Sample records for transcriptomic profiling identified

  1. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity.

    PubMed

    Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud H; Kuan, Shin-Ping; Liao, Yan-Shin J; Bormann, Nicholas L; Bair, Thomas B; Price, Margaret; Stoltz, David A; Welsh, Michael J

    2018-04-05

    Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity. As a comparison, we also utilized previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating airway hyperreactivity; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.

  2. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haggard, Derik E.; Noyes, Pamela D.; Waters, Katrina M.

    There is a need to develop novel, high-throughput screening and prioritization methods to identify chemicals with adverse estrogen, androgen, and thyroid activity to protect human health and the environment and is of interest to the Endocrine Disruptor Screening Program. The current aim is to explore the utility of zebrafish as a testing paradigm to classify endocrine activity using phenotypically anchored transcriptome profiling. Transcriptome analysis was conducted on embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at a concentration that elicited adverse malformations or mortality at 120 hours post-fertilization in 80% of the animals exposed. Analysis of the top 1000more » significant differentially expressed transcripts across all treatments identified a unique transcriptional and phenotypic profile for thyroid hormone receptor agonists, which can be used as a biomarker screen for potential thyroid hormone agonists.« less

  4. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer

    PubMed Central

    O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik

    2015-01-01

    To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329

  5. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    USDA-ARS?s Scientific Manuscript database

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  6. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling

    PubMed Central

    2013-01-01

    Backgroud Isatis indigotica is a widely used herb for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine (TCM). Various structural classes of compounds have been identified as effective ingredients. However, little is known at genetics level about these active metabolites. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset of I. indigotica. Results A database of 36,367 unigenes (average length = 1,115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, 104 unigenes were identified covering most of the catalytic steps in the general biosynthetic pathways of indole, terpenoid, and phenylpropanoid. Subsequently, the organ-specific expression patterns of the genes involved in these pathways, and their responses to methyl jasmonate (MeJA) induction, were investigated. Metabolites profile of effective phenylpropanoid showed accumulation pattern of secondary metabolites were mostly correlated with the transcription of their biosynthetic genes. According to the analysis of UDP-dependent glycosyltransferases (UGT) family, several flavonoids were indicated to exist in I. indigotica and further identified by metabolic profile using UPLC/Q-TOF. Moreover, applying transcriptome co-expression analysis, nine new, putative UGTs were suggested as flavonol glycosyltransferases and lignan glycosyltransferases. Conclusions This database provides a pool of candidate genes involved in biosynthesis of effective metabolites in I. indigotica. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb. PMID:24308360

  7. Identification of the Neuromuscular Junction Transcriptome of Extraocular Muscle by Laser Capture Microdissection

    PubMed Central

    Ketterer, Caroline; Zeiger, Ulrike; Budak, Murat T.; Rubinstein, Neal A.; Khurana, Tejvir S.

    2010-01-01

    Purpose. To examine and characterize the profile of genes expressed at the synapses or neuromuscular junctions (NMJs) of extraocular muscles (EOMs) compared with those expressed at the tibialis anterior (TA). Methods. Adult rat eyeballs with rectus EOMs attached and TAs were dissected, snap frozen, serially sectioned, and stained for acetylcholinesterase (AChE) to identify the NMJs. Approximately 6000 NMJs for rectus EOM (EOMsyn), 6000 NMJs for TA (TAsyn), equal amounts of NMJ-free fiber regions (EOMfib, TAfib), and underlying myonuclei and RNAs were captured by laser capture microdissection (LCM). RNA was processed for microarray-based expression profiling. Expression profiles and interaction lists were generated for genes differentially expressed at synaptic and nonsynaptic regions of EOM (EOMsyn versus EOMfib) and TA (TAsyn versus TAfib). Profiles were validated by using real-time quantitative polymerase chain reaction (qPCR). Results. The regional transcriptomes associated with NMJs of EOMs and TAs were identified. Two hundred seventy-five genes were preferentially expressed in EOMsyn (compared with EOMfib), 230 in TAsyn (compared with TAfib), and 288 additional transcripts expressed in both synapses. Identified genes included novel genes as well as well-known, evolutionarily conserved synaptic markers (e.g., nicotinic acetylcholine receptor (AChR) alpha (Chrna) and epsilon (Chrne) subunits and nestin (Nes). Conclusions. Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. The definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype. PMID:20393109

  8. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants.

    PubMed

    Zhang, Min; Zhou, Yuwen; Wang, Hui; Jones, Huw; Gao, Qiang; Wang, Dahai; Ma, Youzhi; Xia, Lanqin

    2013-08-16

    The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy.

  9. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    PubMed Central

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  10. Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.

    PubMed

    Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A

    2006-06-01

    To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.

  11. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa

    Treesearch

    J. D. Tang; L. A. Parker; A. D. Perkins; T. S. Sonstegard; S. G. Schroeder; D. D. Nicholas; S. V. Diehl

    2013-01-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were...

  12. In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling.

    PubMed

    Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio; Ortega-Villaizan, María Del Mar

    2018-04-09

    Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.

  13. In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling

    PubMed Central

    Puente-Marin, Sara; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio

    2018-01-01

    Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation. PMID:29642539

  14. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia

    2014-01-01

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435

  15. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    PubMed

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  16. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  17. Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe

    PubMed Central

    Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael

    2013-01-01

    The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939

  18. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock.

    PubMed

    Braga, D; Barcella, M; D'Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, M H; DeLano, F A; Baselli, G; Schmid-Schönbein, G W; Kistler, E B; Aletti, F; Barlassina, C

    2017-08-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger's shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients.

  19. Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Gopalan, Banu; Small, Jack A; Schultz, Irvin R

    2008-03-01

    Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.

  20. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants

    PubMed Central

    2013-01-01

    Background The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. Results In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Conclusions Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy. PMID:23957588

  1. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    PubMed

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  2. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    PubMed Central

    Rossouw, Debra; Næs, Tormod; Bauer, Florian F

    2008-01-01

    Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of biotechnological relevance. PMID:18990252

  3. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.

  4. Massively parallel nanowell-based single-cell gene expression profiling.

    PubMed

    Goldstein, Leonard D; Chen, Ying-Jiun Jasmine; Dunne, Jude; Mir, Alain; Hubschle, Hermann; Guillory, Joseph; Yuan, Wenlin; Zhang, Jingli; Stinson, Jeremy; Jaiswal, Bijay; Pahuja, Kanika Bajaj; Mann, Ishminder; Schaal, Thomas; Chan, Leo; Anandakrishnan, Sangeetha; Lin, Chun-Wah; Espinoza, Patricio; Husain, Syed; Shapiro, Harris; Swaminathan, Karthikeyan; Wei, Sherry; Srinivasan, Maithreyan; Seshagiri, Somasekar; Modrusan, Zora

    2017-07-07

    Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.

  5. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita.

    PubMed

    Brekhman, Vera; Malik, Assaf; Haas, Brian; Sher, Noa; Lotan, Tamar

    2015-02-14

    The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa. A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle. Transcript expression profiling yielded clusters of annotated transcripts with functions related to each specific life-cycle stage. Free-swimming planulae were found highly enriched for functions related to cilia and microtubules, and the drastic morphogenetic process undergone by the planula while establishing the future body of the polyp may be mediated by specifically expressed Wnt ligands. Specific transcripts related to sensory functions were found in the strobila and the ephyra, whereas extracellular matrix functions were enriched in the medusa due to high expression of transcripts such as collagen, fibrillin and laminin, presumably involved in mesoglea development. The CL390-like gene, suggested to act as a strobilation hormone, was also highly expressed in the advanced strobila of the Red Sea species, and in the medusa stage we identified betaine-homocysteine methyltransferase, an enzyme that may play an important part in maintaining equilibrium of the medusa's bell. Finally, we identified the transcription factors participating in the Aurelia life-cycle and found that 70% of these 487 identified transcription factors were expressed in a developmental-stage-specific manner. This study provides the first scyphozoan transcriptome covering the entire developmental trajectory of the life cycle of Aurelia. It highlights the importance of numerous stage-specific transcription factors in driving morphological and functional changes throughout this complex metamorphosis, and is expected to be a valuable resource to the community.

  6. Global Gene Expression Profiles of Resistant and Susceptible Genotypes of Glycine tomentella During Phakopsora pachyrhizi Infection

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, is a destructive foliar disease that occurs in many soybean-producing countries. Towards the goal of identifying genes controlling resistance to soybean rust, transcriptome profiling was conducted in resistant and susceptible Glycine tomentella genotype...

  7. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.

    PubMed

    Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin

    2018-04-01

    The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.

  8. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.

    PubMed

    Xu, Hai-Ming; Kong, Xiang-Dong; Chen, Fei; Huang, Ji-Xiang; Lou, Xiang-Yang; Zhao, Jian-Yi

    2015-10-24

    Brassica napus is an important oilseed crop. Dissection of the genetic architecture underlying oil-related biological processes will greatly facilitates the genetic improvement of rapeseed. The differential gene expression during pod development offers a snapshot on the genes responsible for oil accumulation in. To identify candidate genes in the linkage peaks reported previously, we used RNA sequencing (RNA-Seq) technology to analyze the pod transcriptomes of German cultivar Sollux and Chinese inbred line Gaoyou. The RNA samples were collected for RNA-Seq at 5-7, 15-17 and 25-27 days after flowering (DAF). Bioinformatics analysis was performed to investigate differentially expressed genes (DEGs). Gene annotation analysis was integrated with QTL mapping and Brassica napus pod transcriptome profiling to detect potential candidate genes in oilseed. Four hundred sixty five and two thousand, one hundred fourteen candidate DEGs were identified, respectively, between two varieties at the same stages and across different periods of each variety. Then, 33 DEGs between Sollux and Gaoyou were identified as the candidate genes affecting seed oil content by combining those DEGs with the quantitative trait locus (QTL) mapping results, of which, one was found to be homologous to Arabidopsis thaliana lipid-related genes. Intervarietal DEGs of lipid pathways in QTL regions represent important candidate genes for oil-related traits. Integrated analysis of transcriptome profiling, QTL mapping and comparative genomics with other relative species leads to efficient identification of most plausible functional genes underlying oil-content related characters, offering valuable resources for bettering breeding program of Brassica napus. This study provided a comprehensive overview on the pod transcriptomes of two varieties with different oil-contents at the three developmental stages.

  9. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock

    PubMed Central

    Braga, D; Barcella, M; D’Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, MH; DeLano, FA; Baselli, G; Schmid-Schönbein, GW; Kistler, EB; Aletti, F

    2017-01-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger’s shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients. PMID:28661205

  10. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse.

    PubMed

    Horta, Maria Augusta Crivelente; Vicentini, Renato; Delabona, Priscila da Silva; Laborda, Prianda; Crucello, Aline; Freitas, Sindélia; Kuroshu, Reginaldo Massanobu; Polikarpov, Igor; Pradella, José Geraldo da Cruz; Souza, Anete Pereira

    2014-01-01

    Profiling the transcriptome that underlies biomass degradation by the fungus Trichoderma harzianum allows the identification of gene sequences with potential application in enzymatic hydrolysis processing. In the present study, the transcriptome of T. harzianum IOC-3844 was analyzed using RNA-seq technology. The sequencing generated 14.7 Gbp for downstream analyses. De novo assembly resulted in 32,396 contigs, which were submitted for identification and classified according to their identities. This analysis allowed us to define a principal set of T. harzianum genes that are involved in the degradation of cellulose and hemicellulose and the accessory genes that are involved in the depolymerization of biomass. An additional analysis of expression levels identified a set of carbohydrate-active enzymes that are upregulated under different conditions. The present study provides valuable information for future studies on biomass degradation and contributes to a better understanding of the role of the genes that are involved in this process.

  11. SC3 - consensus clustering of single-cell RNA-Seq data

    PubMed Central

    Kiselev, Vladimir Yu.; Kirschner, Kristina; Schaub, Michael T.; Andrews, Tallulah; Yiu, Andrew; Chandra, Tamir; Natarajan, Kedar N; Reik, Wolf; Barahona, Mauricio; Green, Anthony R; Hemberg, Martin

    2017-01-01

    Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach. We demonstrate that SC3 is capable of identifying subclones based on the transcriptomes from neoplastic cells collected from patients. PMID:28346451

  12. The application of transcriptomic data in the authentication of beef derived from contrasting production systems.

    PubMed

    Sweeney, Torres; Lejeune, Alex; Moloney, Aidan P; Monahan, Frank J; Gettigan, Paul Mc; Downey, Gerard; Park, Stephen D E; Ryan, Marion T

    2016-09-21

    Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system. A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context. The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.

  13. RNA-seq Transcriptome Analysis of Panax japonicus, and Its Comparison with Other Panax Species to Identify Potential Genes Involved in the Saponins Biosynthesis

    PubMed Central

    Rai, Amit; Yamazaki, Mami; Takahashi, Hiroki; Nakamura, Michimi; Kojoma, Mareshige; Suzuki, Hideyuki; Saito, Kazuki

    2016-01-01

    The Panax genus has been a source of natural medicine, benefitting human health over the ages, among which the Panax japonicus represents an important species. Our understanding of several key pathways and enzymes involved in the biosynthesis of ginsenosides, a pharmacologically active class of metabolites and a major chemical constituents of the rhizome extracts from the Panax species, are limited. Limited genomic information, and lack of studies on comparative transcriptomics across the Panax species have restricted our understanding of the biosynthetic mechanisms of these and many other important classes of phytochemicals. Herein, we describe Illumina based RNA sequencing analysis to characterize the transcriptome and expression profiles of genes expressed in the five tissues of P. japonicus, and its comparison with other Panax species. RNA sequencing and de novo transcriptome assembly for P. japonicus resulted in a total of 135,235 unigenes with 78,794 (58.24%) unigenes being annotated using NCBI-nr database. Transcriptome profiling, and gene ontology enrichment analysis for five tissues of P. japonicus showed that although overall processes were evenly conserved across all tissues. However, each tissue was characterized by several unique unigenes with the leaves showing the most unique unigenes among the tissues studied. A comparative analysis of the P. japonicus transcriptome assembly with publically available transcripts from other Panax species, namely, P. ginseng, P. notoginseng, and P. quinquefolius also displayed high sequence similarity across all Panax species, with P. japonicus showing highest similarity with P. ginseng. Annotation of P. japonicus transcriptome resulted in the identification of putative genes encoding all enzymes from the triterpene backbone biosynthetic pathways, and identified 24 and 48 unigenes annotated as cytochrome P450 (CYP) and glycosyltransferases (GT), respectively. These CYPs and GTs annotated unigenes were conserved across all Panax species and co-expressed with other the transcripts involved in the triterpenoid backbone biosynthesis pathways. Unigenes identified in this study represent strong candidates for being involved in the triterpenoid saponins biosynthesis, and can serve as a basis for future validation studies. PMID:27148308

  14. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    PubMed

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  15. Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis.

    PubMed

    Chapman, Robert W; Reading, Benjamin J; Sullivan, Craig V

    2014-01-01

    Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic "fingerprint". Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.

  16. Ovary Transcriptome Profiling via Artificial Intelligence Reveals a Transcriptomic Fingerprint Predicting Egg Quality in Striped Bass, Morone saxatilis

    PubMed Central

    2014-01-01

    Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic “fingerprint”. Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness. PMID:24820964

  17. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    PubMed

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. BRIC-21: Global Transcriptome Profiling to Identify Cellular Stress Mechanisms Responsible for Spaceflight-Induced Antibiotic Resistance

    NASA Technical Reports Server (NTRS)

    Nicholson, Wayne L.; Fajardo-Cavazos, Patricia

    2015-01-01

    Comparisons of spaceflight stress responses in Bacillus subtilis spores and Staphylococcus epidermidis cells to ground-based controls will be conducted to uncover alterations in their antibiotic susceptibility.

  19. The resemblance and disparity of gene expression in dormant and non-dormant seeds and crown buds of leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Overlaps in transcriptome profiles between different phases of bud and seed dormancy have not been determined. Thus, we compared various phases of dormancy between seeds and buds to identify common genes and molecular processes. Cluster analysis of expression profiles for 201 selected genes indicate...

  20. Potential effect of exercise in ameliorating insulin resistance at transcriptome level.

    PubMed

    Hu, Zhigang; Zhou, Lei; He, Tingting

    2017-10-24

    Insulin resistance can lead to the pathogenesis of type 2 diabetes and exercise can increase insulin sensitivity. And different exercises may have different influences on the mitigation of insulin resistance. It's still unclear how exercise affects inherited insulin resistance at transcriptome level. The purpose of our study was to analyze the potential effects of exercise in ameliorating insulin resistance at transcriptome level. Herein, we analyzed two skeletal muscle transcriptome profiles, including gene profiles between inherited insulin resistant patients and matched healthy controls, and between trained and sedentary subjects (young and old subjects, respectively). Analysis of differentially expressed genes revealed that 12 genes (SGK1, LOC101929876, MYL5, COL6A3, MLF1, LUM, MSTN, COL1A2, COL3A1, IL32, IRS2 and ID1) associated with insulin resistance were reversed by exercise in young subjects, while six genes (MSTN, CFHR1, PFKFB3, IL32, RGCC and NMRK2) were identified in old subjects, suggesting that those genes play potential roles in insulin resistance response to exercise. In addition, we observed that two insulin resistance-related genes, MSTN and IL32, were identified in muscle cells of both young and old subjects, indicating their important roles in the mechanisms behind the beneficial effects of exercise on humans with inherited insulin resistance. Several pathways were also identified, such as "collagen metabolic process", "focal adhesion" and "negative regulation of myoblast differentiation". Taken together, our findings provide novel markers in insulin resistant patients and exercise, and some valuable information for future functional studies on how exercise ameliorating insulin resistance.

  1. Venom gland transcriptome analyses of two freshwater stingrays (Myliobatiformes: Potamotrygonidae) from Brazil.

    PubMed

    de Oliveira Júnior, Nelson Gomes; Fernandes, Gabriel da Rocha; Cardoso, Marlon Henrique; Costa, Fabrício F; Cândido, Elizabete de Souza; Garrone Neto, Domingos; Mortari, Márcia Renata; Schwartz, Elisabeth Ferroni; Franco, Octávio Luiz; de Alencar, Sérgio Amorim

    2016-02-26

    Stingrays commonly cause human envenoming related accidents in populations of the sea, near rivers and lakes. Transcriptomic profiles have been used to elucidate components of animal venom, since they are capable of providing molecular information on the biology of the animal and could have biomedical applications. In this study, we elucidated the transcriptomic profile of the venom glands from two different freshwater stingray species that are endemic to the Paraná-Paraguay basin in Brazil, Potamotrygon amandae and Potamotrygon falkneri. Using RNA-Seq, we identified species-specific transcripts and overlapping proteins in the venom gland of both species. Among the transcripts related with envenoming, high abundance of hyaluronidases was observed in both species. In addition, we built three-dimensional homology models based on several venom transcripts identified. Our study represents a significant improvement in the information about the venoms employed by these two species and their molecular characteristics. Moreover, the information generated by our group helps in a better understanding of the biology of freshwater cartilaginous fishes and offers clues for the development of clinical treatments for stingray envenoming in Brazil and around the world. Finally, our results might have biomedical implications in developing treatments for complex diseases.

  2. The study of transcriptome profiles in Holstein cows with miscarriage during peri-implantation.

    PubMed

    Zhao, Guoli; Li, Yanyan; Kang, Xiaolong; Huang, Liang; Li, Peng; Zhou, Jinghang; Shi, Yuangang

    2018-05-31

    In this study, the transcriptome profile of cows who experienced miscarriage during peri-implantation was investigated. The transcriptome was checked by RNA sequencing, and the analyzed by bioinformatics methods. The results suggested that serum progesterone levels were significantly decreased in the cows who miscarried compared with the pregnant cows at 18 d, 21d, 33 d, 39 d and 51 d after artificial insemination. The RNA sequencing results suggested that 32, 176, 5, 10 and 2 differentially expressed genes (DEGs) were identified in the pregnant cows and the cows who miscarried at 18, 21, 33, 39 and 51 d after artificial insemination. Furthermore, the DEGs were analysed with hierarchical clustering and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and 15, 101, 1, 2 and 2 DEGs were upregulated, and 17, 74, 4, 8 and 0 DEGs were downregulated in the cows in the pregnant and miscarriage groups, respectively at 18, 21 33, 39 and 51 d after artificial insemination. These DEGs were distributed to 13, 20, 3, 6 and 20 pathways. This analysis has identified genes and pathways crucial for pregnancy and miscarriage in cows.

  3. Venom gland transcriptome analyses of two freshwater stingrays (Myliobatiformes: Potamotrygonidae) from Brazil

    PubMed Central

    Júnior, Nelson Gomes de Oliveira; Fernandes, Gabriel da Rocha; Cardoso, Marlon Henrique; Costa, Fabrício F.; Cândido, Elizabete de Souza; Neto, Domingos Garrone; Mortari, Márcia Renata; Schwartz, Elisabeth Ferroni; Franco, Octávio Luiz; de Alencar, Sérgio Amorim

    2016-01-01

    Stingrays commonly cause human envenoming related accidents in populations of the sea, near rivers and lakes. Transcriptomic profiles have been used to elucidate components of animal venom, since they are capable of providing molecular information on the biology of the animal and could have biomedical applications. In this study, we elucidated the transcriptomic profile of the venom glands from two different freshwater stingray species that are endemic to the Paraná-Paraguay basin in Brazil, Potamotrygon amandae and Potamotrygon falkneri. Using RNA-Seq, we identified species-specific transcripts and overlapping proteins in the venom gland of both species. Among the transcripts related with envenoming, high abundance of hyaluronidases was observed in both species. In addition, we built three-dimensional homology models based on several venom transcripts identified. Our study represents a significant improvement in the information about the venoms employed by these two species and their molecular characteristics. Moreover, the information generated by our group helps in a better understanding of the biology of freshwater cartilaginous fishes and offers clues for the development of clinical treatments for stingray envenoming in Brazil and around the world. Finally, our results might have biomedical implications in developing treatments for complex diseases. PMID:26916342

  4. The root transcriptome for North American ginseng assembled and profiled across seasonal development

    PubMed Central

    2013-01-01

    Background Ginseng including North American ginseng (Panax quinquefolius L.) is one of the most widely used medicinal plants. Its success is thought to be due to a diverse collection of ginsenosides that serve as its major bioactive compounds. However, few genomic resources exist and the details concerning its various biosynthetic pathways remain poorly understood. As the root is the primary tissue harvested commercially for ginsenosides, next generation sequencing was applied to the characterization and assembly of the root transcriptome throughout seasonal development. Transcripts showing homology to ginsenoside biosynthesis enzymes were profiled in greater detail. Results RNA extracts from root samples from seven development stages of North American ginseng were subjected to 454 sequencing, filtered for quality and used in the de novo assembly of a collective root reference transcriptome consisting of 41,623 transcripts. Annotation efforts using a number of public databases resulted in detailed annotation information for 34,801 (84%) transcripts. In addition, 3,955 genes were assigned to metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes. Among our results, we found all of the known enzymes involved in the ginsenoside backbone biosynthesis and used co-expression analysis to identify a number of candidate sequences involved in the latter stages ginsenoside biosynthesis pathway. Transcript profiles suggest ginsenoside biosynthesis occurs at distinct stages of development. Conclusions The assembly generated provides a comprehensive annotated reference for future transcriptomic study of North American ginseng. A collection of putative ginsenoside biosynthesis genes were identified and candidate genes predicted from the lesser understood downstream stages of biosynthesis. Transcript expression profiles across seasonal development suggest a primary dammarane-type ginsenoside biosynthesis occurs just prior to plant senescence, with secondary ginsenoside production occurring throughout development. Data from the study provide a valuable resource for conducting future ginsenoside biosynthesis research in this important medicinal plant. PMID:23957709

  5. Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals

    PubMed Central

    Jin, Yong Hwan; Dunlap, Paul E.; McBride, Sandra J.; Al-Refai, Hanan; Bushel, Pierre R.; Freedman, Jonathan H.

    2008-01-01

    A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of ∼4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways. PMID:18437200

  6. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    PubMed Central

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  7. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    PubMed

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa

    PubMed Central

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas

    2016-01-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  9. Transcriptomic and metabolomic profiles of Chinese citrus fly, Bactrocera minax (Diptera: Tephritidae), along with pupal development provide insight into diapause program

    PubMed Central

    Fan, Huan; Xiong, Ke-Cai; Liu, Ying-Hong

    2017-01-01

    The Chinese citrus fly, Bactrocera minax (Enderlein), is a devastating citrus pest in Asia. This univoltine insect enters obligatory pupal diapause in each generation, while little is known about the course and the molecular mechanisms of diapause. In this study, the course of diapause was determined by measuring the respiratory rate throughout the pupal stage. In addition, the variation of transcriptomic and metabolomic profiles of pupae at five developmental stages (pre-, early-, middle-, late-, and post-diapause) were evaluated by next-generation sequencing technology and 1H nuclear magnetic resonance spectroscopy (NMR), respectively. A total of 4,808 genes were significantly altered in ten pairwise comparisons, representing major shifts in metabolism and signal transduction as well as endocrine system and digestive system. Gene expression profiles were validated by qRT-PCR analysis. In addition, 48 metabolites were identified and quantified by 1H NMR. Nine of which significantly contributed to the variation in the metabolomic profiles, especially proline and trehalose. Moreover, the samples collected within diapause maintenance (early-, middle-, and late-diapause) only exhibited marginal transcriptomic and metabolomic variation with each other. These findings greatly improve our understanding of B. minax diapause and lay the foundation for further pertinent studies. PMID:28704500

  10. Transcriptome profiling to identify ATRA-responsive genes in human iPSC-derived endoderm for high-throughput point of departure analysis (SOT Annual Meeting)

    EPA Science Inventory

    Toxicological tipping points occur at chemical concentrations that overwhelm a cell’s adaptive response leading to permanent effects. We focused on retinoid signaling in differentiating endoderm to identify developmental pathways for tipping point analysis. Human induced pluripot...

  11. Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome

    PubMed Central

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan-José

    2016-01-01

    RNA-Seq enables the generation of extensive transcriptome information providing the capability to characterize transcripts (including alternative isoforms and polymorphism), to quantify expression and to identify differential regulation in a single experiment. Our aim in this study was to take advantage of using RNA-Seq high-throughput technology to provide a comprehensive transcriptome profiling of the sheep lactating mammary gland. Eight ewes of two dairy sheep breeds with differences in milk production traits were used in this experiment (four Churra and four Assaf ewes). Milk samples from these animals were collected on days 10, 50, 120 and 150 after lambing to cover the various physiological stages of the mammary gland across the complete lactation. RNA samples were extracted from milk somatic cells. The RNA-Seq dataset was generated using an Illumina HiSeq 2000 sequencer. The information reported here will be useful to understand the biology of lactation in sheep, providing also an opportunity to characterize their different patterns on milk production aptitude. PMID:27377755

  12. Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome.

