are currently available for few taxa only, thus excluding physiological model species from this approach. In this study we report the transcriptome of the model organism Hyas araneus from Spitsbergen (Arctic). We generated 20,479 transcripts, using the 454 GS FLX sequencing technology in combination with an Illumina HiSeq sequencing approach. Annotation by Blastx revealed 7159 blast hits in the NCBI non-redundant protein database. The comparison between the spider crab H. araneus transcriptome and EST libraries of the European lobster Homarus americanus and the porcelain crab Petrolisthes cinctipes yielded 3229/2581 sequences with a significant hit, respectively. The clustering by the Markov Clustering Algorithm (MCL) revealed a common core of 1710 clusters present in all three species and 5903 unique clusters for H. araneus. The combined sequencing approaches generated transcripts that will greatly expand the limited genomic data available for crustaceans. We introduce the MCL clustering for transcriptome comparisons as a simple approach to estimate similarities between transcriptomic libraries of different size and quality and to analyze homologies within the selected group of species. In particular, we identified a large variety of reverse transcriptase (RT) sequences not only in the H. araneus transcriptome and other decapod crustaceans, but also sea urchin, supporting the hypothesis of a heritable, anti-viral immunity and the proposed viral fragment integration by host-derived RTs in marine invertebrates. © 2013.

  18. Comparative Fecal Metagenomics Unveils Unique Functional Capacity of the Swine Gut

    EPA Science Inventory

    Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health and to food and water safety due to the presence of human pathogens in pig feces. Limited information on the physiological...

  19. Refining the tobacco dependence phenotype using the Wisconsin Inventory of Smoking Dependence Motives (WISDM)

    PubMed Central

    Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.

    2008-01-01

    The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223

  20. Evidence-based practice: extending the search to find material for the systematic review

    PubMed Central

    Helmer, Diane; Savoie, Isabelle; Green, Carolyn; Kazanjian, Arminée

    2001-01-01

    Background: Cochrane-style systematic reviews increasingly require the participation of librarians. Guidelines on the appropriate search strategy to use for systematic reviews have been proposed. However, research evidence supporting these recommendations is limited. Objective: This study investigates the effectiveness of various systematic search methods used to uncover randomized controlled trials (RCTs) for systematic reviews. Effectiveness is defined as the proportion of relevant material uncovered for the systematic review using extended systematic review search methods. The following extended systematic search methods are evaluated: searching subject-specific or specialized databases (including trial registries), hand searching, scanning reference lists, and communicating personally. Methods: Two systematic review projects were prospectively monitored regarding the method used to identify items as well as the type of items retrieved. The proportion of RCTs identified by each systematic search method was calculated. Results: The extended systematic search methods uncovered 29.2% of all items retrieved for the systematic reviews. The search of specialized databases was the most effective method, followed by scanning of reference lists, communicating personally, and hand searching. Although the number of items identified through hand searching was small, these unique items would otherwise have been missed. Conclusions: Extended systematic search methods are effective tools for uncovering material for the systematic review. The quality of the items uncovered has yet to be assessed and will be key in evaluating the value of the systematic search methods. PMID:11837256

  1. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides.

    PubMed

    Zhong, Jie; Zeng, Xian-Chun; Zeng, Xin; Nie, Yao; Zhang, Lei; Wu, Shifen; Bao, Aorigele

    2017-01-06

    Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K + -channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Co-expression networks reveal the tissue-specific regulation of transcription and splicing

    PubMed Central

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.

    2017-01-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288

  3. Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus

    PubMed Central

    Bailey, Nathan W.; Veltsos, Paris; Tan, Yew-Foon; Millar, A. Harvey; Ritchie, Michael G.; Simmons, Leigh W.

    2013-01-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection. PMID:23390599

  4. Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.

    PubMed

    Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W

    2013-02-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.

  5. Enabling large-scale next-generation sequence assembly with Blacklight

    PubMed Central

    Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.

    2014-01-01

    Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974

  6. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    PubMed Central

    2011-01-01

    Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Conclusions Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. PMID:21605378

  7. Supporting Novice Special Education Teachers through Quality Professional Development

    ERIC Educational Resources Information Center

    Tate, Mary E.

    2013-01-01

    The special education teaching environment is a teaching environment with unique duties that often challenge novice special education teachers. The purpose of this qualitative case study was to gain clarity of the work environment of special education teachers to uncover professional development practices that would work to support them. Research…

  8. Chinese isms dimensions in mainland China and Taiwan: Convergence and extension of American isms dimensions.

    PubMed

    Chen, Zhuo Job; Hsu, Kung-Yu; Zhou, Xinyue; Saucier, Gerard

    2017-07-21

    Previous studies of American English isms terms have uncovered as many as five broad factors: tradition-oriented religiousness (TR), subjective spirituality (SS), communal rationalism (CR), unmitigated self-interest (USI), and inequality aversion (IA). The present studies took a similar lexical approach to investigate the Chinese-language isms structures in both mainland China and Taiwan. In Study 1, exploratory factor analyses with 915 mainland Chinese subjects uncovered four interpretable factors dimensionalizing 165 mainland Chinese dictionary isms terms. These factors represented contents of a combination of TR and SS, USI, CR, and a culturally unique Communist Party of China (CPC) ideology factor. In Study 2, exploratory factor analyses with 467 Taiwan Chinese subjects revealed four interpretable factors categorizing 291 Taiwan Chinese dictionary isms terms. These factors represented contents of a combination of TR and SS, USI, CR, and a culturally unique dimension expressing aspirations for happiness. The results gave evidence for the existence of the isms factors TR and SS, USI, and CR in Chinese culture. Cultural uniqueness was reflected in the merging of TR and SS into the factor Syncretic Religiousness and the culture-specific factors of CPC ideology in China and Happiness/Peace Promotion in Taiwan. © 2017 Wiley Periodicals, Inc.

  9. Altered lipid metabolism in the aging kidney identified by three layered omic analysis

    PubMed Central

    Braun, Fabian; Rinschen, Markus M.; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H.J.; Schumacher, Björn; Dollé, Martijn E.T.; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E.

    2016-01-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165

  10. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types.

    PubMed

    Carmona, Santiago J; Teichmann, Sarah A; Ferreira, Lauren; Macaulay, Iain C; Stubbington, Michael J T; Cvejic, Ana; Gfeller, David

    2017-03-01

    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans -membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell-specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans -membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. © 2017 Carmona et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types

    PubMed Central

    Ferreira, Lauren; Macaulay, Iain C.; Stubbington, Michael J.T.

    2017-01-01

    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. PMID:28087841

  12. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    PubMed

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.

  13. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica

    PubMed Central

    Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin

    2016-01-01

    Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341

  15. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death

    PubMed Central

    Anania, Veronica G.; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R.; Li, Han; Ma, Taylur P.; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M.; Lill, Jennie R.

    2016-01-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the “unfolded protein response” (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. PMID:27125827

  16. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death.

    PubMed

    Anania, Veronica G; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R; Li, Han; Ma, Taylur P; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M; Lill, Jennie R

    2016-07-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Tormey, Duncan; Colbourne, John K; Mockaitis, Keithanne; Choi, Jeong-Hyeon; Lopez, Jacqueline; Burkhart, Joshua; Bradshaw, William; Holzapfel, Christina

    2015-10-06

    Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.

  18. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl−/− retinal transcriptomes

    PubMed Central

    Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.

    2011-01-01

    Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. PMID:22162623

  19. An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is one of the most limiting macronutrients in soils for plant growth and development. However, the whole genome molecular mechanisms contributing to plant acclimation to Pi-deficiency remains largely unknown. White lupin (Lupinus albus L.) has evolved unique adaptation systems for gro...

  20. Transcriptome profiling and expression analyses of genes critical to wheat adaptation to low temperature

    USDA-ARS?s Scientific Manuscript database

    Background: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expressi...

  1. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  2. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome.

    PubMed

    Jo, Ick-Hyun; Lee, Jinsu; Hong, Chi Eun; Lee, Dong Jin; Bae, Wonsil; Park, Sin-Gi; Ahn, Yong Ju; Kim, Young Chang; Kim, Jang Uk; Lee, Jung Woo; Hyun, Dong Yun; Rhee, Sung-Keun; Hong, Chang Pyo; Bang, Kyong Hwan; Ryu, Hojin

    2017-09-15

    Korean ginseng ( Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng , we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana . Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng . In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.

  3. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism

    PubMed Central

    Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan. PMID:29694395

  4. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.

    PubMed

    Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.

  5. Single-cell Genomics using Droplet-based Microfluidics

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Macosko, Evan; Shalek, Alex; McCarroll, Steven; Regev, Aviv; Weitz, Dave

    2014-03-01

    We develop a system to profile the transcriptome of mammalian cells in isolation using reverse emulsion droplet-based microfluidic techniques. This is accomplished by (a) encapsulating and lysing one cell per emulsion droplet, and (b) uniquely barcoding the RNA contents from each cell using unique DNA-barcoded microgel beads. This enables us to study the transcriptional behavior of a large number of cells at single-cell resolution. We then use these techniques to study transcriptional responses of isolated immune cells to precisely controlled chemical and pathological stimuli provided in the emulsion droplet.

  6. Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants

    PubMed Central

    Livne, Sivan; Lor, Vai S.; Nir, Ido; Eliaz, Natanella; Aharoni, Asaph; Olszewski, Neil E.; Eshed, Yuval; Weiss, David

    2015-01-01

    Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessive pro allele exhibits constitutive GA activity but retains responsiveness to external GA. In the loss-of-function mutant proΔGRAS, all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not proΔGRAS, elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in proΔGRAS and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in proΔGRAS but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GA responses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated proΔGRAS leaves suggests that 5% of all GA-regulated genes in tomato are DELLA independent. PMID:26036254

  7. Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure

    PubMed Central

    Hatton, Jasmine J.; Stevenson, Timothy J.; Buck, C. Loren; Duddleston, Khrystyne N.

    2017-01-01

    Summary We examined the effect of diet on pre-hibernation fattening and the gut microbiota of captive arctic ground squirrels (Urocitellus parryii). We measured body composition across time and gut microbiota density, diversity, and function prior to and after five-weeks on control, high-fat, low-fat (18%, 40%, and 10% energy from fat, respectively), or restricted calorie (50% of control) diets. Squirrels fattened at the same rate and to the same degree on all diets. Additionally, we found no differences in gut microbiota diversity or short chain fatty acid production across time or with diet. Analysis of the gut microbial transcriptome indicated differences in community function among diet groups, but not across time, and revealed shifts in the relative contribution of function at a taxonomic level. Our results demonstrate that pre-hibernation fattening of arctic ground squirrels is robust to changes in diet and is accomplished by more than increased food intake. Although our analyses did not uncover a definitive link between host fattening and the gut microbiota, and suggest the squirrels may possess a gut microbial community structure that is unresponsive to dietary changes, studies manipulating diet earlier in the active season may yet uncover a relationship between host diet, fattening and gut microbiota. PMID:28251799

  8. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    PubMed Central

    2012-01-01

    Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a comprehensive framework for further elucidation of the interrelation and interplay of the individual cellular events involved. PMID:22873931

  10. De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii.

    PubMed

    Wang, Yanjie; Dong, Chunlan; Xue, Zeyun; Jin, Qijiang; Xu, Yingchun

    2016-01-15

    Paeonia ostii, an important ornamental and medicinal plant, grows normally on copper (Cu) mines with widespread Cu contamination of soils, and it has the ability to lower Cu contents in the Cu-contaminated soils. However, very little molecular information concerned with Cu resistance of P. ostii is available. In this study, high-throughput de novo transcriptome sequencing was carried out for P. ostii with and without Cu treatment using Illumina HiSeq 2000 platform. A total of 77,704 All-unigenes were obtained with a mean length of 710 bp. Of these unigenes, 47,461 were annotated with public databases based on sequence similarities. Comparative transcript profiling allowed the discovery of 4324 differentially expressed genes (DEGs), with 2207 up-regulated and 2117 down-regulated unigenes in Cu-treated library as compared to the control counterpart. Based on these DEGs, Gene Ontology (GO) enrichment analysis indicated Cu stress-relevant terms, such as 'membrane' and 'antioxidant activity'. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis uncovered some important pathways, including 'biosynthesis of secondary metabolites' and 'metabolic pathways'. In addition, expression patterns of 12 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses, suggesting that all the 12 genes were authentically involved in Cu tolerance in P. ostii. This is the first report to identify genes related to Cu stress responses in P. ostii, which could offer valuable information on the molecular mechanisms of Cu resistance, and provide a basis for further genomics research on this and related ornamental species for phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Blood expression profiles of fragile X premutation carriers identify candidate genes involved in neurodegenerative and infertility phenotypes.

    PubMed

    Mateu-Huertas, Elisabet; Rodriguez-Revenga, Laia; Alvarez-Mora, Maria Isabel; Madrigal, Irene; Willemsen, Rob; Milà, Montserrat; Martí, Eulàlia; Estivill, Xavier

    2014-05-01

    Male premutation carriers presenting between 55 and 200 CGG repeats in the Fragile-X-associated (FMR1) gene are at risk of developing Fragile X Tremor/Ataxia Syndrome (FXTAS), and females undergo Premature Ovarian Failure (POF1). Here, we have evaluated gene expression profiles from blood in male FMR1 premutation carriers and detected a strong deregulation of genes enriched in FXTAS relevant biological pathways, including inflammation, neuronal homeostasis and viability. Gene expression profiling distinguished between control individuals, carriers with FXTAS and carriers without FXTAS, with levels of expanded FMR1 mRNA being increased in FXTAS patients. In vitro studies in a neuronal cell model indicate that expression levels of expanded FMR1 5'-UTR are relevant in modulating the transcriptome. Thus, perturbations of the transcriptome may be an interplay between the CGG expansion size and FMR1 expression levels. Several deregulated genes (DFFA, BCL2L11, BCL2L1, APP, SOD1, RNF10, HDAC5, KCNC3, ATXN7, ATXN3 and EAP1) were validated in brain samples of a FXTAS mouse model. Downregulation of EAP1, a gene involved in the female reproductive system physiology, was confirmed in female carriers. Decreased levels were detected in female carriers with POF1 compared to those without POF1, suggesting that EAP1 levels contribute to ovarian insufficiency. In summary, gene expression profiling in blood has uncovered mechanisms that may underlie different pathological aspects of the premutation. A better understanding of the transcriptome dynamics in relation with expanded FMR1 mRNA expression levels and CGG expansion size may provide mechanistic insights into the disease process and a more accurate FXTAS diagnosis to the myriad of phenotypes associated with the premutation. Copyright © 2014. Published by Elsevier Inc.

  12. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum).

    PubMed

    Mun, Seyoung; Kim, Yun-Ji; Markkandan, Kesavan; Shin, Wonseok; Oh, Sumin; Woo, Jiyoung; Yoo, Jongsu; An, Hyesuck; Han, Kyudong

    2017-06-01

    The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. The Quest for Molecular Regulation Underlying Unisexual Flower Development

    PubMed Central

    Sobral, Rómulo; Silva, Helena G.; Morais-Cecílio, Leonor; Costa, Maria M. R.

    2016-01-01

    The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled “Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber” published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs. PMID:26925078

  14. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    PubMed

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant Deschampsia antarctica Desv

    PubMed Central

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Background Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. Results The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5′- or 3′-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. Conclusions We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome. PMID:24647560

  16. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.

    PubMed

    Rokyta, Darin R; Wray, Kenneth P; Lemmon, Alan R; Lemmon, Emily Moriarty; Caudle, S Brian

    2011-04-01

    Despite causing considerable human mortality and morbidity, animal toxins represent a valuable source of pharmacologically active macromolecules, a unique system for studying molecular adaptation, and a powerful framework for examining structure-function relationships in proteins. Snake venoms are particularly useful in the latter regard as they consist primarily of a moderate number of proteins and peptides that have been found to belong to just a handful of protein families. As these proteins and peptides are produced in dedicated glands, transcriptome sequencing has proven to be an effective approach to identifying the expressed toxin genes. We generated a venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) using Roche 454 sequencing technology. In the current work, we focus on transcripts encoding toxins. We identified 40 unique toxin transcripts, 30 of which have full-length coding sequences, and 10 have only partial coding sequences. These toxins account for 24% of the total sequencing reads. We found toxins from 11 previously described families of snake-venom toxins and have discovered two putative, previously undescribed toxin classes. The most diverse and highly expressed toxin classes in the C. adamanteus venom-gland transcriptome are the serine proteinases, metalloproteinases, and C-type lectins. The serine proteinases are the most abundant class, accounting for 35% of the toxin sequencing reads. Metalloproteinases are the most diverse; 11 different forms have been identified. Using our sequences and those available in public databases, we detected positive selection in seven of the eight toxin families for which sufficient sequences were available for the analysis. We find that the vast majority of the genes that contribute directly to this vertebrate trait show evidence for a role for positive selection in their evolutionary history. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome.

  18. Characterization of the Mantle Transcriptome of Yesso Scallop (Patinopecten yessoensis): Identification of Genes Potentially Involved in Biomineralization and Pigmentation

    PubMed Central

    Sun, Xiujun; Yang, Aiguo; Wu, Biao; Zhou, Liqing; Liu, Zhihong

    2015-01-01

    The Yesso scallop Patinopecten yessoensis is an economically important marine bivalve species in aquaculture and fishery in Asian countries. However, limited genomic resources are available for this scallop, which hampers investigations into molecular mechanisms underlying their unique biological characteristics, such as shell formation and pigmentation. Mantle is the special tissue of P. yessoensis that secretes biomineralization proteins inducing shell deposition as well as pigmentation on the shells. However, a current deficiency of transcriptome information limits insight into mechanisms of shell formation and pigmentation in this species. In this study, the transcriptome of the mantle of P. yessoensis was deeply sequenced and characterized using Illumina RNA-seq technology. A total of 86,521 unique transcripts are assembled from 55,884,122 reads that passed quality filters, and annotated, using Gene Ontology classification. A total of 259 pathways are identified in the mantle transcriptome, including the calcium signaling and melanogenesis pathways. A total of 237 unigenes that are homologous to 102 reported biomineralization genes are identified, and 121 unigenes that are homologous to 93 known proteins related to melanin biosynthesis are found. Twenty-three annotated unigenes, which are mainly homologous to calmodulin and related proteins, Ca2+/calmodulin-dependent protein kinase, adenylate/guanylate cyclase, and tyrosinase family are potentially involved in both biomineralization and melanin biosynthesis. It is suggested that these genes are probably not limited in function to induce shell deposition by calcium metabolism, but may also be involved in pigmentation of the shells of the scallop. This potentially supports the idea that there might be a link between calcium metabolism and melanin biosynthesis, which was previously found in vertebrates. The findings presented here will notably advance the understanding of the sophisticated processes of shell formation as well as shell pigmentation in P. yessoensis and other bivalve species, and also provide new evidence on gene expression for the understanding of pigmentation and biomineralization not only in invertebrates but also probably in vertebrates. PMID:25856556

  19. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health

    PubMed Central

    Christie, Andrew E.; Sommer, Stephanie A.; Cieslak, Matthew C.; Hartline, Daniel K.; Lenz, Petra H.

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne‘ohe Bay, Oahu, Hawai‘i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length “giant” proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This transcriptome provides a new resource for assessing the global physiological status of a planktonic species inhabiting a coral reef ecosystem that is subjected to multiple anthropogenic stressors. The workflows provide a template for generating and assessing transcriptomes in other non-model species. PMID:29065152

  20. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health.