    PubMed

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan-José

    2016-07-05

    RNA-Seq enables the generation of extensive transcriptome information providing the capability to characterize transcripts (including alternative isoforms and polymorphism), to quantify expression and to identify differential regulation in a single experiment. Our aim in this study was to take advantage of using RNA-Seq high-throughput technology to provide a comprehensive transcriptome profiling of the sheep lactating mammary gland. Eight ewes of two dairy sheep breeds with differences in milk production traits were used in this experiment (four Churra and four Assaf ewes). Milk samples from these animals were collected on days 10, 50, 120 and 150 after lambing to cover the various physiological stages of the mammary gland across the complete lactation. RNA samples were extracted from milk somatic cells. The RNA-Seq dataset was generated using an Illumina HiSeq 2000 sequencer. The information reported here will be useful to understand the biology of lactation in sheep, providing also an opportunity to characterize their different patterns on milk production aptitude.

  13. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Heinonen, Santtu; Hasrat, Raiza; Bunsow, Eleonora; Smith, Bennett; Suarez-Arrabal, Maria-Carmen; Chaussabel, Damien; Cohen, Daniel M; Sanders, Elisabeth A M; Ramilo, Octavio; Bogaert, Debby; Mejias, Asuncion

    2016-11-01

    Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity, especially among healthy children. We postulate that the severity of RSV infection is influenced by modulation of the host immune response by the local bacterial ecosystem. To assess whether specific nasopharyngeal microbiota (clusters) are associated with distinct host transcriptome profiles and disease severity in children less than 2 years of age with RSV infection. We characterized the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy children by 16S-rRNA sequencing. In parallel, using multivariable models, we analyzed whole-blood transcriptome profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response, and clinical disease severity. We identified five nasopharyngeal microbiota clusters characterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium, Moraxella, or Staphylococcus aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus and negatively associated with S. aureus abundance, independent of age. Children with RSV showed overexpression of IFN-related genes, independent of the microbiota cluster. In addition, transcriptome profiles of children with RSV infection and H. influenzae- and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to Toll-like receptor and by neutrophil and macrophage activation and signaling. Our data suggest that interactions between RSV and nasopharyngeal microbiota might modulate the host immune response, potentially affecting clinical disease severity.

  14. GTA: a game theoretic approach to identifying cancer subnetwork markers.

    PubMed

    Farahmand, S; Goliaei, S; Ansari-Pour, N; Razaghi-Moghadam, Z

    2016-03-01

    The identification of genetic markers (e.g. genes, pathways and subnetworks) for cancer has been one of the most challenging research areas in recent years. A subset of these studies attempt to analyze genome-wide expression profiles to identify markers with high reliability and reusability across independent whole-transcriptome microarray datasets. Therefore, the functional relationships of genes are integrated with their expression data. However, for a more accurate representation of the functional relationships among genes, utilization of the protein-protein interaction network (PPIN) seems to be necessary. Herein, a novel game theoretic approach (GTA) is proposed for the identification of cancer subnetwork markers by integrating genome-wide expression profiles and PPIN. The GTA method was applied to three distinct whole-transcriptome breast cancer datasets to identify the subnetwork markers associated with metastasis. To evaluate the performance of our approach, the identified subnetwork markers were compared with gene-based, pathway-based and network-based markers. We show that GTA is not only capable of identifying robust metastatic markers, it also provides a higher classification performance. In addition, based on these GTA-based subnetworks, we identified a new bonafide candidate gene for breast cancer susceptibility.

  15. Digital Marine Bioprospecting: Mining New Neurotoxin Drug Candidates from the Transcriptomes of Cold-Water Sea Anemones

    PubMed Central

    Urbarova, Ilona; Karlsen, Bård Ove; Okkenhaug, Siri; Seternes, Ole Morten; Johansen, Steinar D.; Emblem, Åse

    2012-01-01

    Marine bioprospecting is the search for new marine bioactive compounds and large-scale screening in extracts represents the traditional approach. Here, we report an alternative complementary protocol, called digital marine bioprospecting, based on deep sequencing of transcriptomes. We sequenced the transcriptomes from the adult polyp stage of two cold-water sea anemones, Bolocera tuediae and Hormathia digitata. We generated approximately 1.1 million quality-filtered sequencing reads by 454 pyrosequencing, which were assembled into approximately 120,000 contigs and 220,000 single reads. Based on annotation and gene ontology analysis we profiled the expressed mRNA transcripts according to known biological processes. As a proof-of-concept we identified polypeptide toxins with a potential blocking activity on sodium and potassium voltage-gated channels from digital transcriptome libraries. PMID:23170083

  16. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress

    PubMed Central

    Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd

    2013-01-01

    An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815

  17. Transcriptomic responses to wounding: meta-analysis of gene expression microarray data.

    PubMed

    Sass, Piotr Andrzej; Dąbrowski, Michał; Charzyńska, Agata; Sachadyn, Paweł

    2017-11-07

    A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported  in this context such as PTPRC and AQP4. We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.

  18. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  19. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    PubMed

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  20. Evaluating intra- and inter-individual variation in the human placental transcriptome.

    PubMed

    Hughes, David A; Kircher, Martin; He, Zhisong; Guo, Song; Fairbrother, Genevieve L; Moreno, Carlos S; Khaitovich, Philipp; Stoneking, Mark

    2015-03-19

    Gene expression variation is a phenotypic trait of particular interest as it represents the initial link between genotype and other phenotypes. Analyzing how such variation apportions among and within groups allows for the evaluation of how genetic and environmental factors influence such traits. It also provides opportunities to identify genes and pathways that may have been influenced by non-neutral processes. Here we use a population genetics framework and next generation sequencing to evaluate how gene expression variation is apportioned among four human groups in a natural biological tissue, the placenta. We estimate that on average, 33.2%, 58.9%, and 7.8% of the placental transcriptome is explained by variation within individuals, among individuals, and among human groups, respectively. Additionally, when technical and biological traits are included in models of gene expression they each account for roughly 2% of total gene expression variation. Notably, the variation that is significantly different among groups is enriched in biological pathways associated with immune response, cell signaling, and metabolism. Many biological traits demonstrate correlated changes in expression in numerous pathways of potential interest to clinicians and evolutionary biologists. Finally, we estimate that the majority of the human placental transcriptome exhibits expression profiles consistent with neutrality; the remainder are consistent with stabilizing selection, directional selection, or diversifying selection. We apportion placental gene expression variation into individual, population, and biological trait factors and identify how each influence the transcriptome. Additionally, we advance methods to associate expression profiles with different forms of selection.

  1. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    DOE PAGES

    Konstantinos, Billis; Billini, Maria; Tripp, Harry J.; ...

    2014-09-23

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5' enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application ofmore » stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response« less

  2. Aging-like Changes in the Transcriptome of Irradiated Microglia

    PubMed Central

    Li, Matthew D.; Burns, Terry C.; Kumar, Sunny; Morgan, Alexander A.; Sloan, Steven A.; Palmer, Theo D.

    2014-01-01

    Whole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury. We here provide the first comprehensive transcriptional profile of irradiated microglia. Fluorescence-activated cell sorting (FACS) was used to isolate CD11b+ microglia from the hippocampi of C57BL/6 and Balb/c mice 1 month after 10Gy cranial irradiation. Affymetrix gene expression profiles were evaluated using linear modeling, rank product analyses. One month after irradiation, a conserved irradiation signature across strains was identified, comprising 448 and 85 differentially up- and down-regulated genes, respectively. Gene set enrichment analysis (GSEA) demonstrated enrichment for inflammation, including M1 macrophage-associated genes, but also an unexpected enrichment for extracellular matrix and blood coagulation-related gene sets, in contrast previously described microglial states. Weighted gene co-expression network analysis (WGCNA) confirmed these findings and further revealed alterations in mitochondrial function. The RNA-seq transcriptome of microglia 24h post-radiation proved similar to the 1-month transcriptome, but additionally featured alterations in apoptotic and lysosomal gene expression. Re-analysis of published aging mouse microglia transcriptome data demonstrated striking similarity to the 1 month irradiated microglia transcriptome, suggesting that shared mechanisms may underlie aging and chronic irradiation-induced cognitive decline. PMID:25690519

  3. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinos, Billis; Billini, Maria; Tripp, Harry J.

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5' enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application ofmore » stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response« less

  4. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study.

    PubMed

    Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F

    2018-07-01

    Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.

  5. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host’s Transcriptome: The Tobacco Etch Potyvirus—Tobacco Case Study

    PubMed Central

    Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F

    2018-01-01

    Abstract Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts. PMID:29562354

  6. Next-Generation Transcriptome Profiling of the Salmon Louse Caligus rogercresseyi Exposed to Deltamethrin (AlphaMax™): Discovery of Relevant Genes and Sex-Related Differences.

    PubMed

    Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2015-12-01

    Sea lice are one of the main parasites affecting the salmon aquaculture industry, causing significant economic losses worldwide. Increased resistance to traditional chemical treatments has created the need to find alternative control methods. Therefore, the objective of this study was to identify the transcriptome response of the salmon louse Caligus rogercresseyi to the delousing drug deltamethrin (AlphaMax™). Through bioassays with different concentrations of deltamethrin, adult salmon lice transcriptomes were sequenced from cDNA libraries in the MiSeq Illumina platform. A total of 78 million reads for females and males were assembled in 30,212 and 38,536 contigs, respectively. De novo assembly yielded 86,878 high-quality contigs and, based on published data, it was possible to annotate and identify relevant genes involved in several biological processes. RNA-seq analysis in conjunction with heatmap hierarchical clustering evidenced that pyrethroids modify the ectoparasitic transcriptome in adults, affecting molecular processes associated with the nervous system, cuticle formation, oxidative stress, reproduction, and metabolism, among others. Furthermore, sex-related transcriptome differences were evidenced. Specifically, 534 and 1033 exclusive transcripts were identified for males and females, respectively, and 154 were shared between sexes. For males, estradiol 17-beta-dehydrogenase, sphingolipid delta4-desaturase DES1, ketosamine-3-kinase, and arylsulfatase A, among others, were discovered, while for females, vitellogenin 1, glycoprotein G, transaldolase, and nitric oxide synthase were among those identified. The shared transcripts included annotations for tropomyosin, γ-crystallin A, glutamate receptor-metabotropic, glutathione S-transferase, and carboxipeptidase B. The present study reveals that deltamethrin generates a complex transcriptome response in C. rogercresseyi, thus providing valuable genomic information for developing new delousing drugs.

  7. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass.

    PubMed

    Ayyappan, Vasudevan; Saha, Malay C; Thimmapuram, Jyothi; Sripathi, Venkateswara R; Bhide, Ketaki P; Fiedler, Elizabeth; Hayford, Rita K; Kalavacharla, Venu Kal

    2017-01-01

    Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.

  8. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  9. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  10. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures

    PubMed Central

    Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.

    2017-01-01

    Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719

  11. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study12

    PubMed Central

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-01-01

    Background: Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Objectives: Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients’ tumor stage and metabolic profiles was assessed. Design: Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I–IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina’s HumanHT-12 Expression BeadChips. Results: Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis–related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients’ adipose tissues, which were associated with CRC tumor stage. Conclusions: As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which supports prior evidence regarding the role of visceral adiposity and cancer. This trial was registered at clinicaltrials.gov as NCT02328677. PMID:26156741

  12. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study.

    PubMed

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-08-01

    Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients' tumor stage and metabolic profiles was assessed. Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I-IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina's HumanHT-12 Expression BeadChips. Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis-related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients' adipose tissues, which were associated with CRC tumor stage. As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which supports prior evidence regarding the role of visceral adiposity and cancer. © 2015 American Society for Nutrition.

  13. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  14. Transcriptional signature associated with early rheumatoid arthritis and healthy individuals at high risk to develop the disease

    PubMed Central

    Macías-Segura, N.; Bastian, Y.; Santiago-Algarra, D.; Castillo-Ortiz, J. D.; Alemán-Navarro, A. L.; Jaime-Sánchez, E.; Gomez-Moreno, M.; Saucedo-Toral, C. A.; Lara-Ramírez, Edgar E.; Zapata-Zuñiga, M.; Enciso-Moreno, L.; González-Amaro, R.; Ramos-Remus, C.; Enciso-Moreno, J. A.

    2018-01-01

    Background Little is known regarding the mechanisms underlying the loss of tolerance in the early and preclinical stages of autoimmune diseases. The aim of this work was to identify the transcriptional profile and signaling pathways associated to non-treated early rheumatoid arthritis (RA) and subjects at high risk. Several biomarker candidates for early RA are proposed. Methods Whole blood total RNA was obtained from non-treated early RA patients with <1 year of evolution as well as from healthy first-degree relatives of patients with RA (FDR) classified as ACCP+ and ACCP- according to their antibodies serum levels against cyclic citrullinated peptides. Complementary RNA (cRNA) was synthetized and hybridized to high-density microarrays. Data was analyzed in Genespring Software and functional categories were assigned to a specific transcriptome identified in subjects with RA and FDR ACCP positive. Specific signaling pathways for genes associated to RA were identified. Gene expression was evaluated by qPCR. Receiver operating characteristic (ROC) analysis was used to evaluate these genes as biomarkers. Results A characteristic transcriptome of 551 induced genes and 4,402 repressed genes were identified in early RA patients. Bioinformatics analysis of the data identified a specific transcriptome in RA patients. Moreover, some overlapped transcriptional profiles between patients with RA and ACCP+ were identified, suggesting an up-regulated distinctive transcriptome from the preclinical stages up to progression to an early RA state. A total of 203 pathways have up-regulated genes that are shared between RA and ACCP+. Some of these genes show potential to be used as progression biomarkers for early RA with area under the curve of ROC > 0.92. These genes come from several functional categories associated to inflammation, Wnt signaling and type I interferon pathways. Conclusion The presence of a specific transcriptome in whole blood of RA patients suggests the activation of a specific inflammatory transcriptional signature in early RA development. The set of overexpressed genes in early RA patients that are shared with ACCP+ subjects but not with ACCP- subjects, can represent a transcriptional signature involved with the transition of a preclinical to a clinical RA stage. Some of these particular up-regulated and down-regulated genes are related to inflammatory processes and could be considered as biomarker candidates for disease progression in subjects at risk to develop RA. PMID:29584756

  15. -A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome.

    PubMed

    Mackeh, Rafah; Boughorbel, Sabri; Chaussabel, Damien; Kino, Tomoshige

    2017-01-01

    The collection of large-scale datasets available in public repositories is rapidly growing and providing opportunities to identify and fill gaps in different fields of biomedical research. However, users of these datasets should be able to selectively browse datasets related to their field of interest. Here we made available a collection of transcriptome datasets related to human follicular cells from normal individuals or patients with polycystic ovary syndrome, in the process of their development, during in vitro fertilization. After RNA-seq dataset exclusion and careful selection based on study description and sample information, 12 datasets, encompassing a total of 85 unique transcriptome profiles, were identified in NCBI Gene Expression Omnibus and uploaded to the Gene Expression Browser (GXB), a web application specifically designed for interactive query and visualization of integrated large-scale data. Once annotated in GXB, multiple sample grouping has been made in order to create rank lists to allow easy data interpretation and comparison. The GXB tool also allows the users to browse a single gene across multiple projects to evaluate its expression profiles in multiple biological systems/conditions in a web-based customized graphical views. The curated dataset is accessible at the following link: http://ivf.gxbsidra.org/dm3/landing.gsp.

  16. Whole transcriptome RNA-Seq analysis of breast cancer recurrence risk using formalin-fixed paraffin-embedded tumor tissue.

    PubMed

    Sinicropi, Dominick; Qu, Kunbin; Collin, Francois; Crager, Michael; Liu, Mei-Lan; Pelham, Robert J; Pho, Mylan; Dei Rossi, Andrew; Jeong, Jennie; Scott, Aaron; Ambannavar, Ranjana; Zheng, Christina; Mena, Raul; Esteban, Jose; Stephans, James; Morlan, John; Baker, Joffre

    2012-01-01

    RNA biomarkers discovered by RT-PCR-based gene expression profiling of archival formalin-fixed paraffin-embedded (FFPE) tissue form the basis for widely used clinical diagnostic tests; however, RT-PCR is practically constrained in the number of transcripts that can be interrogated. We have developed and optimized RNA-Seq library chemistry as well as bioinformatics and biostatistical methods for whole transcriptome profiling from FFPE tissue. The chemistry accommodates low RNA inputs and sample multiplexing. These methods both enable rediscovery of RNA biomarkers for disease recurrence risk that were previously identified by RT-PCR analysis of a cohort of 136 patients, and also identify a high percentage of recurrence risk markers that were previously discovered using DNA microarrays in a separate cohort of patients, evidence that this RNA-Seq technology has sufficient precision and sensitivity for biomarker discovery. More than two thousand RNAs are strongly associated with breast cancer recurrence risk in the 136 patient cohort (FDR <10%). Many of these are intronic RNAs for which corresponding exons are not also associated with disease recurrence. A number of the RNAs associated with recurrence risk belong to novel RNA networks. It will be important to test the validity of these novel associations in whole transcriptome RNA-Seq screens of other breast cancer cohorts.

  17. Whole Transcriptome RNA-Seq Analysis of Breast Cancer Recurrence Risk Using Formalin-Fixed Paraffin-Embedded Tumor Tissue

    PubMed Central

    Sinicropi, Dominick; Qu, Kunbin; Collin, Francois; Crager, Michael; Liu, Mei-Lan; Pelham, Robert J.; Pho, Mylan; Rossi, Andrew Dei; Jeong, Jennie; Scott, Aaron; Ambannavar, Ranjana; Zheng, Christina; Mena, Raul; Esteban, Jose; Stephans, James; Morlan, John; Baker, Joffre

    2012-01-01

    RNA biomarkers discovered by RT-PCR-based gene expression profiling of archival formalin-fixed paraffin-embedded (FFPE) tissue form the basis for widely used clinical diagnostic tests; however, RT-PCR is practically constrained in the number of transcripts that can be interrogated. We have developed and optimized RNA-Seq library chemistry as well as bioinformatics and biostatistical methods for whole transcriptome profiling from FFPE tissue. The chemistry accommodates low RNA inputs and sample multiplexing. These methods both enable rediscovery of RNA biomarkers for disease recurrence risk that were previously identified by RT-PCR analysis of a cohort of 136 patients, and also identify a high percentage of recurrence risk markers that were previously discovered using DNA microarrays in a separate cohort of patients, evidence that this RNA-Seq technology has sufficient precision and sensitivity for biomarker discovery. More than two thousand RNAs are strongly associated with breast cancer recurrence risk in the 136 patient cohort (FDR <10%). Many of these are intronic RNAs for which corresponding exons are not also associated with disease recurrence. A number of the RNAs associated with recurrence risk belong to novel RNA networks. It will be important to test the validity of these novel associations in whole transcriptome RNA-Seq screens of other breast cancer cohorts. PMID:22808097

  18. ­A curated transcriptomic dataset collection relevant to embryonic development associated with in vitro fertilization in healthy individuals and patients with polycystic ovary syndrome

    PubMed Central

    Mackeh, Rafah; Boughorbel, Sabri; Chaussabel, Damien; Kino, Tomoshige

    2017-01-01

    The collection of large-scale datasets available in public repositories is rapidly growing and providing opportunities to identify and fill gaps in different fields of biomedical research. However, users of these datasets should be able to selectively browse datasets related to their field of interest. Here we made available a collection of transcriptome datasets related to human follicular cells from normal individuals or patients with polycystic ovary syndrome, in the process of their development, during in vitro fertilization. After RNA-seq dataset exclusion and careful selection based on study description and sample information, 12 datasets, encompassing a total of 85 unique transcriptome profiles, were identified in NCBI Gene Expression Omnibus and uploaded to the Gene Expression Browser (GXB), a web application specifically designed for interactive query and visualization of integrated large-scale data. Once annotated in GXB, multiple sample grouping has been made in order to create rank lists to allow easy data interpretation and comparison. The GXB tool also allows the users to browse a single gene across multiple projects to evaluate its expression profiles in multiple biological systems/conditions in a web-based customized graphical views. The curated dataset is accessible at the following link: http://ivf.gxbsidra.org/dm3/landing.gsp. PMID:28413616

  19. Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations.

    PubMed

    Gómez-Aix, Cristina; Pascual, Laura; Cañizares, Joaquín; Sánchez-Pina, María Amelia; Aranda, Miguel A

    2016-06-07

    Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3'-untranslated regions. Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3'264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3'264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3'264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3'264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3'264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways.

  20. Transcriptome Profiling of the Abdominal Skin of Larimichthys crocea in Light Stress

    NASA Astrophysics Data System (ADS)

    Han, Zhaofang; Lv, Changhuan; Xiao, Shijun; Ye, Kun; Zhang, Dongling; Tsai, Huai Jen; Wang, Zhiyong

    2018-04-01

    Large yellow croaker ( Larimichthys crocea), one of the most important marine fish species in China, can change its abdominal skin color when it is shifted from light to dark or from dark to light, providing us an opportunity of investigating the molecular responding mechanism of teleost in light stress. The gene expression profile of fish under light stress is rarely documented. In this research, the transcriptome profiles of the abdominal skin of L. crocea exposed to light or dark for 0 h, 0.5 h and 2 h were produced by next-generation sequencing (NGS). The cluster results demonstrated that stress period, rather than light intensity ( e.g., light or dark), is the major influencing factor. Differently expressed genes (DEGs) were identified between 0 h and 0.5 h groups, between 0 h and 2 h groups, between 0.5 h light and 0.5 h dark, and between 2 h light and 2 h dark, respectively. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that the genes relating to immunity, energy metabolism, and cytoskeletal protein binding were significantly enriched. The detailed analysis of transcriptome profiles also revealed regular gene expression trends, indicating that the elaborate gene regulation networks underlined the molecular responses of the fish to light stress. This transcriptome analysis suggested that systematic and complicated regulatory cascades were functionally activated in response to external stress, and coloration change caused by light stress was mainly attributed to the change in the density of chromatophores for L. crocea. This study also provided valuable information for skin coloration or light stress research on other marine fish species.

  1. Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis.

    PubMed

    Amaradasa, Bimal S; Amundsen, Keenan

    2016-01-01

    Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.

  2. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  3. Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    PubMed Central

    2011-01-01

    Background With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles. Results RNA extracted from laboratory cultures of Porphyromonas gingivalis was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts. Conclusions An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more fluorescent molecules per RNA fragment. PMID:21235785

  4. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Transcriptomic markers meet the real world: finding diagnostic signatures of corticosteroid treatment in commercial beef samples

    PubMed Central

    2012-01-01

    Background The use of growth-promoters in beef cattle, despite the EU ban, remains a frequent practice. The use of transcriptomic markers has already proposed to identify indirect evidence of anabolic hormone treatment. So far, such approach has been tested in experimentally treated animals. Here, for the first time commercial samples were analyzed. Results Quantitative determination of Dexamethasone (DEX) residues in the urine collected at the slaughterhouse was performed by Liquid Chromatography-Mass Spectrometry (LC-MS). DNA-microarray technology was used to obtain transcriptomic profiles of skeletal muscle in commercial samples and negative controls. LC-MS confirmed the presence of low level of DEX residues in the urine of the commercial samples suspect for histological classification. Principal Component Analysis (PCA) on microarray data identified two clusters of samples. One cluster included negative controls and a subset of commercial samples, while a second cluster included part of the specimens collected at the slaughterhouse together with positives for corticosteroid treatment based on thymus histology and LC-MS. Functional analysis of the differentially expressed genes (3961) between the two groups provided further evidence that animals clustering with positive samples might have been treated with corticosteroids. These suspect samples could be reliably classified with a specific classification tool (Prediction Analysis of Microarray) using just two genes. Conclusions Despite broad variation observed in gene expression profiles, the present study showed that DNA-microarrays can be used to find transcriptomic signatures of putative anabolic treatments and that gene expression markers could represent a useful screening tool. PMID:23110699

  6. Bioorthogonal Metabolic Labeling of Nascent RNA in Neurons Improves the Sensitivity of Transcriptome-Wide Profiling.

    PubMed

    Zajaczkowski, Esmi L; Zhao, Qiong-Yi; Zhang, Zong Hong; Li, Xiang; Wei, Wei; Marshall, Paul R; Leighton, Laura J; Nainar, Sarah; Feng, Chao; Spitale, Robert C; Bredy, Timothy W

    2018-06-15

    Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.

  7. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis.

    PubMed

    Smola, Matthew J; Rice, Greggory M; Busan, Steven; Siegfried, Nathan A; Weeks, Kevin M

    2015-11-01

    Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2'-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as can be done for simple model RNAs. This protocol describes the experimental steps, implemented over 3 d, that are required to perform SHAPE probing and to construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots and provides useful troubleshooting information. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures and visualize probable and alternative helices, often in under 1 d. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles and entire transcriptomes.

  8. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes

    PubMed Central

    Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676

  9. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum.

    PubMed

    Widana Gamage, Shirani M K; McGrath, Desmond J; Persley, Denis M; Dietzgen, Ralf G

    2016-01-01

    Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.

  10. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596

  11. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

    PubMed

    Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng

    2017-12-30

    As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest management. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Transcriptome assembly and digital gene expression atlas of the rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Background: Transcriptome analysis is a preferred method for gene discovery, marker development and gene expression profiling in non-model organisms. Previously, we sequenced a transcriptome reference using Sanger-based and 454-pyrosequencing, however, a transcriptome assembly is still incomplete an...

  13. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis.

    PubMed

    Tao, Wenjing; Chen, Jinlin; Tan, Dejie; Yang, Jing; Sun, Lina; Wei, Jing; Conte, Matthew A; Kocher, Thomas D; Wang, Deshou

    2018-05-15

    The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination.

  14. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress

    PubMed Central

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd

    2016-01-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  15. Transcriptome profiling analysis of Vibrio vulnificus during human infection.