    PubMed

    Roncalli, Vittoria; Christie, Andrew E; Sommer, Stephanie A; Cieslak, Matthew C; Hartline, Daniel K; Lenz, Petra H

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This transcriptome provides a new resource for assessing the global physiological status of a planktonic species inhabiting a coral reef ecosystem that is subjected to multiple anthropogenic stressors. The workflows provide a template for generating and assessing transcriptomes in other non-model species.

  1. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals remodeling of the organellar transcriptome under heat stress

    DOE PAGES

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.; ...

    2016-07-06

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsismore » thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. In conclusion, ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.« less

  2. Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome.

    PubMed

    Altmäe, Signe; Segura, Maria Teresa; Esteban, Francisco J; Bartel, Sabine; Brandi, Pilar; Irmler, Martin; Beckers, Johannes; Demmelmair, Hans; López-Sabater, Carmen; Koletzko, Berthold; Krauss-Etschmann, Susanne; Campoy, Cristina

    2017-01-01

    Maternal obesity has a major impact on pregnancy outcomes. There is growing evidence that maternal obesity has a negative influence on placental development and function, thereby adversely influencing offspring programming and health outcomes. However, the molecular mechanisms underlying these processes are poorly understood. We analysed ten term placenta's whole transcriptomes in obese (n = 5) and normal weight women (n = 5), using the Affymetrix microarray platform. Analyses of expression data were carried out using non-parametric methods. Hierarchical clustering and principal component analysis showed a clear distinction in placental transcriptome between obese and normal weight women. We identified 72 differentially regulated genes, with most being down-regulated in obesity (n = 61). Functional analyses of the targets using DAVID and IPA confirm the dysregulation of previously identified processes and pathways in the placenta from obese women, including inflammation and immune responses, lipid metabolism, cancer pathways, and angiogenesis. In addition, we detected new molecular aspects of obesity-derived effects on the placenta, involving the glucocorticoid receptor signalling pathway and dysregulation of several genes including CCL2, FSTL3, IGFBP1, MMP12, PRG2, PRL, QSOX1, SERPINE2 and TAC3. Our global gene expression profiling approach demonstrates that maternal obesity creates a unique in utero environment that impairs the placental transcriptome.

  3. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals remodeling of the organellar transcriptome under heat stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsismore » thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. In conclusion, ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.« less

  4. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Skin Color Differentiation in Red Tilapia.

    PubMed

    Zhu, Wenbin; Wang, Lanmei; Dong, Zaijie; Chen, Xingting; Song, Feibiao; Liu, Nian; Yang, Hui; Fu, Jianjun

    2016-08-11

    Red tilapia is becoming more popular for aquaculture production in China in recent years. However, the pigmentation differentiation in genetic breeding is the main problem limiting its development of commercial red tilapia culture and the genetic basis of skin color variation is still unknown. In this study, we conducted Illumina sequencing of transcriptome on three color variety red tilapia. A total of 224,895,758 reads were generated, resulting in 160,762 assembled contigs that were used as reference contigs. The contigs of red tilapia transcriptome had hits in the range of 53.4% to 86.7% of the unique proteins of zebrafish, fugu, medaka, three-spined stickleback and tilapia. And 44,723 contigs containing 77,423 simple sequence repeats (SSRs) were identified, with 16,646 contigs containing more than one SSR. Three skin transcriptomes were compared pairwise and the results revealed that there were 148 common significantly differentially expressed unigenes and several key genes related to pigment synthesis, i.e. tyr, tyrp1, silv, sox10, slc24a5, cbs and slc7a11, were included. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in red tilapia and accelerate the molecular selection of the specific strain with consistent skin colors.

  5. Research resource: Tissue-specific transcriptomics and cistromics of nuclear receptor signaling: a web research resource.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; LaGrone, Benjamin S; Steffen, David L; McKenna, Neil J

    2010-10-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step towards this goal, we searched the MEDLINE database for studies, which referenced either expression microarray and/or genome-wide location analysis datasets in which a NR or NR ligand was an experimental variable. A total of 1122 studies encompassing 325 unique organs, tissues, primary cells, and cell lines, 35 NRs, and 91 NR ligands were retrieved and annotated. The data were incorporated into a new section of the Nuclear Receptor Signaling Atlas Molecule Pages, Transcriptomics and Cistromics, for which we designed an intuitive, freely accessible user interface to browse the studies. Each study links to an abstract, the MEDLINE record, and, where available, Gene Expression Omnibus and ArrayExpress records. The resource will be updated on a regular basis to provide a current and comprehensive entrez into the sum of transcriptomic and cistromic research in this field.

  6. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia

    PubMed Central

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T.; Rogers, Hilary J.

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries. PMID:28558066

  7. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia.

    PubMed

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T; Rogers, Hilary J; Ferrante, Antonio

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.

  8. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines.

    PubMed

    Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas

    2014-04-24

    With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.

  9. AmosWEB ... Economics with a Touch of Whimsy!

    ERIC Educational Resources Information Center

    Avalos, Antonio; Amos, Orley M. Jr.

    2002-01-01

    Describes AmosWEB.com as a collection of unique resources for students and instructors devoted to uncovering the most effective means of using technology to teach economics. States that most of the resources are designed for college level introductory courses but can be used with high school students and graduate business and engineering students.…

  10. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.

    PubMed

    Xu, Xiao Hui; Chen, Hao; Sang, Ya Lin; Wang, Fang; Ma, Jun Ping; Gao, Xin-Qi; Zhang, Xian Sheng

    2012-07-02

    In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world's most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk.

  11. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer. PMID:23978847

  12. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas

    PubMed Central

    2012-01-01

    Background In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world’s most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Results Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Conclusions Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk. PMID:22748054

  13. Discovery and validation of gene classifiers for endocrine-disrupting chemicals in zebrafish (danio rerio)

    PubMed Central

    2012-01-01

    Background Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions. PMID:22849515

  14. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    PubMed

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  15. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolides Biosynthesis

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Pathak, Sumya; Srivastava, Apeksha; Singh, Surya Pratap; Sangwan, Rajender Singh; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches. PMID:23667511

  16. Gene Expression Profiling of Development and Anthocyanin Accumulation in Kiwifruit (Actinidia chinensis) Based on Transcriptome Sequencing

    PubMed Central

    Zeng, Shaohua; Xiao, Gong; Wang, Gan; Wang, Ying; Peng, Ming; Huang, Hongwen

    2015-01-01

    Red-fleshed kiwifruit (Actinidia chinensis Planch. ‘Hongyang’) is a promising commercial cultivar due to its nutritious value and unique flesh color, derived from vitamin C and anthocyanins. In this study, we obtained transcriptome data of ‘Hongyang’ from seven developmental stages using Illumina sequencing. We mapped 39–54 million reads to the recently sequenced kiwifruit genome and other databases to define gene structure, to analyze alternative splicing, and to quantify gene transcript abundance at different developmental stages. The transcript profiles throughout red kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as phytohormones, sugars, starch and L-ascorbic acid, which are indispensable for the development and formation of quality fruit. Candidate genes for these pathways were identified through MapMan and phylogenetic analysis. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of L-ascorbic acid was very active, primarily through the L-galactose pathway. The genes responsible for the accumulation of anthocyanin in red kiwifruit were identified, and their expression levels were investigated during kiwifruit development. This survey of gene expression during kiwifruit development paves the way for further investigation of the development of this uniquely colored and nutritious fruit and reveals which factors are needed for high quality fruit formation. This transcriptome data and its analysis will be useful for improving kiwifruit genome annotation, for basic fruit molecular biology research, and for kiwifruit breeding and improvement. PMID:26301713

  17. The First Venomous Crustacean Revealed by Transcriptomics and Functional Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail Dominated by Enzymes and a Neurotoxin

    PubMed Central

    von Reumont, Björn M.; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A.

    2014-01-01

    Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species. PMID:24132120

  18. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    PubMed Central

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species. PMID:25710176

  19. Characterisation of the transcriptome of male and female wild-type guppy brains with RNA-Seq and consequences of exposure to the pharmaceutical pollutant, 17α-ethinyl estradiol.

    PubMed

    Saaristo, Minna; Wong, Bob B M; Mincarelli, Laura; Craig, Allison; Johnstone, Christopher P; Allinson, Mayumi; Lindström, Kai; Craft, John A

    2017-05-01

    Waterways are increasingly being contaminated by chemical compounds that can disrupt the endocrinology of organisms. One such compound is 17α-ethinyl estradiol (EE2), a synthetic estrogen used in the contraceptive pill. Despite considerable research interest in the effects of EE2 on reproduction and gene expression, surprisingly, only a few studies have capitalised on technologies, such as next-generation sequencing (NGS), to uncover the molecular pathways related to EE2 exposure. Accordingly, using high-throughput sequencing technologies, the aim of our study was to explore the effects of EE2 on brain transcriptome in wild-type male and female guppy (Poecilia reticulata). We conducted two sets of experiments, where fish were exposed to EE2 (measured concentrations: 8ng/L and 38ng/L) in a flow-through system for 21days. The effects on the brain transcriptome on both males and females were assessed using Illumina sequencing (MiSeq and HiSeq) platform followed by bioinformatics analysis (edgeR, DESeq2). Here, we report that exposure to EE2 caused both up- and downregulation of specific transcript abundances, and affected transcript abundance in a sex-specific manner. Specifically, we found 773 transcripts, of which 60 were male-specific, 61 female-specific and 285 treatment-specific. EE2 affected expression of 165 transcripts in males, with 88 downregulated and 77 upregulated, while in females, 120 transcripts were affected with 62 downregulated and 58 upregulated. Finally, RT-qPCR validation demonstrated that expression of transcripts related to transposable elements, neuroserpin and heat shock protein were significantly affected by EE2-exposure. Our study is the first to report brain transcriptome libraries for guppies exposed to EE2. Not only does our study provide a valuable resource, it offers insights into the mechanisms underlying the feminizing effects on the brains of organisms exposed to environmentally realistic concentrations of EE2. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome

    PubMed Central

    Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202

  1. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    PubMed

    Gunewardena, Sumedha S; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  2. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus)

    PubMed Central

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756

  3. Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior

    PubMed Central

    Mukai, Motoko; Gonser, Rusty A.; Wingfield, John C.; London, Sarah E.; Tuttle, Elaina M.; Clayton, David F.

    2014-01-01

    Emberizid sparrows (emberizidae) have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain) as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species. PMID:24883256

  4. Human-specific features of spatial gene expression and regulation in eight brain regions.

    PubMed

    Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro

    2018-06-13

    Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.

  5. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum)

    PubMed Central

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper. PMID:26121657

  6. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum).

    PubMed

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper.

  7. A New Parallel Corpus Approach to Japanese Learners' English, Using Their Corrected Essays

    ERIC Educational Resources Information Center

    Miki, Nozomi

    2010-01-01

    This research introduces unique parallel corpora to uncover linguistic behaviors in L2 argumentative writing in the exact correspondence to their appropriate forms provided by English native speakers (NSs). The current paper targets at the mysterious behavior of I think in argumentative prose. I think is regarded as arguably problematic and…

  8. Scientific Caricatures in the Earth Science Classroom: An Alternative Assessment for Meaningful Science Learning

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2010-01-01

    Archive-based, historical research of materials produced during the Golden Age of Geology (1788-1840) uncovered scientific caricatures (SCs) which may serve as a unique form of knowledge representation for students today. SCs played important roles in the past, stimulating critical inquiry among early geologists and fueling debates that addressed…

  9. Embryological Development: Evolutionary History, Genetic Bias, and Cellular Environment Control the Flow of Developmental Events. Part I.

    ERIC Educational Resources Information Center

    Caplan, Arnold I.

    1981-01-01

    Describes development of the limb and various interactions necessary for the expression of its unique form and phenotypes to uncover the hierarchical controlling steps in the development process for the potential of avoiding abnormal events and manipulating what might be detrimental genetic events into a normal sequence. (Author/SK)

  10. Stopping Web Plagiarists from Stealing Your Content

    ERIC Educational Resources Information Center

    Goldsborough, Reid

    2004-01-01

    This article gives tips on how to avoid having content stolen by plagiarists. Suggestions include: using a Web search service such as Google to search for unique strings of text at the individuals site to uncover other sites with the same content; buying a infringement-detection program; or hiring a public relations firm to do the work. There are…

  11. Uncovering Students' Incorrect Ideas about Foundational Concepts for Biochemistry

    ERIC Educational Resources Information Center

    Villafane, Sachel M.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.

    2011-01-01

    This paper presents preliminary data on how an assessment instrument with a unique structure can be used to identify common incorrect ideas from prior coursework at the beginning of a biochemistry course, and to determine whether these ideas have changed by the end of the course. The twenty-one multiple-choice items address seven different…

  12. A Quantitative Analysis of Organizational Factors That Relate to Data Mining Success

    ERIC Educational Resources Information Center

    Huebner, Richard A.

    2017-01-01

    The ubiquity of data in various forms has fueled the need for advanced data-mining techniques within organizations. The advent of data mining methods used to uncover hidden nuggets of information buried within large data sets has also fueled the need for determining how these unique projects can be successful. There are many challenges associated…

  13. Primary Characterization of Small RNAs in Symbiotic Nitrogen-Fixing Bacteria.

    PubMed

    Robledo, Marta; García-Tomsig, Natalia I; Jiménez-Zurdo, José I

    2018-01-01

    High-throughput transcriptome profiling (RNAseq) has uncovered large and heterogeneous populations of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated and rely on protein-assisted antisense interactions to trans-encoded target mRNAs to fine-tune posttranscriptional reprogramming of gene expression in response to external cues. However, annotation and function of sRNAs are still largely overlooked in nonmodel bacteria with complex lifestyles. Here, we describe experimental protocols successfully applied for the accurate annotation, expression profiling and target mRNA identification of trans-acting sRNAs in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The protocols presented here can be similarly applied for the characterization of trans-sRNAs in genetically tractable α-proteobacteria of agronomical or clinical relevance interacting with eukaryotic hosts.

  14. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

    Treesearch

    Diego Martinez; Jean Challacombe; Ingo Morgenstern; David Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Duenas; Angel T. Martinez; Philip J. Kersten; Kenneth E. Hammel; Jill A. Gaskell; Daniel Cullen

    2009-01-01

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome,...

  15. The Plasmodium falciparum Sexual Development Transcriptome: A Microarray Analysis using Ontology-Based Pattern Identification

    DTIC Science & Technology

    2005-06-17

    ciparum. Mol Biochem Parasitol 1992;56(2):239–50. [56] Vinetz JM, Dave SK, Specht CA, et al. The chitinase PfCHT1 from the human malaria parasite Plasmodium...falciparum lacks proenzyme and chitin -binding domains and displays unique substrate prefer- ences. Proc Natl Acad Sci USA 1999;96(24):14061–6. [57

  16. Transcriptome profiling of microRNA by next-gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk

    USDA-ARS?s Scientific Manuscript database

    While breast milk has unique health advantages for infants, the mechanisms by which it regulates the physiology of newborns are incompletely understood. miRNAs have been described as functioning transcellularly, and have been previously isolated in cell-free and exosomal form from bodily liquids (se...

  17. Role and function of short chain fatty acids in rumen epithelial metabolism, development and importance of the rumen epithelium in understanding control of transcriptome

    USDA-ARS?s Scientific Manuscript database

    The epithelial lining of the rumen is uniquely placed to have impact on the nutrient metabolism of the animal. The symbiotic relationship with the microbial populations that inhabit the rumen, serves to provide a constant supply of nutrients from roughage that would otherwise be unusable. Metaboli...

  18. Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    PubMed Central

    Förster, Frank; Beisser, Daniela; Grohme, Markus A.; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C.; Shkumatov, Alexander V.; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  19. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  20. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias

    2015-01-01

    To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548

  1. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    PubMed

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis.

    PubMed

    Antony, Binu; Soffan, Alan; Jakše, Jernej; Abdelazim, Mahmoud M; Aldosari, Saleh A; Aldawood, Abdulrahman S; Pain, Arnab

    2016-01-22

    The Red Palm Weevil (RPW) Rhynchophorus ferrugineus (Oliver) is one of the most damaging invasive insect species in the world. This weevil is highly specialized to thrive in adverse desert climates, and it causes major economic losses due to its effects on palm trees around the world. RPWs locate palm trees by means of plant volatile cues and use an aggregation pheromone to coordinate a mass-attack. Here we report on the high throughput sequencing of the RPW antennal transcriptome and present a description of the highly expressed chemosensory gene families. Deep sequencing and assembly of the RPW antennal transcriptome yielded 35,667 transcripts with an average length of 857 bp and identified a large number of highly expressed transcripts of odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors/co-receptors (ORs/Orcos), sensory neuron membrane proteins (SNMPs), gustatory receptors (GRs) and ionotropic receptors (IRs). In total, 38 OBPs, 12 CSPs, 76 ORs, 1 Orco, 6 SNMPs, 15 GRs and 10 IRs were annotated in the R. ferrugineus antennal transcriptome. A comparative transcriptome analysis with the bark beetle showed that 25% of the blast hits were unique to R. ferrugineus, indicating a higher, more complete transcript coverage for R. ferrugineus. We categorized the RPW ORs into seven subfamilies of coleopteran ORs and predicted two new subfamilies of ORs. The OR protein sequences were compared with those of the flour beetle, the cerambycid beetle and the bark beetle, and we identified coleopteran-specific, highly conserved ORs as well as unique ORs that are putatively involved in RPW aggregation pheromone detection. We identified 26 Minus-C OBPs and 8 Plus-C OBPs and grouped R. ferrugineus OBPs into different OBP-subfamilies according to phylogeny, which indicated significant species-specific expansion and divergence in R. ferrugineus. We also identified a diverse family of CSP proteins, as well as a coleopteran-specific CSP lineage that diverged from Diptera and Lepidoptera. We identified several extremely diverged IR orthologues as well as highly conserved insect IR co-receptor orthologous transcripts in R. ferrugineus. Notably, GR orthologous transcripts for CO2-sensing and sweet tastants were identified in R. ferrugineus, and we found a great diversity of GRs within the coleopteran family. With respect to SNMP-1 and SNMP-2 orthologous transcripts, one SNMP-1 orthologue was found to be strikingly highly expressed in the R. ferrugineus antennal transcriptome. Our study presents the first comprehensive catalogue of olfactory gene families involved in pheromone and general odorant detection in R. ferrugineus, which are potential novel targets for pest control strategies.

  3. Mudskippers and Their Genetic Adaptations to an Amphibious Lifestyle.

    PubMed

    You, Xinxin; Sun, Min; Li, Jia; Bian, Chao; Chen, Jieming; Yi, Yunhai; Yu, Hui; Shi, Qiong

    2018-02-07

    Mudskippers are the largest group of amphibious teleost fish that are uniquely adapted to live on mudflats. During their successful transition from aqueous life to terrestrial living, these fish have evolved morphological and physiological modifications of aerial vision and olfaction, higher ammonia tolerance, aerial respiration, improved immunological defense against terrestrial pathogens, and terrestrial locomotion using protruded pectoral fins. Comparative genomic and transcriptomic data have been accumulated and analyzed for understanding molecular mechanisms of the terrestrial adaptations. Our current review provides a general introduction to mudskippers and recent research advances of their genetic adaptations to the amphibious lifestyle, which will be helpful for understanding the evolutionary transition of vertebrates from water to land. Our insights into the genomes and transcriptomes will also support molecular breeding, functional identification, and natural compound screening.

  4. Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq.

    PubMed

    de la Paz Celorio-Mancera, Maria; Wheat, Christopher W; Vogel, Heiko; Söderlind, Lina; Janz, Niklas; Nylin, Sören

    2013-10-01

    Transcriptome studies of insect herbivory are still rare, yet studies in model systems have uncovered patterns of transcript regulation that appear to provide insights into how insect herbivores attain polyphagy, such as a general increase in expression breadth and regulation of ribosomal, digestion- and detoxification-related genes. We investigated the potential generality of these emerging patterns, in the Swedish comma, Polygonia c-album, which is a polyphagous, widely-distributed butterfly. Urtica dioica and Ribes uva-crispa are hosts of P. c-album, but Ribes represents a recent evolutionary shift onto a very divergent host. Utilizing the assembled transcriptome for read mapping, we assessed gene expression finding that caterpillar life-history (i.e. 2nd vs. 4th-instar regulation) had a limited influence on gene expression plasticity. In contrast, differential expression in response to host-plant identified genes encoding serine-type endopeptidases, membrane-associated proteins and transporters. Differential regulation of genes involved in nucleic acid binding was also observed suggesting that polyphagy involves large scale transcriptional changes. Additionally, transcripts coding for structural constituents of the cuticle were differentially expressed in caterpillars in response to their diet indicating that the insect cuticle may be a target for plant defence. Our results state that emerging patterns of transcript regulation from model species appear relevant in species when placed in an evolutionary context. © 2013 John Wiley & Sons Ltd.

  5. Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease.

    PubMed

    Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel

    2018-06-28

    Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.

  6. Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference

    PubMed Central

    Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general. PMID:24896584

  7. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase

    PubMed Central

    Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang

    2016-01-01

    Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed. PMID:27663737

  8. Trypanosome RNA polymerases and transcription factors: sensible trypanocidal drug targets?

    PubMed

    Vanhamme, Luc

    2008-11-01

    Trypanosomes and Leishmaniae are the agents of several important parasitic diseases threatening hundreds of million human beings worldwide. As they diverged early in evolution, they display original molecular characteristics. These peculiarities are each defining putative specific targets for anti-parasitic drugs. Transcription displays its lot of unique characteristics in trypanosomes and will be taken as an example to uncover these targets. Unique features of transcription in trypanosomes include constitutive and poly-cistronic transcription by RNA polymerase II as well as transcription of protein-coding genes by RNA polymerase I. It is becoming clear that these unique mechanisms are performed by dedicated molecular players. The first of them have been recently characterized. They are reviewed and their suitability as drug targets is commented.

  9. Multi-scale modeling of Arabidopsis thaliana response to different CO2 conditions: From gene expression to metabolic flux.

    PubMed

    Liu, Lin; Shen, Fangzhou; Xin, Changpeng; Wang, Zhuo

    2016-01-01

    Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions. © 2015 Institute of Botany, Chinese Academy of Sciences.

  10. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level

    PubMed Central

    Zhang, Zhaojun; Wang, Wei

    2014-01-01

    Motivation: RNA-Seq technique has been demonstrated as a revolutionary means for exploring transcriptome because it provides deep coverage and base pair-level resolution. RNA-Seq quantification is proven to be an efficient alternative to Microarray technique in gene expression study, and it is a critical component in RNA-Seq differential expression analysis. Most existing RNA-Seq quantification tools require the alignments of fragments to either a genome or a transcriptome, entailing a time-consuming and intricate alignment step. To improve the performance of RNA-Seq quantification, an alignment-free method, Sailfish, has been recently proposed to quantify transcript abundances using all k-mers in the transcriptome, demonstrating the feasibility of designing an efficient alignment-free method for transcriptome quantification. Even though Sailfish is substantially faster than alternative alignment-dependent methods such as Cufflinks, using all k-mers in the transcriptome quantification impedes the scalability of the method. Results: We propose a novel RNA-Seq quantification method, RNA-Skim, which partitions the transcriptome into disjoint transcript clusters based on sequence similarity, and introduces the notion of sig-mers, which are a special type of k-mers uniquely associated with each cluster. We demonstrate that the sig-mer counts within a cluster are sufficient for estimating transcript abundances with accuracy comparable with any state-of-the-art method. This enables RNA-Skim to perform transcript quantification on each cluster independently, reducing a complex optimization problem into smaller optimization tasks that can be run in parallel. As a result, RNA-Skim uses <4% of the k-mers and <10% of the CPU time required by Sailfish. It is able to finish transcriptome quantification in <10 min per sample by using just a single thread on a commodity computer, which represents >100 speedup over the state-of-the-art alignment-based methods, while delivering comparable or higher accuracy. Availability and implementation: The software is available at http://www.csbio.unc.edu/rs. Contact: weiwang@cs.ucla.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931995

  11. Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro.

    PubMed

    Liu, Mingying; Jiang, Jing; Han, Xiaojiao; Qiao, Guirong; Zhuo, Renying

    2014-01-01

    Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene expression profiling, and the accuracy and reliability of the results obtained depends upon the proper selection of stable reference genes for accurate normalization. Therefore, a set of suitable internal controls should be validated for D. latiflorus Munro. In this report, twelve candidate reference genes were selected and the assessment of gene expression stability was performed in ten tissue samples and four leaf samples from seedlings and anther-regenerated plants of different ploidy. The PCR amplification efficiency was estimated, and the candidate genes were ranked according to their expression stability using three software packages: geNorm, NormFinder and Bestkeeper. GAPDH and EF1α were characterized to be the most stable genes among different tissues or in all the sample pools, while CYP showed low expression stability. RPL3 had the optimal performance among four leaf samples. The application of verified reference genes was illustrated by analyzing ferritin and laccase expression profiles among different experimental sets. The analysis revealed the biological variation in ferritin and laccase transcript expression among the tissues studied and the individual plants. geNorm, NormFinder, and BestKeeper analyses recommended different suitable reference gene(s) for normalization according to the experimental sets. GAPDH and EF1α had the highest expression stability across different tissues and RPL3 for the other sample set. This study emphasizes the importance of validating superior reference genes for qRT-PCR analysis to accurately normalize gene expression of D. latiflorus Munro.

  12. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.).

    PubMed

    Yang, Meng; Zhang, Xiaowei; Liu, Guiming; Yin, Yuxin; Chen, Kaifu; Yun, Quanzheng; Zhao, Duojun; Al-Mssallem, Ibrahim S; Yu, Jun

    2010-09-15

    Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.

  13. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus.

    PubMed

    Grégoire, Catherine-Alexandra; Tobin, Stephanie; Goldenstein, Brianna L; Samarut, Éric; Leclerc, Andréanne; Aumont, Anne; Drapeau, Pierre; Fulton, Stephanie; Fernandes, Karl J L

    2018-01-01

    Environmental enrichment (EE) is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG), a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN), a locked disk (LD), or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE)]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running's genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.

  14. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells.

    PubMed

    Watanabe, Toshiki

    2017-03-02

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1 , PRKCB , and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4 + T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated. © 2017 by The American Society of Hematology.

  15. New insights in the bacterial spore resistance to extreme terrestrial and extraterrestrial factors

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Horneck, Gerda; Reitz, Guenther

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. The extremely high resistance of bacterial endospores to environmental stress factors has intrigued researchers since long time and many characteristic spore features, especially those involved in the protection of spore DNA, have already been uncovered. The disclosure of the complete genomic sequence of Bacillus subtilis 168, one of the often used astrobiological model system, and the rapid development of tran-scriptional microarray techniques have opened new opportunities of gaining further insights in the enigma of spore resistance. Spores of B. subtilis were exposed to various extreme ter-restrial and extraterrestrial stressors to reach a better understanding of the DNA protection and repair strategies, which them to cope with the induced DNA damage. Following physical stress factors of environmental importance -either on Earth or in space -were selected for this thesis: (i) mono-and polychromatic UV radiation, (ii) ionizing radiation, (iii) exposure to ultrahigh vacuum; and (iv) high shock pressures simulating meteorite impacts. To reach a most comprehensive understanding of spore resistance to those harsh terrestrial or simulated extraterrestrial conditions, a standardized experimental protocol of the preparation and ana-lyzing methods was established including the determination of the following spore responses: (i) survival, (ii) induced mutations, (iii) DNA damage, (iv) role of different repair pathways by use of a set of repair deficient mutants, and (v) transcriptional responses during spore germi-nation by use of genome-wide transcriptome analyses and confirmation by RT-PCR. From this comprehensive set of data on spore resistance to a variety of environmental stress parameters a model of a "built-in" transcriptional program of bacterial spores in response to DNA damaging treatments to ensure DNA restoration during germination has been developed.

  16. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after six days of seawater exposure.

    PubMed

    Chen, X L; Lui, E Y; Ip, Y Kwong; Lam, S H

    2018-06-21

    To obtain transcriptomic insights into branchial responses to salinity challenge in Anabas testudineus, this study employed RNA sequencing (RNA-Seq) to analyse the gill transcriptome of A. testudineus exposed to seawater (SW) for 6 days compared with the freshwater (FW) control group. A combined FW and SW gill transcriptome was de novo assembled from 169.9 million 101 bp paired-end reads. In silico validation employing 17 A. testudineus Sanger full-length coding sequences showed that 15/17 of them had greater than 80% of their sequences aligned to the de novo assembled contigs where 5/17 had their full-length (100%) aligned and 9/17 had greater than 90% of their sequences aligned. The combined FW and SW gill transcriptome was mapped to 13780 unique human identifiers at E-value < 1.0E-20 while 952 and 886 identifiers were determined as up and down-regulated by 1.5 fold, respectively, in the gills of A. testudineus in SW when compared with FW. These genes were found to be associated with at least 23 biological processes. A larger proportion of genes encoding enzymes and transporters associated with molecular transport, energy production, metabolisms were up-regulated, while a larger proportion of genes encoding transmembrane receptors, G-protein coupled receptors, kinases and transcription regulators associated with cell cycle, growth, development, signalling, morphology and gene expression were relatively lower in the gills of A. testudineus in SW when compared with FW. High correlation (R = 0.99) was observed between RNA-Seq data and real-time quantitative PCR validation for 13 selected genes. The transcriptomic sequence information will facilitate development of molecular resources and tools while the findings will provide insights for future studies into branchial iono-osmoregulation and related cellular processes in A. testudineus. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines

    PubMed Central

    2014-01-01

    Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272

  18. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides.

    PubMed

    Guo, Li; Breakspear, Andrew; Zhao, Guoyi; Gao, Lixin; Kistler, H Corby; Xu, Jin-Rong; Ma, Li-Jun

    2016-02-01

    The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is a central signalling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signalling in fungal biology has been well documented and the key conserved components, adenylate cyclase (AC) and the catalytic subunit of PKA (CPKA), have been functionally characterized. However, other genes involved in this signalling pathway and their regulation are not well understood in filamentous fungi. Here, we performed a comparative transcriptomics analysis of AC and CPKA mutants in two closely related fungi: Fusarium graminearum (Fg) and F. verticillioides (Fv). Combining available Fg transcriptomics and phenomics data, we reconstructed the Fg cAMP signalling pathway. We developed a computational program that combines sequence conservation and patterns of orthologous gene expression to facilitate global transcriptomics comparisons between different organisms. We observed highly correlated expression patterns for most orthologues (80%) between Fg and Fv. We also identified a subset of 482 (6%) diverged orthologues, whose expression under all conditions was at least 50% higher in one genome than in the other. This enabled us to dissect the conserved and unique portions of the cAMP-PKA pathway. Although the conserved portions controlled essential functions, such as metabolism, the cell cycle, chromatin remodelling and the oxidative stress response, the diverged portions had species-specific roles, such as the production and detoxification of secondary metabolites unique to each species. The evolution of the cAMP-PKA signalling pathway seems to have contributed directly to fungal divergence and niche adaptation. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  19. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress

    PubMed Central

    2013-01-01

    Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars. PMID:24074255

  20. Genome-Wide Mapping of Cystitis Due to Streptococcus agalactiae and Escherichia coli in Mice Identifies a Unique Bladder Transcriptome That Signifies Pathogen-Specific Antimicrobial Defense against Urinary Tract Infection

    PubMed Central

    Tan, Chee K.; Carey, Alison J.; Cui, Xiangqin; Webb, Richard I.; Ipe, Deepak; Crowley, Michael; Cripps, Allan W.; Benjamin, William H.; Ulett, Kimberly B.; Schembri, Mark A.

    2012-01-01

    The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens. PMID:22733575

  1. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm.

    PubMed

    Jończyk, M; Sobkowiak, A; Trzcinska-Danielewicz, J; Skoneczny, M; Solecka, D; Fronk, J; Sowiński, P

    2017-10-01

    In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.

  2. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528

  3. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong

    2016-01-01

    ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501

  4. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis

    DOE PAGES

    Christopherson, Melissa R.; Dawson, John A.; Stevenson, David M.; ...

    2014-12-04

    Bacteria in the genus Ruminococcus are ubiquitous members of the mammalian gastrointestinal tract. In particular, they are important in ruminants where they digest a wide range of plant cell wall polysaccharides. For example, Ruminococcus albus 7 is a primary cellulose degrader that produces acetate usable by its bovine host. Moreover, it is one of the few organisms that ferments cellulose to form ethanol at mesophilic temperatures in vitro. The mechanism of cellulose degradation by R. albus 7 is not well-defined and is thought to involve pilin-like proteins, unique carbohydrate-binding domains, a glycocalyx, and cellulosomes. We used a combination of comparativemore » genomics, fermentation analyses, and transcriptomics to further clarify the cellulolytic and fermentative potential of R. albus 7. A comparison of the R. albus 7 genome sequence against the genome sequences of related bacteria that either encode or do not encode cellulosomes revealed that R. albus 7 does not encode for most canonical cellulosomal components. Fermentation analysis of R. albus 7 revealed the ability to produce ethanol and acetate on a wide range of fibrous substrates in vitro. Global transcriptomic analysis of R. albus 7 grown at identical dilution rates on cellulose and cellobiose in a chemostat showed that this bacterium, when growing on cellulose, utilizes a carbohydrate-degrading strategy that involves increased transcription of the rare carbohydrate-binding module (CBM) family 37 domain and the tryptophan biosynthetic operon. Our data suggest that R. albus 7 does not use canonical cellulosomal components to degrade cellulose, but rather up-regulates the expression of CBM37-containing enzymes and tryptophan biosynthesis. This study contributes to a revised model of carbohydrate degradation by this key member of the rumen ecosystem.« less

  5. Silent Partners: Uncovering Middle School and High School Students' Perceptions of Their Roles in Two School-University Partnerships

    ERIC Educational Resources Information Center

    Kruse, Nathan B.

    2012-01-01

    The purpose of this study was to explore middle school and high school band students' perceptions of two ongoing school-university partnerships. Interviews and focus group interviews were conducted with school students to capture their unique perspectives and to support the tenets of formative and action research designs. Findings indicated that…

  6. 3 CFR 8947 - Proclamation 8947 of March 25, 2013. Establishment of the San Juan Islands National Monument

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... archipelago of over 450 islands, rocks, and pinnacles known as the San Juan Islands. These islands form an... the San Juan Islands have uncovered a unique array of fossils and other evidence of long-vanished..., within the boundaries described on the accompanying map, which is attached to and forms a part of this...

  7. Uncovering the Identities of Students and Graduates in a CPED-Influenced EdD Program

    ERIC Educational Resources Information Center

    Zambo, Debby; Buss, Ray R.; Zambo, Ron

    2015-01-01

    The educational doctorate (EdD) is being re-envisioned as a distinct professional degree. Today's EdD graduates are envisioned as scholarly practitioners. Given this it may be reasoned these individuals have unique identities comprised of several layers. In this study, we examined how 18 entering students and 17 graduating students from an EdD…

  8. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy.

    PubMed

    Marra, Nicholas J; Richards, Vincent P; Early, Angela; Bogdanowicz, Steve M; Pavinski Bitar, Paulina D; Stanhope, Michael J; Shivji, Mahmood S

    2017-01-30

    Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.

  9. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis

    PubMed Central

    2012-01-01

    Background Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. Results Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. Conclusions The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis. PMID:22340370

  10. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis. PMID:26815362

  11. Histological eosinophilic gastritis is a systemic disorder associated with blood and extra-gastric eosinophilia, Th2 immunity, and a unique gastric transcriptome

    PubMed Central

    Caldwell, Julie M.; Collins, Margaret H.; Stucke, Emily M.; Putnam, Philip E.; Franciosi, James P.; Kushner, Jonathan P.; Abonia, J. Pablo; Rothenberg, Marc E.

    2014-01-01

    Background The definition of eosinophilic gastritis (EG) is currently limited to histological EG based on the tissue eosinophil count. Objective We aimed to provide additional fundamental information about the molecular, histopathological, and clinical characteristics of EG. Methods Genome-wide transcript profiles and histological features of gastric biopsies as well as blood eosinophil numbers were analyzed in EG and control patients (n = 15 each). Results The peak gastric antrum eosinophil count was 282.7 ± 163.9 eosinophils/400X high-power field (HPF) in EG and 11.0 ± 8.5 eosinophils/HPF in control patients (P = 6.1 × 10−7). EG patients (87%) had co-existing eosinophilic inflammation in multiple gastrointestinal segments; the esophagus represented the most common secondary site. Elevated peripheral blood eosinophil numbers (EG 1.09 ± 0.88 × 103 [K]/μl vs. control 0.09 ± 0.08 K/μl, P = .0027) positively correlated with peak gastric eosinophil counts (Pearson r2 = .8102, P < .0001). MIB-1+ (proliferating), CD117+ (mast cells), and FOXP3+ cells (regulatory and/or activated T cells) were increased in EG. Transcript profiling revealed changes in 8% of the genome in EG gastric tissue. Only 7% of this EG transcriptome overlapped with the eosinophilic esophagitis (EoE) transcriptome. Significantly increased IL4, IL5, IL13, IL17, CCL26 and mast cell-specific transcripts and decreased IL33 were observed. Conclusion EG is a systemic disorder involving profound blood and gastrointestinal tract eosinophilia, Th2 immunity, and a conserved gastric transcriptome markedly distinct from the EoE transcriptome. The data herein define germane cellular and molecular pathways of EG and provide a basis for improving diagnosis and treatment. PMID:25234644

  12. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    PubMed Central

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  13. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants1[OPEN

    PubMed Central

    Brereton, Nicholas J. B.; Marleau, Julie; Nissim, Werther Guidi; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2016-01-01

    Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system. PMID:27002060

  14. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata

    PubMed Central

    Hussain, Tajammul; Plunkett, Blue; Ejaz, Mahwish; Espley, Richard V.; Kayser, Oliver

    2018-01-01

    The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA), including its two first intermediates, stilbene acid (SA) and geranyl diphosphate (GPP). Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS), which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS) and gas chromatography mass spectrometry (GC-MS). Transcriptomic analysis revealed 1085 transcription factors (TF) from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs) and non-coding RNAs (ncRNAs). Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.

  15. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    PubMed

    Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  16. Transcriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis

    PubMed Central

    Ma, Jun; Kanakala, S.; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. Conclusion The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus. PMID:25769053

  17. Transcriptome Assembly and Analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) Developing Grains, with Emphasis on Quality Properties

    PubMed Central

    Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun

    2014-01-01

    Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534

  18. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa.