    PubMed

    Bisharat, Naiel; Bronstein, Michal; Korner, Mira; Schnitzer, Temima; Koton, Yael

    2013-09-01

    Vibrio vulnificus is a waterborne pathogen that was responsible for an outbreak of severe soft-tissue infections among fish farmers and fish consumers in Israel. Several factors have been shown to be associated with virulence. However, the transcriptome profile of the pathogen during human infection has not been determined yet. We compared the transcriptome profile, using RNA sequencing, of a human-pathogenic strain harvested directly from tissue of a patient suffering from severe soft-tissue infection with necrotizing fasciitis, with the same strain and three other environmental strains grown in vitro. The five sequenced libraries were aligned to the reference genomes of V. vulnificus strains CMCP6 and YJ016. Approximately 47.8 to 62.3 million paired-end raw reads were generated from the five runs. Nearly 84 % of the genome was covered by reads from at least one of the five runs, suggesting that nearly 16 % of the genome is not transcribed or is transcribed at low levels. We identified 123 genes that were differentially expressed during the acute phase of infection. Sixty-three genes were mapped to the large chromosome, 47 genes mapped to the small chromosome and 13 genes mapped to the YJ016 plasmid. The 123 genes fell into a variety of functional categories including transcription, signal transduction, cell motility, carbohydrate metabolism, intracellular trafficking and cell envelope biogenesis. Among the genes differentially expressed during human infection we identified genes encoding bacterial toxin (RtxA1) and genes involved in flagellar components, Flp-coding region, GGDEF family protein, iron acquisition system and sialic acid metabolism.

  16. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.

    PubMed

    Kebede, Aida Z; Johnston, Anne; Schneiderman, Danielle; Bosnich, Whynn; Harris, Linda J

    2018-02-09

    Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms.

  17. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

    PubMed

    Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin

    2011-03-24

    The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.

  18. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    PubMed Central

    2011-01-01

    Background The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Results Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Conclusions Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism. PMID:21435219

  19. Clinical Correlations of Transcriptional Profile in Patients Infected with Avian Influenza H7N9 Virus.

    PubMed

    Guan, Wenda; Wu, Nicholas C; Lee, Horace H Y; Li, Yimin; Jiang, Wenxin; Shen, Lihan; Wu, Douglas C; Chen, Rongchang; Zhong, Nanshan; Wilson, Ian A; Peiris, Malik; Yang, Zifeng; Mok, Chris K P

    2018-05-28

    Avian influenza A (H7N9) viruses emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profiles in peripheral blood reflect host responses and can help to elucidate disease pathogenesis. We correlated serial blood transcriptomic profiles of patients with avian influenza A (H7N9) virus infection and determined the biological significances from the analysis. We found that specific gene expression profiles in the blood were strongly correlated with the PaO2/FiO2 ratio and viral load in the lower respiratory tract (LRT). Cell cycle and leukocyte-related immunity were activated at the acute stage of the infection while T cell functions and various metabolic processes were associated with the recovery phase of the illness. A transition from systemic innate to adaptive immunity was found. We developed a novel approach for transcriptomic analysis to identify key host responses that were strongly correlated with specific clinical and virologic parameters in patients with H7N9 infection.

  20. Regulators of Long-Term Memory Revealed by Mushroom Body-Specific Gene Expression Profiling in Drosophila melanogaster.

    PubMed

    Widmer, Yves F; Bilican, Adem; Bruggmann, Rémy; Sprecher, Simon G

    2018-06-20

    Memory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short-term memory traces rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory formation. With Drosophila melanogaster as a model system we profiled transcriptomic changes in the mushroom body, a memory center in the fly brain, at distinct time intervals during appetitive olfactory long-term memory formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in long-term memory formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1 , the two strongest hits, we gained further support for their crucial role in appetitive learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases. Copyright © 2018, Genetics.

  1. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    NASA Astrophysics Data System (ADS)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-06-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes.

  2. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa

    PubMed Central

    Gehan, Malia A; Mockler, Todd C; Weinig, Cynthia; Ewers, Brent E

    2017-01-01

    The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought. PMID:28826479

  3. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    PubMed Central

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  4. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages.

    PubMed

    Zhan, Siyuan; Zhao, Wei; Song, Tianzeng; Dong, Yao; Guo, Jiazhong; Cao, Jiaxue; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping

    2018-01-01

    Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.

  5. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  6. Isolation of Polysomal RNA for Analyzing Stress-Responsive Genes Regulated at the Translational Level in Plants.

    PubMed

    Li, Yong-Fang; Mahalingam, Ramamurthy; Sunkar, Ramanjulu

    2017-01-01

    Alteration of gene expression is an essential mechanism, which allows plants to respond and adapt to adverse environmental conditions. Transcriptome and proteome analyses in plants exposed to abiotic stresses revealed that protein levels are not correlated with the changes in corresponding mRNAs, indicating regulation at translational level is another major regulator for gene expression. Analysis of translatome, which refers to all mRNAs associated with ribosomes, thus has the potential to bridge the gap between transcriptome and proteome. Polysomal RNA profiling and recently developed ribosome profiling (Ribo-seq) are two main methods for translatome analysis at global level. Here, we describe the classical procedure for polysomal RNA isolation by sucrose gradient ultracentrifugation followed by highthroughput RNA-seq to identify genes regulated at translational level. Polysomal RNA can be further used for a variety of downstream applications including Northern blot analysis, qRT-PCR, RNase protection assay, and microarray-based gene expression profiling.

  7. Comparison of immune transcriptome response following infection with PRRSV, PCV2 and SIV

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine. Here we identified and compared gene expression changes in tracheobronchial lymph nodes (TBLN) following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were infected with 1 x 10**5 ce...

  8. Cloning and expression profiling of odorant-binding proteins in the tarnished plant bug, Lygus lineolaris

    USDA-ARS?s Scientific Manuscript database

    In insects, the perception and discrimination of odorants requires the involvement of odorant binding proteins (OBPs). To gain a better molecular understanding of olfaction in the agronomic pest, Lygus lineolaris (tarnished plant bug), we used a transcriptomics-based approach to identify potential ...

  9. Transcriptome profiles in sarcoidosis and their potential role in disease prediction.

    PubMed

    Schupp, Jonas C; Vukmirovic, Milica; Kaminski, Naftali; Prasse, Antje

    2017-09-01

    Sarcoidosis is a systemic disease defined by the presence of nonnecrotizing granuloma in the absence of any known cause. Although the heterogeneity of sarcoidosis is well characterized clinically, the transcriptome of sarcoidosis and underlying molecular mechanisms are not. The signal of all transcripts, small and long noncoding RNAs, can be detected using microarrays or RNA-Sequencing. Analyzing the transcriptome of tissues that are directly affected by granulomas is of great importance to understand biology of the disease and may be predictive of disease and treatment outcome. Multiple genome wide expression studies performed on sarcoidosis affected tissues were published in the last 11 years. Published studies focused on differences in gene expression between sarcoidosis vs. control tissues, stable vs. progressive sarcoidosis, as well as sarcoidosis vs. other diseases. Strikingly, all these transcriptomics data confirm the key role of TH1 immune response in sarcoidosis and particularly of interferon-γ (IFN-γ) and type I IFN-driven signaling pathways. The steps toward transcriptomics of sarcoidosis in precision medicine highlight the potentials of this approach. Large prospective follow-up studies are required to identify signatures predictive of disease progression and outcome.

  10. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182

  11. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid.

    PubMed

    Coate, Jeremy E; Doyle, Jeff J

    2010-01-01

    Evolutionary biologists are increasingly comparing gene expression patterns across species. Due to the way in which expression assays are normalized, such studies provide no direct information about expression per gene copy (dosage responses) or per cell and can give a misleading picture of genes that are differentially expressed. We describe an assay for estimating relative expression per cell. When used in conjunction with transcript profiling data, it is possible to compare the sizes of whole transcriptomes, which in turn makes it possible to compare expression per cell for each gene in the transcript profiling data set. We applied this approach, using quantitative reverse transcriptase-polymerase chain reaction and high throughput RNA sequencing, to a recently formed allopolyploid and showed that its leaf transcriptome was approximately 1.4-fold larger than either progenitor transcriptome (70% of the sum of the progenitor transcriptomes). In contrast, the allopolyploid genome is 94.3% as large as the sum of its progenitor genomes and retains > or =93.5% of the sum of its progenitor gene complements. Thus, "transcriptome downsizing" is greater than genome downsizing. Using this transcriptome size estimate, we inferred dosage responses for several thousand genes and showed that the majority exhibit partial dosage compensation. Homoeologue silencing is nonrandomly distributed across dosage responses, with genes showing extreme responses in either direction significantly more likely to have a silent homoeologue. This experimental approach will add value to transcript profiling experiments involving interspecies and interploidy comparisons by converting expression per transcriptome to expression per genome, eliminating the need for assumptions about transcriptome size.

  12. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai.

    PubMed

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-03-09

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.

  13. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai

    PubMed Central

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-01-01

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone. PMID:28282934

  14. Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes

    USDA-ARS?s Scientific Manuscript database

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...

  15. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress.

    PubMed

    Bushman, B Shaun; Amundsen, Keenan L; Warnke, Scott E; Robins, Joseph G; Johnson, Paul G

    2016-01-13

    Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues. Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance. The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression.

  16. The transcriptional landscape of age in human peripheral blood

    PubMed Central

    Peters, Marjolein J.; Joehanes, Roby; Pilling, Luke C.; Schurmann, Claudia; Conneely, Karen N.; Powell, Joseph; Reinmaa, Eva; Sutphin, George L.; Zhernakova, Alexandra; Schramm, Katharina; Wilson, Yana A.; Kobes, Sayuko; Tukiainen, Taru; Nalls, Michael A.; Hernandez, Dena G.; Cookson, Mark R.; Gibbs, Raphael J.; Hardy, John; Ramasamy, Adaikalavan; Zonderman, Alan B.; Dillman, Allissa; Traynor, Bryan; Smith, Colin; Longo, Dan L.; Trabzuni, Daniah; Troncoso, Juan; van der Brug, Marcel; Weale, Michael E.; O'Brien, Richard; Johnson, Robert; Walker, Robert; Zielke, Ronald H.; Arepalli, Sampath; Ryten, Mina; Singleton, Andrew B.; Ramos, Yolande F.; Göring, Harald H. H.; Fornage, Myriam; Liu, Yongmei; Gharib, Sina A.; Stranger, Barbara E.; De Jager, Philip L.; Aviv, Abraham; Levy, Daniel; Murabito, Joanne M.; Munson, Peter J.; Huan, Tianxiao; Hofman, Albert; Uitterlinden, André G.; Rivadeneira, Fernando; van Rooij, Jeroen; Stolk, Lisette; Broer, Linda; Verbiest, Michael M. P. J.; Jhamai, Mila; Arp, Pascal; Metspalu, Andres; Tserel, Liina; Milani, Lili; Samani, Nilesh J.; Peterson, Pärt; Kasela, Silva; Codd, Veryan; Peters, Annette; Ward-Caviness, Cavin K.; Herder, Christian; Waldenberger, Melanie; Roden, Michael; Singmann, Paula; Zeilinger, Sonja; Illig, Thomas; Homuth, Georg; Grabe, Hans-Jörgen; Völzke, Henry; Steil, Leif; Kocher, Thomas; Murray, Anna; Melzer, David; Yaghootkar, Hanieh; Bandinelli, Stefania; Moses, Eric K.; Kent, Jack W.; Curran, Joanne E.; Johnson, Matthew P.; Williams-Blangero, Sarah; Westra, Harm-Jan; McRae, Allan F.; Smith, Jennifer A.; Kardia, Sharon L. R.; Hovatta, Iiris; Perola, Markus; Ripatti, Samuli; Salomaa, Veikko; Henders, Anjali K.; Martin, Nicholas G.; Smith, Alicia K.; Mehta, Divya; Binder, Elisabeth B.; Nylocks, K Maria; Kennedy, Elizabeth M.; Klengel, Torsten; Ding, Jingzhong; Suchy-Dicey, Astrid M.; Enquobahrie, Daniel A.; Brody, Jennifer; Rotter, Jerome I.; Chen, Yii-Der I.; Houwing-Duistermaat, Jeanine; Kloppenburg, Margreet; Slagboom, P. Eline; Helmer, Quinta; den Hollander, Wouter; Bean, Shannon; Raj, Towfique; Bakhshi, Noman; Wang, Qiao Ping; Oyston, Lisa J.; Psaty, Bruce M.; Tracy, Russell P.; Montgomery, Grant W.; Turner, Stephen T.; Blangero, John; Meulenbelt, Ingrid; Ressler, Kerry J.; Yang, Jian; Franke, Lude; Kettunen, Johannes; Visscher, Peter M.; Neely, G. Gregory; Korstanje, Ron; Hanson, Robert L.; Prokisch, Holger; Ferrucci, Luigi; Esko, Tonu; Teumer, Alexander; van Meurs, Joyce B. J.; Johnson, Andrew D.

    2015-01-01

    Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the ‘transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts. PMID:26490707

  17. Transcriptome Response Mediated by Cold Stress in Lotus japonicus.

    PubMed

    Calzadilla, Pablo I; Maiale, Santiago J; Ruiz, Oscar A; Escaray, Francisco J

    2016-01-01

    Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.

  18. Multivariate inference of pathway activity in host immunity and response to therapeutics

    PubMed Central

    Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.

    2014-01-01

    Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207

  19. Antennal Transcriptome Analysis and Comparison of Chemosensory Gene Families in Two Closely Related Noctuidae Moths, Helicoverpa armigera and H. assulta

    PubMed Central

    Zhang, Jin; Wang, Bing; Dong, Shuanglin; Cao, Depan; Dong, Junfeng; Walker, William B.; Liu, Yang; Wang, Guirong

    2015-01-01

    To better understand the olfactory mechanisms in the two lepidopteran pest model species, the Helicoverpa armigera and H. assulta, we conducted transcriptome analysis of the adult antennae using Illumina sequencing technology and compared the chemosensory genes between these two related species. Combined with the chemosensory genes we had identified previously in H. armigera by 454 sequencing, we identified 133 putative chemosensory unigenes in H. armigera including 60 odorant receptors (ORs), 19 ionotropic receptors (IRs), 34 odorant binding proteins (OBPs), 18 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). Consistent with these results, 131 putative chemosensory genes including 64 ORs, 19 IRs, 29 OBPs, 17 CSPs, and 2 SNMPs were identified through male and female antennal transcriptome analysis in H. assulta. Reverse Transcription-PCR (RT-PCR) was conducted in H. assulta to examine the accuracy of the assembly and annotation of the transcriptome and the expression profile of these unigenes in different tissues. Most of the ORs, IRs and OBPs were enriched in adult antennae, while almost all the CSPs were expressed in antennae as well as legs. We compared the differences of the chemosensory genes between these two species in detail. Our work will surely provide valuable information for further functional studies of pheromones and host volatile recognition genes in these two related species. PMID:25659090

  20. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus

    PubMed Central

    Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867

  1. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  2. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus.

    PubMed

    Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.

  3. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias

    2015-01-01

    To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548

  4. Transcriptomics Profiling of Alzheimer’s Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs

    PubMed Central

    Magistri, Marco; Velmeshev, Dmitry; Makhmutova, Madina; Faghihi, Mohammad Ali

    2015-01-01

    Abstract The underlying genetic variations of late-onset Alzheimer’s disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ1 - 42 exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD. PMID:26402107

  5. Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to beet necrotic yellow vein virus infections containing or lacking RNA4.

    PubMed

    Fan, Huiyan; Sun, Haiwen; Wang, Ying; Zhang, Yongliang; Wang, Xianbing; Li, Dawei; Yu, Jialin; Han, Chenggui

    2014-01-01

    Beet necrotic yellow vein virus (BNYVV), encodes either four or five plus-sense single stranded RNAs and is the causal agent of sugar beet rhizomania disease, which is widely distributed in most regions of the world. BNYVV can also infect Nicotiana benthamiana systemically, and causes severe curling and stunting symptoms in the presence of RNA4 or mild symptoms in the absence of RNA4. Confocal laser scanning microscopy (CLSM) analyses showed that the RNA4-encoded p31 protein fused to the red fluorescent protein (RFP) accumulated mainly in the nuclei of N. benthamiana epidermal cells. This suggested that severe RNA4-induced symptoms might result from p31-dependent modifications of the transcriptome. Therefore, we used next-generation sequencing technologies to analyze the transcriptome profile of N. benthamiana in response to infection with different isolates of BNYVV. Comparisons of the transcriptomes of mock, BN3 (RNAs 1+2+3), and BN34 (RNAs 1+2+3+4) infected plants identified 3,016 differentially expressed transcripts, which provided a list of candidate genes that potentially are elicited in response to virus infection. Our data indicate that modifications in the expression of genes involved in RNA silencing, ubiquitin-proteasome pathway, cellulose synthesis, and metabolism of the plant hormone gibberellin may contribute to the severe symptoms induced by RNA4 from BNYVV. These results expand our understanding of the genetic architecture of N. benthamiana as well as provide valuable clues to identify genes potentially involved in resistance to BNYVV infection. Our global survey of gene expression changes in infected plants reveals new insights into the complicated molecular mechanisms underlying symptom development, and aids research into new strategies to protect crops against viruses.

  6. De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress.

    PubMed

    Zeng, Tao; Zhang, Liping; Li, Jinjun; Wang, Deqian; Tian, Yong; Lu, Lizhi

    2015-05-01

    High temperature is a major abiotic stress limiting animal growth and productivity worldwide. The Muscovy duck (Cairina moschata), sometimes called the Barbary drake, is a type of duck with a fairly unusual domestication history. In Southeast Asia, duck meat is one of the top meats consumed, and as such, the production of the meat is an important topic of research. The transcriptomic and genomic data presently available are insufficient to understanding the molecular mechanism underlying the heat tolerance of Muscovy ducks. Thus, transcriptome and expression profiling data for this species are required as important resource for identifying genes and developing molecular marker. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. More than 225 million clean reads were generated and assembled into 36,903 unique transcripts with an average length of 1,135 bp. A total of 21,221 (57.50 %) unigenes were annotated. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with transcription, signal transduction, and apoptosis. We also performed gene expression profiling analysis upon heat treatment in Muscovy ducks and identified 470 heat-response unique transcripts. GO term enrichment showed that protein folding and chaperone binding were significant enrichment, whereas KEGG pathway analyses showed that Ras and MAPKs were activated after heat stress in Muscovy ducks. Our research enriched sequences information of Muscovy duck, provided novel insights into responses to heat stress in these ducks, and serve as candidate genes or markers that can be used to guide future efforts to breed heat-tolerant duck strains.

  7. Integration of Transcriptome, Proteome and Metabolism Data Reveals the Alkaloids Biosynthesis in Macleaya cordata and Macleaya microcarpa

    PubMed Central

    Liu, Fuqing; Huang, Peng; Zhu, Pengcheng; Chen, Jinjun; Shi, Mingming; Guo, Fang; Cheng, Pi; Zeng, Jing; Liao, Yifang; Gong, Jing; Zhang, Hong-Mei; Wang, Depeng; Guo, An-Yuan; Xiong, Xingyao

    2013-01-01

    Background The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. Methodology and Principal Findings We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. Conclusions/Significance To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies. PMID:23326424

  8. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    PubMed Central

    2010-01-01

    Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909

  9. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties.

    PubMed

    Guo, Qianqian; Ma, Xiaojun; Wei, Shugen; Qiu, Deyou; Wilson, Iain W; Wu, Peng; Tang, Qi; Liu, Lijun; Dong, Shoukun; Zu, Wei

    2014-08-12

    The major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer's disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown. In this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis. A combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.

  10. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

    PubMed

    Haimon, Zhana; Volaski, Alon; Orthgiess, Johannes; Boura-Halfon, Sigalit; Varol, Diana; Shemer, Anat; Yona, Simon; Zuckerman, Binyamin; David, Eyal; Chappell-Maor, Louise; Bechmann, Ingo; Gericke, Martin; Ulitsky, Igor; Jung, Steffen

    2018-06-01

    Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.

  11. Complementary transcriptome and proteome profiling in cabbage buds of a recessive male sterile mutant provides new insights into male reproductive development.

    PubMed

    Ji, Jialei; Yang, Limei; Fang, Zhiyuan; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Liu, Yumei; Li, Zhansheng

    2018-05-15

    Plant male reproductive development is a very complex biological process that involves multiple metabolic pathways. To reveal novel insights into male reproductive development, we conducted an integrated profiling of gene activity in the developing buds of a cabbage recessive genetic male sterile mutant. Using RNA-Seq and label-free quantitative proteomics, 2881 transcripts and 1245 protein species were identified with significant differential abundance between the male sterile line 83121A and its isogenic maintainer line 83121B. Analyses of function annotations and correlations between transcriptome and proteome and protein interaction networks were also conducted, which suggested that the male sterility involves a complex regulatory pattern. Moreover, several key biological processes, such as fatty acid metabolism, tapetosome biosynthesis, amino acid metabolism and protein synthesis and degradation were identified as being of relevance to male reproductive development. A large number of protein species involved in sporopollenin synthesis, amino acid synthesis, ribosome assembly, protein processing in endoplasmic reticulum and lipid transfer were observed to be significantly down-accumulated in 83121A buds, indicating their potential roles in the regulation of cabbage microspore abortion. In summary, the conjoint analysis of the transcriptome and proteome provided a global picture regarding the molecular dynamics in male sterile buds of 83121A. Male sterile mutants are excellent materials for the study of plant male reproductive development. This study revealed the molecular dynamics of recessive male sterility in cabbage at the transcriptome and proteome levels, which deepens our understanding of the metabolic pathways involved in male development. Moreover, the male sterility-related genes identified in this study could provide a reference for the artificial regulation of cabbage fertility by using genetic engineering technology, which may result in potential applications in agriculture such as production of hybrid seeds using male sterility. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Meta-Analyses of Dehalococcoides mccartyi Strain 195 Transcriptomic Profiles Identify a Respiration Rate-Related Gene Expression Transition Point and Interoperon Recruitment of a Key Oxidoreductase Subunit

    PubMed Central

    Mansfeldt, Cresten B.; Rowe, Annette R.; Heavner, Gretchen L. W.; Zinder, Stephen H.

    2014-01-01

    A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6 ± 0.6 μM Cl−/h)- and fast (22.9 ± 9.6 μM Cl−/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n = 53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112). PMID:25063656

  13. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene™ Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    PubMed Central

    Kennedy, Laura; Vass, J. Keith; Haggart, D. Ross; Moore, Steve; Burczynski, Michael E.; Crowther, Dan; Miele, Gino

    2008-01-01

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene™ RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2™ enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene™ blood samples also advocate a short, fixed room temperature storage time for all PAXgene™ blood samples collected for the purposes of global transcriptional profiling in clinical studies. PMID:19578521

  14. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    PubMed

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates.

  15. Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development.

    PubMed

    Wu, Ya; Yang, Liyu; Cao, Aqin; Wang, Jianbo

    2015-01-01

    The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

  16. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. Here, we report the transcriptional respo...

  17. Transcriptome profiling and expression analyses of genes critical to wheat adaptation to low temperature

    USDA-ARS?s Scientific Manuscript database

    Background: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expressi...

  18. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast.

    PubMed

    Chumnanpuen, Pramote; Zhang, Jie; Nookaew, Intawat; Nielsen, Jens

    2012-07-01

    In the yeast Saccharomyces cerevisiae many genes involved in lipid biosynthesis are transcriptionally controlled by inositol-choline and the protein kinase Snf1. Here we undertook a global study on how inositol-choline and Snf1 interact in controlling lipid metabolism in yeast. Using both a reference strain (CEN.PK113-7D) and a snf1Δ strain cultured at different nutrient limitations (carbon and nitrogen), at a fixed specific growth rate of 0.1 h(-1), and at different inositol choline concentrations, we quantified the expression of genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through integrated analysis of the transcriptome, the lipid profiling and the fluxome, it was possible to obtain a high quality, large-scale dataset that could be used to identify correlations and associations between the different components. At the transcription level, Snf1 and inositol-choline interact either directly through the main phospholipid-involving transcription factors (i.e. Ino2, Ino4, and Opi1) or through other transcription factors e.g. Gis1, Mga2, and Hac1. However, there seems to be flux regulation at the enzyme levels of several lipid involving enzymes. The analysis showed the strength of using both transcriptome and lipid profiling analysis for mapping the co-influence of inositol-choline and Snf1 on phospholipid metabolism.

  19. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte

    2012-03-15

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treatedmore » biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.« less

  20. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    PubMed

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  1. Comparative transcriptomic profiling of two tomato lines with different ascorbate content in the fruit.

    PubMed

    Di Matteo, Antonio; Sacco, Adriana; De Stefano, Rosalba; Frusciante, Luigi; Barone, Amalia

    2012-12-01

    In recent years, interest in tomato breeding for enhanced antioxidant content has increased as medical research has pointed to human health benefits from antioxidant dietary intake. Ascorbate is one of the major antioxidants present in tomato, and little is known about mechanisms governing ascorbate pool size in this fruit. In order to provide further insights into genetic mechanisms controlling ascorbate biosynthesis and accumulation in tomato, we investigated the fruit transcriptome profile of the Solanum pennellii introgression line 10-1 that exhibits a lower fruit ascorbate level than its cultivated parental genotype. Our results showed that this reduced ascorbate level is associated with an increased antioxidant demand arising from an accelerated oxidative metabolism mainly involving mitochondria, peroxisomes, and cytoplasm. Candidate genes for controlling ascorbate level in tomato fruit were identified, highlighting the role of glycolysis, glyoxylate metabolism, and purine breakdown in modulating the ascorbate pool size.

  2. Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism

    PubMed Central

    Schwahn, Kevin; Nikoloski, Zoran

    2018-01-01

    The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana. PMID:29731765

  3. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation.

    PubMed

    Stephenson, William; Donlin, Laura T; Butler, Andrew; Rozo, Cristina; Bracken, Bernadette; Rashidfarrokhi, Ali; Goodman, Susan M; Ivashkiv, Lionel B; Bykerk, Vivian P; Orange, Dana E; Darnell, Robert B; Swerdlow, Harold P; Satija, Rahul

    2018-02-23

    Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques.