    PubMed

    Kavembe, Geraldine D; Franchini, Paolo; Irisarri, Iker; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2015-10-01

    The Magadi tilapia (Alcolapia grahami) is a cichlid fish that inhabits one of the Earth's most extreme aquatic environments, with high pH (~10), salinity (~60% of seawater), high temperatures (~40 °C), and fluctuating oxygen regimes. The Magadi tilapia evolved several unique behavioral, physiological, and anatomical adaptations, some of which are constituent and thus retained in freshwater conditions. We conducted a transcriptomic analysis on A. grahami to study the evolutionary basis of tolerance to multiple stressors. To identify the adaptive regulatory changes associated with stress responses, we massively sequenced gill transcriptomes (RNAseq) from wild and freshwater-acclimated specimens of A. grahami. As a control, corresponding transcriptome data from Oreochromis leucostictus, a closely related freshwater species, were generated. We found expression differences in a large number of genes with known functions related to osmoregulation, energy metabolism, ion transport, and chemical detoxification. Over-representation of metabolism-related gene ontology terms in wild individuals compared to laboratory-acclimated specimens suggested that freshwater conditions greatly decrease the metabolic requirements of this species. Twenty-five genes with diverse physiological functions related to responses to water stress showed signs of divergent natural selection between the Magadi tilapia and its freshwater relative, which shared a most recent common ancestor only about four million years ago. The complete set of genes responsible for urea excretion was identified in the gill transcriptome of A. grahami, making it the only fish species to have a functional ornithine-urea cycle pathway in the gills--a major innovation for increasing nitrogenous waste efficiency.

  19. Draft de novo transcriptome assembly and proteome characterization of the electric lobe of Tetronarce californica: a molecular tool for the study of cholinergic neurotransmission in the electric organ.

    PubMed

    Stavrianakou, Maria; Perez, Ricardo; Wu, Cheng; Sachs, Matthew S; Aramayo, Rodolfo; Harlow, Mark

    2017-08-14

    The electric organ of Tetronarce californica (an electric ray formerly known as Torpedo californica) is a classic preparation for biochemical studies of cholinergic neurotransmission. To broaden the usefulness of this preparation, we have performed a transcriptome assembly of the presynaptic component of the electric organ (the electric lobe). We combined our assembled transcriptome with a previous transcriptome of the postsynaptic electric organ, to define a MetaProteome containing pre- and post-synaptic components of the electric organ. Sequencing yielded 102 million paired-end 100 bp reads. De novo Trinity assembly was performed at Kmer 25 (default) and Kmers 27, 29, and 31. Trinity, generated around 103,000 transcripts, and 78,000 genes per assembly. Assemblies were evaluated based on the number of bases/transcripts assembled, RSEM-EVAL scores and informational content and completeness. We found that different assemblies scored differently according to the evaluation criteria used, and that while each individual assembly contained unique information, much of the assembly information was shared by all assemblies. To generate the presynaptic transcriptome (electric lobe), while capturing all information, assemblies were first clustered and then combined with postsynaptic transcripts (electric organ) downloaded from NCBI. The completness of the resulting clustered predicted MetaProteome was rigorously evaluated by comparing its information against the predicted proteomes from Homo sapiens, Callorhinchus milli, and the Transporter Classification Database (TCDB). In summary, we obtained a MetaProteome containing 92%, 88.5%, and 66% of the expected set of ultra-conserved sequences (i.e., BUSCOs), expected to be found for Eukaryotes, Metazoa, and Vertebrata, respectively. We cross-annotated the conserved set of proteins shared between the T. californica MetaProteome and the proteomes of H. sapiens and C. milli, using the H. sapiens genome as a reference. This information was used to predict the position in human pathways of the conserved members of the T. californica MetaProteome. We found proteins not detected before in T. californica, corresponding to processes involved in synaptic vesicle biology. Finally, we identified 42 transporter proteins in TCDB that were detected by the T. californica MetaProteome (electric fish) and not selected by a control proteome consisting of the combined proteomes of 12 widely diverse non-electric fishes by Reverse-Blast-Hit Blast. Combined, the information provided here is not only a unique tool for the study of cholinergic neurotransmission, but it is also a starting point for understanding the evolution of early vertebrates.

  20. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  1. Transcriptome Analysis of Differentially Expressed Genes Provides Insight into Stolon Formation in Tulipa edulis

    PubMed Central

    Miao, Yuanyuan; Zhu, Zaibiao; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    Tulipa edulis (Miq.) Baker is an important medicinal plant with a variety of anti-cancer properties. The stolon is one of the main asexual reproductive organs of T. edulis and possesses a unique morphology. To explore the molecular mechanism of stolon formation, we performed an RNA-seq analysis of the transcriptomes of stolons at three developmental stages. In the present study, 15.49 Gb of raw data were generated and assembled into 74,006 unigenes, and a total of 2,811 simple sequence repeats were detected in T. edulis. Among the three libraries of stolons at different developmental stages, there were 5,119 differentially expressed genes (DEGs). A functional annotation analysis based on sequence similarity queries of the GO, COG, KEGG databases showed that these DEGs were mainly involved in many physiological and biochemical processes, such as material and energy metabolism, hormone signaling, cell growth, and transcription regulation. In addition, quantitative real-time PCR analysis revealed that the expression patterns of the DEGs were consistent with the transcriptome data, which further supported a role for the DEGs in stolon formation. This study provides novel resources for future genetic and molecular studies in T. edulis. PMID:27064558

  2. Transcriptome Analysis of Differentially Expressed Genes Provides Insight into Stolon Formation in Tulipa edulis.

    PubMed

    Miao, Yuanyuan; Zhu, Zaibiao; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    Tulipa edulis (Miq.) Baker is an important medicinal plant with a variety of anti-cancer properties. The stolon is one of the main asexual reproductive organs of T. edulis and possesses a unique morphology. To explore the molecular mechanism of stolon formation, we performed an RNA-seq analysis of the transcriptomes of stolons at three developmental stages. In the present study, 15.49 Gb of raw data were generated and assembled into 74,006 unigenes, and a total of 2,811 simple sequence repeats were detected in T. edulis. Among the three libraries of stolons at different developmental stages, there were 5,119 differentially expressed genes (DEGs). A functional annotation analysis based on sequence similarity queries of the GO, COG, KEGG databases showed that these DEGs were mainly involved in many physiological and biochemical processes, such as material and energy metabolism, hormone signaling, cell growth, and transcription regulation. In addition, quantitative real-time PCR analysis revealed that the expression patterns of the DEGs were consistent with the transcriptome data, which further supported a role for the DEGs in stolon formation. This study provides novel resources for future genetic and molecular studies in T. edulis.

  3. Differential expression of non-coding RNAs and continuous evolution of the X chromosome in testicular transcriptome of two mouse species.

    PubMed

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-02-14

    Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.

  4. Comparative Transcriptomics Among Four White Pine Species

    PubMed Central

    Baker, Ethan A. G.; Wegrzyn, Jill L.; Sezen, Uzay U.; Falk, Taylor; Maloney, Patricia E.; Vogler, Detlev R.; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A.; Famula, Randi A.; Liu, Jun-Jun; Kueppers, Lara M.; Neale, David B.

    2018-01-01

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus. The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. PMID:29559535

  5. Delayed response to cold stress is characterized by successive metabolic shifts culminating in apple fruit peel necrosis.

    PubMed

    Gapper, Nigel E; Hertog, Maarten L A T M; Lee, Jinwook; Buchanan, David A; Leisso, Rachel S; Fei, Zhangjun; Qu, Guiqin; Giovannoni, James J; Johnston, Jason W; Schaffer, Robert J; Nicolaï, Bart M; Mattheis, James P; Watkins, Christopher B; Rudell, David R

    2017-04-21

    Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.

  6. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

    PubMed

    Wasik, Kaja; Gurtowski, James; Zhou, Xin; Ramos, Olivia Mendivil; Delás, M Joaquina; Battistoni, Giorgia; El Demerdash, Osama; Falciatori, Ilaria; Vizoso, Dita B; Smith, Andrew D; Ladurner, Peter; Schärer, Lukas; McCombie, W Richard; Hannon, Gregory J; Schatz, Michael

    2015-10-06

    The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.

  7. De novo transcriptome assembly of 'Angeleno' and 'Lamoon' Japanese plum cultivars (Prunus salicina).

    PubMed

    González, Máximo; Maldonado, Jonathan; Salazar, Erika; Silva, Herman; Carrasco, Basilio

    2016-09-01

    Japanese plum (Prunus salicina L.) is a fruit tree of the Rosaceae family, which is an economically important stone fruit around the world. Currently, Japanese plum breeding programs combine traditional breeding and plant physiology strategies with genetic and genomic analysis. In order to understand the flavonoid pathway regulation and to develop molecular markers associated to the fuit skin color (EST-SSRs), we performed a next generation sequencing based on Illumina Hiseq2000 platform. A total of 22.4 GB and 21 GB raw data were obtained from 'Lamoon' and 'Angeleno' respectively, corresponding to 85,404,726 raw reads to 'Lamoon' and 79,781,666 to 'Angeleno'. A total of 139,775,975 reads were filtered after removing low-quality reads and trimming the adapter sequences. De novo transcriptome assembly was performed using CLC Genome Workbench software and a total of 54,584 unique contigs were generated, with an N50 of 1343 base pair (bp) and a mean length of 829 bp. This work contributed with a specific Japanese plum skin transcriptome, providing two libraries of contrasting fruit skin color phenotype (yellow and red) and increasing substantially the GB of raw data available until now for this specie.

  8. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    PubMed

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  9. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    PubMed Central

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  10. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  11. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    PubMed Central

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  12. Improvisation in evolution of genes and genomes: whose structure is it anyway?

    PubMed

    Shakhnovich, Boris E; Shakhnovich, Eugene I

    2008-06-01

    Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.

  13. SON is a spliceosome-associated factor required for mitotic progression.

    PubMed

    Huen, Michael S Y; Sy, Shirley M H; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo; Chen, Junjie

    2010-07-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. © 2010 Landes Bioscience

  14. SON is a spliceosome-associated factor required for mitotic progression

    PubMed Central

    Sy, Shirley MH; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo

    2010-01-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. PMID:20581448

  15. Statistical significance of combinatorial regulations

    PubMed Central

    Terada, Aika; Okada-Hatakeyama, Mariko; Tsuda, Koji; Sese, Jun

    2013-01-01

    More than three transcription factors often work together to enable cells to respond to various signals. The detection of combinatorial regulation by multiple transcription factors, however, is not only computationally nontrivial but also extremely unlikely because of multiple testing correction. The exponential growth in the number of tests forces us to set a strict limit on the maximum arity. Here, we propose an efficient branch-and-bound algorithm called the “limitless arity multiple-testing procedure” (LAMP) to count the exact number of testable combinations and calibrate the Bonferroni factor to the smallest possible value. LAMP lists significant combinations without any limit, whereas the family-wise error rate is rigorously controlled under the threshold. In the human breast cancer transcriptome, LAMP discovered statistically significant combinations of as many as eight binding motifs. This method may contribute to uncover pathways regulated in a coordinated fashion and find hidden associations in heterogeneous data. PMID:23882073

  16. Molecular pathology and genetics of gastrointestinal neuroendocrine tumours.

    PubMed

    Lewis, Mark A; Yao, James C

    2014-02-01

    Neuroendocrine tumours (NETs) of the luminal gastrointestinal tract and pancreas are increasing in incidence and prevalence. Prior assumptions about the benign nature of 'carcinoids' and the clinical importance of distinguishing functional vs. nonfunctional tumours are being overturned through greater understanding of disease behaviour and heterogeneity. This review highlights the most contemporary genetic and molecular insights into gastroenteropancreatic NETs. Biomarkers such as neuron-specific enolase or chromogranin A could be supplemented or supplanted by PCR-based analysis of NET genes detectable in the blood transcriptome. Conventional pathology, including Ki67 testing, could be enhanced with immunohistochemistry and exome analysis. Prognostic markers and/or putative therapeutic targets uncovered through recent studies include heparanase, Id, ATM, SRC, EGFR, hsp90 and PDGFR. After a long-standing paucity of options for conventional cytotoxic therapy, the comprehension and treatment of gastroenteropancreatic NETs has been enriched by advancements in taxonomy, molecular pathology and genetic/epigenetic testing.

  17. Portable Home Welder

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pyronetics, Inc. manufactured a small, do-it-yourself welding torch which weighs only 7 pounds, gives a 5,000 degree Farenheit flame, and costs only $40.00. This resulted from information provided by a NASA Industrial Application Center at the University of Southern California. The center provided information on chlorate candles, unique in that they generate oxygen while burning. A retrospective search uncovered information on composition, hazards, applications, manufacturers, and shipping regulations.

  18. The developmental transcriptome of Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, predictionmore » and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes. Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.« less

  19. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes

    PubMed Central

    Malki, K; Pain, O; Tosto, M G; Du Rietz, E; Carboni, L; Schalkwyk, L C

    2015-01-01

    Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case–control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat–human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis. PMID:25734512

  20. Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics.

    PubMed

    Deshpande, Ashish B; Anamika, Krishanpal; Jha, Vineet; Chidley, Hemangi G; Oak, Pranjali S; Kadoo, Narendra Y; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2017-08-18

    Alphonso is known as the "King of mangos" due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb. Importantly, 20,755 unique transcripts were annotated and 4,611 were assigned enzyme commission numbers, which encoded 142 biological pathways. These included ethylene and flavor related secondary metabolite biosynthesis pathways, as well as those involved in metabolism of starch, sucrose, amino acids and fatty acids. Differential regulation (p-value ≤ 0.05) of thousands of transcripts was evident in various stages of fruit development and ripening. Novel transcripts for biosynthesis of mono-terpenes, sesqui-terpenes, di-terpenes, lactones and furanones involved in flavor formation were identified. Large number of transcripts encoding cell wall modifying enzymes was found to be steady in their expression, while few were differentially regulated through these stages. Novel 79 transcripts of inhibitors of cell wall modifying enzymes were simultaneously detected throughout Alphonso fruit development and ripening, suggesting controlled activity of these enzymes involved in fruit softening.

  1. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    PubMed

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  2. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun

    2016-11-29

    The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.

  3. Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney

    PubMed Central

    Walsh, Joanne; Jenkins, Rosalind E.; Wong, Michael H. L.; Rowe, Cliff; Ricci, Emanuele; Ressel, Lorenzo; Fang, Yongxiang; Demougin, Philippe; Vukojevic, Vanja; O’Neill, Paul M.; Goldring, Christopher E.; Kitteringham, Neil R.; Park, B. Kevin; Odermatt, Alex; Copple, Ian M.

    2015-01-01

    The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 hours, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared to wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared to vehicle control. In light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target. PMID:26422507

  4. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    PubMed

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  5. Integration of Next Generation Sequencing and EPR Analysis to Uncover Molecular Mechanism Underlying Shell Color Variation in Scallops

    PubMed Central

    Sun, Xiujun; Liu, Zhihong; Zhou, Liqing; Wu, Biao; Dong, Yinghui; Yang, Aiguo

    2016-01-01

    The Yesso scallop Patinopecten yessoensis displays polymorphism in shell colors, which is of great interest for the scallop industry. To identify genes involved in the shell coloration, in the present study, we investigate the transcriptome differences by Illumina digital gene expression (DGE) analysis in two extreme color phenotypes, Red and White. Illumina sequencing yields a total of 62,715,364 clean sequence reads, and more than 85% reads are mapped into our previously sequenced transcriptome. There are 25 significantly differentially expressed genes between Red and White scallops. EPR (Electron paramagnetic resonance) analysis has identified EPR spectra of pheomelanin and eumelanin in the red shells, but not in the white shells. Compared to the Red scallops, the White scallops have relatively higher mRNA expression in tyrosinase genes, but lower expression in other melanogensis-associated genes. Meantime, the relatively lower tyrosinase protein and decreased tyrosinase activity in White scallops are suggested to be associated with the lack of melanin in the white shells. Our findings highlight the functional roles of melanogensis-associated genes in the melanization process of scallop shells, and shed new lights on the transcriptional and post-transcriptional mechanisms in the regulation of tyrosinase activity during the process of melanin synthesis. The present results will assist our molecular understanding of melanin synthesis underlying shell color polymorphism in scallops, as well as other bivalves, and also help the color-based breeding in shellfish aquaculture. PMID:27563719

  6. Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection.

    PubMed

    Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang

    2016-06-01

    Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity

    PubMed Central

    Thakurela, Sudhir; Sahu, Sanjeeb Kumar; Garding, Angela; Tiwari, Vijay K.

    2015-01-01

    Gene regulation in mammals involves a complex interplay between promoters and distal regulatory elements that function in concert to drive precise spatiotemporal gene expression programs. However, the dynamics of the distal gene regulatory landscape and its function in the transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here, we performed a combinatorial analysis of genome-wide data sets for chromatin accessibility (FAIRE-seq) and the enhancer mark H3K27ac, revealing the highly dynamic nature of distal gene regulation during neurogenesis, which gets progressively restricted to distinct genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further find that the distal accessible and active regions serve as target sites for distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. Mature neurons respond to a sustained activity of NMDA receptors by epigenetic reprogramming at a large number of distal regulatory regions as well as dramatic reorganization of super-enhancers. Such massive remodeling of the distal regulatory landscape in turn results in a transcriptome that confers a transient loss of neuronal identity and gain of cellular plasticity. Furthermore, NMDA receptor activity also induces many novel prosurvival genes that function in neuroprotective pathways. Taken together, these findings reveal the dynamics of the distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate the transcriptome underlying neuronal development and activity. PMID:26170447

  9. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.

    PubMed

    Diray-Arce, Joann; Clement, Mark; Gul, Bilquees; Khan, M Ajmal; Nielsen, Brent L

    2015-05-06

    Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.

  10. Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing[OPEN

    PubMed Central

    Wang, Yajun; Hamilton, Michael; Ben-Hur, Asa; Reddy, Anireddy S.N.

    2015-01-01

    Plant SR45 and its metazoan ortholog RNPS1 are serine/arginine-rich (SR)-like RNA binding proteins that function in splicing/postsplicing events and regulate diverse processes in eukaryotes. Interactions of SR45 with both RNAs and proteins are crucial for regulating RNA processing. However, in vivo RNA targets of SR45 are currently unclear. Using RNA immunoprecipitation followed by high-throughput sequencing, we identified over 4000 Arabidopsis thaliana RNAs that directly or indirectly associate with SR45, designated as SR45-associated RNAs (SARs). Comprehensive analyses of these SARs revealed several roles for SR45. First, SR45 associates with and regulates the expression of 30% of abscisic acid (ABA) signaling genes at the postsplicing level. Second, although most SARs are derived from intron-containing genes, surprisingly, 340 SARs are derived from intronless genes. Expression analysis of the SARs suggests that SR45 differentially regulates intronless and intron-containing SARs. Finally, we identified four overrepresented RNA motifs in SARs that likely mediate SR45’s recognition of its targets. Therefore, SR45 plays an unexpected role in mRNA processing of intronless genes, and numerous ABA signaling genes are targeted for regulation at the posttranscriptional level. The diverse molecular functions of SR45 uncovered in this study are likely applicable to other species in view of its conservation across eukaryotes. PMID:26603559

  11. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod.

    PubMed

    Shibata, Mami; Mekuchi, Miyuki; Mori, Kazuki; Muta, Shigeru; Chowdhury, Vishwajit Sur; Nakamura, Yoji; Ojima, Nobuhiko; Saitoh, Kenji; Kobayashi, Takanori; Wada, Tokio; Inouye, Kiyoshi; Kuhara, Satoru; Tashiro, Kosuke

    2016-06-01

    Bluefin tuna are high-performance swimmers and top predators in the open ocean. Their swimming is grounded by unique features including an exceptional glycolytic potential in white muscle, which is supported by high enzymatic activities. Here we performed high-throughput RNA sequencing (RNA-Seq) in muscles of the Pacific bluefin tuna (Thunnus orientalis) and Pacific cod (Gadus macrocephalus) and conducted a comparative transcriptomic analysis of genes related to energy production. We found that the total expression of glycolytic genes was much higher in the white muscle of tuna than in the other muscles, and that the expression of only six genes for glycolytic enzymes accounted for 83.4% of the total. These expression patterns were in good agreement with the patterns of enzyme activity previously reported. The findings suggest that the mRNA expression of glycolytic genes may contribute directly to the enzymatic activities in the muscles of tuna.

  12. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi

    PubMed Central

    Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.

    2016-01-01

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865

  13. Transcriptome analyses of the Giardia lamblia life cycle

    PubMed Central

    Birkeland, Shanda R.; Preheim, Sarah P.; Davids, Barbara J.; Cipriano, Michael J.; Palm, Daniel; Reiner, David S.; Svärd, Staffan G.; Gillin, Frances D.; McArthur, Andrew G.

    2010-01-01

    We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed constitutively. 71 transcripts were upregulated specifically during excystation and 42 during encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major differences. SAGE detected co-expressed clusters of 284 transcripts differentially expressed in cysts and excyzoites and 287 transcripts in vegetative trophozoites and encysting cells. All clusters included known genes and pathways as well as proteins unique to Giardia or diplomonads. SAGE analysis of the Giardia life cycle identified a number of kinases, phosphatases, and DNA replication proteins involved in excystation and encystation, which could be important for examining the roles of cell signaling in giardial differentiation. Overall, these data pave the way for directed gene discovery and a better understanding of the biology of Giardia lamblia. PMID:20570699

  14. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice.

    PubMed

    Marco, Maria L; de Vries, Maaike C; Wels, Michiel; Molenaar, Douwe; Mangell, Peter; Ahrne, Siv; de Vos, Willem M; Vaughan, Elaine E; Kleerebezem, Michiel

    2010-11-01

    Probiotic bacteria provide unique opportunities to study the global responses and molecular mechanisms underlying the effects of gut-associated microorganisms in the human digestive tract. In this study, we show by comparative transcriptome analysis using DNA microarrays that the established probiotic Lactobacillus plantarum 299v specifically adapts its metabolic capacity in the human intestine for carbohydrate acquisition and expression of exopolysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a commensal microorganism in the human gut. A core L. plantarum transcriptome expressed in the mammalian intestine was also determined through comparisons of L. plantarum 299v activities in humans to those found for L. plantarum WCFS1 in germ-free mice. These results identify the niche-specific adaptations of a dietary microorganism to the intestinal ecosystem and provide novel targets for molecular analysis of microbial-host interactions which affect human health.

  15. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Scheffersomyces stipitis is a Crabtree negative yeast, commonly known for its capacity to ferment pentose sugars. Differently from Crabtree positive yeasts such as Saccharomyces cerevisiae, the onset of fermentation in S. stipitis is not dependent on the sugar concentration, but is regulated by a decrease in oxygen levels. Even though S. stipitis has been extensively studied due to its potential application in pentoses fermentation, a limited amount of information is available about its metabolism during aerobic growth on glucose. Here, we provide a systems biology based comparison between the two yeasts, uncovering the metabolism of S. stipitis during aerobic growth on glucose under batch and chemostat cultivations. Results Starting from the analysis of physiological data, we confirmed through 13C-based flux analysis the fully respiratory metabolism of S. stipitis when growing both under glucose limited or glucose excess conditions. The patterns observed showed similarity to the fully respiratory metabolism observed for S. cerevisiae under chemostat cultivations however, intracellular metabolome analysis uncovered the presence of several differences in metabolite patterns. To describe gene expression levels under the two conditions, we performed RNA sequencing and the results were used to quantify transcript abundances of genes from the central carbon metabolism and compared with those obtained with S. cerevisiae. Interestingly, genes involved in central pathways showed different patterns of expression, suggesting different regulatory networks between the two yeasts. Efforts were focused on identifying shared and unique families of transcription factors between the two yeasts through in silico transcription factors analysis, suggesting a different regulation of glycolytic and glucoenogenic pathways. Conclusions The work presented addresses the impact of high-throughput methods in describing and comparing the physiology of Crabtree positive and Crabtree negative yeasts. Based on physiological data and flux analysis we identified the presence of one metabolic condition for S. stipitis under aerobic batch and chemostat cultivations, which shows similarities to the oxidative metabolism observed for S. cerevisiae under chemostat cultivations. Through metabolome analysis and genome-wide transcriptomic analysis several differences were identified. Interestingly, in silico analysis of transciption factors was useful to address a different regulation of mRNAs of genes involved in the central carbon metabolism. To our knowledge, this is the first time that the metabolism of S. stiptis is investigated in details and is compared to S. cerevisiae. Our study provides useful results and allows for the possibility to incorporate these data into recently developed genome-scaled metabolic, thus contributing to improve future industrial applications of S. stipitis as cell factory. PMID:23043429

  16. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.

    PubMed

    Kim, Min Kyung; Lane, Anatoliy; Kelley, James J; Lun, Desmond S

    2016-01-01

    Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open-source package MOST (http://most.ccib.rutgers.edu/). Our method represents a significant advance over existing methods for inferring intracellular metabolic flux from transcriptomic data. It not only achieves higher accuracy, but it also combines into a single method a number of other desirable characteristics including applicability to a wide range of experimental conditions, production of a unique solution, fast running time, and the availability of a user-friendly implementation.

  17. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Cancer.gov

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  18. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    PubMed

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  19. Transcriptomic Analysis of the Rice White Tip Nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae)

    PubMed Central

    Li, Danlei; Wang, Zhiying; Dong, Airong; Chen, Qiaoli; Liu, Xiaohan

    2014-01-01

    Background The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. Methodology and Principal Findings Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs) and carbohydrate-binding modules (CBMs) were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. Conclusions and Significance The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species. PMID:24637831

  20. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration

    PubMed Central

    2013-01-01

    Background Salamanders are unique among vertebrates in their ability to completely regenerate amputated limbs through the mediation of blastema cells located at the stump ends. This regeneration is nerve-dependent because blastema formation and regeneration does not occur after limb denervation. To obtain the genomic information of blastema tissues, de novo transcriptomes from both blastema tissues and denervated stump ends of Ambystoma mexicanum (axolotls) 14 days post-amputation were sequenced and compared using Solexa DNA sequencing. Results The sequencing done for this study produced 40,688,892 reads that were assembled into 307,345 transcribed sequences. The N50 of transcribed sequence length was 562 bases. A similarity search with known proteins identified 39,200 different genes to be expressed during limb regeneration with a cut-off E-value exceeding 10-5. We annotated assembled sequences by using gene descriptions, gene ontology, and clusters of orthologous group terms. Targeted searches using these annotations showed that the majority of the genes were in the categories of essential metabolic pathways, transcription factors and conserved signaling pathways, and novel candidate genes for regenerative processes. We discovered and confirmed numerous sequences of the candidate genes by using quantitative polymerase chain reaction and in situ hybridization. Conclusion The results of this study demonstrate that de novo transcriptome sequencing allows gene expression analysis in a species lacking genome information and provides the most comprehensive mRNA sequence resources for axolotls. The characterization of the axolotl transcriptome can help elucidate the molecular mechanisms underlying blastema formation during limb regeneration. PMID:23815514

  1. Assessing mechanisms of toxicant response in the amphipod Melita plumulosa through transcriptomic profiling.

    PubMed

    Hook, Sharon E; Osborn, Hannah L; Spadaro, David A; Simpson, Stuart L

    2014-01-01

    This study describes the function of transcripts with altered abundance in the epibenthic amphipod, Melita plumulosa, following whole-sediment exposure to a series of common environmental contaminants. M. plumulosa were exposed for 48 h to sediments spiked and equilibrated with the following contaminants at concentrations predicted to cause sublethal effects to reproduction: porewater ammonia 30 mg L(-1); bifenthrin at 100 μg kg(-1); fipronil at 50 μg kg(-1); 0.6% diesel; 0.3% crude oil; 250 mg Cu kg(-1); 400 mg Ni kg(-1); and 400 mg Zn kg(-1). RNA was extracted and hybridized against a custom Agilent microarray developed for this species. Although the microarray represented a partial transcriptome and not all features on the array could be annotated, unique transcriptomic profiles were generated for each of the contaminant exposures. Hierarchical clustering grouped the expression profiles together by contaminant class, with copper and zinc, the petroleum products and nickel, and the pesticides each forming a distinct cluster. Many of the transcriptional changes observed were consistent with patterns previously described in other crustaceans. The changes in the transcriptome demonstrated that contaminant exposure caused changes in digestive function, growth and moulting, and the cytoskeleton following metal exposure, whereas exposure to petroleum products caused changes in carbohydrate metabolism, xenobiotic metabolism and hormone cycling. Functional analysis of these gene expression profiles can provide a better understanding of modes of toxic action and permits the prediction of mixture effects within contaminated ecosystems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures.

    PubMed

    Kumari, Anita; Singh, Heikham Russiachand; Jha, Ashwani; Swarnkar, Mohit Kumar; Shankar, Ravi; Kumar, Sanjay

    2014-10-07

    Sinopodophyllum hexandrum is an endangered medicinal herb, which is commonly present in elevations ranging between 2,400-4,500 m and is sensitive to temperature. Medicinal property of the species is attributed to the presence of podophyllotoxin in the rhizome tissue. The present work analyzed transcriptome of rhizome tissue of S. hexandrum exposed to 15°C and 25°C to understand the temperature mediated molecular responses including those associated with podophyllotoxin biosynthesis. Deep sequencing of transcriptome with an average coverage of 88.34X yielded 60,089 assembled transcript sequences representing 20,387 unique genes having homology to known genes. Fragments per kilobase of exon per million fragments mapped (FPKM) based expression analysis revealed genes related to growth and development were over-expressed at 15°C, whereas genes involved in stress response were over-expressed at 25°C. There was a decreasing trend of podophyllotoxin accumulation at 25°C; data was well supported by the expression of corresponding genes of the pathway. FPKM data was validated by quantitative real-time polymerase chain reaction data using a total of thirty four genes and a positive correlation between the two platforms of gene expression was obtained. Also, detailed analyses yielded cytochrome P450s, methyltransferases and glycosyltransferases which could be the potential candidate hitherto unidentified genes of podophyllotoxin biosynthesis pathway. The present work revealed temperature responsive transcriptome of S. hexandrum on Illumina platform. Data suggested expression of genes for growth and development and podophyllotoxin biosynthesis at 15°C, and prevalence of those associated with stress response at 25°C.

  3. Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome.

    PubMed

    Mahesh, Hirehally Basavarajegowda; Subba, Pratigya; Advani, Jayshree; Shirke, Meghana Deepak; Loganathan, Ramya Malarini; Chandana, Shankara Lingu; Shilpa, Siddappa; Chatterjee, Oishi; Pinto, Sneha Maria; Prasad, Thottethodi Subrahmanya Keshava; Gowda, Malali

    2018-04-01

    Indian sandalwood ( Santalum album ) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees. © 2018 American Society of Plant Biologists. All Rights Reserved.

  4. Identification of the Neuromuscular Junction Transcriptome of Extraocular Muscle by Laser Capture Microdissection

    PubMed Central

    Ketterer, Caroline; Zeiger, Ulrike; Budak, Murat T.; Rubinstein, Neal A.; Khurana, Tejvir S.

    2010-01-01

    Purpose. To examine and characterize the profile of genes expressed at the synapses or neuromuscular junctions (NMJs) of extraocular muscles (EOMs) compared with those expressed at the tibialis anterior (TA). Methods. Adult rat eyeballs with rectus EOMs attached and TAs were dissected, snap frozen, serially sectioned, and stained for acetylcholinesterase (AChE) to identify the NMJs. Approximately 6000 NMJs for rectus EOM (EOMsyn), 6000 NMJs for TA (TAsyn), equal amounts of NMJ-free fiber regions (EOMfib, TAfib), and underlying myonuclei and RNAs were captured by laser capture microdissection (LCM). RNA was processed for microarray-based expression profiling. Expression profiles and interaction lists were generated for genes differentially expressed at synaptic and nonsynaptic regions of EOM (EOMsyn versus EOMfib) and TA (TAsyn versus TAfib). Profiles were validated by using real-time quantitative polymerase chain reaction (qPCR). Results. The regional transcriptomes associated with NMJs of EOMs and TAs were identified. Two hundred seventy-five genes were preferentially expressed in EOMsyn (compared with EOMfib), 230 in TAsyn (compared with TAfib), and 288 additional transcripts expressed in both synapses. Identified genes included novel genes as well as well-known, evolutionarily conserved synaptic markers (e.g., nicotinic acetylcholine receptor (AChR) alpha (Chrna) and epsilon (Chrne) subunits and nestin (Nes). Conclusions. Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. The definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype. PMID:20393109

  5. A New Omics Data Resource of Pleurocybella porrigens for Gene Discovery

    PubMed Central

    Dohra, Hideo; Someya, Takumi; Takano, Tomoyuki; Harada, Kiyonori; Omae, Saori; Hirai, Hirofumi; Yano, Kentaro; Kawagishi, Hirokazu

    2013-01-01

    Background Pleurocybella porrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P . porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P . porrigens and the related species, however, are not stored in the public database. To gain the omics data in P . porrigens , we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P . porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P . porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P . porrigens , provided from this research, will give a new data resource for gene discovery in basidiomycetes. PMID:23936076

  6. De novo transcriptome of the muga silkworm, Antheraea assamensis (Helfer).

    PubMed

    Chetia, Hasnahana; Kabiraj, Debajyoti; Singh, Deepika; Mosahari, Ponnala Vimal; Das, Suradip; Sharma, Pragya; Neog, Kartik; Sharma, Swagata; Jayaprakash, P; Bora, Utpal

    2017-05-05

    Antheraea assamensis (Lepidoptera: Saturniidae), is a semi-domesticated silkworm known to be endemic to Assam and the adjoining hilly areas of Northeast India. It is the only producer of a unique, commercially important variety of golden silk called "muga silk". Herein, we report the de novo transcriptome of A. assamensis reared on Machilus bombycina leaves for the first time. Short reads generated by high throughput sequencing of cDNA libraries from multiple tissues, viz. alimentary canal, silk gland and residual body of the 5 th instar of muga silkworm were assembled into transcripts via a de novo assembly pipeline followed by functional annotation and classification. A total of 1,21,433 transcripts were generated from ~231 million raw reads of which ~74% (89,583) were either allocated a functional annotation or categorized under Pfam/COG/KEGG categories. Identification of differentially expressed transcripts and their comparative sequence analysis revealed candidate genes related to silk synthesis, viz. silk gland factor-1 and 3, sericin-like transcript, etc. with conserved forkhead, homeo- and POU domains. Several candidate anti-microbial peptides which may have potential anti-bacterial, anti-fungal or anti-parasitic activity in A. assamensis were also identified. T/A and AT/TA were predicted to be the most abundant mono- and di-nucleotide simple sequence repeat markers in the transcriptome. Transcriptome validation was carried out by quantitative real-time PCR (qPCR) amplification of eight transcripts. The resources generated by this study will expand the periphery of existing genomic data on A. assamensis facilitating future in-depth studies on its unknown aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

    PubMed

    Lipovich, Leonard; Hou, Zhuo-Cheng; Jia, Hui; Sinkler, Christopher; McGowen, Michael; Sterner, Kirstin N; Weckle, Amy; Sugalski, Amara B; Pipes, Lenore; Gatti, Domenico L; Mason, Christopher E; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Grossman, Lawrence I; Goodman, Morris; Wildman, Derek E

    2016-02-01

    The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes. © 2015 Wiley Periodicals, Inc.

  8. Insulin immuno-neutralization in fed chickens: effects on liver and muscle transcriptome.

    PubMed

    Simon, Jean; Milenkovic, Dragan; Godet, Estelle; Cabau, Cedric; Collin, Anne; Métayer-Coustard, Sonia; Rideau, Nicole; Tesseraud, Sophie; Derouet, Michel; Crochet, Sabine; Cailleau-Audouin, Estelle; Hennequet-Antier, Christelle; Gespach, Christian; Porter, Tom E; Duclos, Michel J; Dupont, Joëlle; Cogburn, Larry A

    2012-03-01

    Chickens mimic an insulin-resistance state by exhibiting several peculiarities with regard to plasma glucose level and its control by insulin. To gain insight into the role of insulin in the control of chicken transcriptome, liver and leg muscle transcriptomes were compared in fed controls and "diabetic" chickens, at 5 h after insulin immuno-neutralization, using 20.7K-chicken oligo-microarrays. At a level of false discovery rate <0.01, 1,573 and 1,225 signals were significantly modified by insulin privation in liver and muscle, respectively. Microarray data agreed reasonably well with qRT-PCR and some protein level measurements. Differentially expressed mRNAs with human ID were classified using Biorag analysis and Ingenuity Pathway Analysis. Multiple metabolic pathways, structural proteins, transporters and proteins of intracellular trafficking, major signaling pathways, and elements of the transcriptional control machinery were largely represented in both tissues. At least 42 mRNAs have already been associated with diabetes, insulin resistance, obesity, energy expenditure, or identified as sensors of metabolism in mice or humans. The contribution of the pathways presently identified to chicken physiology (particularly those not yet related to insulin) needs to be evaluated in future studies. Other challenges include the characterization of "unknown" mRNAs and the identification of the steps or networks, which disturbed tissue transcriptome so extensively, quickly after the turning off of the insulin signal. In conclusion, pleiotropic effects of insulin in chickens are further evidenced; major pathways controlled by insulin in mammals have been conserved despite the presence of unique features of insulin signaling in chicken muscle.

  9. MRI: unique costing and pricing issues.

    PubMed

    Schwartz, H W; Jarl, D F

    1985-01-01

    Acquisition of magnetic resonance imaging (MRI) involves a plethora of costs not traditionally encountered in radiology procedure cost accounting models. Experiences with MRI gained at the University of Minnesota Hospitals and Clinics during 1984 uncovered a wide variety of unique costing issues which were eventually identified at the time when the MRI hospital charge was being established. Our experience at UMHC can provide those radiology departments now acquiring MRI with an earlier awareness of these special costing issues, hopefully resulting in better and more timely data collection. Current reimbursement and pricing issues are also having a dramatic impact on MRI costs at each institution and must be assessed in terms of third-party payor intentions.

  10. Transcriptome Analysis of Neonatal Larvae after Hyperthermia-Induced Seizures in the Contractile Silkworm, Bombyx mori

    PubMed Central

    Nie, Hongyi; Liu, Chun; Zhang, Yinxia; Zhou, Mengting; Huang, Xiaofeng; Peng, Li; Xia, Qingyou

    2014-01-01

    The ability to respond quickly and efficiently to transient extreme environmental conditions is an important property of all biota. However, the physiological basis of thermotolerance in different species is still unclear. Here, we found that the cot mutant showed a seizure phenotype including contraction of the body, rolling, vomiting gut juice and a momentary cessation of movement, and the heartbeat rhythm of the dorsal vessel significantly increases after hyperthermia. To comprehensively understand this process at the molecular level, the transcriptomic profile of cot mutant, which is a behavior mutant that exhibits a seizure phenotype, was investigated after hyperthermia (42°C) that was induced for 5 min. By digital gene expression profiling, we determined the gene expression profile of three strains (cot/cot ok/ok, +/+ ok/ok and +/+ +/+) under hyperthermia (42°C) and normal (25°C) conditions. A Venn diagram showed that the most common differentially expressed genes (DEGs, FDR<0.01 and log2 Ratio≥1) were up-regulated and annotated with the heat shock proteins (HSPs) in 3 strains after treatment with hyperthermia, suggesting that HSPs rapidly increased in response to high temperature; 110 unique DEGs, could be identified in the cot mutant after inducing hyperthermia when compared to the control strains. Of these 110 unique DEGs, 98.18% (108 genes) were up-regulated and 1.82% (two genes) were down-regulated in the cot mutant. KEGG pathways analysis of these unique DEGs suggested that the top three KEGG pathways were “Biotin metabolism,” “Fatty acid biosynthesis” and “Purine metabolism,” implying that diverse metabolic processes are active in cot mutant induced-hyperthermia. Unique DEGs of interest were mainly involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation–contraction coupling or the Notch signaling pathway. Insights into hyperthermia-induced alterations in gene expression and related pathways could yield hints for understanding the relationship between behaviors and environmental stimuli (hyperthermia) in insects. PMID:25423472

  11. Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity.