  4. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system

    PubMed Central

    Sowa, Steven W.; Gelderman, Grant; Leistra, Abigail N.; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A.; Romeo, Tony; Baldea, Michael

    2017-01-01

    Abstract Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. PMID:28126921

  5. RNA-Seq transcriptome profiling of mouse oocytes after in vitro maturation and/or vitrification.

    PubMed

    Gao, Lei; Jia, Gongxue; Li, Ai; Ma, Haojia; Huang, Zhengyuan; Zhu, Shien; Hou, Yunpeng; Fu, Xiangwei

    2017-10-16

    In vitro maturation (IVM) and vitrification have been widely used to prepare oocytes before fertilization; however, potential effects of these procedures, such as expression profile changes, are poorly understood. In this study, mouse oocytes were divided into four groups and subjected to combinations of in vitro maturation and/or vitrification treatments. RNA-seq and in silico pathway analysis were used to identify differentially expressed genes (DEGs) that may be involved in oocyte viability after in vitro maturation and/or vitrification. Our results showed that 1) 69 genes were differentially expressed after IVM, 66 of which were up-regulated. Atp5e and Atp5o were enriched in the most significant gene ontology term "mitochondrial membrane part"; thus, these genes may be promising candidate biomarkers for oocyte viability after IVM. 2) The influence of vitrification on the transcriptome of oocytes was negligible, as no DEGs were found between vitrified and fresh oocytes. 3) The MII stage is more suitable for oocyte vitrification with respect to the transcriptome. This study provides a valuable new theoretical basis to further improve the efficiency of in vitro maturation and/or oocyte vitrification.

  6. Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Huang, Hao; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    Penaeid shrimp has a distinctive metamorphosis stage during early development. Although morphological and biochemical studies about this ontogeny have been developed for decades, researches on gene expression level are still scarce. In this study, we have investigated the transcriptomes of five continuous developmental stages in Pacific white shrimp (Litopenaeus vannamei) with high throughput Illumina sequencing technology. The reads were assembled and clustered into 66,815 unigenes, of which 32,398 have putative homologues in nr database, 14,981 have been classified into diverse functional categories by Gene Ontology (GO) annotation and 26,257 have been associated with 255 pathways by KEGG pathway mapping. Meanwhile, the differentially expressed genes (DEGs) between adjacent developmental stages were identified and gene expression patterns were clustered. By GO term enrichment analysis, KEGG pathway enrichment analysis and functional gene profiling, the physiological changes during shrimp metamorphosis could be better understood, especially histogenesis, diet transition, muscle development and exoskeleton reconstruction. In conclusion, this is the first study that characterized the integrated transcriptomic profiles during early development of penaeid shrimp, and these findings will serve as significant references for shrimp developmental biology and aquaculture research. PMID:25197823

  7. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The transcriptome of nitrofen-induced pulmonary hypoplasia in the rat model of congenital diaphragmatic hernia.

    PubMed

    Mahood, Thomas H; Johar, Dina R; Iwasiow, Barbara M; Xu, Wayne; Keijzer, Richard

    2016-05-01

    We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.

  9. Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages

    NASA Astrophysics Data System (ADS)

    Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen

    2017-07-01

    In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.

  10. Metabolic modeling helps interpret transcriptomic changes during malaria.

    PubMed

    Tang, Yan; Gupta, Anuj; Garimalla, Swetha; Galinski, Mary R; Styczynski, Mark P; Fonseca, Luis L; Voit, Eberhard O

    2018-06-01

    Disease represents a specific case of malfunctioning within a complex system. Whereas it is often feasible to observe and possibly treat the symptoms of a disease, it is much more challenging to identify and characterize its molecular root causes. Even in infectious diseases that are caused by a known parasite, it is often impossible to pinpoint exactly which molecular profiles of components or processes are directly or indirectly altered. However, a deep understanding of such profiles is a prerequisite for rational, efficacious treatments. Modern omics methodologies are permitting large-scale scans of some molecular profiles, but these scans often yield results that are not intuitive and difficult to interpret. For instance, the comparison of healthy and diseased transcriptome profiles may point to certain sets of involved genes, but a host of post-transcriptional processes and regulatory mechanisms renders predictions regarding metabolic or physiological consequences of the observed changes in gene expression unreliable. Here we present proof of concept that dynamic models of metabolic pathway systems may offer a tool for interpreting transcriptomic profiles measured during disease. We illustrate this strategy with the interpretation of expression data of genes coding for enzymes associated with purine metabolism. These data were obtained during infections of rhesus macaques (Macaca mulatta) with the malaria parasite Plasmodium cynomolgi or P. coatneyi. The model-based interpretation reveals clear patterns of flux redistribution within the purine pathway that are consistent between the two malaria pathogens and are even reflected in data from humans infected with P. falciparum. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions: proteomic and transcriptomic profiles.

    PubMed

    Aragón, C; Pascual, P; González, J; Escalona, M; Carvalho, L; Amancio, S

    2013-11-01

    Proteomic and transcriptomic profiles of key enzymes were monitored in pineapple plants propagated under C3 and CAM-inducing metabolisms to obtain insight into the CAM-facultative metabolism and the relationship of CAM plants with oxidative stress. Pineapple is one of the most important tropical crops worldwide. The use of temporary immersion bioreactors for the first stages of pineapple propagation enables precise control of plant growth, increases the rate of plant multiplication, decreases space, energy and labor requirements for pineapple plants in commercial micropropagation. Once the plantlets are ready to be taken from the reactors, they are carefully acclimatized to natural environmental conditions, and a facultative C3/CAM metabolism in the first 2 months of growth is the characteristic of pineapple plants, depending on environmental conditions. We subjected two sets of micropropagated pineapple plants to C3 and CAM-inducing environmental conditions, determined by light intensity/relative humidity (respectively 40 μmol m−2 s−1/85 % and 260 μmol m−2 s−1/50 %). Leaves of pineapple plants grown under CAM-inducing conditions showed higher leaf thickness and more developed cuticles and hypodermic tissue. Proteomic profiles of several proteins, isoenzyme patterns and transcriptomic profiles were also measured. Five major spots were isolated and identified, two of them for the first time in Ananas comosus (OEE 1; OEE 2) and the other three corresponding to small fragments of the large subunit of Rubisco (LSU). PEPC and PEPCK were also detected by immunobloting of 2DE at the end of both ex vitro treatments (C3/CAM) during the dark period. Isoenzymes of SOD and CAT were identified by electrophoresis and the transcript levels of OEE 1 and CAT were associated with CAM metabolism in pineapple plants.

  12. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects. PMID:23894529

  13. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  14. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines.

    PubMed

    Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas

    2014-04-24

    With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.

  15. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing

    PubMed Central

    Jin, Hangxia; Dong, Dekun; Yang, Qinghua; Zhu, Danhua

    2016-01-01

    Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted. PMID:26930632

  16. EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms.

    PubMed

    Janies, Daniel A; Witter, Zach; Linchangco, Gregorio V; Foltz, David W; Miller, Allison K; Kerr, Alexander M; Jay, Jeremy; Reid, Robert W; Wray, Gregory A

    2016-01-22

    One of our goals for the echinoderm tree of life project (http://echinotol.org) is to identify orthologs suitable for phylogenetic analysis from next-generation transcriptome data. The current dataset is the largest assembled for echinoderm phylogeny and transcriptomics. We used RNA-Seq to profile adult tissues from 42 echinoderm specimens from 24 orders and 37 families. In order to achieve sampling members of clades that span key evolutionary divergence, many of our exemplars were collected from deep and polar seas. A small fraction of the transcriptome data we produced is being used for phylogenetic reconstruction. Thus to make a larger dataset available to researchers with a wide variety of interests, we made a web-based application, EchinoDB (http://echinodb.uncc.edu). EchinoDB is a repository of orthologous transcripts from echinoderms that is searchable via keywords and sequence similarity. From transcripts we identified 749,397 clusters of orthologous loci. We have developed the information technology to manage and search the loci their annotations with respect to the Sea Urchin (Strongylocentrotus purpuratus) genome. Several users have already taken advantage of these data for spin-off projects in developmental biology, gene family studies, and neuroscience. We hope others will search EchinoDB to discover datasets relevant to a variety of additional questions in comparative biology.

  17. Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome.

    PubMed

    Altmäe, Signe; Segura, Maria Teresa; Esteban, Francisco J; Bartel, Sabine; Brandi, Pilar; Irmler, Martin; Beckers, Johannes; Demmelmair, Hans; López-Sabater, Carmen; Koletzko, Berthold; Krauss-Etschmann, Susanne; Campoy, Cristina

    2017-01-01

    Maternal obesity has a major impact on pregnancy outcomes. There is growing evidence that maternal obesity has a negative influence on placental development and function, thereby adversely influencing offspring programming and health outcomes. However, the molecular mechanisms underlying these processes are poorly understood. We analysed ten term placenta's whole transcriptomes in obese (n = 5) and normal weight women (n = 5), using the Affymetrix microarray platform. Analyses of expression data were carried out using non-parametric methods. Hierarchical clustering and principal component analysis showed a clear distinction in placental transcriptome between obese and normal weight women. We identified 72 differentially regulated genes, with most being down-regulated in obesity (n = 61). Functional analyses of the targets using DAVID and IPA confirm the dysregulation of previously identified processes and pathways in the placenta from obese women, including inflammation and immune responses, lipid metabolism, cancer pathways, and angiogenesis. In addition, we detected new molecular aspects of obesity-derived effects on the placenta, involving the glucocorticoid receptor signalling pathway and dysregulation of several genes including CCL2, FSTL3, IGFBP1, MMP12, PRG2, PRL, QSOX1, SERPINE2 and TAC3. Our global gene expression profiling approach demonstrates that maternal obesity creates a unique in utero environment that impairs the placental transcriptome.

  18. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    PubMed

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-10-28

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transcriptome-based investigation of cirrus development and identifying microsatellite markers in rattan (Daemonorops jenkinsiana)

    PubMed Central

    Zhao, Hansheng; Sun, Huayu; Li, Lichao; Lou, Yongfeng; Li, Rongsheng; Qi, Lianghua; Gao, Zhimin

    2017-01-01

    Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan. PMID:28383053

  20. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  1. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity.

    PubMed

    Bazakos, Christos; Manioudaki, Maria E; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.

  2. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  3. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    PubMed Central

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were classified. The results of this study will provide useful data for future investigations on pest-resistance phytochemistry and plant breeding. PMID:23696897

  4. Single cell transcriptome profiling of developing chick retinal cells.

    PubMed

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  5. Comprehensive RNA-Seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats.

    PubMed

    Yu, Ying; Zhao, Chen; Su, Zhenqiang; Wang, Charles; Fuscoe, James C; Tong, Weida; Shi, Leming

    2014-01-01

    The rat is used extensively by the pharmaceutical, regulatory, and academic communities for safety assessment of drugs and chemicals and for studying human diseases; however, its transcriptome has not been well studied. As part of the SEQC (i.e., MAQC-III) consortium efforts, a comprehensive RNA-Seq data set was constructed using 320 RNA samples isolated from 10 organs (adrenal gland, brain, heart, kidney, liver, lung, muscle, spleen, thymus, and testes or uterus) from both sexes of Fischer 344 rats across four ages (2-, 6-, 21-, and 104-week-old) with four biological replicates for each of the 80 sample groups (organ-sex-age). With the Ribo-Zero rRNA removal and Illumina RNA-Seq protocols, 41 million 50 bp single-end reads were generated per sample, yielding a total of 13.4 billion reads. This data set could be used to identify and validate new rat genes and transcripts, develop a more comprehensive rat transcriptome annotation system, identify novel gene regulatory networks related to tissue specific gene expression and development, and discover genes responsible for disease and drug toxicity and efficacy.

  6. Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.

    PubMed

    Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L

    2017-04-07

    The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in cellular functioning, signaling, immune response, and tissue-specific functions. This study identified differentially expressed transcripts between male and female gar in muscle and brain tissue. The majority of differentially expressed transcripts had sex-specific expression. Expanding on these findings to other developmental stages, populations, and species may lead to the identification of genetic factors contributing to the skewed sex ratio seen in the tropical gar and of sex-specific differences in expression in other species. Finally, the transcriptome assembly will open future research avenues on tropical gar development, cell function, environmental resistance, and evolution in the context of other early vertebrates.

  7. Profile of the spleen transcriptome in beef steers with variation in gain and feed intake

    USDA-ARS?s Scientific Manuscript database

    We have previously identified components of the immune system contributing to feed intake and gain in both the rumen and small intestine of beef steers. In this study, we examined the spleen, a major lymphatic organ near the digestive tract, to determine whether it was also contributing to an animal...

  8. Characterization of the cork oak transcriptome dynamics during acorn development.

    PubMed

    Miguel, Andreia; de Vega-Bartol, José; Marum, Liliana; Chaves, Inês; Santo, Tatiana; Leitão, José; Varela, Maria Carolina; Miguel, Célia M

    2015-06-25

    Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.

  9. Transcriptomic analysis revealed the mechanism of oil dynamic accumulation during developing Siberian apricot (Prunus sibirica L.) seed kernels for the development of woody biodiesel.

    PubMed

    Niu, Jun; An, Jiyong; Wang, Libing; Fang, Chengliang; Ha, Denglong; Fu, Chengyu; Qiu, Lin; Yu, Haiyan; Zhao, Haiyan; Hou, Xinyu; Xiang, Zheng; Zhou, Sufan; Zhang, Zhixiang; Feng, Xinyi; Lin, Shanzhi

    2015-01-01

    Siberian apricot (Prunus sibirica L.) has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of oil accumulation in Siberian apricot seed kernels (SASK) is still unknown at present. To better develop SASK oil as woody biodiesel, it is essential to profile transcriptome and to identify the full repertoire of potential unigenes involved in the formation and accumulation of oil SASK during the different developing stages. We firstly detected the temporal patterns for oil content and fatty acid (FA) compositions of SASK in 7 different developing stages. The best time for obtaining the high quality and quantity of SASK oil was characterized at 60 days after flowering (DAF), and the representative periods (10, 30, 50, 60, and 70 DAF) were selected for transcriptomic analysis. By Illumina/Solexa sequencings, approximately 65 million short reads (average length = 96 bp) were obtained, and then assembled into 124,070 unigenes by Trinity strategy (mean size = 829.62 bp). A total of 3,000, 2,781, 2,620, and 2,675 differentially expressed unigenes were identified at 30, 50, 60, and 70 DAF (10 DAF as the control) by DESeq method, respectively. The relationship between the unigene transcriptional profiles and the oil dynamic patterns in developing SASK was comparatively analyzed, and the specific unigenes encoding some known enzymes and transcription factors involved in acetyl-coenzyme A (acetyl-CoA) formation and oil accumulation were determined. Additionally, 5 key metabolic genes implicated in SASK oil accumulation were experimentally validated by quantitative real-time PCR (qRT-PCR). Our findings could help to construction of oil accumulated pathway and to elucidate the molecular regulatory mechanism of increased oil production in developing SASK. This is the first study of oil temporal patterns, transcriptome sequencings, and differential profiles in developing SASK. All our results will serve as the important foundation to further deeply explore the regulatory mechanism of SASK high-quality oil accumulation, and may also provide some reference for researching the woody biodiesel plants.

  10. Comparative Transcriptome Analysis of the Accessory Sex Gland and Testis from the Chinese Mitten Crab (Eriocheir sinensis)

    PubMed Central

    He, Lin; Jiang, Hui; Cao, Dandan; Liu, Lihua; Hu, Songnian; Wang, Qun

    2013-01-01

    The accessory sex gland (ASG) is an important component of the male reproductive system, which functions to enhance the fertility of spermatozoa during male reproduction. Certain proteins secreted by the ASG are known to bind to the spermatozoa membrane and affect its function. The ASG gene expression profile in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been conducted on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for the ASG of E. sinensis using Illumina sequencing technology. This analysis yielded a total of 33,221,284 sequencing reads, including 2.6 Gb of total nucleotides. Reads were assembled into 85,913 contigs (average 218 bp), or 58,567 scaffold sequences (average 292 bp), that identified 37,955 unigenes (average 385 bp). We assembled all unigenes and compared them with the published testis transcriptome from E. sinensis. In order to identify which genes may be involved in ASG function, as it pertains to modification of spermatozoa, we compared the ASG and testis transcriptome of E. sinensis. Our analysis identified specific genes with both higher and lower tissue expression levels in the two tissues, and the functions of these genes were analyzed to elucidate their potential roles during maturation of spermatozoa. Availability of detailed transcriptome data from ASG and testis in E. sinensis can assist our understanding of the molecular mechanisms involved with spermatozoa conservation, transport, maturation and capacitation and potentially acrosome activation. PMID:23342039

  11. Transcriptome and Proteome Exploration to Provide a Resource for the Study of Agrocybe aegerita

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Yin, Yalin; Pan, Yongfu; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2013-01-01

    Background Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. Methodology/Principal Findings To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. Conclusions/Significance This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry. PMID:23418592

  12. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita.

    PubMed

    Wang, Man; Gu, Bianli; Huang, Jie; Jiang, Shuai; Chen, Yijie; Yin, Yalin; Pan, Yongfu; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2013-01-01

    Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.

  13. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    PubMed Central

    Wang, Kehua; Liu, Yanrong; Tian, Jinli; Huang, Kunyong; Shi, Tianran; Dai, Xiaoxia; Zhang, Wanjun

    2017-01-01

    Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants. PMID:28680431

  14. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    PubMed

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.

  15. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    PubMed

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  16. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    PubMed Central

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  17. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    PubMed Central

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  18. Expression signature as a biomarker for prenatal diagnosis of trisomy 21.

    PubMed

    Volk, Marija; Maver, Aleš; Lovrečić, Luca; Juvan, Peter; Peterlin, Borut

    2013-01-01

    A universal biomarker panel with the potential to predict high-risk pregnancies or adverse pregnancy outcome does not exist. Transcriptome analysis is a powerful tool to capture differentially expressed genes (DEG), which can be used as biomarker-diagnostic-predictive tool for various conditions in prenatal setting. In search of biomarker set for predicting high-risk pregnancies, we performed global expression profiling to find DEG in Ts21. Subsequently, we performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples. Initially, transcriptomic profiles of 10 cultivated amniocyte samples with Ts21 and 9 with normal euploid constitution were determined using expression microarrays. Datasets from Ts21 transcriptomic studies from GEO repository were incorporated. DEG were discovered using linear regression modelling and validated using RT-PCR quantification on an independent sample of 16 cases with Ts21 and 32 controls. The classification performance of Ts21 status based on expression profiling was performed using supervised machine learning algorithm and evaluated using a leave-one-out cross validation approach. Global gene expression profiling has revealed significant expression changes between normal and Ts21 samples, which in combination with data from previously performed Ts21 transcriptomic studies, were used to generate a multi-gene biomarker for Ts21, comprising of 9 gene expression profiles. In addition to biomarker's high performance in discriminating samples from global expression profiling, we were also able to show its discriminatory performance on a larger sample set 2, validated using RT-PCR experiment (AUC=0.97), while its performance on data from previously published studies reached discriminatory AUC values of 1.00. Our results show that transcriptomic changes might potentially be used to discriminate trisomy of chromosome 21 in the prenatal setting. As expressional alterations reflect both, causal and reactive cellular mechanisms, transcriptomic changes may thus have future potential in the diagnosis of a wide array of heterogeneous diseases that result from genetic disturbances.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Ma, Zihao; Carr, Steven A.

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less

  20. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    PubMed Central

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  1. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba)

    PubMed Central

    Tian, Shan; Wang, Bei; Zhao, Xusheng

    2017-01-01

    Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube. PMID:28976994

  2. Comparative transcriptome sequencing and de novo analysis of Vaccinium corymbosum during fruit and color development.

    PubMed

    Li, Lingli; Zhang, Hehua; Liu, Zhongshuai; Cui, Xiaoyue; Zhang, Tong; Li, Yanfang; Zhang, Lingyun

    2016-10-12

    Blueberry is an economically important fruit crop in Ericaceae family. The substantial quantities of flavonoids in blueberry have been implicated in a broad range of health benefits. However, the information regarding fruit development and flavonoid metabolites based on the transcriptome level is still limited. In the present study, the transcriptome and gene expression profiling over berry development, especially during color development were initiated. A total of approximately 13.67 Gbp of data were obtained and assembled into 186,962 transcripts and 80,836 unigenes from three stages of blueberry fruit and color development. A large number of simple sequence repeats (SSRs) and candidate genes, which are potentially involved in plant development, metabolic and hormone pathways, were identified. A total of 6429 sequences containing 8796 SSRs were characterized from 15,457 unigenes and 1763 unigenes contained more than one SSR. The expression profiles of key genes involved in anthocyanin biosynthesis were also studied. In addition, a comparison between our dataset and other published results was carried out. Our high quality reads produced in this study are an important advancement and provide a new resource for the interpretation of high-throughput data for blueberry species whether regarding sequencing data depth or species extension. The use of this transcriptome data will serve as a valuable public information database for the studies of blueberry genome and would greatly boost the research of fruit and color development, flavonoid metabolisms and regulation and breeding of more healthful blueberries.

  3. Transcriptome analysis reveals mucin 4 to be highly associated with periodontitis and identifies pleckstrin as a link to systemic diseases

    PubMed Central

    Lundmark, Anna; Davanian, Haleh; Båge, Tove; Johannsen, Gunnar; Koro, Catalin; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2015-01-01

    The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases. PMID:26686060

  4. High-throughput SNP discovery and transcriptome expression profiles from the salmon louse Caligus rogercresseyi (Copepoda: Caligidae).

    PubMed

    Nuñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2014-06-01

    The salmon louse Caligus rogercresseyi is the dominant ectoparasite species affecting the salmon aquaculture industry in the Southern hemisphere, and it is currently the main cause for economic losses in Chilean aquaculture. However, despite the great concern over Caligus infestations, genomic information on this louse is still scarce, even while the need to develop high-resolution molecular markers is growing. This study provides the first deep transcriptome survey to identify thousands of SNP markers from C. rogercresseyi, with a total of 69,466 SNPs identified using the MiSeq platform (Illumina®), 30,605 (52%) of which were found in contigs successfully annotated against known protein databases. Furthermore, in silico gene expression profiles associated with SNP variants were evaluated, and the results evidenced a wide array of genes that were down- and upregulated throughout the developmental stages of C. rogercresseyi. Interestingly, putative KEGG pathways involved in resistance to antiparasitic agents were also identified, where ten pathways were associated with the nervous system and one was related to ABC transporters. Taken together, this information could be highly useful for investigating the molecular underpinnings involved in the susceptibility or resistance of salmon lice to chemical treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge.

    PubMed

    Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan

    2015-07-17

    Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway.

  6. Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge

    PubMed Central

    Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan

    2015-01-01

    Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway. PMID:26193268

  7. Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development

    PubMed Central

    2013-01-01

    Background Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. Results In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. Conclusion RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid. PMID:23617896

  8. Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development.

    PubMed

    Zhang, Jianxia; Wu, Kunlin; Zeng, Songjun; Teixeira da Silva, Jaime A; Zhao, Xiaolan; Tian, Chang-En; Xia, Haoqiang; Duan, Jun

    2013-04-24

    Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid.

  9. Multifaceted role of nitric oxide in an in vitro mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades

    PubMed Central

    Peng, Zhao Feng; Chen, Minghui Jessica; Manikandan, Jayapal; Melendez, Alirio J; Shui, Guanghou; Russo-Marie, Françoise; Whiteman, Matthew; Beart, Philip M; Moore, Philip K; Cheung, Nam Sang

    2012-01-01

    Abstract Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative. PMID:21352476

  10. A high carbohydrate diet coordinately alters transcriptomic profiles in the adipose tissue leading to enhanced lipid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    To assess the role of dietary macronutrient composition on adipose gene expression we evaluated changes in transcriptomic profiles in the WAT of rats following high carbohydrate (HC) diets. Female Sprague-Dawley rats received liquid diets at 187 or 220 kcal/kg3/4/d via intragastric infusion. Diets w...

  11. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl−/− retinal transcriptomes

    PubMed Central

    Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.

    2011-01-01

    Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. PMID:22162623

  12. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.

  13. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed Central

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba. PMID:27379148

  14. 20180311 - Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells (SOT)

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  15. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  16. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome.

    PubMed

    Hey, Stefan; Baldauf, Jutta; Opitz, Nina; Lithio, Andrew; Pasha, Asher; Provart, Nicholas; Nettleton, Dan; Hochholdinger, Frank

    2017-04-01

    Root hairs are tubular extensions of epidermis cells. Transcriptome profiling demonstrated that the single cell-type root hair transcriptome was less complex than the transcriptome of multiple cell-type primary roots without root hairs. In total, 831 genes were exclusively and 5585 genes were preferentially expressed in root hairs [false discovery rate (FDR) ≤1%]. Among those, the most significantly enriched Gene Ontology (GO) functional terms were related to energy metabolism, highlighting the high energy demand for the development and function of root hairs. Subsequently, the maize homologs for 138 Arabidopsis genes known to be involved in root hair development were identified and their phylogenetic relationship and expression in root hairs were determined. This study indicated that the genetic regulation of root hair development in Arabidopsis and maize is controlled by common genes, but also shows differences which need to be dissected in future genetic experiments. Finally, a maize root view of the eFP browser was implemented including the root hair transcriptome of the present study and several previously published maize root transcriptome data sets. The eFP browser provides color-coded expression levels for these root types and tissues for any gene of interest, thus providing a novel resource to study gene expression and function in maize roots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    PubMed Central

    2012-01-01

    Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a restricted genome region. Also, we hypothesize that the Asp-rich protein genes may act as Ca2+ "entrapping" proteins, potentially regulating Ca2+ homeostasis during self-pollen recognition. PMID:22333138

  18. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system.

    PubMed

    Sowa, Steven W; Gelderman, Grant; Leistra, Abigail N; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A; Romeo, Tony; Baldea, Michael; Contreras, Lydia M

    2017-02-28

    Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals the ethylene response factor SlERF6 to play an important role in ripening and carotenoid accumulation

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum) and its wild relatives harbor genetic diversity that yields heritable variation in fruit chemistry that could be exploited to identify genes regulating their synthesis and accumulation. Carotenoids, for example, are essential in plant and animal nutrition and are the vi...

  20. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    PubMed

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  1. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    PubMed

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  2. Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction

    PubMed Central

    Liu, Feng; Wu, Jing-bo; Zhan, Ru-lin; Ou, Xiong-chang

    2016-01-01

    Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes. PMID:27683574

  3. Global transcriptome profiling reveals molecular mechanisms of metal tolerance in a chronically exposed wild population of brown trout.

    PubMed

    Uren Webster, T M; Bury, N; van Aerle, R; Santos, E M

    2013-08-06

    Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population.

  4. Global Transcriptome Profiling Reveals Molecular Mechanisms of Metal Tolerance in a Chronically Exposed Wild Population of Brown Trout

    PubMed Central

    2013-01-01

    Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population. PMID:23834071

  5. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  6. Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates

    PubMed Central

    Ellison, Christopher E.; Kowbel, David; Glass, N. Louise; Taylor, John W.