    PubMed

    Toedebusch, Ryan G; Roberts, Michael D; Wells, Kevin D; Company, Joseph M; Kanosky, Kayla M; Padilla, Jaume; Jenkins, Nathan T; Perfield, James W; Ibdah, Jamal A; Booth, Frank W; Rector, R Scott

    2014-05-15

    To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity.

  12. Comparative Transcriptomics Among Four White Pine Species.

    PubMed

    Baker, Ethan A G; Wegrzyn, Jill L; Sezen, Uzay U; Falk, Taylor; Maloney, Patricia E; Vogler, Detlev R; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A; Famula, Randi A; Liu, Jun-Jun; Kueppers, Lara M; Neale, David B

    2018-05-04

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine ( Pinus monticola ), limber pine ( Pinus flexilis ), whitebark pine ( Pinus albicaulis) , and sugar pine ( Pinus lambertiana ) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. Copyright © 2018 Baker et al.

  13. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin.

    PubMed

    Zhao, Ying-Jun; Zeng, Yan; Chen, Lei; Dong, Yang; Wang, Wen

    2014-12-01

    As an ancient arthropod with a history of 390 million years, spiders evolved numerous morphological forms resulting from adaptation to different environments. The venom and silk of spiders, which have promising commercial applications in agriculture, medicine and engineering fields, are of special interests to researchers. However, little is known about their genomic components, which hinders not only understanding spider biology but also utilizing their valuable genes. Here we report on deep sequenced and de novo assembled transcriptomes of three orb-web spider species, Gasteracantha arcuata, Nasoonaria sinensis and Gasteracantha hasselti which are distributed in tropical forests of south China. With Illumina paired-end RNA-seq technology, 54 871, 101 855 and 75 455 unigenes for the three spider species were obtained, respectively, among which 9 300, 10 001 and 10 494 unique genes are annotated, respectively. From these annotated unigenes, we comprehensively analyzed silk and toxin gene components and structures for the three spider species. Our study provides valuable transcriptome data for three spider species which previously lacked any genetic/genomic data. The results have laid the first fundamental genomic basis for exploiting gene resources from these spiders. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  14. Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax).

    PubMed

    Zhou, Fengyan; Zhang, Yong; Tang, Wei; Wang, Mei; Gao, Tongchun

    2017-12-06

    Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering.

  15. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  16. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity.

    PubMed

    Bazakos, Christos; Manioudaki, Maria E; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.

  17. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds.

    PubMed

    Yung, Pui Yi; Grasso, Letizia Lo; Mohidin, Abeed Fatima; Acerbi, Enzo; Hinks, Jamie; Seviour, Thomas; Marsili, Enrico; Lauro, Federico M

    2016-01-28

    Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs.

  18. Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity

    PubMed Central

    Toedebusch, Ryan G.; Roberts, Michael D.; Wells, Kevin D.; Company, Joseph M.; Kanosky, Kayla M.; Padilla, Jaume; Jenkins, Nathan T.; Perfield, James W.; Ibdah, Jamal A.; Booth, Frank W.

    2014-01-01

    To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity. PMID:24642759

  19. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds

    PubMed Central

    Yung, Pui Yi; Grasso, Letizia Lo; Mohidin, Abeed Fatima; Acerbi, Enzo; Hinks, Jamie; Seviour, Thomas; Marsili, Enrico; Lauro, Federico M.

    2016-01-01

    Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs. PMID:26818886

  20. -A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome.

    PubMed

    Mackeh, Rafah; Boughorbel, Sabri; Chaussabel, Damien; Kino, Tomoshige

    2017-01-01

    The collection of large-scale datasets available in public repositories is rapidly growing and providing opportunities to identify and fill gaps in different fields of biomedical research. However, users of these datasets should be able to selectively browse datasets related to their field of interest. Here we made available a collection of transcriptome datasets related to human follicular cells from normal individuals or patients with polycystic ovary syndrome, in the process of their development, during in vitro fertilization. After RNA-seq dataset exclusion and careful selection based on study description and sample information, 12 datasets, encompassing a total of 85 unique transcriptome profiles, were identified in NCBI Gene Expression Omnibus and uploaded to the Gene Expression Browser (GXB), a web application specifically designed for interactive query and visualization of integrated large-scale data. Once annotated in GXB, multiple sample grouping has been made in order to create rank lists to allow easy data interpretation and comparison. The GXB tool also allows the users to browse a single gene across multiple projects to evaluate its expression profiles in multiple biological systems/conditions in a web-based customized graphical views. The curated dataset is accessible at the following link: http://ivf.gxbsidra.org/dm3/landing.gsp.

  1. Differential Expression of Non-Coding RNAs and Continuous Evolution of the X Chromosome in Testicular Transcriptome of Two Mouse Species

    PubMed Central

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-01-01

    Background Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Methodology/Principal Findings Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. Conclusions/Significance The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition. PMID:21347268

  2. A Portrait of the Transcriptome of the Neglected Trematode, Fasciola gigantica—Biological and Biotechnological Implications

    PubMed Central

    Young, Neil D.; Jex, Aaron R.; Cantacessi, Cinzia; Hall, Ross S.; Campbell, Bronwyn E.; Spithill, Terence W.; Tangkawattana, Sirikachorn; Tangkawattana, Prasarn; Laha, Thewarach; Gasser, Robin B.

    2011-01-01

    Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite. PMID:21408104

  3. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    PubMed

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Transcriptomic insight into pathogenicity-associated factors of Conidiobolus obscurus, an obligate aphid-pathogenic fungus belonging to Entomopthoromycota.

    PubMed

    Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian

    2018-01-16

    Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. ­A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome

    PubMed Central

    Mackeh, Rafah; Boughorbel, Sabri; Chaussabel, Damien; Kino, Tomoshige

    2017-01-01

    The collection of large-scale datasets available in public repositories is rapidly growing and providing opportunities to identify and fill gaps in different fields of biomedical research. However, users of these datasets should be able to selectively browse datasets related to their field of interest. Here we made available a collection of transcriptome datasets related to human follicular cells from normal individuals or patients with polycystic ovary syndrome, in the process of their development, during in vitro fertilization. After RNA-seq dataset exclusion and careful selection based on study description and sample information, 12 datasets, encompassing a total of 85 unique transcriptome profiles, were identified in NCBI Gene Expression Omnibus and uploaded to the Gene Expression Browser (GXB), a web application specifically designed for interactive query and visualization of integrated large-scale data. Once annotated in GXB, multiple sample grouping has been made in order to create rank lists to allow easy data interpretation and comparison. The GXB tool also allows the users to browse a single gene across multiple projects to evaluate its expression profiles in multiple biological systems/conditions in a web-based customized graphical views. The curated dataset is accessible at the following link: http://ivf.gxbsidra.org/dm3/landing.gsp. PMID:28413616

  6. De Novo Assembly of a Transcriptome for Calanus finmarchicus (Crustacea, Copepoda) – The Dominant Zooplankter of the North Atlantic Ocean

    PubMed Central

    Lenz, Petra H.; Roncalli, Vittoria; Hassett, R. Patrick; Wu, Le-Shin; Cieslak, Matthew C.; Hartline, Daniel K.; Christie, Andrew E.

    2014-01-01

    Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II), late nauplius (NV-VI), early copepodite (CI-II), late copepodite (CV) and adult (CVI) female. Over 400,000,000 paired-end reads (100 base-pairs long) were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components (“comps”) was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO) terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is “silent” at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple NaV1 genes in a protostome. These data provide new insights into the transcriptome and physiology of this environmentally important zooplankter. PMID:24586345

  7. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion

    PubMed Central

    Cooper, Joshua T.; Sinclair, Geoffrey A.; Wawrik, Boris

    2016-01-01

    Dinoflagellates are a major component of marine phytoplankton and many species are recognized for their ability to produce harmful algal blooms (HABs). Scrippsiella trochoidea is a non-toxic, marine dinoflagellate that can be found in both cold and tropic waters where it is known to produce “red tide” events. Little is known about the genomic makeup of S. trochoidea and a transcriptome study was conducted to shed light on the biochemical and physiological adaptations related to nutrient depletion. Cultures were grown under N and P limiting conditions and transcriptomes were generated via RNAseq technology. De novo assembly reconstructed 107,415 putative transcripts of which only 41% could be annotated. No significant transcriptomic response was observed in response to initial P depletion, however, a strong transcriptional response to N depletion was detected. Among the down-regulated pathways were those for glutamine/glutamate metabolism as well as urea and nitrate/nitrite transporters. Transcripts for ammonia transporters displayed both up- and down-regulation, perhaps related to a shift to higher affinity transporters. Genes for the utilization of DON compounds were up-regulated. These included transcripts for amino acids transporters, polyamine oxidase, and extracellular proteinase and peptidases. N depletion also triggered down regulation of transcripts related to the production of Photosystems I & II and related proteins. These data are consistent with a metabolic strategy that conserves N while maximizing sustained metabolism by emphasizing the relative contribution of organic N sources. Surprisingly, the transcriptome also contained transcripts potentially related to secondary metabolite production, including a homolog to the Short Isoform Saxitoxin gene (sxtA) from Alexandrium fundyense, which was significantly up-regulated under N-depletion. A total of 113 unique hits to Sxt genes, covering 17 of the 34 genes found in C. raciborskii were detected, indicating that S. trochoidea has previously unrecognized potential for the production of secondary metabolites with potential toxicity. PMID:27242681

  8. Analysis of the skin transcriptome in two oujiang color varieties of common carp.

    PubMed

    Wang, Chenghui; Wachholtz, Michael; Wang, Jun; Liao, Xiaolin; Lu, Guoqing

    2014-01-01

    Body color and coloration patterns are important phenotypic traits to maintain survival and reproduction activities. The Oujiang color varieties of common carp (Cyprinus carpio var. color), with a narrow distribution in Zhejiang Province of China and a history of aquaculture for over 1,200 years, consistently exhibit a variety of body color patterns. The molecular mechanism underlying diverse color patterns in these variants is unknown. To the practical end, it is essential to develop molecular markers that can distinguish different phenotypes and assist selective breeding. In this exploratory study, we conducted Roche 454 transcriptome sequencing of two pooled skin tissue samples of Oujiang common carp, which correspond to distinct color patterns, red with big black spots (RB) and whole white (WW), and a total of 737,525 sequence reads were generated. The reads obtained in this study were co-assembled jointly with common carp Roche 454 sequencing reads downloaded from NCBI SRA database, resulting in 43,923 isotigs and 546,676 singletons. Over 31 thousand (31,445; 71.6%) isotigs were found with significant BLAST matches (E<1e-10) to the nr protein database, which corresponds to 12,597 annotated zebrafish genes. A total of 70,947 isotigs and singletons (transcripts) were annotated with Gene Ontology, and 60,221 transcripts were found with corresponding EC numbers. Out of 145 zebrafish pigmentation genes, orthologs for 117 were recovered in Oujiang color carp transcriptome, including 18 found only among singletons. Our transcriptome analysis revealed over 52,902 SNPs in Oujiang common carp, and identified 63 SNP markers that are putatively unique either for RB or WW. The transcriptome of Oujiang color varieties of common carp obtained through this study, along with the pigmentation genes recovered and the color pattern-specific molecular markers developed, will facilitate future research on the molecular mechanism of color patterns and promote aquaculture of Oujiang color varieties of common carp through molecular marker assisted-selective breeding.

  9. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.

    PubMed

    Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S

    2017-01-13

    Rose-scented geranium (Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623 bp, and N50 length: 752 bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding.

  10. The joy of six: how to control your crossovers.

    PubMed

    Globus, Samuel T; Keeney, Scott

    2012-03-30

    Meiotic cells tightly regulate the number and distribution of crossovers to promote accurate chromosome segregation. Yokoo and colleagues uncover a metazoan-specific, cyclin-like protein that is crucial for crossover formation. They utilize this protein's unique properties to explore a remarkable example of biological numerology, whereby nearly every meiotic cell in C. elegans makes precisely six crossovers, one for each of its six chromosome pairs. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology.

    PubMed

    Lane, Thomas S; Rempe, Caroline S; Davitt, Jack; Staton, Margaret E; Peng, Yanhui; Soltis, Douglas Edward; Melkonian, Michael; Deyholos, Michael; Leebens-Mack, James H; Chase, Mark; Rothfels, Carl J; Stevenson, Dennis; Graham, Sean W; Yu, Jun; Liu, Tao; Pires, J Chris; Edger, Patrick P; Zhang, Yong; Xie, Yinlong; Zhu, Ying; Carpenter, Eric; Wong, Gane Ka-Shu; Stewart, C Neal

    2016-05-31

    The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.

  12. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation.

    PubMed

    Geng, Alei; Cheng, Yanbing; Wang, Yongli; Zhu, Daochen; Le, Yilin; Wu, Jian; Xie, Rongrong; Yuan, Joshua S; Sun, Jianzhong

    2018-01-01

    Wood-feeding termite, Coptotermes formosanus Shiraki, represents a highly efficient system for biomass deconstruction and utilization. However, the detailed mechanisms of lignin modification and carbohydrate degradation in this system are still largely elusive. In order to reveal the inherent mechanisms for efficient biomass degradation, four different organs (salivary glands, foregut, midgut, and hindgut) within a complete digestive system of a lower termite, C. formosanus , were dissected and collected. Comparative transcriptomics was carried out to analyze these organs using high-throughput RNA sequencing. A total of 71,117 unigenes were successfully assembled, and the comparative transcriptome analyses revealed significant differential distributions of GH (glycosyl hydrolase) genes and auxiliary redox enzyme genes in different digestive organs. Among the GH genes in the salivary glands, the most abundant were GH9, GH22, and GH1 genes. The corresponding enzymes may have secreted into the foregut and midgut to initiate the hydrolysis of biomass and to achieve a lignin-carbohydrate co-deconstruction system. As the most diverse GH families, GH7 and GH5 were primarily identified from the symbiotic protists in the hindgut. These enzymes could play a synergistic role with the endogenous enzymes from the host termite for biomass degradation. Moreover, twelve out of fourteen genes coding auxiliary redox enzymes from the host termite origin were induced by the feeding of lignin-rich diets. This indicated that these genes may be involved in lignin component deconstruction with its redox network during biomass pretreatment. These findings demonstrate that the termite digestive system synergized the hydrolysis and redox reactions in a programmatic process, through different parts of its gut system, to achieve a maximized utilization of carbohydrates. The detailed unique mechanisms identified from the termite digestive system may provide new insights for advanced design of future biorefinery.

  13. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.

    PubMed

    Howe, Glenn T; Yu, Jianbin; Knaus, Brian; Cronn, Richard; Kolpak, Scott; Dolan, Peter; Lorenz, W Walter; Dean, Jeffrey F D

    2013-02-28

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change.

  14. Tick Haller's Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects.

    PubMed

    Carr, Ann L; Mitchell, Robert D; Dhammi, Anirudh; Bissinger, Brooke W; Sonenshine, Daniel E; Roe, R Michael

    2017-07-18

    Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller's organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller's organ), we characterized 1st leg specific and putative Haller's organ specific transcripts from adult American dog ticks, Dermacentor variabilis . The analysis suggested that the Haller's organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller's organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, G αo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller's organ specific, were examined in unfed and blood-fed adult female and male D. variabilis . Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller's organ in N , N -diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller's organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction.

  15. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity. PMID:21915269

  16. Deep Sequencing-Based Analysis of the Cymbidium ensifolium Floral Transcriptome

    PubMed Central

    Li, Xiaobai; Luo, Jie; Yan, Tianlian; Xiang, Lin; Jin, Feng; Qin, Dehui; Sun, Chongbo; Xie, Ming

    2013-01-01

    Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of RNA-Seq, we extracted total mRNA from flower buds and mature flowers and obtained a total of 9.52 Gb of filtered nucleotides comprising 98,819,349 filtered reads. The filtered reads were assembled into 101,423 isotigs, representing 51,696 genes. Of the 101,423 isotigs, 41,873 were putative homologs of annotated sequences in the public databases, of which 158 were associated with floral development and 119 were associated with flowering. The isotigs were categorized according to their putative functions. In total, 10,212 of the isotigs were assigned into 25 eukaryotic orthologous groups (KOGs), 41,690 into 58 gene ontology (GO) terms, and 9,830 into 126 Arabidopsis Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 9,539 isotigs into 123 rice pathways. Comparison of the isotigs with those of the two related orchid species P. equestris and C. sinense showed that 17,906 isotigs are unique to C. ensifolium. In addition, a total of 7,936 SSRs and 16,676 putative SNPs were identified. To our knowledge, this transcriptome database is the first major genomic resource for C. ensifolium and the most comprehensive transcriptomic resource for genus Cymbidium. These sequences provide valuable information for understanding the molecular mechanisms of floral development and flowering. Sequences predicted to be unique to C. ensifolium would provide more insights into C. ensifolium gene diversity. The numerous SNPs and SSRs identified in the present study will contribute to marker development for C. ensifolium. PMID:24392013

  17. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation

    PubMed Central

    2013-01-01

    Background Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. Results We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Conclusions Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change. PMID:23445355

  18. Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects

    PubMed Central

    Carr, Ann L.; Mitchell III, Robert D.; Dhammi, Anirudh; Bissinger, Brooke W.; Sonenshine, Daniel E.; Roe, R. Michael

    2017-01-01

    Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller’s organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller’s organ), we characterized 1st leg specific and putative Haller’s organ specific transcripts from adult American dog ticks, Dermacentor variabilis. The analysis suggested that the Haller’s organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller’s organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, Gαo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller’s organ specific, were examined in unfed and blood-fed adult female and male D. variabilis. Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller’s organ in N,N-diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller’s organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction. PMID:28718821

  19. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic:50% organic) forms of dietary selenium.

    PubMed

    Matthews, James C; Zhang, Zhi; Patterson, Jennifer D; Bridges, Phillip J; Stromberg, Arnold J; Boling, J A

    2014-09-01

    Selenium (Se) is an important trace mineral that, due to deficiencies in the soil in many parts of the USA, must be supplemented directly to the diet of foraging cattle. Both organic and inorganic forms of dietary Se supplements are available and commonly used, and it is known that Se form affects tissue assimilation, bioavailability, and physiological responses. However, little is known about the effects of form of dietary Se supplements on gene expression profiles, which ostensibly account for Se form-dependent physiological processes. To determine if hepatic transcriptomes of growing beef (Angus-cross) heifers (0.5 kg gain/day) was altered by form of dietary supplemental Se, none (Control), or 3 mg Se/day as inorganic Se (ISe, sodium selenite), organic (OSe, Sel-Plex®), or a blend of ISe and OSe (1.5 mg:1.5 mg, Mix) Se was fed for 168 days, and the RNA expression profiles from biopsied liver tissues was compared by microarray analysis. The relative abundance of 139 RNA transcripts was affected by Se treatment, with 86 of these with complete gene annotations. Statistical and bioinformatic analysis of the annotated RNA transcripts revealed clear differences among the four Se treatment groups in their hepatic expression profiles, including (1) solely and commonly affected transcripts; (2) Control and OSe profiles being more similar than Mix and ISe treatments; (3) distinct OSe-, Mix-, and ISe-Se treatment-induced "phenotypes" that possessed both common and unique predicted physiological capacities; and (4) expression of three microRNAs were uniquely sensitive to OSe, ISe, or Mix treatments, including increased capacity for redox potential induced by OSe and Mix Se treatments resulting from decreased expression of MiR2300b messenger RNA. These findings indicate that the form of supplemental dietary Se consumed by cattle will affect the composition of liver transcriptomes resulting, presumably, in different physiological capacities.

  20. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    PubMed

    Morton, Nicholas M; Nelson, Yvonne B; Michailidou, Zoi; Di Rollo, Emma M; Ramage, Lynne; Hadoke, Patrick W F; Seckl, Jonathan R; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J; Dunbar, Donald R

    2011-01-01

    Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  1. High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO3, and Cu salt aged): transcriptomics in Enchytraeus crypticus.

    PubMed

    Gomes, Susana I L; Roca, Carlos P; Pegoraro, Natália; Trindade, Tito; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2018-05-01

    The current testing of nanomaterials (NMs) via standard toxicity tests does not cover many of the NMs specificities. One of the recommendations lays on understanding the mechanisms of action, as these can help predicting long-term effects and safe-by-design production. In the present study, we used the high-throughput gene expression tool, developed for Enchytraeus crypticus (4 × 44k Agilent microarray), to study the effects of exposure to several copper (Cu) forms. The Cu treatments included two NMs (spherical and wires) and two copper-salt treatments (CuNO 3 spiked and Cu salt field historical contamination). To relate gene expression with higher effect level, testing was done with reproduction effect concentrations (EC 20 , EC 50 ), using 3 and 7 days as exposure periods. Results showed that time plays a major role in the transcriptomic response, most of it occurring after 3 days. Analysis of gene expression profiles showed that Cu-salt-aged and Cu-nanowires (Nwires) differed from CuNO 3 and Cu-nanoparticles (NPs). Functional analysis revealed specific mechanisms: Cu-NPs uniquely affected senescence and cuticle pattern formation, which can result from the contact of the NPs with the worms' tegument. Cu-Nwires affected reproduction via male gamete generation and hermaphrodite genitalia development. CuNO 3 affected neurotransmission and locomotory behavior, both of which can be related with avoidance response. Cu salt-aged uniquely affected phagocytosis and reproductive system development (via different mechanisms than Cu-Nwires). For the first time for Cu (nano)materials, the adverse outcome pathways (AOPs) drafted here provide an overview for common and unique effects per material and linkage with apical effects.

  2. Identification and Validation of Human Missing Proteins and Peptides in Public Proteome Databases: Data Mining Strategy.

    PubMed

    Elguoshy, Amr; Hirao, Yoshitoshi; Xu, Bo; Saito, Suguru; Quadery, Ali F; Yamamoto, Keiko; Mitsui, Toshiaki; Yamamoto, Tadashi

    2017-12-01

    In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10 -4 )% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.

  3. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and highmore » (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.« less

  4. Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.

    PubMed

    Whittington, Camilla M; Griffith, Oliver W; Qi, Weihong; Thompson, Michael B; Wilson, Anthony B

    2015-12-01

    Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Comparative transcriptomics of Entelegyne spiders (Araneae, Entelegynae), with emphasis on molecular evolution of orphan genes.

    PubMed

    Carlson, David E; Hedin, Marshal

    2017-01-01

    Next-generation sequencing technology is rapidly transforming the landscape of evolutionary biology, and has become a cost-effective and efficient means of collecting exome information for non-model organisms. Due to their taxonomic diversity, production of interesting venom and silk proteins, and the relative scarcity of existing genomic resources, spiders in particular are excellent targets for next-generation sequencing (NGS) methods. In this study, the transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi) were sequenced and de novo assembled. Each assembly was assessed for quality and completeness and functionally annotated using gene ontology information. Approximately 100 transcripts with evidence of homology to venom proteins were discovered. After identifying more than 3,000 putatively orthologous genes across all six taxa, we used comparative analyses to identify 24 instances of positively selected genes. In addition, between ~ 550 and 1,100 unique orphan genes were found in each genus. These unique, uncharacterized genes exhibited elevated rates of amino acid substitution, potentially consistent with lineage-specific adaptive evolution. The data generated for this study represent a valuable resource for future phylogenetic and molecular evolutionary research, and our results provide new insight into the forces driving genome evolution in taxa that span the root of entelegyne spider phylogeny.

  6. Single molecule counting and assessment of random molecular tagging errors with transposable giga-scale error-correcting barcodes.

    PubMed

    Lau, Billy T; Ji, Hanlee P

    2017-09-21

    RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.

  7. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis.

    PubMed

    Armbruster, Chelsie E; Mobley, Harry L T

    2012-11-01

    Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single-species and polymicrobial urinary tract infections.

  8. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis

    PubMed Central

    Armbruster, Chelsie E.; Mobley, Harry L. T.

    2013-01-01

    Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single- species and polymicrobial urinary tract infections. PMID:23042564

  9. Functional Study of Genes Essential for Autogamy and Nuclear Reorganization in Paramecium▿§

    PubMed Central

    Nowak, Jacek K.; Gromadka, Robert; Juszczuk, Marek; Jerka-Dziadosz, Maria; Maliszewska, Kamila; Mucchielli, Marie-Hélène; Gout, Jean-François; Arnaiz, Olivier; Agier, Nicolas; Tang, Thomas; Aggerbeck, Lawrence P.; Cohen, Jean; Delacroix, Hervé; Sperling, Linda; Herbert, Christopher J.; Zagulski, Marek; Bétermier, Mireille

    2011-01-01

    Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis. PMID:21257794

  10. Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells

    PubMed Central

    Krementsov, Dimitry N.; Noubade, Rajkumar; Dragon, Julie A.; Otsu, Kinya; Rincon, Mercedes; Teuscher, Cory

    2013-01-01

    Objective Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of pro-inflammatory gene expression in females. Interpretation Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS. PMID:24027119

  11. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-02-25

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment.

  12. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava

    PubMed Central

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  13. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.

    PubMed

    McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.

  14. Transcriptome of American Oysters, Crassostrea virginica, in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

    PubMed Central

    McDowell, Ian C.; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E.; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance. PMID:25122115

  15. Transcriptomic profiling of adaptive responses to ocean acidification.

    PubMed

    Goncalves, Priscila; Jones, David B; Thompson, Emma L; Parker, Laura M; Ross, Pauline M; Raftos, David A

    2017-11-01

    Some populations of marine organisms appear to have inherent tolerance or the capacity for acclimation to stressful environmental conditions, including those associated with climate change. Sydney rock oysters from the B2 breeding line exhibit resilience to ocean acidification (OA) at the physiological level. To understand the molecular basis of this physiological resilience, we analysed the gill transcriptome of B2 oysters that had been exposed to near-future projected ocean pH over two consecutive generations. Our results suggest that the distinctive performance of B2 oysters in the face of OA is mediated by the selective expression of genes involved in multiple cellular processes. Subsequent high-throughput qPCR revealed that some of these transcriptional changes are exclusive to B2 oysters and so may be associated with their resilience to OA. The intracellular processes mediated by the differentially abundant genes primarily involve control of the cell cycle and maintenance of cellular homeostasis. These changes may enable B2 oysters to prevent apoptosis resulting from oxidative damage or to alleviate the effects of apoptosis through regulation of the cell cycle. Comparative analysis of the OA conditioning effects across sequential generations supported the contention that B2 and wild-type oysters have different trajectories of changing gene expression and responding to OA. Our findings reveal the broad set of molecular processes underlying transgenerational conditioning and potential resilience to OA in a marine calcifier. Identifying the mechanisms of stress resilience can uncover the intracellular basis for these organisms to survive and thrive in a rapidly changing ocean. © 2017 John Wiley & Sons Ltd.

  16. Hybrid Sequencing of Full-Length cDNA Transcripts of Stems and Leaves in Dendrobium officinale

    PubMed Central

    He, Liu; Fu, Shuhua; Xu, Zhichao; Yan, Jun; Xu, Jiang; Zhou, Hong; Zhou, Jianguo; Chen, Xinlian; Li, Ying; Au, Kin Fai; Yao, Hui

    2017-01-01

    Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET) and one sucrose transporter (SUT) are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT) and four cellulose synthase (Ces) genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF) genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem. PMID:28981454

  17. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation.

    PubMed

    Woo, Jongchan; MacPherson, Cameron Ross; Liu, Jun; Wang, Huan; Kiba, Takatoshi; Hannah, Matthew A; Wang, Xiu-Jie; Bajic, Vladimir B; Chua, Nam-Hai

    2012-05-03

    Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes a genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation. Genome-wide profiling by micro- and tiling-arrays (accessible from GEO: GSE34004) revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of specific versus generic members of closely related gene families with respect to phosphate-starvation. Thus, among others, we showed that PHR1-regulated members of closely related phosphate-responsive families (PHT1;1, PHT1;7-9, SPX1-3, and PHO1;H1) display greater specificity to phosphate-starvation than their more generic counterparts. Our results uncover much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the most complete genome-wide data on plant nutrient stress to-date.

  18. Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins.

    PubMed

    Pauli, Thomas; Vedder, Lucia; Dowling, Daniel; Petersen, Malte; Meusemann, Karen; Donath, Alexander; Peters, Ralph S; Podsiadlowski, Lars; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Heger, Peter; Wiehe, Thomas; Hering, Lars; Mayer, Georg; Misof, Bernhard; Niehuis, Oliver

    2016-11-03

    Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods.

  19. Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi.

    PubMed

    Song, Zhangyong; Yin, Youping; Jiang, Shasha; Liu, Juanjuan; Chen, Huan; Wang, Zhongkang

    2013-06-19

    Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development. A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR). Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We believe that the transcriptome datasets will serve as an important public information platform to accelerate studies on N. rileyi microsclerotia.

  20. Whole blood transcriptome comparison of pigs with extreme production of in vivo dsRNA-induced serum IFN-a.

    PubMed

    Liu, Xiangdong; Huang, Jing; Yang, Songbai; Zhao, Yunxia; Xiang, Anjing; Cao, Jianhua; Fan, Bin; Wu, Zhenfang; Zhao, Junlong; Zhao, Shuhong; Zhu, Mengjin

    2014-05-01

    Interferon (IFN) is one of the major regulators of innate immunity, it also mediates the adaptive immune responses to a broad spectrum of pathogens. This study aims in identifying differences between high vs. low INF-a responders which were chosen based on serum INF-a levels at 4 h post poly I:C treatment. A transcriptomic analysis was designed to describe the whole blood differential transcriptomal response to poly I:C by pigs with high vs. low IFN alpha levels. The capability of producing dsRNA (poly I:C)-induced serum IFN-a is highly variable in pig population. The high INF-a responders had 328 unique differentially expressed genes, suggesting that the HIGH pigs have greater responsiveness upon the dsRNA simulation. Based on the results, the interferon-dependent antiviral responsiveness through the IFN-stimulated genes (ISGs) is likely more effective in HIGH pigs. Inferring from the known organization of IFN pathways, the reason for the more IFN-a production in the HIGH pigs was likely due to the enhanced expression of IRF-7 in TLR or RIG- I/MDA5 signaling pathways. Furthermore, the larger number of the altered genes in the HIGH pigs after simulation is also possibly because of the greater number of the altered transcription factors. To our knowledge, this is the first report of comparative transcriptomic analysis to advance our understanding of whole blood immune response in pigs with different in vivo poly I:C-inducted IFN-a levels. The paper significantly expands our knowledge of how pigs respond to poly I:C which is highly relevant for understanding resistance to viral infections and also for vaccine development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. RNA-Seq Based Transcriptional Map of Bovine Respiratory Disease Pathogen “Histophilus somni 2336”

    PubMed Central

    Kumar, Ranjit; Lawrence, Mark L.; Watt, James; Cooksey, Amanda M.; Burgess, Shane C.; Nanduri, Bindu

    2012-01-01

    Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify “novel” genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations. PMID:22276113

  2. RNA-seq based transcriptional map of bovine respiratory disease pathogen "Histophilus somni 2336".

    PubMed

    Kumar, Ranjit; Lawrence, Mark L; Watt, James; Cooksey, Amanda M; Burgess, Shane C; Nanduri, Bindu

    2012-01-01

    Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify "novel" genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method.The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.

  3. Seasonal and Regional Differences in Gene Expression in the Brain of a Hibernating Mammal

    PubMed Central

    Schwartz, Christine; Hampton, Marshall; Andrews, Matthew T.

    2013-01-01

    Mammalian hibernation presents a unique opportunity to study naturally occurring neuroprotection. Hibernating ground squirrels undergo rapid and extreme physiological changes in body temperature, oxygen consumption, and heart rate without suffering neurological damage from ischemia and reperfusion injury. Different brain regions show markedly different activity during the torpor/arousal cycle: the cerebral cortex shows activity only during the periodic returns to normothermia, while the hypothalamus is active over the entire temperature range. Therefore, region-specific neuroprotective strategies must exist to permit this compartmentalized spectrum of activity. In this study, we use the Illumina HiSeq platform to compare the transcriptomes of these two brain regions at four collection points across the hibernation season: April Active, October Active, Torpor, and IBA. In the cerebral cortex, 1,085 genes were found to be differentially expressed across collection points, while 1,063 genes were differentially expressed in the hypothalamus. Comparison of these transcripts indicates that the cerebral cortex and hypothalamus implement very different strategies during hibernation, showing less than 20% of these differentially expressed genes in common. The cerebral cortex transcriptome shows evidence of remodeling and plasticity during hibernation, including transcripts for the presynaptic cytomatrix proteins bassoon and piccolo, and extracellular matrix components, including laminins and collagens. Conversely, the hypothalamic transcriptome displays upregulation of transcripts involved in damage response signaling and protein turnover during hibernation, including the DNA damage repair gene RAD50 and ubiquitin E3 ligases UBR1 and UBR5. Additionally, the hypothalamus transcriptome also provides evidence of potential mechanisms underlying the hibernation phenotype, including feeding and satiety signaling, seasonal timing mechanisms, and fuel utilization. This study provides insight into potential neuroprotective strategies and hibernation control mechanisms, and also specifically shows that the hibernator brain exhibits both seasonal and regional differences in mRNA expression. PMID:23526982

  4. Solexa-Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus)

    PubMed Central

    Pan, Lei; Liu, Yan; Wei, Qiang; Xiao, Chenwen; Ji, Quanan; Bao, Guolian; Wu, Xinsheng

    2015-01-01

    Background Fur is an important genetically-determined characteristic of domestic rabbits; rabbit furs are of great economic value. We used the Solexa sequencing technology to assess gene expression in skin tissues from full-sib Rex rabbits of different phenotypes in order to explore the molecular mechanisms associated with fur determination. Methodology/Principal Findings Transcriptome analysis included de novo assembly, gene function identification, and gene function classification and enrichment. We obtained 74,032,912 and 71,126,891 short reads of 100 nt, which were assembled into 377,618 unique sequences by Trinity strategy (N50=680 nt). Based on BLAST results with known proteins, 50,228 sequences were identified at a cut-off E-value ≥ 10-5. Using Blast to Gene Ontology (GO), Clusters of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we obtained several genes with important protein functions. A total of 308 differentially expressed genes were obtained by transcriptome analysis of plaice and un-plaice phenotype animals; 209 additional differentially expressed genes were not found in any database. These genes included 49 that were only expressed in plaice skin rabbits. The novel genes may play important roles during skin growth and development. In addition, 99 known differentially expressed genes were assigned to PI3K-Akt signaling, focal adhesion, and ECM-receptor interactin, among others. Growth factors play a role in skin growth and development by regulating these signaling pathways. We confirmed the altered expression levels of seven target genes by qRT-PCR. And chosen a key gene for SNP to found the differentially between plaice and un-plaice phenotypes rabbit. Conclusions/Significance The rabbit transcriptome profiling data provide new insights in understanding the molecular mechanisms underlying rabbit skin growth and development. PMID:25955442

  5. Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata

    PubMed Central

    de Marcos, Alberto; Triviño, Magdalena; Pérez-Bueno, María Luisa; Ballesteros, Isabel; Barón, Matilde; Mena, Montaña; Fenoll, Carmen

    2015-01-01

    Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up−regulated in mute−3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute−3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of stomata. PMID:26157447

  6. Deep mRNA Sequencing of the Tritonia diomedea Brain Transcriptome Provides Access to Gene Homologues for Neuronal Excitability, Synaptic Transmission and Peptidergic Signalling

    PubMed Central

    Senatore, Adriano; Edirisinghe, Neranjan; Katz, Paul S.

    2015-01-01

    Background The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. Results We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes). BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis) revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA) produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA. Conclusions Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain. PMID:25719197

  7. Transcriptome Analysis of Dendrobium officinale and its Application to the Identification of Genes Associated with Polysaccharide Synthesis

    PubMed Central

    Zhang, Jianxia; He, Chunmei; Wu, Kunlin; Teixeira da Silva, Jaime A.; Zeng, Songjun; Zhang, Xinhua; Yu, Zhenming; Xia, Haoqiang; Duan, Jun

    2016-01-01

    Dendrobium officinale is one of the most important Chinese medicinal herbs. Polysaccharides are one of the main active ingredients of D. officinale. To identify the genes that maybe related to polysaccharides synthesis, two cDNA libraries were prepared from juvenile and adult D. officinale, and were named Dendrobium-1 and Dendrobium-2, respectively. Illumina sequencing for Dendrobium-1 generated 102 million high quality reads that were assembled into 93,881 unigenes with an average sequence length of 790 base pairs. The sequencing for Dendrobium-2 generated 86 million reads that were assembled into 114,098 unigenes with an average sequence length of 695 base pairs. Two transcriptome databases were integrated and assembled into a total of 145,791 unigenes. Among them, 17,281 unigenes were assigned to 126 KEGG pathways while 135 unigenes were involved in fructose and mannose metabolism. Gene Ontology analysis revealed that the majority of genes were associated with metabolic and cellular processes. Furthermore, 430 glycosyltransferase and 89 cellulose synthase genes were identified. Comparative analysis of both transcriptome databases revealed a total of 32,794 differential expression genes (DEGs), including 22,051 up-regulated and 10,743 down-regulated genes in Dendrobium-2 compared to Dendrobium-1. Furthermore, a total of 1142 and 7918 unigenes showed unique expression in Dendrobium-1 and Dendrobium-2, respectively. These DEGs were mainly correlated with metabolic pathways and the biosynthesis of secondary metabolites. In addition, 170 DEGs belonged to glycosyltransferase genes, 37 DEGs were related to cellulose synthase genes and 627 DEGs encoded transcription factors. This study substantially expands the transcriptome information for D. officinale and provides valuable clues for identifying candidate genes involved in polysaccharide biosynthesis and elucidating the mechanism of polysaccharide biosynthesis. PMID:26904032

  8. A biomaterial screening approach reveals microenvironmental mechanisms of drug resistance.

    PubMed

    Schwartz, Alyssa D; Barney, Lauren E; Jansen, Lauren E; Nguyen, Thuy V; Hall, Christopher L; Meyer, Aaron S; Peyton, Shelly R

    2017-12-11

    Traditional drug screening methods lack features of the tumor microenvironment that contribute to resistance. Most studies examine cell response in a single biomaterial platform in depth, leaving a gap in understanding how extracellular signals such as stiffness, dimensionality, and cell-cell contacts act independently or are integrated within a cell to affect either drug sensitivity or resistance. This is critically important, as adaptive resistance is mediated, at least in part, by the extracellular matrix (ECM) of the tumor microenvironment. We developed an approach to screen drug responses in cells cultured on 2D and in 3D biomaterial environments to explore how key features of ECM mediate drug response. This approach uncovered that cells on 2D hydrogels and spheroids encapsulated in 3D hydrogels were less responsive to receptor tyrosine kinase (RTK)-targeting drugs sorafenib and lapatinib, but not cytotoxic drugs, compared to single cells in hydrogels and cells on plastic. We found that transcriptomic differences between these in vitro models and tumor xenografts did not reveal mechanisms of ECM-mediated resistance to sorafenib. However, a systems biology analysis of phospho-kinome data uncovered that variation in MEK phosphorylation was associated with RTK-targeted drug resistance. Using sorafenib as a model drug, we found that co-administration with a MEK inhibitor decreased ECM-mediated resistance in vitro and reduced in vivo tumor burden compared to sorafenib alone. In sum, we provide a novel strategy for identifying and overcoming ECM-mediated resistance mechanisms by performing drug screening, phospho-kinome analysis, and systems biology across multiple biomaterial environments.