    2014-01-01

    ABSTRACT Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. PMID:24692637

  7. Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes Regardless of Developmental Stage

    DOE PAGES

    Croken, Matthew; Ma, Yan Fen; Markillie, Lye Meng; ...

    2014-11-13

    Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identify 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observe close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysismore » (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identify 1,526 genes that are differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identify ribosomal proteins as being expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage.« less

  8. Blood expression profiles of fragile X premutation carriers identify candidate genes involved in neurodegenerative and infertility phenotypes.

    PubMed

    Mateu-Huertas, Elisabet; Rodriguez-Revenga, Laia; Alvarez-Mora, Maria Isabel; Madrigal, Irene; Willemsen, Rob; Milà, Montserrat; Martí, Eulàlia; Estivill, Xavier

    2014-05-01

    Male premutation carriers presenting between 55 and 200 CGG repeats in the Fragile-X-associated (FMR1) gene are at risk of developing Fragile X Tremor/Ataxia Syndrome (FXTAS), and females undergo Premature Ovarian Failure (POF1). Here, we have evaluated gene expression profiles from blood in male FMR1 premutation carriers and detected a strong deregulation of genes enriched in FXTAS relevant biological pathways, including inflammation, neuronal homeostasis and viability. Gene expression profiling distinguished between control individuals, carriers with FXTAS and carriers without FXTAS, with levels of expanded FMR1 mRNA being increased in FXTAS patients. In vitro studies in a neuronal cell model indicate that expression levels of expanded FMR1 5'-UTR are relevant in modulating the transcriptome. Thus, perturbations of the transcriptome may be an interplay between the CGG expansion size and FMR1 expression levels. Several deregulated genes (DFFA, BCL2L11, BCL2L1, APP, SOD1, RNF10, HDAC5, KCNC3, ATXN7, ATXN3 and EAP1) were validated in brain samples of a FXTAS mouse model. Downregulation of EAP1, a gene involved in the female reproductive system physiology, was confirmed in female carriers. Decreased levels were detected in female carriers with POF1 compared to those without POF1, suggesting that EAP1 levels contribute to ovarian insufficiency. In summary, gene expression profiling in blood has uncovered mechanisms that may underlie different pathological aspects of the premutation. A better understanding of the transcriptome dynamics in relation with expanded FMR1 mRNA expression levels and CGG expansion size may provide mechanistic insights into the disease process and a more accurate FXTAS diagnosis to the myriad of phenotypes associated with the premutation. Copyright © 2014. Published by Elsevier Inc.

  9. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    NASA Astrophysics Data System (ADS)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  10. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    PubMed Central

    2011-01-01

    Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes. PMID:21333005

  11. Transcriptome profiling of petal abscission zone and functional analysis of AUX/IAA family genes reveal that RhIAA16 is involved in petal shedding in rose

    USDA-ARS?s Scientific Manuscript database

    Rose is one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone d...

  12. Genome-wide methylomic and transcriptomic analyses identify subtype-specific epigenetic signatures commonly dysregulated in glioma stem cells and glioblastoma.

    PubMed

    Pangeni, Rajendra P; Zhang, Zhou; Alvarez, Angel A; Wan, Xuechao; Sastry, Namratha; Lu, Songjian; Shi, Taiping; Huang, Tianzhi; Lei, Charles X; James, C David; Kessler, John A; Brennan, Cameron W; Nakano, Ichiro; Lu, Xinghua; Hu, Bo; Zhang, Wei; Cheng, Shi-Yuan

    2018-06-21

    Glioma stem cells (GSCs), a subpopulation of tumor cells, contribute to tumor heterogeneity and therapy resistance. Gene expression profiling classified glioblastoma (GBM) and GSCs into four transcriptomically-defined subtypes. Here, we determined the DNA methylation signatures in transcriptomically pre-classified GSC and GBM bulk tumors subtypes. We hypothesized that these DNA methylation signatures correlate with gene expression and are uniquely associated either with only GSCs or only GBM bulk tumors. Additional methylation signatures may be commonly associated with both GSCs and GBM bulk tumors, i.e., common to non-stem-like and stem-like tumor cell populations and correlating with the clinical prognosis of glioma patients. We analyzed Illumina 450K methylation array and expression data from a panel of 23 patient-derived GSCs. We referenced these results with The Cancer Genome Atlas (TCGA) GBM datasets to generate methylomic and transcriptomic signatures for GSCs and GBM bulk tumors of each transcriptomically pre-defined tumor subtype. Survival analyses were carried out for these signature genes using publicly available datasets, including from TCGA. We report that DNA methylation signatures in proneural and mesenchymal tumor subtypes are either unique to GSCs, unique to GBM bulk tumors, or common to both. Further, dysregulated DNA methylation correlates with gene expression and clinical prognoses. Additionally, many previously identified transcriptionally-regulated markers are also dysregulated due to DNA methylation. The subtype-specific DNA methylation signatures described in this study could be useful for refining GBM sub-classification, improving prognostic accuracy, and making therapeutic decisions.

  13. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus)

    PubMed Central

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756

  14. A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design

    PubMed Central

    Arguel, Marie-Jeanne; LeBrigand, Kevin; Paquet, Agnès; Ruiz García, Sandra; Zaragosi, Laure-Emmanuelle; Waldmann, Rainer

    2017-01-01

    Abstract Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays. PMID:27940562

  15. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae.

    PubMed

    Qi, Zhitao; Wu, Ping; Zhang, Qihuan; Wei, Youchuan; Wang, Zisheng; Qiu, Ming; Shao, Rong; Li, Yao; Gao, Qian

    2016-02-01

    Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study contributes to better on the immune system and defense mechanisms of soiny mullet in response to bacterial infection, and provides valuable references for related studies in mugilidae species which currently lack genomic reference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis. PMID:26815362

  17. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines

    PubMed Central

    2014-01-01

    Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272

  18. Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant Deschampsia antarctica Desv

    PubMed Central

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Background Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. Results The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5′- or 3′-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. Conclusions We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome. PMID:24647560

  19. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome.

  20. Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in the Red and Yellow Fruits of Sweet Cherry (Prunus avium L.)

    PubMed Central

    Wei, Hairong; Chen, Xin; Zong, Xiaojuan; Shu, Huairui; Gao, Dongsheng; Liu, Qingzhong

    2015-01-01

    Background Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.). The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry. Methodology/Principal Findings In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE) profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavanone 3’-hydroxylase (F3’H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT) during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40) that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR). Conclusions/Significance The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights into the molecular mechanisms underlying anthocyanin biosynthesis. These results will provide a platform for further functional genomic research on this fruit crop. PMID:25799516

  1. Transcriptional landscapes of Axolotl (Ambystoma mexicanum).

    PubMed

    Caballero-Pérez, Juan; Espinal-Centeno, Annie; Falcon, Francisco; García-Ortega, Luis F; Curiel-Quesada, Everardo; Cruz-Hernández, Andrés; Bako, Laszlo; Chen, Xuemei; Martínez, Octavio; Alberto Arteaga-Vázquez, Mario; Herrera-Estrella, Luis; Cruz-Ramírez, Alfredo

    2018-01-15

    The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Clinical significance of In vivo Cytarabine Induced Gene Expression Signature in AML

    PubMed Central

    Lamba, Jatinder K.; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R.; Cogle, Christopher R.; Bhise, Neha; Raimondi, Susana C.; Downing, James R.; Baker, Sharyn D.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.

    2016-01-01

    Despite initial remission, approximately 60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML, however extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy can trigger adaptive response by influencing leukemic cell transcriptome and hence development of resistance or refractory disease. It is however challenging to perform such a study due to lack of availability of specimens post-drug treatment. In this study our primary objective was to identify in vivo cytarabine induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. Our results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response. PMID:26366682

  3. Clinical significance of in vivo cytarabine-induced gene expression signature in AML.

    PubMed

    Lamba, Jatinder K; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R; Cogle, Christopher R; Bhise, Neha; Raimondi, Susana C; Downing, James R; Baker, Sharyn D; Ribeiro, Raul C; Rubnitz, Jeffrey E

    2016-01-01

    Despite initial remission, ∼60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML; however, the extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy, can trigger adaptive response by influencing leukemic cell transcriptome and, hence, development of resistance or refractory disease. It is, however, challenging to perform such a study due to lack of availability of specimens post-drug treatment. The primary objective of this study was to identify in vivo cytarabine-induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. The results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response.

  4. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    PubMed Central

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377

  5. The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis

    PubMed Central

    Chen, Yuan; Toffaletti, Dena L.; Tenor, Jennifer L.; Litvintseva, Anastasia P.; Fang, Charles; Mitchell, Thomas G.; McDonald, Tami R.; Nielsen, Kirsten; Boulware, David R.; Bicanic, Tihana; Perfect, John R.

    2014-01-01

    ABSTRACT Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. PMID:24496797

  6. Gene Expression Profiling of Development and Anthocyanin Accumulation in Kiwifruit (Actinidia chinensis) Based on Transcriptome Sequencing

    PubMed Central

    Zeng, Shaohua; Xiao, Gong; Wang, Gan; Wang, Ying; Peng, Ming; Huang, Hongwen

    2015-01-01

    Red-fleshed kiwifruit (Actinidia chinensis Planch. ‘Hongyang’) is a promising commercial cultivar due to its nutritious value and unique flesh color, derived from vitamin C and anthocyanins. In this study, we obtained transcriptome data of ‘Hongyang’ from seven developmental stages using Illumina sequencing. We mapped 39–54 million reads to the recently sequenced kiwifruit genome and other databases to define gene structure, to analyze alternative splicing, and to quantify gene transcript abundance at different developmental stages. The transcript profiles throughout red kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as phytohormones, sugars, starch and L-ascorbic acid, which are indispensable for the development and formation of quality fruit. Candidate genes for these pathways were identified through MapMan and phylogenetic analysis. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of L-ascorbic acid was very active, primarily through the L-galactose pathway. The genes responsible for the accumulation of anthocyanin in red kiwifruit were identified, and their expression levels were investigated during kiwifruit development. This survey of gene expression during kiwifruit development paves the way for further investigation of the development of this uniquely colored and nutritious fruit and reveals which factors are needed for high quality fruit formation. This transcriptome data and its analysis will be useful for improving kiwifruit genome annotation, for basic fruit molecular biology research, and for kiwifruit breeding and improvement. PMID:26301713

  7. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  8. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles.

    PubMed

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E; Mazzuca, Silvia; Serra, Ilia A; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  9. Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer

    PubMed Central

    Men, Xin; Ma, Jun; Wu, Tong; Pu, Junyi; Wen, Shaojia; Shen, Jianfeng; Wang, Xun; Wang, Yamin; Chen, Chao; Dai, Penggao

    2018-01-01

    Tamoxifen (TAM) resistance is an important clinical problem in the treatment of breast cancer. In order to identify the mechanism of TAM resistance for estrogen receptor (ER)-positive breast cancer, we screened the transcriptome using RNA-seq and compared the gene expression profiles between the MCF-7 mamma carcinoma cell line and the TAM-resistant cell line TAMR/MCF-7, 52 significant differential expression genes (DEGs) were identified including SLIT2, ROBO, LHX, KLF, VEGFC, BAMBI, LAMA1, FLT4, PNMT, DHRS2, MAOA and ALDH. The DEGs were annotated in the GO, COG and KEGG databases. Annotation of the function of the DEGs in the KEGG database revealed the top three pathways enriched with the most DEGs, including pathways in cancer, the PI3K-AKT pathway, and focal adhesion. Then we compared the gene expression profiles between the Clinical progressive disease (PD) and the complete response (CR) from the cancer genome altas (TCGA). 10 common DEGs were identified through combining the clinical and cellular analysis results. Protein-protein interaction network was applied to analyze the association of ER signal pathway with the 10 DEGs. 3 significant genes (GFRA3, NPY1R and PTPRN2) were closely related to ER related pathway. These significant DEGs regulated many biological activities such as cell proliferation and survival, motility and migration, and tumor cell invasion. The interactions between these DEGs and drug resistance phenomenon need to be further elucidated at a functional level in further studies. Based on our findings, we believed that these DEGs could be therapeutic targets, which can be explored to develop new treatment options. PMID:29423105

  10. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  11. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  12. Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport

    PubMed Central

    Amano, Ikuko; Kitajima, Sakihito; Suzuki, Hideyuki; Koeduka, Takao

    2018-01-01

    The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants. PMID:29902274

  13. Integrative Transcriptome Profiling of Cognitive Aging and Its Preservation through Ser/Thr Protein Phosphatase Regulation.

    PubMed

    Park, C Sehwan; Valomon, Amandine; Welzl, Hans

    2015-01-01

    Environmental enrichment has been reported to delay or restore age-related cognitive deficits, however, a mechanism to account for the cause and progression of normal cognitive decline and its preservation by environmental enrichment is lacking. Using genome-wide SAGE-Seq, we provide a global assessment of differentially expressed genes altered with age and environmental enrichment in the hippocampus. Qualitative and quantitative proteomics in naïve young and aged mice was used to further identify phosphorylated proteins differentially expressed with age. We found that increased expression of endogenous protein phosphatase-1 inhibitors in aged mice may be characteristic of long-term environmental enrichment and improved cognitive status. As such, hippocampus-dependent performances in spatial, recognition, and associative memories, which are sensitive to aging, were preserved by environmental enrichment and accompanied by decreased protein phosphatase activity. Age-associated phosphorylated proteins were also found to correspond to the functional categories of age-associated genes identified through transcriptome analysis. Together, this study provides a comprehensive map of the transcriptome and proteome in the aging brain, and elucidates endogenous protein phosphatase-1 inhibition as a potential means through which environmental enrichment may ameliorate age-related cognitive deficits.

  14. Transcriptomic Analysis of the Rice White Tip Nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae)

    PubMed Central

    Li, Danlei; Wang, Zhiying; Dong, Airong; Chen, Qiaoli; Liu, Xiaohan

    2014-01-01

    Background The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. Methodology and Principal Findings Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs) and carbohydrate-binding modules (CBMs) were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. Conclusions and Significance The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species. PMID:24637831

  15. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival

    PubMed Central

    2012-01-01

    Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors. PMID:23046790

  16. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets.

    PubMed

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin; Calvisi, Diego F; Andersen, Jesper B

    2017-04-01

    Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor. Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise to improve the prognosis of iCCA patients.

  17. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile, and accurate RNA structure analysis

    PubMed Central

    Smola, Matthew J.; Rice, Greggory M.; Busan, Steven; Siegfried, Nathan A.; Weeks, Kevin M.

    2016-01-01

    SHAPE chemistries exploit small electrophilic reagents that react with the 2′-hydroxyl group to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues based on the ability of reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as for simple model RNAs. This protocol describes the experimental steps, implemented over three days, required to perform SHAPE probing and construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. These steps include RNA folding and SHAPE structure probing, mutational profiling by reverse transcription, library construction, and sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots, and provides useful troubleshooting information, often within an hour. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures, and visualize probable and alternative helices, often in under a day. We illustrate these algorithms with the E. coli thiamine pyrophosphate riboswitch, E. coli 16S rRNA, and HIV-1 genomic RNAs. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles, and entire transcriptomes. The straightforward MaP strategy greatly expands the number, length, and complexity of analyzable RNA structures. PMID:26426499

  18. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    PubMed

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.

  19. The developmental transcriptome atlas of the spoon worm Urechis unicinctus (Echiurida: Annelida).

    PubMed

    Park, Chungoo; Han, Yong-Hee; Lee, Sung-Gwon; Ry, Kyoung-Bin; Oh, Jooseong; Kern, Elizabeth M A; Park, Joong-Ki; Cho, Sung-Jin

    2018-03-01

    Echiurida is one of the most intriguing major subgroups of annelida because, unlike most other annelids, echiurids lack metameric body segmentation as adults. For this reason, transcriptome analyses from various developmental stages of echiurid species can be of substantial value for understanding precise expression levels and the complex regulatory networks during early and larval development. A total of 914 million raw RNA-Seq reads were produced from 14 developmental stages of Urechis unicinctus and were de novo assembled into contigs spanning 63,928,225 bp with an N50 length of 2700 bp. The resulting comprehensive transcriptome database of the early developmental stages of U. unicinctus consists of 20,305 representative functional protein-coding transcripts. Approximately 66% of unigenes were assigned to superphylum-level taxa, including Lophotrochozoa (40%). The completeness of the transcriptome assembly was assessed using benchmarking universal single-copy orthologs; 75.7% of the single-copy orthologs were presented in our transcriptome database. We observed 3 distinct patterns of global transcriptome profiles from 14 developmental stages and identified 12,705 genes that showed dynamic regulation patterns during the differentiation and maturation of U. unicinctus cells. We present the first large-scale developmental transcriptome dataset of U. unicinctus and provide a general overview of the dynamics of global gene expression changes during its early developmental stages. The analysis of time-course gene expression data is a first step toward understanding the complex developmental gene regulatory networks in U. unicinctus and will furnish a valuable resource for analyzing the functions of gene repertoires in various developmental phases.

  20. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development

    PubMed Central

    Guo, Shaogui; Sun, Honghe; Zhang, Haiying; Liu, Jingan; Ren, Yi; Gong, Guoyi; Jiao, Chen; Zheng, Yi; Yang, Wencai; Fei, Zhangjun; Xu, Yong

    2015-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides novel insights into watermelon fruit quality and ripening biology. Furthermore, the comparative expression profile data we developed provides a valuable resource to accelerate functional studies in watermelon and facilitate watermelon crop improvement. PMID:26079257

  1. Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish.

    PubMed

    Lie, Kai K; Tørresen, Ole K; Solbakken, Monica Hongrø; Rønnestad, Ivar; Tooming-Klunderud, Ave; Nederbragt, Alexander J; Jentoft, Sissel; Sæle, Øystein

    2018-03-06

    The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species. Long and short read sequencing technologies were combined to generate a ballan wrasse genome of 805 Mbp. Analysis of the genome and transcriptome assemblies confirmed the absence of genes that code for proteins involved in gastric function. The gene coding for the appetite stimulating protein ghrelin was also absent in wrasse. Gene synteny mapping identified several appetite-controlling genes and their paralogs previously undescribed in fish. Transcriptome profiling along the length of the intestine found a declining expression gradient from the anterior to the posterior, and a distinct expression profile in the hind gut. We showed gene loss has occurred for all known genes related to stomach function in the ballan wrasse, while the remaining functions of the digestive tract appear intact. The results also show appetite control in ballan wrasse has undergone substantial changes. The loss of ghrelin suggests that other genes, such as motilin, may play a ghrelin like role. The wrasse genome offers novel insight in to the evolutionary traits of this large family. As the stomach plays a major role in protein digestion, the lack of genes related to stomach digestion in wrasse suggests it requires formulated diets with higher levels of readily digestible protein than those for gastric species.

  2. Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis.

    PubMed

    Skvortsov, T A; Ignatov, D V; Majorov, K B; Apt, A S; Azhikina, T L

    2013-04-01

    Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, and correcting. In this study, we describe the results of genome-wide transcriptional profiling of the major human bacterial pathogen M. tuberculosis during its persistence in lungs. Two mouse strains differing in their susceptibility to tuberculosis were used for experimental infection with M. tuberculosis. Mycobacterial transcriptomes obtained from the infected tissues of the mice at two different time points were analyzed by deep sequencing and compared. It was hypothesized that the changes in the M. tuberculosis transcriptome may attest to the activation of the metabolism of lipids and amino acids, transition to anaerobic respiration, and increased expression of the factors modulating the immune response. A total of 209 genes were determined whose expression increased with disease progression in both host strains (commonly upregulated genes, CUG). Among them, the genes related to the functional categories of lipid metabolism, cell wall, and cell processes are of great interest. It was assumed that the products of these genes are involved in M. tuberculosis adaptation to the host immune system defense, thus being potential targets for drug development.

  3. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    PubMed

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  4. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    PubMed

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  5. De-novo RNA Sequencing and Metabolite Profiling to Identify Genes Involved in Anthocyanin Biosynthesis in Korean Black Raspberry (Rubus coreanus Miquel)

    PubMed Central

    Rim, Yeonggil; Kumar, Ritesh; Han, Xiao; Lee, Sang Yeol; Lee, Choong Hwan; Kim, Jae-Yean

    2014-01-01

    The Korean black raspberry (Rubus coreanus Miquel, KB) on ripening is usually consumed as fresh fruit, whereas the unripe KB has been widely used as a source of traditional herbal medicine. Such a stage specific utilization of KB has been assumed due to the changing metabolite profile during fruit ripening process, but so far molecular and biochemical changes during its fruit maturation are poorly understood. To analyze biochemical changes during fruit ripening process at molecular level, firstly, we have sequenced, assembled, and annotated the transcriptome of KB fruits. Over 4.86 Gb of normalized cDNA prepared from fruits was sequenced using Illumina HiSeq™ 2000, and assembled into 43,723 unigenes. Secondly, we have reported that alterations in anthocyanins and proanthocyanidins are the major factors facilitating variations in these stages of fruits. In addition, up-regulation of F3′H1, DFR4 and LDOX1 resulted in the accumulation of cyanidin derivatives during the ripening process of KB, indicating the positive relationship between the expression of anthocyanin biosynthetic genes and the anthocyanin accumulation. Furthermore, the ability of RcMCHI2 (R. coreanus Miquel chalcone flavanone isomerase 2) gene to complement Arabidopsis transparent testa 5 mutant supported the feasibility of our transcriptome library to provide the gene resources for improving plant nutrition and pigmentation. Taken together, these datasets obtained from transcriptome library and metabolic profiling would be helpful to define the gene-metabolite relationships in this non-model plant. PMID:24505466

  6. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  7. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  8. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.

    PubMed

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-03-02

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo ), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo . In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23 ) and JG30 (without Xa23 ), before and after infection of the Xoo strain, PXO99 A , was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99 A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23 -mediated resistance.

  9. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance. PMID:29498672

  10. miRvestigator: web application to identify miRNAs responsible for co-regulated gene expression patterns discovered through transcriptome profiling.

    PubMed

    Plaisier, Christopher L; Bare, J Christopher; Baliga, Nitin S

    2011-07-01

    Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3' un-translated region (UTR) sequences to mediate the observed co-regulation. The novelty of our approach is the miRvestigator hidden Markov model (HMM) algorithm which systematically computes a similarity P-value for each unique miRNA seed sequence from the miRNA database miRBase to an overrepresented sequence motif identified within the 3'-UTR of the query genes. We have made this miRNA discovery tool accessible to the community by integrating our HMM algorithm with a proven algorithm for de novo discovery of miRNA seed sequences and wrapping these algorithms into a user-friendly interface. Additionally, the miRvestigator web server also produces a list of putative miRNA binding sites within 3'-UTRs of the query transcripts to facilitate the design of validation experiments. The miRvestigator is freely available at http://mirvestigator.systemsbiology.net.

  11. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

    PubMed Central

    House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.

    2017-01-01

    Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636

  12. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis.

    PubMed

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.

  13. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis

    PubMed Central

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri. PMID:27644092

  14. RISC RNA sequencing for context-specific identification of in vivo miR targets

    PubMed Central

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2010-01-01

    Rationale MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. Objective To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). Methods and Results We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias, and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1,645 mRNAs consistently targeted to mouse cardiac RISCs. We employed this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing ‘seed’ sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. Conclusions RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context, and is applicable to any tissue and any disease state. Summary MicroRNAs (miRs) are key regulators of mRNA translation in health and disease. While bioinformatic predictions suggest that a single miR may target hundreds of mRNAs, the number of experimentally verified targets of miRs is low. To enable comprehensive, unbiased examination of miR targets, we have performed deep RNA sequencing of cardiac transcriptomes in parallel with cardiac RNA-induced silencing complex (RISC)-associated RNAs (the RISCome), called RISC sequencing. We developed methods that did not require cross-linking of RNAs to RISCs or amplification of mRNA prior to sequencing, making it possible to rapidly perform RISC sequencing from intact tissue while avoiding amplification bias. Comparison of RISCome with transcriptome expression defined the degree of RISC enrichment for each mRNA. The majority of the mRNAs enriched in wild-type cardiac RISComes compared to transcriptomes were bioinformatically predicted to be targets of at least 1 of 139 cardiac-expressed miRs. Programming cardiomyocyte RISCs via transgenic overexpression in adult hearts of miR-133a or miR-499, two miRs that contain entirely different ‘seed’ sequences, elicited differing profiles of RISC-targeted mRNAs. Thus, RISC sequencing represents a highly sensitive method for general RISC profiling and individual miR target identification in biological context. PMID:21030712

  15. Transcriptome complexity in cardiac development and diseases--an expanding universe between genome and phenome.

    PubMed

    Gao, Chen; Wang, Yibin

    2014-01-01

    With the advancement of transcriptome profiling by micro-arrays and high-throughput RNA-sequencing, transcriptome complexity and its dynamics are revealed at different levels in cardiovascular development and diseases. In this review, we will highlight the recent progress in our knowledge of cardiovascular transcriptome complexity contributed by RNA splicing, RNA editing and noncoding RNAs. The emerging importance of many of these previously under-explored aspects of gene regulation in cardiovascular development and pathology will be discussed.

  16. Exploring Triacylglycerol Biosynthetic Pathway in Developing Seeds of Chia (Salvia hispanica L.): A Transcriptomic Approach

    PubMed Central

    Rupwate, Sunny D.; Rajasekharan, Ram; Srinivasan, Malathi

    2015-01-01

    Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb), with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO) terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG) classification, the major category was “Metabolism” (31.97%), of which the most prominent class was ‘carbohydrate metabolism and transport’ (5.81% of total KOG classifications) followed by ‘secondary metabolite biosynthesis transport and catabolism’ (5.34%) and ‘lipid metabolism’ (4.57%). A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs) were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research and understanding of chia. The identified novel UniGenes will facilitate gene discovery and creation of genomic resource for this crop. PMID:25875809

  17. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    PubMed

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  18. Genomic and transcriptomic predictors of triglyceride response to regular exercise

    PubMed Central

    Sarzynski, Mark A; Davidsen, Peter K; Sung, Yun Ju; Hesselink, Matthijs K C; Schrauwen, Patrick; Rice, Treva K; Rao, D C; Falciani, Francesco; Bouchard, Claude

    2015-01-01

    Aim We performed genome-wide and transcriptome-wide profiling to identify genes and single nucleotide polymorphisms (SNPs) associated with the response of triglycerides (TG) to exercise training. Methods Plasma TG levels were measured before and after a 20-week endurance training programme in 478 white participants from the HERITAGE Family Study. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. Affymetrix HG-U133+2 arrays were used to quantitate gene expression levels from baseline muscle biopsies of a subset of participants (N=52). Genome-wide association study (GWAS) analysis was performed using MERLIN, while transcriptomic predictor models were developed using the R-package GALGO. Results The GWAS results showed that eight SNPs were associated with TG training-response (ΔTG) at p<9.9×10−6, while another 31 SNPs showed p values <1×10−4. In multivariate regression models, the top 10 SNPs explained 32.0% of the variance in ΔTG, while conditional heritability analysis showed that four SNPs statistically accounted for all of the heritability of ΔTG. A molecular signature based on the baseline expression of 11 genes predicted 27% of ΔTG in HERITAGE, which was validated in an independent study. A composite SNP score based on the top four SNPs, each from the genomic and transcriptomic analyses, was the strongest predictor of ΔTG (R2=0.14, p=3.0×10−68). Conclusions Our results indicate that skeletal muscle transcript abundance at 11 genes and SNPs at a number of loci contribute to TG response to exercise training. Combining data from genomics and transcriptomics analyses identified a SNP-based gene signature that should be further tested in independent samples. PMID:26491034

  19. De Novo Assembly and Annotation of the Transcriptome of the Agricultural Weed Ipomoea purpurea Uncovers Gene Expression Changes Associated with Herbicide Resistance

    PubMed Central

    Leslie, Trent; Baucom, Regina S.