  9. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models.

    PubMed

    Ding, Jiarui; Condon, Anne; Shah, Sohrab P

    2018-05-21

    Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.

  10. The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question.

    PubMed

    Jacquemin, Julie; Bhatia, Dharminder; Singh, Kuldeep; Wing, Rod A

    2013-05-01

    The wild relatives of rice contain a virtually untapped reservoir of traits that can be used help drive the 21st century green revolution aimed at solving world food security issues by 2050. To better understand and exploit the 23 species of the Oryza genus the rice research community is developing foundational resources composed of: 1) reference genomes and transcriptomes for all 23 species; 2) advanced mapping populations for functional and breeding studies; and 3) in situ conservation sites for ecological, evolutionary and population genomics. To this end, 16 genome sequencing projects are currently underway, and all completed assemblies have been annotated; and several advanced mapping populations have been developed, and more will be generated, mapped, and phenotyped, to uncover useful alleles. As wild Oryza populations are threatened by human activity and climate change, we also discuss the urgent need for sustainable in situ conservation of the genus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    PubMed

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  12. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    PubMed

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  14. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells.

    PubMed

    Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin; Nelander, Sven; Westermark, Bengt; Landegren, Ulf

    2016-01-12

    Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Big data: the next frontier for innovation in therapeutics and healthcare.

    PubMed

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2014-05-01

    Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the '-omics', wherein an individual's genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into 'big data' informatics-driven evidence-based medical practice. While individualized patient management is a key beneficiary of next-generation medical informatics, this data also harbors a wealth of novel therapeutic discoveries waiting to be uncovered. 'Big data' informatics allows for networks-driven systems pharmacodynamics whereby drug information can be coupled to cellular- and organ-level physiology for determining whole-body outcomes. Patient '-omics' data can be integrated for ontology-based data-mining for the discovery of new biological associations and drug targets. Here we highlight the potential of 'big data' informatics for clinical pharmacology.

  16. Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy

    PubMed Central

    2013-01-01

    Background Polyadenylation is a key regulatory step in eukaryotic gene expression and one of the major contributors of transcriptome diversity. Aberrant polyadenylation often associates with expression defects and leads to human diseases. Results To better understand global polyadenylation regulation, we have developed a polyadenylation sequencing (PA-seq) approach. By profiling polyadenylation events in 13 human tissues, we found that alternative cleavage and polyadenylation (APA) is prevalent in both protein-coding and noncoding genes. In addition, APA usage, similar to gene expression profiling, exhibits tissue-specific signatures and is sufficient for determining tissue origin. A 3′ untranslated region shortening index (USI) was further developed for genes with tandem APA sites. Strikingly, the results showed that different tissues exhibit distinct patterns of shortening and/or lengthening of 3′ untranslated regions, suggesting the intimate involvement of APA in establishing tissue or cell identity. Conclusions This study provides a comprehensive resource to uncover regulated polyadenylation events in human tissues and to characterize the underlying regulatory mechanism. PMID:24025092

  17. Big data: the next frontier for innovation in therapeutics and healthcare

    PubMed Central

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2015-01-01

    Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the “-omics”, wherein an individual’s genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into “big data” informatics-driven evidence-based medical practice. While individualized patient management is a key beneficiary of next-generation medical informatics, this data also harbors a wealth of novel therapeutic discoveries waiting to be uncovered. “Big data” informatics allows for networks-driven systems pharmacodynamics whereby drug information can be coupled to cellular- and organ-level physiology for determining whole-body outcomes. Patient “-omics” data can be integrated for ontology-based data-mining for the discovery of new biological associations and drug targets. Here we highlight the potential of “big data” informatics for clinical pharmacology. PMID:24702684

  18. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis

    PubMed Central

    Cortazar, Ana Rosa; Liu, Xiaojing; Urosevic, Jelena; Castillo-Martin, Mireia; Fernández-Ruiz, Sonia; Morciano, Giampaolo; Caro-Maldonado, Alfredo; Guiu, Marc; Zúñiga-García, Patricia; Graupera, Mariona; Bellmunt, Anna; Pandya, Pahini; Lorente, Mar; Martín-Martín, Natalia; Sutherland, James David; Sanchez-Mosquera, Pilar; Bozal-Basterra, Laura; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Berenguer, Antonio; Embade, Nieves; Ugalde-Olano, Aitziber; Lacasa-Viscasillas, Isabel; Loizaga-Iriarte, Ana; Unda-Urzaiz, Miguel; Schultz, Nikolaus; Aransay, Ana Maria; Sanz-Moreno, Victoria; Barrio, Rosa; Velasco, Guillermo; Pinton, Paolo; Cordon-Cardo, Carlos; Carracedo, Arkaitz

    2016-01-01

    Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator PGC1α suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is down-regulated in prostate cancer and associated to disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an Oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment. PMID:27214280

  19. Gene Expression Profiling in Fish Toxicology: A Review.

    PubMed

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  20. Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq.

    PubMed

    Sebé-Pedrós, Arnau; Saudemont, Baptiste; Chomsky, Elad; Plessier, Flora; Mailhé, Marie-Pierre; Renno, Justine; Loe-Mie, Yann; Lifshitz, Aviezer; Mukamel, Zohar; Schmutz, Sandrine; Novault, Sophie; Steinmetz, Patrick R H; Spitz, François; Tanay, Amos; Marlow, Heather

    2018-05-31

    The emergence and diversification of cell types is a leading factor in animal evolution. So far, systematic characterization of the gene regulatory programs associated with cell type specificity was limited to few cell types and few species. Here, we perform whole-organism single-cell transcriptomics to map adult and larval cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal with complex tissue-level body-plan organization. We uncover eight broad cell classes in Nematostella, including neurons, cnidocytes, and digestive cells. Each class comprises different subtypes defined by the expression of multiple specific markers. In particular, we characterize a surprisingly diverse repertoire of neurons, which comparative analysis suggests are the result of lineage-specific diversification. By integrating transcription factor expression, chromatin profiling, and sequence motif analysis, we identify the regulatory codes that underlie Nematostella cell-specific expression. Our study reveals cnidarian cell type complexity and provides insights into the evolution of animal cell-specific genomic regulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

    PubMed Central

    Mora-Bermúdez, Felipe; Badsha, Farhath; Kanton, Sabina; Camp, J Gray; Vernot, Benjamin; Köhler, Kathrin; Voigt, Birger; Okita, Keisuke; Maricic, Tomislav; He, Zhisong; Lachmann, Robert; Pääbo, Svante; Treutlein, Barbara; Huttner, Wieland B

    2016-01-01

    Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution. DOI: http://dx.doi.org/10.7554/eLife.18683.001 PMID:27669147

  2. Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing

    PubMed Central

    2013-01-01

    Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management. PMID:24112618

  3. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis

    PubMed Central

    Saini, Vikram; Cumming, Bridgette M.; Guidry, Loni; Lamprecht, Dirk; Adamson, John H.; Reddy, Vineel P.; Chinta, Krishna C.; Mazorodzo, James; Glasgow, Joel N.; Richard-Greenblatt, Melissa; Gomez-Velasco, Anaximandro; Bach, Horacio; Av-Gay, Yossef; Eoh, Hyungjin; Rhee, Kyu; Steyn, Adrie J.C.

    2016-01-01

    SUMMARY The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping, but distinct functions of EGT and MSH. Lastly, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity. PMID:26774486

  4. ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.

    PubMed

    Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B

    2018-05-31

    Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.

  5. Systems Biology of Metabolic Regulation by Estrogen Receptor Signaling in Breast Cancer.

    PubMed

    Zhao, Yiru Chen; Madak Erdogan, Zeynep

    2016-03-17

    With the advent of the -omics approaches our understanding of the chronic diseases like cancer and metabolic syndrome has improved. However, effective mining of the information in the large-scale datasets that are obtained from gene expression microarrays, deep sequencing experiments or metabolic profiling is essential to uncover and then effectively target the critical regulators of diseased cell phenotypes. Estrogen Receptor α (ERα) is one of the master transcription factors regulating the gene programs that are important for estrogen responsive breast cancers. In order to understand to role of ERα signaling in breast cancer metabolism we utilized transcriptomic, cistromic and metabolomic data from MCF-7 cells treated with estradiol. In this report we described generation of samples for RNA-Seq, ChIP-Seq and metabolomics experiments and the integrative computational analysis of the obtained data. This approach is useful in delineating novel molecular mechanisms and gene regulatory circuits that are regulated by a particular transcription factor which impacts metabolism of normal or diseased cells.

  6. The developmental proteome of Drosophila melanogaster

    PubMed Central

    Casas-Vila, Nuria; Bluhm, Alina; Sayols, Sergi; Dinges, Nadja; Dejung, Mario; Altenhein, Tina; Kappei, Dennis; Altenhein, Benjamin; Roignant, Jean-Yves; Butter, Falk

    2017-01-01

    Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface. PMID:28381612

  7. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    PubMed Central

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  8. Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance

    PubMed Central

    Tang, Lichuan; Zhao, Guangyao; Zhu, Mingzhu; Chu, Jinfang; Sun, Xiaohong; Wei, Bo; Zhang, Xiangqi; Jia, Jizeng; Mao, Long

    2011-01-01

    Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat. PMID:22174904

  9. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus

    PubMed Central

    Chen, Jie; Tan, Ren-Ke; Guo, Xiao-Juan; Fu, Zheng-Li; Wang, Zheng; Zhang, Zhi-Yan; Tan, Xiao-Li

    2015-01-01

    Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factorfamilies were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves. PMID:25965272

  10. Comparative Analyses by Sequencing of Transcriptomes during Skeletal Muscle Development between Pig Breeds Differing in Muscle Growth Rate and Fatness

    PubMed Central

    Li, Anning; Gong, Wen; Xiao, Shuqi; Zhang, Yue; Qin, Limei; Niu, Yuna; Guo, Yunxue; Liu, Xiaohong; Cong, Peiqing; He, Zuyong; Wang, Chong; Li, Jiaqi; Chen, Yaosheng

    2011-01-01

    Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese) and Landrace (LR, lean) pig breeds during 10 time-points from 35 days-post-coitus (dpc) to 180 days-post-natum (dpn) using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1) were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement. The raw data have been submitted to Gene Expression Omnibus (GEO) under series GSE25406. PMID:21637832

  11. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness.

    PubMed

    Zhao, Xiao; Mo, Delin; Li, Anning; Gong, Wen; Xiao, Shuqi; Zhang, Yue; Qin, Limei; Niu, Yuna; Guo, Yunxue; Liu, Xiaohong; Cong, Peiqing; He, Zuyong; Wang, Chong; Li, Jiaqi; Chen, Yaosheng

    2011-01-01

    Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese) and Landrace (LR, lean) pig breeds during 10 time-points from 35 days-post-coitus (dpc) to 180 days-post-natum (dpn) using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1) were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement. The raw data have been submitted to Gene Expression Omnibus (GEO) under series GSE25406.

  12. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    PubMed Central

    2011-01-01

    Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). Conclusions This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture. PMID:21752295

  13. Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola

    PubMed Central

    2013-01-01

    Background Five-needle pines are important forest species that have been devastated by white pine blister rust (WPBR, caused by Cronartium ribicola) across North America. Currently little transcriptomic and genomic data are available to understand molecular interactions in the WPBR pathosystem. Results We report here RNA-seq analysis results using Illumina deep sequencing of primary needles of western white pine (Pinus monticola) infected with WPBR. De novo gene assembly was used to generate the first P. monticola consensus transcriptome, which contained 39,439 unique transcripts with an average length of 1,303 bp and a total length of 51.4 Mb. About 23,000 P. monticola unigenes produced orthologous hits in the Pinus gene index (PGI) database (BLASTn with E values < e-100) and 6,300 genes were expressed actively (at RPKM ≥ 10) in the healthy tissues. Comparison of transcriptomes from WPBR-susceptible and -resistant genotypes revealed a total of 979 differentially expressed genes (DEGs) with a significant fold change > 1.5 during P. monticola- C. ribicola interactions. Three hundred and ten DEGs were regulated similarly in both susceptible and resistant seedlings and 275 DEGs showed regulatory differences between susceptible and resistant seedlings post infection by C. ribicola. The DEGs up-regulated in resistant seedlings included a set of putative signal receptor genes encoding disease resistance protein homologs, calcineurin B-like (CBL)-interacting protein kinases (CIPK), F-box family proteins (FBP), and abscisic acid (ABA) receptor; transcriptional factor (TF) genes of multiple families; genes homologous to apoptosis-inducing factor (AIF), flowering locus T-like protein (FT), and subtilisin-like protease. DEGs up-regulated in resistant seedlings also included a wide diversity of down-stream genes (encoding enzymes involved in different metabolic pathways, pathogenesis-related -PR proteins of multiple families, and anti-microbial proteins). A large proportion of the down-regulated DEGs were related to photosystems, the metabolic pathways of carbon fixation and flavonoid biosynthesis. Conclusions The novel P. monticola transcriptome data provide a basis for future studies of genetic resistance in a non-model, coniferous species. Our global gene expression profiling presents a comprehensive view of transcriptomic regulation in the WPBR pathosystem and yields novel insights on molecular and biochemical mechanisms of disease resistance in conifers. PMID:24341615

  14. SAGE Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene1

    PubMed Central

    Ekman, Drew R.; Lorenz, W. Walter; Przybyla, Alan E.; Wolfe, N. Lee; Dean, Jeffrey F.D.

    2003-01-01

    Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds. PMID:14551330

  15. Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling

    PubMed Central

    Tang, Qing; Zang, Gonggu; Cheng, Chaohua; Luan, Mingbao; Dai, Zhigang; Xu, Ying; Yang, Zemao; Zhao, Lining; Su, Jianguang

    2017-01-01

    Boehmeria tricuspis includes sexually reproducing diploid and apomictic triploid individuals. Previously, we established that triploid B. tricuspis reproduces through obligate diplospory. To understand the molecular basis of apomictic development in B. tricuspis, we sequenced and compared transcriptomic profiles of the flowers of sexual and apomictic plants at four key developmental stages. A total of 283,341 unique transcripts were obtained from 1,463 million high-quality paired-end reads. In total, 18,899 unigenes were differentially expressed between the reproductive types at the four stages. By classifying the transcripts into gene ontology categories of differentially expressed genes, we showed that differential plant hormone signal transduction, cell cycle regulation, and transcription factor regulation are possibly involved in apomictic development and/or a polyploidization response in B. tricuspis. Furthermore, we suggest that specific gene families are possibly related to apomixis and might have important effects on diplosporous floral development. These results make a notable contribution to our understanding of the molecular basis of diplosporous development in B. tricuspis. PMID:28382950

  16. A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design

    PubMed Central

    Arguel, Marie-Jeanne; LeBrigand, Kevin; Paquet, Agnès; Ruiz García, Sandra; Zaragosi, Laure-Emmanuelle; Waldmann, Rainer

    2017-01-01

    Abstract Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays. PMID:27940562

  17. A bioinformatics transcriptome meta-analysis highlights the importance of trophoblast differentiation in the pathology of hydatidiform moles.

    PubMed

    Desterke, Christophe; Slim, Rima; Candelier, Jean-Jacques

    2018-05-01

    Hydatidiform mole (HM) is an aberrant human pregnancy with abnormal trophoblastic development, migration/invasion of the extravillous trophoblast in the decidua. These abnormalities are established in a hypoxic environment during the first trimester of gestation. Using text mining, we identified 72 unique genes that are linked to HM (HM-linked genes) that we studied by bioinformatic analysis in publicly available transcriptomes of primary chorionic villous cells (cytotrophoblast, syncytiotrophoblast, extravillous trophoblast, and arterial and venous endothelial) isolated from normal placentas or established trophoblastic cell lines cultured under different oxygen concentrations. We show that the majority of HM-linked genes (75%) are involved in normal trophoblastic differentiation, arranged in clusters, and some of them are implicated in chorionic villous invasion or regulated by oxygen concentrations. Our analysis integrates the various aspects of the pathophysiology of HM and highlights the importance of trophoblastic differentiation in this pathology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.

    PubMed

    Foth, Bernardo J; Tsai, Isheng J; Reid, Adam J; Bancroft, Allison J; Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A; Stanley, Eleanor J; Zarowiecki, Magdalena; Liu, Jimmy Z; Huckvale, Thomas; Cooper, Philip J; Grencis, Richard K; Berriman, Matthew

    2014-07-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage-specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.

  19. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction

    PubMed Central

    Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A.; Stanley, Eleanor J.; Zarowiecki, Magdalena; Liu, Jimmy Z.; Huckvale, Thomas; Cooper, Philip J.; Grencis, Richard K.; Berriman, Matthew

    2014-01-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. Here we present the genome sequences of the human-infective Trichuris trichiura and the murine laboratory model T. muris. Based on whole transcriptome analyses we identify many genes that are expressed in a gender- or life stage-specific manner and characterise the transcriptional landscape of a morphological region with unique biological adaptations, namely bacillary band and stichosome, found only in whipworms and related parasites. Using RNAseq data from whipworm-infected mice we describe the regulated Th1-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identifies numerous potential new drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection. PMID:24929830

  20. Construction of a robust microarray from a non-model species (largemouth bass) using pyrosequencing technology

    PubMed Central

    Garcia-Reyero, Natàlia; Griffitt, Robert J.; Liu, Li; Kroll, Kevin J.; Farmerie, William G.; Barber, David S.; Denslow, Nancy D.

    2009-01-01

    A novel custom microarray for largemouth bass (Micropterus salmoides) was designed with sequences obtained from a normalized cDNA library using the 454 Life Sciences GS-20 pyrosequencer. This approach yielded in excess of 58 million bases of high-quality sequence. The sequence information was combined with 2,616 reads obtained by traditional suppressive subtractive hybridizations to derive a total of 31,391 unique sequences. Annotation and coding sequences were predicted for these transcripts where possible. 16,350 annotated transcripts were selected as target sequences for the design of the custom largemouth bass oligonucleotide microarray. The microarray was validated by examining the transcriptomic response in male largemouth bass exposed to 17β-œstradiol. Transcriptomic responses were assessed in liver and gonad, and indicated gene expression profiles typical of exposure to œstradiol. The results demonstrate the potential to rapidly create the tools necessary to assess large scale transcriptional responses in non-model species, paving the way for expanded impact of toxicogenomics in ecotoxicology. PMID:19936325

Top