    2014-01-01

    Human-mediated selection can lead to rapid evolution in very short time scales, and the evolution of herbicide resistance in agricultural weeds is an excellent example of this phenomenon. The common morning glory, Ipomoea purpurea, is resistant to the herbicide glyphosate, but genetic investigations of this trait have been hampered by the lack of genomic resources for this species. Here, we present the annotated transcriptome of the common morning glory, Ipomoea purpurea, along with an examination of whole genome expression profiling to assess potential gene expression differences between three artificially selected herbicide resistant lines and three susceptible lines. The assembled Ipomoea transcriptome reported in this work contains 65,459 assembled transcripts, ~28,000 of which were functionally annotated by assignment to Gene Ontology categories. Our RNA-seq survey using this reference transcriptome identified 19 differentially expressed genes associated with resistance—one of which, a cytochrome P450, belongs to a large plant family of genes involved in xenobiotic detoxification. The differentially expressed genes also broadly implicated receptor-like kinases, which were down-regulated in the resistant lines, and other growth and defense genes, which were up-regulated in resistant lines. Interestingly, the target of glyphosate—EPSP synthase—was not overexpressed in the resistant Ipomoea lines as in other glyphosate resistant weeds. Overall, this work identifies potential candidate resistance loci for future investigations and dramatically increases genomic resources for this species. The assembled transcriptome presented herein will also provide a valuable resource to the Ipomoea community, as well as to those interested in utilizing the close relationship between the Convolvulaceae and the Solanaceae for phylogenetic and comparative genomics examinations. PMID:25155274

  20. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance.

    PubMed

    Leslie, Trent; Baucom, Regina S

    2014-08-25

    Human-mediated selection can lead to rapid evolution in very short time scales, and the evolution of herbicide resistance in agricultural weeds is an excellent example of this phenomenon. The common morning glory, Ipomoea purpurea, is resistant to the herbicide glyphosate, but genetic investigations of this trait have been hampered by the lack of genomic resources for this species. Here, we present the annotated transcriptome of the common morning glory, Ipomoea purpurea, along with an examination of whole genome expression profiling to assess potential gene expression differences between three artificially selected herbicide resistant lines and three susceptible lines. The assembled Ipomoea transcriptome reported in this work contains 65,459 assembled transcripts, ~28,000 of which were functionally annotated by assignment to Gene Ontology categories. Our RNA-seq survey using this reference transcriptome identified 19 differentially expressed genes associated with resistance-one of which, a cytochrome P450, belongs to a large plant family of genes involved in xenobiotic detoxification. The differentially expressed genes also broadly implicated receptor-like kinases, which were down-regulated in the resistant lines, and other growth and defense genes, which were up-regulated in resistant lines. Interestingly, the target of glyphosate-EPSP synthase-was not overexpressed in the resistant Ipomoea lines as in other glyphosate resistant weeds. Overall, this work identifies potential candidate resistance loci for future investigations and dramatically increases genomic resources for this species. The assembled transcriptome presented herein will also provide a valuable resource to the Ipomoea community, as well as to those interested in utilizing the close relationship between the Convolvulaceae and the Solanaceae for phylogenetic and comparative genomics examinations. Copyright © 2014 Leslie and Baucom.

  1. A regulation probability model-based meta-analysis of multiple transcriptomics data sets for cancer biomarker identification.

    PubMed

    Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang

    2017-08-23

    Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.

  2. Transcriptome Profile Analysis of Breast Muscle Tissues from High or Low Levels of Atmospheric Ammonia Exposed Broilers (Gallus gallus)

    PubMed Central

    Sa, Renna; Zhong, Ruqing; Xing, Huan; Zhang, Hongfu

    2016-01-01

    Atmospheric ammonia is a common problem in poultry industry. High concentrations of aerial ammonia cause great harm to broilers' health and production. For the consideration of human health, the limit exposure concentration of ammonia in houses is set at 25 ppm. Previous reports have shown that 25 ppm is still detrimental to livestock, especially the gastrointestinal tract and respiratory tract, but the negative relationship between ammonia exposure and the tissue of breast muscle of broilers is still unknown. In the present study, 25 ppm ammonia in poultry houses was found to lower slaughter performance and breast yield. Then, high-throughput RNA sequencing was utilized to identify differentially expressed genes in breast muscle of broiler chickens exposed to high (25 ppm) or low (3 ppm) levels of atmospheric ammonia. The transcriptome analysis showed that 163 genes (fold change ≥ 2 or ≤ 0.5; P-value < 0.05) were differentially expressed between Ammonia25 (treatment group) and Ammonia3 (control group), including 96 down-regulated and 67 up-regulated genes. qRT-PCR analysis validated the transcriptomic results of RNA sequencing. Gene Ontology (GO) functional annotation analysis revealed potential genes, processes and pathways with putative involvement in growth and development inhibition of breast muscle in broilers caused by aerial ammonia exposure. This study facilitates understanding of the genetic architecture of the chicken breast muscle transcriptome, and has identified candidate genes for breast muscle response to atmospheric ammonia exposure. PMID:27611572

  3. Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi.

    PubMed

    Valenzuela-Muñoz, Valentina; Sturm, Armin; Gallardo-Escárate, Cristian

    2015-04-09

    ATP-binding cassette (ABC) protein family encode for membrane proteins involved in the transport of various biomolecules through the cellular membrane. These proteins have been identified in all taxa and present important physiological functions, including the process of insecticide detoxification in arthropods. For that reason the ectoparasite Caligus rogercresseyi represents a model species for understanding the molecular underpinnings involved in insecticide drug resistance. llumina sequencing was performed using sea lice exposed to 2 and 3 ppb of deltamethrin and azamethiphos. Contigs obtained from de novo assembly were annotated by Blastx. RNA-Seq analysis was performed and validated by qPCR analysis. From the transcriptome database of C. rogercresseyi, 57 putative members of ABC protein sequences were identified and phylogenetically classified into the eight subfamilies described for ABC transporters in arthropods. Transcriptomic profiles for ABC proteins subfamilies were evaluated throughout C. rogercresseyi development. Moreover, RNA-Seq analysis was performed for adult male and female salmon lice exposed to the delousing drugs azamethiphos and deltamethrin. High transcript levels of the ABCB and ABCC subfamilies were evidenced. Furthermore, SNPs mining was carried out for the ABC proteins sequences, revealing pivotal genomic information. The present study gives a comprehensive transcriptome analysis of ABC proteins from C. rogercresseyi, providing relevant information about transporter roles during ontogeny and in relation to delousing drug responses in salmon lice. This genomic information represents a valuable tool for pest management in the Chilean salmon aquaculture industry.

  4. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  5. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  6. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles.

    PubMed

    Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2017-01-01

    Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.

  7. Liver Transcriptome Analysis of the Large Yellow Croaker (Larimichthys crocea) during Fasting by Using RNA-Seq

    PubMed Central

    Qian, Baoying; Xue, Liangyi; Huang, Hongli

    2016-01-01

    The large yellow croaker (Larimichthys crocea) is an economically important fish species in Chinese mariculture industry. To understand the molecular basis underlying the response to fasting, Illumina HiSeqTM 2000 was used to analyze the liver transcriptome of fasting large yellow croakers. A total of 54,933,550 clean reads were obtained and assembled into 110,364 contigs. Annotation to the NCBI database identified a total of 38,728 unigenes, of which 19,654 were classified into Gene Ontology and 22,683 were found in Kyoto Encyclopedia of Genes and Genomes (KEGG). Comparative analysis of the expression profiles between fasting fish and normal-feeding fish identified a total of 7,623 differentially expressed genes (P < 0.05), including 2,500 upregulated genes and 5,123 downregulated genes. Dramatic differences were observed in the genes involved in metabolic pathways such as fat digestion and absorption, citrate cycle, and glycolysis/gluconeogenesis, and the similar results were also found in the transcriptome of skeletal muscle. Further qPCR analysis confirmed that the genes encoding the factors involved in those pathways significantly changed in terms of expression levels. The results of the present study provide insights into the molecular mechanisms underlying the metabolic response of the large yellow croaker to fasting as well as identified areas that require further investigation. PMID:26967898

  8. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    PubMed

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  9. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    PubMed Central

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  10. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. Copyright © 2016 Song et al.

  11. Extensive shift in placental transcriptome profile in preeclampsia and placental origin of adverse pregnancy outcomes

    PubMed Central

    Sõber, Siim; Reiman, Mario; Kikas, Triin; Rull, Kristiina; Inno, Rain; Vaas, Pille; Teesalu, Pille; Marti, Jesus M. Lopez; Mattila, Pirkko; Laan, Maris

    2015-01-01

    One in five pregnant women suffer from gestational complications, prevalently driven by placental malfunction. Using RNASeq, we analyzed differential placental gene expression in cases of normal gestation, late-onset preeclampsia (LO-PE), gestational diabetes (GD) and pregnancies ending with the birth of small-for-gestational-age (SGA) or large-for-gestational-age (LGA) newborns (n = 8/group). In all groups, the highest expression was detected for small noncoding RNAs and genes specifically implicated in placental function and hormonal regulation. The transcriptome of LO-PE placentas was clearly distinct, showing statistically significant (after FDR) expressional disturbances for hundreds of genes. Taqman RT-qPCR validation of 45 genes in an extended sample (n = 24/group) provided concordant results. A limited number of transcription factors including LRF, SP1 and AP2 were identified as possible drivers of these changes. Notable differences were detected in differential expression signatures of LO-PE subtypes defined by the presence or absence of intrauterine growth restriction (IUGR). LO-PE with IUGR showed higher correlation with SGA and LO-PE without IUGR with LGA placentas. Whereas changes in placental transcriptome in SGA, LGA and GD cases were less prominent, the overall profiles of expressional disturbances overlapped among pregnancy complications providing support to shared placental responses. The dataset represent a rich catalogue for potential biomarkers and therapeutic targets. PMID:26268791

  12. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    PubMed

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  13. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.

    PubMed

    Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S

    2017-01-13

    Rose-scented geranium (Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623 bp, and N50 length: 752 bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding.

  14. Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani

    PubMed Central

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction. PMID:23342153

  15. Transcriptomes Reveal Genetic Signatures Underlying Physiological Variations Imposed by Different Fermentation Conditions in Lactobacillus plantarum

    PubMed Central

    Bongers, Roger S.; van Bokhorst-van de Veen, Hermien; Wiersma, Anne; Overmars, Lex; Marco, Maria L.; Kleerebezem, Michiel

    2012-01-01

    Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of conditions that differ in temperature, pH, as well as NaCl, amino acid, and O2 levels. Samples derived from these fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics, e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological variations imposed by different fermentation conditions. PMID:22802930

  16. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    PubMed

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4 + T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  17. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    NASA Astrophysics Data System (ADS)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces < 2 pg PbTx/cell, and the mutant low-toxin Wilson clone produces undetectable to low (<0.05 pg/cell) amounts. Further, PbTx-2 has been measured in Karenia papilionacea but not Karenia mikimotoi. We compared the transcriptomes of four K. brevis clones (Wilson-CCFWC268, SP3, SP1, and mutant low-toxin Wilson) with K. papilionacea and K. mikimotoi to investigate nucleotide-level genetic variations and differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high-throughput RNA sequencing.

  18. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis.

    PubMed

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-06-02

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.

  19. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis

    PubMed Central

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-01-01

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis. PMID:27254593

  20. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.

    PubMed

    Gan, Ruei-Chi; Chen, Ting-Wen; Wu, Timothy H; Huang, Po-Jung; Lee, Chi-Ching; Yeh, Yuan-Ming; Chiu, Cheng-Hsun; Huang, Hsien-Da; Tang, Petrus

    2016-12-22

    Next-generation sequencing promises the de novo genomic and transcriptomic analysis of samples of interests. However, there are only a few organisms having reference genomic sequences and even fewer having well-defined or curated annotations. For transcriptome studies focusing on organisms lacking proper reference genomes, the common strategy is de novo assembly followed by functional annotation. However, things become even more complicated when multiple transcriptomes are compared. Here, we propose a new analysis strategy and quantification methods for quantifying expression level which not only generate a virtual reference from sequencing data, but also provide comparisons between transcriptomes. First, all reads from the transcriptome datasets are pooled together for de novo assembly. The assembled contigs are searched against NCBI NR databases to find potential homolog sequences. Based on the searched result, a set of virtual transcripts are generated and served as a reference transcriptome. By using the same reference, normalized quantification values including RC (read counts), eRPKM (estimated RPKM) and eTPM (estimated TPM) can be obtained that are comparable across transcriptome datasets. In order to demonstrate the feasibility of our strategy, we implement it in the web service PARRoT. PARRoT stands for Pipeline for Analyzing RNA Reads of Transcriptomes. It analyzes gene expression profiles for two transcriptome sequencing datasets. For better understanding of the biological meaning from the comparison among transcriptomes, PARRoT further provides linkage between these virtual transcripts and their potential function through showing best hits in SwissProt, NR database, assigning GO terms. Our demo datasets showed that PARRoT can analyze two paired-end transcriptomic datasets of approximately 100 million reads within just three hours. In this study, we proposed and implemented a strategy to analyze transcriptomes from non-reference organisms which offers the opportunity to quantify and compare transcriptome profiles through a homolog based virtual transcriptome reference. By using the homolog based reference, our strategy effectively avoids the problems that may cause from inconsistencies among transcriptomes. This strategy will shed lights on the field of comparative genomics for non-model organism. We have implemented PARRoT as a web service which is freely available at http://parrot.cgu.edu.tw .

  1. Transcriptome profiling and digital gene expression analysis of sweet potato for the identification of putative genes involved in the defense response against Fusarium oxysporum f. sp. batatas.

    PubMed

    Lin, Yuli; Zou, Weikun; Lin, Shiqiang; Onofua, Dennis; Yang, Zhijian; Chen, Haizhou; Wang, Songliang; Chen, Xuanyang

    2017-01-01

    Sweet potato production is constrained by Fusarium wilt, which is caused by Fusarium oxysporum f. sp. batatas (Fob). The identification of genes related to disease resistance and the underlying mechanisms will contribute to improving disease resistance via sweet potato breeding programs. In the present study, we performed de novo transcriptome assembly and digital gene expression (DGE) profiling of sweet potato challenged with Fob using Illumina HiSeq technology. In total, 89,944,188 clean reads were generated from 12 samples and assembled into 101,988 unigenes with an average length of 666 bp; of these unigenes, 62,605 (61.38%) were functionally annotated in the NCBI non-redundant protein database by BLASTX with a cutoff E-value of 10-5. Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were examined to explore the unigenes' functions. We constructed four DGE libraries for the sweet potato cultivars JinShan57 (JS57, highly resistant) and XinZhongHua (XZH, highly susceptible), which were challenged with pathogenic Fob. Genes that were differentially expressed in the four libraries were identified by comparing the transcriptomes. Various genes that were differentially expressed during defense, including chitin elicitor receptor kinase 1 (CERK), mitogen-activated protein kinase (MAPK), WRKY, NAC, MYB, and ethylene-responsive transcription factor (ERF), as well as resistance genes, pathogenesis-related genes, and genes involved in salicylic acid (SA) and jasmonic acid (JA) signaling pathways, were identified. These data represent a sequence resource for genetic and genomic studies of sweet potato that will enhance the understanding of the mechanism of disease resistance.

  2. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process

    PubMed Central

    Lewis, Amanda M.; Croughan, William D.; Aranibar, Nelly; Lee, Alison G.; Warrack, Bethanne; Abu-Absi, Nicholas R.; Patel, Rutva; Drew, Barry; Borys, Michael C.; Reily, Michael D.; Li, Zheng Jian

    2016-01-01

    A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability. PMID:27310468

  3. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders.

    PubMed

    Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri

    2013-12-19

    Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.

  4. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

    PubMed

    Hu, Yongli; Hase, Takeshi; Li, Hui Peng; Prabhakar, Shyam; Kitano, Hiroaki; Ng, See Kiong; Ghosh, Samik; Wee, Lawrence Jin Kiat

    2016-12-22

    The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.

  5. Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition.

    PubMed

    Li, Haoxin; Cowie, Andrew; Johnson, John A; Webster, Duncan; Martyniuk, Christopher J; Gray, Christopher A

    2016-08-11

    The treatment of microbial infections is becoming increasingly challenging because of limited therapeutic options and the growing number of pathogenic strains that are resistant to current antibiotics. There is an urgent need to identify molecules with novel modes of action to facilitate the development of new and more effective therapeutic agents. The anti-mycobacterial activity of the C17 diyne natural products falcarinol and panaxydol has been described previously; however, their mode of action remains largely undetermined in microbes. Gene expression profiling was therefore used to determine the transcriptomic response of Mycobacterium smegmatis upon treatment with falcarinol and panaxydol to better characterize the mode of action of these C17 diynes. Our analyses identified 704 and 907 transcripts that were differentially expressed in M. smegmatis after treatment with falcarinol and panaxydol respectively. Principal component analysis suggested that the C17 diynes exhibit a mode of action that is distinct to commonly used antimycobacterial drugs. Functional enrichment analysis and pathway enrichment analysis revealed that cell processes such as ectoine biosynthesis and cyclopropane-fatty-acyl-phospholipid synthesis were responsive to falcarinol and panaxydol treatment at the transcriptome level in M. smegmatis. The modes of action of the two C17 diynes were also predicted through Prediction of Activity Spectra of Substances (PASS). Based upon convergence of these three independent analyses, we hypothesize that the C17 diynes inhibit fatty acid biosynthesis, specifically phospholipid synthesis, in mycobacteria. Based on transcriptomic responses, it is suggested that the C17 diynes act differently than other anti-mycobacterial compounds in M. smegmatis, and do so by inhibiting phospholipid biosynthesis.

  6. Characterization of transcriptome in the Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae) and gene expression analysis during developmental stages.

    PubMed

    Tang, Pei-An; Wu, Hai-Jing; Xue, Hao; Ju, Xing-Rong; Song, Wei; Zhang, Qi-Lin; Yuan, Ming-Long

    2017-07-30

    The Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae) is a worldwide pest that causes serious damage to stored foods. Although many efforts have been conducted on this species due to its economic importance, the study of genetic basis of development, behavior and insecticide resistance has been greatly hampered due to lack of genomic information. In this study, we used high throughput sequencing platform to perform a de novo transcriptome assembly and tag-based digital gene expression profiling (DGE) analyses across four different developmental stages of P. interpunctella (egg, third-instar larvae, pupae and adult). We obtained approximate 9gigabyte (GB) of clean data and recovered 84,938 unigenes, including 37,602 clusters and 47,336 singletons. These unigenes were annotated using BLAST against the non-redundant protein databases and then functionally classified based on Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). A large number of differentially expressed genes were identified by pairwise comparisons among different developmental stages. Gene expression profiles dramatically changed between developmental stage transitions. Some of these differentially expressed genes were related to digestion and cuticularization. Quantitative real-time PCR results of six randomly selected genes conformed the findings in the DGEs. Furthermore, we identified over 8000 microsatellite markers and 97,648 single nucleotide polymorphisms which will be useful for population genetics studies of P. interpunctella. This transcriptomic information provided insight into the developmental basis of P. interpunctella and will be helpful for establishing integrated management strategies and developing new targets of insecticides for this serious pest. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts.

    PubMed

    Homuth, Georg; Wahl, Simone; Müller, Christian; Schurmann, Claudia; Mäder, Ulrike; Blankenberg, Stefan; Carstensen, Maren; Dörr, Marcus; Endlich, Karlhans; Englbrecht, Christian; Felix, Stephan B; Gieger, Christian; Grallert, Harald; Herder, Christian; Illig, Thomas; Kruppa, Jochen; Marzi, Carola S; Mayerle, Julia; Meitinger, Thomas; Metspalu, Andres; Nauck, Matthias; Peters, Annette; Rathmann, Wolfgang; Reinmaa, Eva; Rettig, Rainer; Roden, Michael; Schillert, Arne; Schramm, Katharina; Steil, Leif; Strauch, Konstantin; Teumer, Alexander; Völzke, Henry; Wallaschofski, Henri; Wild, Philipp S; Ziegler, Andreas; Völker, Uwe; Prokisch, Holger; Zeller, Tanja

    2015-10-15

    Obesity, defined as pathologically increased body mass index (BMI), is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D.

  8. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection.

    PubMed

    Xue, Shuxia; Liu, Yichen; Zhang, Yichen; Sun, Yan; Geng, Xuyun; Sun, Jinsheng

    2013-01-01

    White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.

  9. EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamomi

    PubMed Central

    2011-01-01

    Background Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. Results 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. Conclusions This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms. PMID:22108245

  10. EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamomi.

    PubMed

    Mahomed, Waheed; Berg, Noëlani van den

    2011-11-23

    Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms.

  11. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes).

    PubMed

    Kukekova, Anna V; Johnson, Jennifer L; Teiling, Clotilde; Li, Lewyn; Oskina, Irina N; Kharlamova, Anastasiya V; Gulevich, Rimma G; Padte, Ravee; Dubreuil, Michael M; Vladimirova, Anastasiya V; Shepeleva, Darya V; Shikhevich, Svetlana G; Sun, Qi; Ponnala, Lalit; Temnykh, Svetlana V; Trut, Lyudmila N; Acland, Gregory M

    2011-10-03

    Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.

  12. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    PubMed Central

    2011-01-01

    Background Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information. PMID:21967120

  13. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection.

    PubMed

    Nejat, Naghmeh; Cahill, David M; Vadamalai, Ganesan; Ziemann, Mark; Rookes, James; Naderali, Neda

    2015-10-01

    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

  14. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis

    PubMed Central

    Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.

    2015-01-01

    Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654

  15. Integrated Metabolite and Transcript Profiling Identify a Biosynthetic Mechanism for Hispidol in Medicago truncatula Cell Cultures1[C][W][OA

    PubMed Central

    Farag, Mohamed A.; Deavours, Bettina E.; de Fátima, Ângelo; Naoumkina, Marina; Dixon, Richard A.; Sumner, Lloyd W.

    2009-01-01

    Metabolic profiling of elicited barrel medic (Medicago truncatula) cell cultures using high-performance liquid chromatography coupled to photodiode and mass spectrometry detection revealed the accumulation of the aurone hispidol (6-hydroxy-2-[(4-hydroxyphenyl)methylidene]-1-benzofuran-3-one) as a major response to yeast elicitor. Parallel, large-scale transcriptome profiling indicated that three peroxidases, MtPRX1, MtPRX2, and MtPRX3, were coordinately induced with the accumulation of hispidol. MtPRX1 and MtPRX2 exhibited aurone synthase activity based upon in vitro substrate specificity and product profiles of recombinant proteins expressed in Escherichia coli. Hispidol possessed significant antifungal activity relative to other M. truncatula phenylpropanoids tested but has not been reported in this species before and was not found in differentiated roots in which high levels of the peroxidase transcripts accumulated. We propose that hispidol is formed in cell cultures by metabolic spillover when the pool of its precursor, isoliquiritigenin, builds up as a result of an imbalance between the upstream and downstream segments of the phenylpropanoid pathway, reflecting the plasticity of plant secondary metabolism. The results illustrate that integration of metabolomics and transcriptomics in genetically reprogrammed plant cell cultures is a powerful approach for the discovery of novel bioactive secondary metabolites and the mechanisms underlying their generation. PMID:19571306

  16. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.

    PubMed

    Li, Weiguo; Zhang, Lihui; Ding, Zhan; Wang, Guodong; Zhang, Yandi; Gong, Hongmei; Chang, Tianjun; Zhang, Yanwen

    2017-02-28

    Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.

  17. De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.)

    PubMed Central

    Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu

    2015-01-01

    Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175

  18. Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus.

    PubMed

    Zhang, Yin; Li, Yang; Liang, Xiao; Cao, Xiaojuan; Huang, Longfei; Yan, Jie; Wei, Yanxing; Gao, Jian

    2017-01-01

    RNA sequencing and short-read assembly were utilized to produce a transcriptome of livers from loaches (Misgurnus anguillicaudatus) fed with three different diets respectively containing fresh fish oil (FO group), medium oxidized fish oil (MO group) and high oxidized fish oil (HO group). A total of 60,663 unigenes were obtained in this study, with mean length 848.74 bp. 50,814, 49,584 and 49,814 unigenes were respectively obtained from FO, MO and HO groups. There were 2,343 differentially expressed genes between FO and MO, with 855 down- and 1,488 up-regulated genes in the MO group. 2,813 genes were differentially expressed between FO and HO, including 1,256 down- and 1,552 up-regulated genes in the HO group. 2,075 differentially expressed genes were found in the comparison of MO and HO, including 1,074 up- and 1,001 down-regulated genes in the MO group. Some differentially expressed genes, such as fatty acid transport protein (fatp), fatty acid binding protein (fabp), apolipoprotein (apo), peroxisome proliferator activated receptor-gamma (ppar-γ), acetyl-CoA synthetase (acs) and arachidonate 5-lipoxygenase (alox5), were involved in lipid metabolism, suggesting these genes in the loach were responsive to dietary oxidized fish oil. Results of transcriptome profilings here were validated using quantitative real time PCR in fourteen randomly selected unigenes. The present study provides insights into hepatic transcriptome profile of the loach, which is a valuable resource for studies of loach genomics. More importantly, this study identifies some important genes responsible for dietary oxidized fish oil, which will benefit researches of lipid metabolism in fish.

  19. De novo assembly and comparative transcriptome analysis of the foot from Chinese green mussel (Perna viridis) in response to cadmium stimulation

    PubMed Central

    You, Xinxin; Wang, Jintu; Chen, Jieming; Peng, Chao; Shi, Qiong

    2017-01-01

    The Chinese green mussel, Perna viridis, is a marine bivalve with important economic values as well as biomonitoring roles for aquatic pollution. Byssus, secreted by the foot gland, has been proved to bind heavy metals effectively. In this study, using the RNA sequencing technology, we performed comparative transcriptomic analysis on the mussel feet with or without inducing by cadmium (Cd). Our current work is aiming at providing insights into the molecular mechanisms of byssus binding to heavy metal ions. The transcriptome sequencing generated a total of 26.13-Gb raw data. After a careful assembly of clean data, we obtained a primary set of 105,127 unigenes, in which 32,268 unigenes were annotated. Based on the expression profiles, we identified 9,048 differentially expressed genes (DEGs) between Cd treatment (50 or 100 μg/L) at 48 h and the control, suggesting an extensive transcriptome response of the mussels during the Cd stimulation. Moreover, we observed that the expression levels of 54 byssus protein coding genes increased significantly after the 48-h Cd stimulation. In addition, 16 critical byssus protein coding genes were picked for profiling by quantitative real-time PCR (qRT-PCR). Finally, we reached a primary conclusion that high content of tyrosine (Tyr), cysteine (Cys), histidine (His) residues or the special motif plays an important role in the accumulation of heavy metals in byssus. We also proposed an interesting model for the confirmed byssal Cd accumulation, in which biosynthesis of byssus proteins may play simultaneously critical roles since their transcription levels were significantly elevated. PMID:28520756

  20. Transcriptome Profiles of the Protoscoleces of Echinococcus granulosus Reveal that Excretory-Secretory Products Are Essential to Metabolic Adaptation

    PubMed Central

    Pan, Wei; Shen, Yujuan; Han, Xiuming; Wang, Ying; Liu, Hua; Jiang, Yanyan; Zhang, Yumei; Wang, Yanjuan; Xu, Yuxin; Cao, Jianping

    2014-01-01

    Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. PMID:25500817

  1. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis

    PubMed Central

    2010-01-01

    Background Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared ranki ngs for a priori identified physiological marker genes between the biofilm and published data sets. Results Biofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database http://www.ncbi.nlm.nih.gov/geo. By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h-1. Conclusions Collectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due to low metabolic activity. PMID:21083928

  2. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation

    PubMed Central

    Park, Jin Hwan; Lee, Kwang Ho; Kim, Tae Yong; Lee, Sang Yup

    2007-01-01

    The l-valine production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on transcriptome analysis and gene knockout simulation of the in silico genome-scale metabolic network. Feedback inhibition of acetohydroxy acid synthase isoenzyme III by l-valine was removed by site-directed mutagenesis, and the native promoter containing the transcriptional attenuator leader regions of the ilvGMEDA and ilvBN operon was replaced with the tac promoter. The ilvA, leuA, and panB genes were deleted to make more precursors available for l-valine biosynthesis. This engineered Val strain harboring a plasmid overexpressing the ilvBN genes produced 1.31 g/liter l-valine. Comparative transcriptome profiling was performed during batch fermentation of the engineered and control strains. Among the down-regulated genes, the lrp and ygaZH genes, which encode a global regulator Lrp and l-valine exporter, respectively, were overexpressed. Amplification of the lrp, ygaZH, and lrp-ygaZH genes led to the enhanced production of l-valine by 21.6%, 47.1%, and 113%, respectively. Further improvement was achieved by using in silico gene knockout simulation, which identified the aceF, mdh, and pfkA genes as knockout targets. The VAMF strain (Val ΔaceF Δmdh ΔpfkA) overexpressing the ilvBN, ilvCED, ygaZH, and lrp genes was able to produce 7.55 g/liter l-valine from 20 g/liter glucose in batch culture, resulting in a high yield of 0.378 g of l-valine per gram of glucose. These results suggest that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification, transcriptome profiling, and systems-level in silico analysis. PMID:17463081

  3. Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1-/+ Mice.

    PubMed

    Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting; Biddick, Laura; Reddy, Arun; Lightfoot, Stan; Janakiram, Naveena B; Mohammed, Altaf; Dai, Wei; Yamada, Hiroshi Y

    2016-02-01

    Colon cancer is the second most lethal cancer and is predicted to claim 49,700 lives in the United States this year. Chromosome instability (CIN) is observed in 80% to 90% of colon cancers and is thought to contribute to colon cancer progression and recurrence. To investigate the impact of CIN on colon cancer development, we developed shugoshin-1 (Sgo1) haploinsufficient (-/+) mice, an animal model focusing on mitotic error-induced CIN. In this study, we analyzed signature changes in the colonic transcriptome of Sgo1(-/+) mice to examine the molecular events underlying the altered carcinogenesis profiles in Sgo1(-/+) mice. We performed next-generation sequencing of normal-looking colonic mucosal tissue from mice treated with the carcinogen azoxymethane after 24 weeks. Transcriptome profiling revealed 349 hits with a 2-fold expression difference threshold (217 upregulated genes, 132 downregulated genes, P < 0.05). Pathway analyses indicated that the Sgo1-CIN tissues upregulated pathways known to be activated in colon cancer, including lipid metabolism (z score 4.47), Notch signaling (4.47), insulin signaling (3.81), and PPAR pathways (3.75), and downregulated pathways involved in immune responses including allograft rejection (6.69) and graft-versus-host disease (6.54). Notably, stem cell markers were also misregulated. Collectively, our findings demonstrate that systemic CIN results in transcriptomic changes in metabolism, proliferation, cell fate, and immune responses in the colon, which may foster a microenvironment amenable to cancer development. Therefore, therapeutic approaches focusing on these identified pathways may be valuable for colon cancer prevention and treatment. ©2016 American Association for Cancer Research.

  4. Linear Regression Links Transcriptomic Data and Cellular Raman Spectra.

    PubMed

    Kobayashi-Kirschvink, Koseki J; Nakaoka, Hidenori; Oda, Arisa; Kamei, Ken-Ichiro F; Nosho, Kazuki; Fukushima, Hiroko; Kanesaki, Yu; Yajima, Shunsuke; Masaki, Haruhiko; Ohta, Kunihiro; Wakamoto, Yuichi

    2018-06-08

    Raman microscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra and transcriptomic profiles of Schizosaccharomyces pombe and Escherichia coli can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional Raman spectra and transcriptomes measured by RNA sequencing can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra, and vice versa. Highly expressed non-coding RNAs contributed to the Raman-transcriptome linear correspondence more significantly than mRNAs in S. pombe. This demonstration of correspondence between cellular Raman spectra and transcriptomes is a promising step toward establishing spectroscopic live-cell omics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Bridging the Gap to Non-toxic Fungal Control: Lupinus-Derived Blad-Containing Oligomer as a Novel Candidate to Combat Human Pathogenic Fungi

    PubMed Central

    Pinheiro, Ana M.; Carreira, Alexandra; Prescott, Thomas A. K.; Ferreira, Ricardo B.; Monteiro, Sara A.

    2017-01-01

    The lack of antifungal drugs with novel modes of action reaching the clinic is a serious concern. Recently a novel antifungal protein referred to as Blad-containing oligomer (BCO) has received regulatory approval as an agricultural antifungal agent. Interestingly its spectrum of antifungal activity includes human pathogens such as Candida albicans, however, its mode of action has yet to be elucidated. Here we demonstrate that BCO exerts its antifungal activity through inhibition of metal ion homeostasis which results in apoptotic cell death in C. albicans. HIP HOP profiling in Saccharomyces cerevisiae using a panel of signature strains that are characteristic for common modes of action identified hypersensitivity in yeast lacking the iron-dependent transcription factor Aft1 suggesting restricted iron uptake as a mode of action. Furthermore, global transcriptome profiling in C. albicans also identified disruption of metal ion homeostasis as a potential mode of action. Experiments were carried out to assess the effect of divalent metal ions on the antifungal activity of BCO revealing that BCO activity is antagonized by metal ions such as Mn2+, Zn2+, and Fe2+. The transcriptome profile also implicated sterol synthesis as a possible secondary mode of action which was subsequently confirmed in sterol synthesis assays in C. albicans. Animal models for toxicity showed that BCO is generally well tolerated and presents a promising safety profile as a topical applied agent. Given its potent broad spectrum antifungal activity and novel multitarget mode of action, we propose BCO as a promising new antifungal agent for the topical treatment of fungal infections. PMID:28702011

  6. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    PubMed

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  7. Bridging the Gap to Non-toxic Fungal Control: Lupinus-Derived Blad-Containing Oligomer as a Novel Candidate to Combat Human Pathogenic Fungi.

    PubMed

    Pinheiro, Ana M; Carreira, Alexandra; Prescott, Thomas A K; Ferreira, Ricardo B; Monteiro, Sara A

    2017-01-01

    The lack of antifungal drugs with novel modes of action reaching the clinic is a serious concern. Recently a novel antifungal protein referred to as Blad-containing oligomer (BCO) has received regulatory approval as an agricultural antifungal agent. Interestingly its spectrum of antifungal activity includes human pathogens such as Candida albicans , however, its mode of action has yet to be elucidated. Here we demonstrate that BCO exerts its antifungal activity through inhibition of metal ion homeostasis which results in apoptotic cell death in C. albicans . HIP HOP profiling in Saccharomyces cerevisiae using a panel of signature strains that are characteristic for common modes of action identified hypersensitivity in yeast lacking the iron-dependent transcription factor Aft1 suggesting restricted iron uptake as a mode of action. Furthermore, global transcriptome profiling in C. albicans also identified disruption of metal ion homeostasis as a potential mode of action. Experiments were carried out to assess the effect of divalent metal ions on the antifungal activity of BCO revealing that BCO activity is antagonized by metal ions such as Mn 2+ , Zn 2+ , and Fe 2+ . The transcriptome profile also implicated sterol synthesis as a possible secondary mode of action which was subsequently confirmed in sterol synthesis assays in C. albicans . Animal models for toxicity showed that BCO is generally well tolerated and presents a promising safety profile as a topical applied agent. Given its potent broad spectrum antifungal activity and novel multitarget mode of action, we propose BCO as a promising new antifungal agent for the topical treatment of fungal infections.

  8. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

    PubMed

    Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B

    2016-02-04

    Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with limited bioinformatics experience to analyze their data and integrate next generation sequencing (NGS) technologies into the classroom. The SPARTA software and tutorial are available at sparta.readthedocs.org.

  9. De novo Transcriptome Analysis of Miscanthus lutarioriparius Identifies Candidate Genes in Rhizome Development

    PubMed Central

    Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke

    2017-01-01

    HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913

  10. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus.

    PubMed

    Zhou, Xiaoxu; Cui, Jun; Liu, Shikai; Kong, Derong; Sun, He; Gu, Chenlei; Wang, Hongdi; Qiu, Xuemei; Chang, Yaqing; Liu, Zhanjiang; Wang, Xiuli

    2016-01-01

    Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus) in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO) analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.

  11. De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq

    PubMed Central

    2013-01-01

    Background Microalgae can make a significant contribution towards meeting global renewable energy needs in both carbon-based and hydrogen (H2) biofuel. The development of energy-related products from algae could be accelerated with improvements in systems biology tools, and recent advances in sequencing technology provide a platform for enhanced transcriptomic analyses. However, these techniques are still heavily reliant upon available genomic sequence data. Chlamydomonas moewusii is a unicellular green alga capable of evolving molecular H2 under both dark and light anaerobic conditions, and has high hydrogenase activity that can be rapidly induced. However, to date, there is no systematic investigation of transcriptomic profiling during induction of H2 photoproduction in this organism. Results In this work, RNA-Seq was applied to investigate transcriptomic profiles during the dark anaerobic induction of H2 photoproduction. 156 million reads generated from 7 samples were then used for de novo assembly after data trimming. BlastX results against NCBI database and Blast2GO results were used to interpret the functions of the assembled 34,136 contigs, which were then used as the reference contigs for RNA-Seq analysis. Our results indicated that more contigs were differentially expressed during the period of early and higher H2 photoproduction, and fewer contigs were differentially expressed when H2-photoproduction rates decreased. In addition, C. moewusii and C. reinhardtii share core functional pathways, and transcripts for H2 photoproduction and anaerobic metabolite production were identified in both organisms. C. moewusii also possesses similar metabolic flexibility as C. reinhardtii, and the difference between C. moewusii and C. reinhardtii on hydrogenase expression and anaerobic fermentative pathways involved in redox balancing may explain their different profiles of hydrogenase activity and secreted anaerobic metabolites. Conclusions Herein, we have described a workflow using commercial software to analyze RNA-Seq data without reference genome sequence information, which can be applied to other unsequenced microorganisms. This study provided biological insights into the anaerobic fermentation and H2 photoproduction of C. moewusii, and the first transcriptomic RNA-Seq dataset of C. moewusii generated in this study also offer baseline data for further investigation (e.g. regulatory proteins related to fermentative pathway discussed in this study) of this organism as a H2-photoproduction strain. PMID:23971877

  12. De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens

    PubMed Central

    Zhang, Xiaodong; Allan, Andrew C.; Li, Caixia; Wang, Yuanzhong; Yao, Qiuyang

    2015-01-01

    Gentiana rigescens is an important medicinal herb in China. The main validated medicinal component gentiopicroside is synthesized in shoots, but is mainly found in the plant’s roots. The gentiopicroside biosynthetic pathway and its regulatory control remain to be elucidated. Genome resources of gentian are limited. Next-generation sequencing (NGS) technologies can aid in supplying global gene expression profiles. In this study we present sequence and transcript abundance data for the root and leaf transcriptome of G. rigescens, obtained using the Illumina Hiseq2000. Over fifty million clean reads were obtained from leaf and root libraries. This yields 76,717 unigenes with an average length of 753 bp. Among these, 33,855 unigenes were identified as putative homologs of annotated sequences in public protein and nucleotide databases. Digital abundance analysis identified 3306 unigenes differentially enriched between leaf and root. Unigenes found in both tissues were categorized according to their putative functional categories. Of the differentially expressed genes, over 130 were annotated as related to terpenoid biosynthesis. This work is the first study of global transcriptome analyses in gentian. These sequences and putative functional data comprise a resource for future investigation of terpenoid biosynthesis in Gentianaceae species and annotation of the gentiopicroside biosynthetic pathway and its regulatory mechanisms. PMID:26006235

  13. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum).

    PubMed

    Moniodis, Jessie; Jones, Christopher G; Barbour, E Liz; Plummer, Julie A; Ghisalberti, Emilio L; Bohlmann, Joerg

    2015-05-01

    The fragrant heartwood oil of West Australian sandalwood (Santalum spicatum) contains a mixture of sesquiterpene olefins and alcohols, including variable levels of the valuable sesquiterpene alcohols, α- and β-santalol, and often high levels of E,E-farnesol. Transcriptome analysis revealed sequences for a nearly complete set of genes of the sesquiterpenoid biosynthetic pathway in this commercially valuable sandalwood species. Transcriptome sequences were produced from heartwood xylem tissue of a farnesol-rich individual tree. From the assembly of 12,537 contigs, seven different terpene synthases (TPSs), several cytochromes P450, and allylic phosphatases were identified, as well as transcripts of the mevalonic acid and methylerythritol phosphate pathways. Five of the S. spicatum TPS sequences were previously unknown. The full-length cDNA of SspiTPS4 was cloned and the enzyme functionally characterized as a multi-product sesquisabinene B synthase, which complements previous characterization of santalene and bisabolol synthases in S. spicatum. While SspiTPS4 and previously cloned sandalwood TPSs do not explain the prevalence of E,E-farnesol in S. spicatum, the genes identified in this and previous work can form a basis for future studies on natural variation of sandalwood terpenoid oil profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax).

    PubMed

    Zhou, Fengyan; Zhang, Yong; Tang, Wei; Wang, Mei; Gao, Tongchun

    2017-12-06

    Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering.

  15. High-resolution transcript profiling reveals shoot abscission process of spruce dwarf mistletoe Arceuthobium sichuanense in response to ethephon

    PubMed Central

    Wang, Yonglin; Xiong, Dianguang; Jiang, Ning; Li, Xuewu; Yang, Qiqing; Tian, Chengming

    2016-01-01

    Arceuthobium (dwarf mistletoes) are hemiparasites that may cause great damage to infected trees belonging to Pinaceae and Cupressaceae. Currently, dwarf mistletoe control involves the use of the ethylene-producing product ethephon (ETH), which acts by inducing dwarf mistletoe shoot abscission. However, the process by which ETH functions is mostly unknown. Therefore, the transcriptome of the ETH-exposed plants was compared to non-exposed controls to identify genes associated with the response to ethephon. In this study, the reference transcriptome was contained 120,316 annotated unigenes, with a total of 21,764 ETH-responsive differentially expressed unigenes were identified. These ETH-associated genes clustered into 20 distinctly expressed pattern groups, providing a view of molecular events with good spatial and temporal resolution. As expected, the greatest number of unigenes with changed expression were observed at the onset of abscission, suggesting induction by ethylene. ETH also affected genes associated with shoot abscission processes including hormone biosynthesis and signaling, cell wall hydrolysis and modification, lipid transference, and more. The comprehensive transcriptome data set provides a wealth of genomic resources for dwarf mistletoe communities and contributes to a better understanding of the molecular regulatory mechanism of ethylene-caused shoots abscission. PMID:27941945

  16. Increasing transcriptome response of serpins during the ontogenetic stages in the salmon louse Caligus rogercresseyi (Copepoda: Caligidae).

    PubMed

    Maldonado-Aguayo, W; Gallardo-Escárate, C

    2014-06-01

    Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    PubMed

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  18. Profiling and comparison of color body wall transcriptome of normal juvenile sea cucumber ( Apostichopus japonicus) and those produced by crossing albino

    NASA Astrophysics Data System (ADS)

    Ma, Deyou; Yang, Hongsheng; Sun, Lina

    2014-12-01

    Sea cucumber ( Apostichopus japonicus) is one of the most important aquaculture animals in China. Usually its normal body color is black that fits its living environment. The juvenile individuals obtained by crossing albino sea cucumber segregated in body color. To document the transcriptome difference between albino associating sea cucumber and the control, we sequenced their transcriptomes with RNA-seq. Approximately, 4.790 million (M) and 4.884 M reads, 200 nt in length, were generated from the body wall of albino associating sea cucumber and the control, respectively, from them, 9550 (46.81%) putative genes were identified. In total, 583 genes were found to express differentially between albino associating sea cucumber and the control. Of these differentially expressed genes (DEGs), 4.8% changed more than five-folds. The expression levels of eight DEGs were confirmed with real-time PCR. The changing trend of these DEGs detected with real-time PCR agreed well with that detected with RNA-seq, although the change degree of some DEGs was different. Four significantly enriched pathways were identified for DEGs, which included phagocytosis, Staphylococcus aureus infection, ECM-receptor interaction and focal adhesion. These pathways were helpful for understanding the physiological difference between albino associating sea cucumber and the control.

  19. The Combined Use of Proteomics and Transcriptomics Reveals a Complex Secondary Metabolite Network in Peperomia obtusifolia.

    PubMed

    Batista, Andrea N L; Santos-Pinto, José Roberto A Dos; Batista, João M; Souza-Moreira, Tatiana M; Santoni, Mariana M; Zanelli, Cleslei F; Kato, Massuo J; López, Silvia N; Palma, Mario S; Furlan, Maysa

    2017-05-26

    Peperomia obtusifolia, an ornamental plant from the Piperaceae family, accumulates a series of secondary metabolites with interesting biological properties. From a biosynthesis standpoint, this species produces several benzopyrans derived from orsellinic acid, which is a polyketide typically found in fungi. Additionally, the chiral benzopyrans were reported as racemic and/or as diastereomeric mixtures, which raises questions about the level of enzymatic control in the cyclization step for the formation of the 3,4-dihydro-2H-pyran moiety. Therefore, this article describes the use of shotgun proteomic and transcriptome studies as well as phytochemical profiling for the characterization of the main biosynthesis pathways active in P. obtusifolia. This combined approach resulted in the identification of a series of proteins involved in its secondary metabolism, including tocopherol cyclase and prenyltransferases. The activity of these enzymes was supported by the phytochemical profiling performed in different organs of P. obtusifolia. However, the polyketide synthases possibly involved in the production of orsellinic acid could not be identified, suggesting that orsellinic acid may be produced by endophytes intimately associated with the plant.

  20. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis.

    PubMed

    Armour, Christopher D; Castle, John C; Chen, Ronghua; Babak, Tomas; Loerch, Patrick; Jackson, Stuart; Shah, Jyoti K; Dey, John; Rohl, Carol A; Johnson, Jason M; Raymond, Christopher K

    2009-09-01

    We developed a procedure for the preparation of whole transcriptome cDNA libraries depleted of ribosomal RNA from only 1 microg of total RNA. The method relies on a collection of short, computationally selected oligonucleotides, called 'not-so-random' (NSR) primers, to obtain full-length, strand-specific representation of nonribosomal RNA transcripts. In this study we validated the technique by profiling human whole brain and universal human reference RNA using ultra-high-throughput sequencing.

  1. The Role of Vitamin D in the Transcriptional Program of Human Pregnancy

    PubMed Central

    Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.

    2016-01-01

    Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190

  2. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes1[OPEN

    PubMed Central

    Feng, Nan; Song, Gaoyuan; Guan, Jiantao; Chen, Kai; Jia, Meiling; Huang, Dehua; Wu, Jiajie; Zhang, Lichao; Kong, Xiuying; Geng, Shuaifeng

    2017-01-01

    Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields. PMID:28515146

  3. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  4. Comparative transcriptome response in swine tracheobronchial lymph nodes to viral infection

    USDA-ARS?s Scientific Manuscript database

    The tracheobronchial lymph node (TBLN) transcriptome response was evaluated following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were sham-treated or infected intranasally with porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, pseudorabies...

  5. Transcriptome profile of a bovine respiratory disease pathogen: Mannheimia haemolytica PHL213

    PubMed Central

    2012-01-01

    Background Computational methods for structural gene annotation have propelled gene discovery but face certain drawbacks with regards to prokaryotic genome annotation. Identification of transcriptional start sites, demarcating overlapping gene boundaries, and identifying regulatory elements such as small RNA are not accurate using these approaches. In this study, we re-visit the structural annotation of Mannheimia haemolytica PHL213, a bovine respiratory disease pathogen. M. haemolytica is one of the causative agents of bovine respiratory disease that results in about $3 billion annual losses to the cattle industry. We used RNA-Seq and analyzed the data using freely-available computational methods and resources. The aim was to identify previously unannotated regions of the genome using RNA-Seq based expression profile to complement the existing annotation of this pathogen. Results Using the Illumina Genome Analyzer, we generated 9,055,826 reads (average length ~76 bp) and aligned them to the reference genome using Bowtie. The transcribed regions were analyzed using SAMTOOLS and custom Perl scripts in conjunction with BLAST searches and available gene annotation information. The single nucleotide resolution map enabled the identification of 14 novel protein coding regions as well as 44 potential novel sRNA. The basal transcription profile revealed that 2,506 of the 2,837 annotated regions were expressed in vitro, at 95.25% coverage, representing all broad functional gene categories in the genome. The expression profile also helped identify 518 potential operon structures involving 1,086 co-expressed pairs. We also identified 11 proteins with mutated/alternate start codons. Conclusions The application of RNA-Seq based transcriptome profiling to structural gene annotation helped correct existing annotation errors and identify potential novel protein coding regions and sRNA. We used computational tools to predict regulatory elements such as promoters and terminators associated with the novel expressed regions for further characterization of these novel functional elements. Our study complements the existing structural annotation of Mannheimia haemolytica PHL213 based on experimental evidence. Given the role of sRNA in virulence gene regulation and stress response, potential novel sRNA described in this study can form the framework for future studies to determine the role of sRNA, if any, in M. haemolytica pathogenesis. PMID:23046475

  6. Integrating Genomic Analysis with the Genetic Basis of Gene Expression: Preliminary Evidence of the Identification of Causal Genes for Cardiovascular and Metabolic Traits Related to Nutrition in Mexicans123

    PubMed Central

    Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.

    2012-01-01

    Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999

  7. Profiling mRNAs of Two Cuscuta Species Reveals Possible Candidate Transcripts Shared by Parasitic Plants

    PubMed Central

    Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions. PMID:24312295

  8. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    PubMed

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  9. SAGE Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene1

    PubMed Central

    Ekman, Drew R.; Lorenz, W. Walter; Przybyla, Alan E.; Wolfe, N. Lee; Dean, Jeffrey F.D.

    2003-01-01

    Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds. PMID:14551330

  10. Transcriptome Analysis of the Role of GlnD/GlnBK in Nitrogen Stress Adaptation by Sinorhizobium meliloti Rm1021

    PubMed Central

    Yurgel, Svetlana N.; Rice, Jennifer; Kahn, Michael L.

    2013-01-01

    Transcriptional changes in the nitrogen stress response (NSR) of wild type S. meliloti Rm1021, and isogenic strains missing both PII proteins, GlnB and GlnK, or carrying a ΔglnD-sm2 mutation were analyzed using whole-genome microarrays. This approach allowed us to identify a number of new genes involved in the NSR and showed that the response of these bacteria to nitrogen stress overlaps with other stress responses, including induction of the fixK2 transcriptional activator and genes that are part of the phosphate stress response. Our data also show that GlnD and GlnBK proteins may regulate many genes that are not part of the NSR. Analysis of transcriptome profiles of the Rm1021 ΔglnD-sm2 strain allowed us to identify several genes that appear to be regulated by GlnD without the participation of the PII proteins. PMID:23516427

  11. Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

    PubMed Central

    Chelh, Ilham; Meunier, Bruno; Picard, Brigitte; Reecy, Mark James; Chevalier, Catherine; Hocquette, Jean-François; Cassar-Malek, Isabelle

    2009-01-01

    Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. PMID:19397818

  12. Conjunctival transcriptome profiling of Solomon Islanders with active trachoma in the absence of Chlamydia trachomatis infection.

    PubMed

    Vasileva, Hristina; Butcher, Robert; Pickering, Harry; Sokana, Oliver; Jack, Kelvin; Solomon, Anthony W; Holland, Martin J; Roberts, Chrissy H

    2018-02-21

    Clinical signs of active (inflammatory) trachoma are found in many children in the Solomon Islands, but the majority of these individuals have no serological evidence of previous infection with Chlamydia trachomatis. In Temotu and Rennell and Bellona provinces, ocular infections with C. trachomatis were seldom detected among children with active trachoma; a similar lack of association was seen between active trachoma and other common bacterial and viral causes of follicular conjunctivitis. Here, we set out to characterise patterns of gene expression at the conjunctivae of children in these provinces with and without clinical signs of trachomatous inflammation-follicular (TF) and C. trachomatis infection. Purified RNA from children with and without active trachoma was run on Affymetrix GeneChip Human Transcriptome Array 2.0 microarrays. Profiles were compared between individuals with ocular C. trachomatis infection and TF (group DI; n = 6), individuals with TF but no C. trachomatis infection (group D; n = 7), and individuals without TF or C. trachomatis infection (group N; n = 7). Differential gene expression and gene set enrichment for pathway membership were assessed. Conjunctival gene expression profiles were more similar within-group than between-group. Principal components analysis indicated that the first and second principal components combined explained almost 50% of the variance in the dataset. When comparing the DI group to the N group, genes involved in T-cell proliferation, B-cell signalling and CD8+ T cell signalling pathways were differentially regulated. When comparing the DI group to the D group, CD8+ T-cell regulation, interferon-gamma and IL17 production pathways were enriched. Genes involved in RNA transcription and translation pathways were upregulated when comparing the D group to the N group. Gene expression profiles in children in the Solomon Islands indicate immune responses consistent with bacterial infection when TF and C. trachomatis infection are concurrent. The transcriptomes of children with TF but without identified infection were not consistent with allergic or viral conjunctivitis.

  13. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.

    PubMed

    Zupanska, Agata K; Schultz, Eric R; Yao, JiQiang; Sng, Natasha J; Zhou, Mingqi; Callaham, Jordan B; Ferl, Robert J; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological adaptation-BRIC. Astrobiology 17, 1077-1111.

  14. Global transcriptomic profiling using small volumes of whole blood: a cost-effective method for translational genomic biomarker identification in small animals.

    PubMed

    Fricano, Meagan M; Ditewig, Amy C; Jung, Paul M; Liguori, Michael J; Blomme, Eric A G; Yang, Yi

    2011-01-01

    Blood is an ideal tissue for the identification of novel genomic biomarkers for toxicity or efficacy. However, using blood for transcriptomic profiling presents significant technical challenges due to the transcriptomic changes induced by ex vivo handling and the interference of highly abundant globin mRNA. Most whole blood RNA stabilization and isolation methods also require significant volumes of blood, limiting their effective use in small animal species, such as rodents. To overcome these challenges, a QIAzol-based RNA stabilization and isolation method (QSI) was developed to isolate sufficient amounts of high quality total RNA from 25 to 500 μL of rat whole blood. The method was compared to the standard PAXgene Blood RNA System using blood collected from rats exposed to saline or lipopolysaccharide (LPS). The QSI method yielded an average of 54 ng total RNA per μL of rat whole blood with an average RNA Integrity Number (RIN) of 9, a performance comparable with the standard PAXgene method. Total RNA samples were further processed using the NuGEN Ovation Whole Blood Solution system and cDNA was hybridized to Affymetrix Rat Genome 230 2.0 Arrays. The microarray QC parameters using RNA isolated with the QSI method were within the acceptable range for microarray analysis. The transcriptomic profiles were highly correlated with those using RNA isolated with the PAXgene method and were consistent with expected LPS-induced inflammatory responses. The present study demonstrated that the QSI method coupled with NuGEN Ovation Whole Blood Solution system is cost-effective and particularly suitable for transcriptomic profiling of minimal volumes of whole blood, typical of those obtained with small animal species.

  15. Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland

    PubMed Central

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2012-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. PMID:22649398

  16. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    PubMed

    Todd, Antonette R; Donofrio, Nicole; Sripathi, Venkateswara R; McClean, Phillip E; Lee, Rian K; Pastor-Corrales, Marcial; Kalavacharla, Venu Kal

    2017-05-23

    Common bean ( Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg , (Complements resistance gene), which is required for Ur-3 -mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant "Sierra" and susceptible crg) with rust race 53 of U. appendiculatus , isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of "Sierra" leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations.

  17. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

    PubMed

    Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B

    2016-08-11

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.

  18. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    PubMed

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  19. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    PubMed Central

    Todd, Antonette R.; Donofrio, Nicole; Sripathi, Venkateswara R.; McClean, Phillip E.; Lee, Rian K.; Pastor-Corrales, Marcial; Kalavacharla, Venu (Kal)

    2017-01-01

    Common bean (Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg, (Complements resistance gene), which is required for Ur-3-mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant “Sierra” and susceptible crg) with rust race 53 of U. appendiculatus, isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of “Sierra” leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations. PMID:28545258

  20. Transcriptomic events associated with internal browning of apple during postharvest storage

    USDA-ARS?s Scientific Manuscript database

    Although apple (Malus x domestica) is of economic importance, little information is available about the transriptomic profiling of postharvest disorders, particularly internal browning. This study aimed to explore changes in the apple transcriptome associated with development of flesh browning durin...

  1. The transcriptome landscape of early maize meiosis

    USDA-ARS?s Scientific Manuscript database

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  2. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  3. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  4. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    PubMed Central

    2014-01-01

    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. PMID:24484525

  5. Inhibition of endogenous MTF-1 signaling in zebrafish embryos identifies novel roles for MTF-1 in development.

    PubMed

    O'Shields, Britton; McArthur, Andrew G; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J

    2014-09-01

    The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologs. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1-2 cell stage) followed by transcriptomic profiling using an Agilent 4x44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28hpf and 36hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Spectroscopic and Statistical Techniques for Information Recovery in Metabonomics and Metabolomics

    NASA Astrophysics Data System (ADS)

    Lindon, John C.; Nicholson, Jeremy K.

    2008-07-01

    Methods for generating and interpreting metabolic profiles based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and chemometric analysis methods are summarized and the relative strengths and weaknesses of NMR and chromatography-coupled MS approaches are discussed. Given that all data sets measured to date only probe subsets of complex metabolic profiles, we describe recent developments for enhanced information recovery from the resulting complex data sets, including integration of NMR- and MS-based metabonomic results and combination of metabonomic data with data from proteomics, transcriptomics, and genomics. We summarize the breadth of applications, highlight some current activities, discuss the issues relating to metabonomics, and identify future trends.

  7. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics.

    PubMed

    Lindon, John C; Nicholson, Jeremy K

    2008-01-01

    Methods for generating and interpreting metabolic profiles based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and chemometric analysis methods are summarized and the relative strengths and weaknesses of NMR and chromatography-coupled MS approaches are discussed. Given that all data sets measured to date only probe subsets of complex metabolic profiles, we describe recent developments for enhanced information recovery from the resulting complex data sets, including integration of NMR- and MS-based metabonomic results and combination of metabonomic data with data from proteomics, transcriptomics, and genomics. We summarize the breadth of applications, highlight some current activities, discuss the issues relating to metabonomics, and identify future trends.

  8. Cardiac Endothelial Cell Transcriptome.

    PubMed

    Lother, Achim; Bergemann, Stella; Deng, Lisa; Moser, Martin; Bode, Christoph; Hein, Lutz

    2018-03-01

    Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2 / Tcf15, Fabp4 , and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation. © 2018 American Heart Association, Inc.

  9. Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.

    PubMed

    Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios

    2009-02-01

    Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.

  10. Identification of the pheromone biosynthesis genes from the sex pheromone gland transcriptome of the diamondback moth, Plutella xylostella.

    PubMed

    Chen, Da-Song; Dai, Jian-Qing; Han, Shi-Chou

    2017-11-24

    The diamondback moth was estimated to increase costs to the global agricultural economy as the global area increase of Brassica vegetable crops and oilseed rape. Sex pheromones traps are outstanding tools available in Integrated Pest Management for many years and provides an effective approach for DBM population monitoring and control. The ratio of two major sex pheromone compounds shows geographical variations. However, the limitation of our information in the DBM pheromone biosynthesis dampens our understanding of the ratio diversity of pheromone compounds. Here, we constructed a transcriptomic library from the DBM pheromone gland and identified genes putatively involved in the fatty acid biosynthesis, pheromones functional group transfer, and β-oxidation enzymes. In addition, odorant binding protein, chemosensory protein and pheromone binding protein genes encoded in the pheromone gland transcriptome, suggest that female DBM moths may receive odors or pheromone compounds via their pheromone gland and ovipositor system. Tissue expression profiles further revealed that two ALR, three DES and one FAR5 genes were pheromone gland tissue biased, while some chemoreception genes expressed extensively in PG, pupa, antenna and legs tissues. Finally, the candidate genes from large-scale transcriptome information may be useful for characterizing a presumed biosynthetic pathway of the DBM sex pheromone.

  11. Comprehensive Transcriptome Profiling and Functional Analysis of the Frog (Bombina maxima) Immune System

    PubMed Central

    Zhao, Feng; Yan, Chao; Wang, Xuan; Yang, Yang; Wang, Guangyin; Lee, Wenhui; Xiang, Yang; Zhang, Yun

    2014-01-01

    Amphibians occupy a key phylogenetic position in vertebrates and evolution of the immune system. But, the resources of its transcriptome or genome are still little now. Bombina maxima possess strong ability to survival in very harsh environment with a more mature immune system. We obtained a comprehensive transcriptome by RNA-sequencing technology. 14.3% of transcripts were identified to be skin-specific genes, most of which were not isolated from skin secretion in previous works or novel non-coding RNAs. 27.9% of transcripts were mapped into 242 predicted KEGG pathways and 6.16% of transcripts related to human disease and cancer. Of 39 448 transcripts with the coding sequence, at least 1501 transcripts (570 genes) related to the immune system process. The molecules of immune signalling pathway were almost presented, several transcripts with high expression in skin and stomach. Experiments showed that lipopolysaccharide or bacteria challenge stimulated pro-inflammatory cytokine production and activation of pro-inflammatory caspase-1. These frog's data can remarkably expand the existing genome or transcriptome resources of amphibians, especially immunity data. The entity of the data provides a valuable platform for further investigation on more detailed immune response in B. maxima and a comparative study with other amphibians. PMID:23942912

  12. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions.

    PubMed

    Sullivan, Craig V; Chapman, Robert W; Reading, Benjamin J; Anderson, Paul E

    2015-09-15

    Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa

    PubMed Central

    Davey, Mark W; Graham, Neil S; Vanholme, Bartel; Swennen, Rony; May, Sean T; Keulemans, Johan

    2009-01-01

    Background 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip® microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts. Results Following cross-hybridisation of Musa gDNA to the Rice GeneChip® Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments. Conclusion Our results demonstrate that despite the general paucity of nucleotide sequence data in Musa and only distant phylogenetic relations to rice, gDNA probe-based cross-hybridisation to the Rice GeneChip® is a highly promising strategy to study complex biological responses and illustrates the potential of such strategies for gene discovery in non-model species. PMID:19758430

  14. Comparison of the Transcriptomes of Ginger (Zingiber officinale Rosc.) and Mango Ginger (Curcuma amada Roxb.) in Response to the Bacterial Wilt Infection

    PubMed Central

    Prasath, Duraisamy; Karthika, Raveendran; Habeeba, Naduva Thadath; Suraby, Erinjery Jose; Rosana, Ottakandathil Babu; Shaji, Avaroth; Eapen, Santhosh Joseph; Deshpande, Uday; Anandaraj, Muthuswamy

    2014-01-01

    Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in non-model species of Zingiberaceae. PMID:24940878

  15. Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection.

    PubMed

    Prasath, Duraisamy; Karthika, Raveendran; Habeeba, Naduva Thadath; Suraby, Erinjery Jose; Rosana, Ottakandathil Babu; Shaji, Avaroth; Eapen, Santhosh Joseph; Deshpande, Uday; Anandaraj, Muthuswamy

    2014-01-01

    Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in non-model species of Zingiberaceae.

  16. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation.

    PubMed

    Babak, Tomas; Garrett-Engele, Philip; Armour, Christopher D; Raymond, Christopher K; Keller, Mark P; Chen, Ronghua; Rohl, Carol A; Johnson, Jason M; Attie, Alan D; Fraser, Hunter B; Schadt, Eric E

    2010-08-13

    Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing.

  17. Interactions between the colonic transcriptome, metabolome, and microbiome in mouse models of obesity-induced intestinal cancer.

    PubMed

    Pfalzer, Anna C; Kamanu, Frederick K; Parnell, Laurence D; Tai, Albert K; Liu, Zhenhua; Mason, Joel B; Crott, Jimmy W

    2016-08-01

    Obesity is a significant risk factor for colorectal cancer (CRC); however, the relative contribution of high-fat (HF) consumption and excess adiposity remains unclear. It is becoming apparent that obesity perturbs both the intestinal microbiome and metabolome, and each has the potential to induce protumorigenic changes in the epithelial transcriptome. The physiological consequences and the degree to which these different biologic systems interact remain poorly defined. To understand the mechanisms by which obesity drives colonic tumorigenesis, we profiled the colonic epithelial transcriptome of HF-fed and genetically obese (DbDb) mice with a genetic predisposition to intestinal tumorigenesis (Apc(1638N)); 266 and 584 genes were differentially expressed in the colonic mucosa of HF and DbDb mice, respectively. These genes mapped to pathways involved in immune function, and cellular proliferation and cancer. Furthermore, Akt was central within the networks of interacting genes identified in both gene sets. Regression analyses of coexpressed genes with the abundance of bacterial taxa identified three taxa, previously correlated with tumor burden, to be significantly correlated with a gene module enriched for Akt-related genes. Similarly, regression of coexpressed genes with metabolites found that adenosine, which was negatively associated with inflammatory markers and tumor burden, was also correlated with a gene module enriched with Akt regulators. Our findings provide evidence that HF consumption and excess adiposity result in changes in the colonic transcriptome that, although distinct, both appear to converge on Akt signaling. Such changes could be mediated by alterations in the colonic microbiome and metabolome.

  18. Transcriptome analysis of sika deer in China.

    PubMed

    Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He

    2016-10-01

    Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development.

  19. Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    USGS Publications Warehouse

    Wittekindt, Nicola E.; Padhi, Abinash; Schuster, Stephan C.; Qi, Ji; Zhao, Fangqing; Tomsho, Lynn P.; Kasson, Lindsay R.; Packard, Michael; Cross, Paul C.; Poss, Mary

    2010-01-01

    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals.

  20. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.

    PubMed

    Wall, Christopher E; Cozza, Steven; Riquelme, Cecilia A; McCombie, W Richard; Heimiller, Joseph K; Marr, Thomas G; Leinwand, Leslie A

    2011-01-01

    The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.

  1. Transcriptomic profiling as a screening tool to detect trenbolone treatment in beef cattle.

    PubMed

    Pegolo, S; Cannizzo, F T; Biolatti, B; Castagnaro, M; Bargelloni, L

    2014-06-01

    The effects of steroid hormone implants containing trenbolone alone (Finaplix-H), combined with 17β-oestradiol (17β-E; Revalor-H), or with 17β-E and dexamethasone (Revalor-H plus dexamethasone per os) on the bovine muscle transcriptome were examined by DNA-microarray. Overall, large sets of genes were shown to be modulated by the different growth promoters (GPs) and the regulated pathways and biological processes were mostly shared among the treatment groups. Using the Prediction Analysis of Microarray program, GP-treated animals were accurately identified by a small number of predictive genes. A meta-analysis approach was also carried out for the Revalor group to potentially increase the robustness of class prediction analysis. After data pre-processing, a high level of accuracy (90%) was obtained in the classification of samples, using 105 predictive gene markers. Transcriptomics could thus help in the identification of indirect biomarkers for anabolic treatment in beef cattle to be applied for the screening of muscle samples collected after slaughtering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.

    PubMed

    Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J

    2015-10-01

    Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products

    PubMed Central

    Feng, Mingbao; Qu, Ruijuan; Habteselassie, Mussie; Wu, Jun; Yang, Shaogui; Sun, Ping; Huang, Qingguo; Wang, Zunyao

    2015-01-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs. PMID:26057616

  4. Transcriptome analysis of eyestalk and hemocytes in the ridgetail white prawn Exopalaemon carinicauda: assembly, annotation and marker discovery.

    PubMed

    Li, Jitao; Li, Jian; Chen, Ping; Liu, Ping; He, Yuying

    2015-01-01

    The ridgetail white prawn Exopalaemon carinicauda is one of major economic mariculture species in eastern China. The deficiency of genomic and transcriptomic data is becoming the bottleneck of further researches on its good traits. In the present study, 454 pyrosequencing was undertaken to investigate the transcriptome profiles of E. carinicauda. A collection of 1,028,710 sequence reads (459.59 Mb) obtained from cDNA prepared from eyestalk and hemocytes was assembled into 162,056 expressed sequence tags (ESTs). Of these, 29.88 % of 48,428 contigs and 70.12 % of 113,628 singlets possessed high similarities to sequences in the GenBank non-redundant database, with most significant (E value <1e(-10)) unigenes matches occurring with crustacean and insect sequences. KEGG analysis of unigenes identified putative members of biological pathways related to growth and immunity. In addition, we obtained a total of putative 125,112 SNPs and 13,467 microsatellites. These results will contribute to the understanding of the genome makeup and provide useful information for future functional genomic research in E. carinicauda.

  5. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    PubMed Central

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  6. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haggard, Derik E.

    Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120 hours post-fertilization (hpf) and the concentration where 80%more » of the animals had mortality or morbidity at 120 hpf (EC{sub 80}) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC{sub 80} (7.37 μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value ≤ 0.05; fold change ≥ 2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies. - Highlights: • Triclosan is a common antimicrobial agent with widespread human exposure. • Exposure to the triclosan EC{sub 80} causes robust gene expression changes in zebrafish. • The liver may be a target organ of triclosan toxicity in embryonic zebrafish. • Triclosan disrupts normal liver functioning and development in embryonic zebrafish. • A summary of triclosan's bioactivity profile in the ToxCast program is discussed.« less

  7. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  8. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  9. De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration.

    PubMed

    Gao, Bei; Zhang, Daoyuan; Li, Xiaoshuang; Yang, Honglan; Zhang, Yuanming; Wood, Andrew J

    2015-05-28

    The desiccation-tolerant moss Bryum argenteum is an important component of the Biological Soil Crusts (BSCs) found in the Gurbantunggut desert. Desiccation tolerance is defined as the ability to revive from the air dried state. To elucidate the molecular mechanisms related to desiccation tolerance, we employed RNA-Seq and digital gene expression (DGE) technologies to study the genome-wide expression profiles of the dehydration and rehydration processes in this important desert plant. We applied a two-step approach to investigate the gene expression profile upon rehydration in the moss Bryum argenteum using Illumina HiSeq2000 sequencing platform. First, a total of 57,247 transcript assembly contigs (TACs) were obtained from 54.79 million reads by de novo assembly, with an average length of 863 bp and N50 of 1,372 bp. Among the reconstructed TACs, 36,916 (64.5%) revealed similarity with existing protein sequences in the public databases. 23,509 and 21,607 TACs were assigned GO and KEGG annotation information, respectively. Second, samples were taken from 3 hydration stages: desiccated (Dry), rehydrated 2 h (R2) and rehydrated 24 h (R24), and DEG libraries were constructed for Differentially Expressed Genes (DEGs) discovery. 4,081 and 6,709 DEGs were identified in R2 and R24, compared with Dry, respectively. Compared to the desiccated sample, up-regulated genes after two hours of hydration are primarily related to stress responses. GO function enrichment network, EKGG metabolic pathway and MapMan analysis supports the idea of the rapid recovery of photosynthesis after 24 h of rehydration. We identified 770 transcription factors (TFs) which were classified into 50 TF families. 142 TF transcripts were up-regulated upon rehydration including 23 members of the ERF family. In this study, we constructed a pioneering, high-quality reference transcriptome in B. argenteum and generated three DGE libraries to elucidate the changes of gene expression upon rehydration. Expression profiles consistent with the rapid recovery of photosynthesis (at R2) and the re-establishment of a positive carbon balance following rehydration (at R24) were observed. Our study will extend our knowledge of bryophyte transcriptomes and provide further insight into the molecular mechanisms related to rehydration and desiccation-tolerance.

  10. Genome-wide retinal transcriptome analysis of endotoxin-induced uveitis in mice with next-generation sequencing

    PubMed Central

    Qiu, Yiguo; Yu, Peng; Lin, Ru; Fu, Xinyu; Hao, Bingtao

    2017-01-01

    Purpose Endotoxin-induced uveitis (EIU) is a well-established mouse model for studying human acute inflammatory uveitis. The purpose of this study is to investigate the genome-wide retinal transcriptome profile of EIU. Methods The anterior segment of the mice was examined with a slit-lamp, and clinical scores were evaluated simultaneously. The histological changes in the posterior segment of the eyes were evaluated with hematoxylin and eosin (H&E) staining. A high throughput RNA sequencing (RNA-seq) strategy using the Illumina Hiseq 2500 platform was applied to characterize the retinal transcriptome profile from lipopolysaccharide (LPS)-treated and untreated mice. The validation of the differentially expressed genes (DEGs) was analyzed with real-time PCR. Results At the 24th hour after challenge, the clinical score of the LPS group was significantly higher (3.83±0.75, mean ± standard deviation [SD]) than that of the control group (0.08±0.20, mean ± SD; p<0.001). The histological evaluation showed a large number of inflammatory cells infiltrated into the vitreous cavity in the LPS group compared with the control group. A total of 478 DEGs were identified with RNA-seq. Among these genes, 406 were upregulated and 72 were downregulated in the LPS group. Gene Ontology (GO) enrichment showed three significantly enriched upregulated terms. Twenty-one upregulated and seven downregulated pathways were remarkably enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Eleven inflammatory response–, complement system–, fibrinolytic system–, and cell stress–related genes were validated to show similar results as the RNA-seq. Conclusions We first reported the retinal transcriptome profile of the EIU mouse with RNA-seq. The results indicate that the abnormal changes in the inflammatory response–, complement system–, fibrinolytic system–, and cell stress–related genes occurred concurrently in EIU. These genes may play an important role in the pathogenesis of EIU. This study will lead to a better understanding of the underlying mechanisms and shed light on discovering novel therapeutic targets for ocular inflammation. PMID:28706439

  11. Genome-wide retinal transcriptome analysis of endotoxin-induced uveitis in mice with next-generation sequencing.

    PubMed

    Qiu, Yiguo; Yu, Peng; Lin, Ru; Fu, Xinyu; Hao, Bingtao; Lei, Bo

    2017-01-01

    Endotoxin-induced uveitis (EIU) is a well-established mouse model for studying human acute inflammatory uveitis. The purpose of this study is to investigate the genome-wide retinal transcriptome profile of EIU. The anterior segment of the mice was examined with a slit-lamp, and clinical scores were evaluated simultaneously. The histological changes in the posterior segment of the eyes were evaluated with hematoxylin and eosin (H&E) staining. A high throughput RNA sequencing (RNA-seq) strategy using the Illumina Hiseq 2500 platform was applied to characterize the retinal transcriptome profile from lipopolysaccharide (LPS)-treated and untreated mice. The validation of the differentially expressed genes (DEGs) was analyzed with real-time PCR. At the 24th hour after challenge, the clinical score of the LPS group was significantly higher (3.83±0.75, mean ± standard deviation [SD]) than that of the control group (0.08±0.20, mean ± SD; p<0.001). The histological evaluation showed a large number of inflammatory cells infiltrated into the vitreous cavity in the LPS group compared with the control group. A total of 478 DEGs were identified with RNA-seq. Among these genes, 406 were upregulated and 72 were downregulated in the LPS group. Gene Ontology (GO) enrichment showed three significantly enriched upregulated terms. Twenty-one upregulated and seven downregulated pathways were remarkably enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Eleven inflammatory response-, complement system-, fibrinolytic system-, and cell stress-related genes were validated to show similar results as the RNA-seq. We first reported the retinal transcriptome profile of the EIU mouse with RNA-seq. The results indicate that the abnormal changes in the inflammatory response-, complement system-, fibrinolytic system-, and cell stress-related genes occurred concurrently in EIU. These genes may play an important role in the pathogenesis of EIU. This study will lead to a better understanding of the underlying mechanisms and shed light on discovering novel therapeutic targets for ocular inflammation.

  12. RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation.

    PubMed

    Yatsu, Ryohei; Miyagawa, Shinichi; Kohno, Satomi; Parrott, Benjamin B; Yamaguchi, Katsushi; Ogino, Yukiko; Miyakawa, Hitoshi; Lowers, Russell H; Shigenobu, Shuji; Guillette, Louis J; Iguchi, Taisen

    2016-01-25

    The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination.

  13. Establishing Substantial Equivalence: Transcriptomics

    NASA Astrophysics Data System (ADS)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  14. Transcriptomic Profiling and Functional Characterization of Fusion Genes in Recurrent Ovarian Cancer

    DTIC Science & Technology

    2017-09-01

    the enhanced malignancy observed in recurrent disease. In the first year of this proposal we have assembled a cohort of 18 patient matched pairs of...significance and biologic function of prioritized RNA fusion events. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 ...cellularity. 19 cases were identified (Table 1) but one was removed for quality control issues thus leaving a total of 18 cases. Table 1 shows the clinical

  15. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    PubMed

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq

    PubMed Central

    Shepard, Peter J.; Choi, Eun-A; Lu, Jente; Flanagan, Lisa A.; Hertel, Klemens J.; Shi, Yongsheng

    2011-01-01

    Alternative polyadenylation (APA) of mRNAs has emerged as an important mechanism for post-transcriptional gene regulation in higher eukaryotes. Although microarrays have recently been used to characterize APA globally, they have a number of serious limitations that prevents comprehensive and highly quantitative analysis. To better characterize APA and its regulation, we have developed a deep sequencing-based method called Poly(A) Site Sequencing (PAS-Seq) for quantitatively profiling RNA polyadenylation at the transcriptome level. PAS-Seq not only accurately and comprehensively identifies poly(A) junctions in mRNAs and noncoding RNAs, but also provides quantitative information on the relative abundance of polyadenylated RNAs. PAS-Seq analyses of human and mouse transcriptomes showed that 40%–50% of all expressed genes produce alternatively polyadenylated mRNAs. Furthermore, our study detected evolutionarily conserved polyadenylation of histone mRNAs and revealed novel features of mitochondrial RNA polyadenylation. Finally, PAS-Seq analyses of mouse embryonic stem (ES) cells, neural stem/progenitor (NSP) cells, and neurons not only identified more poly(A) sites than what was found in the entire mouse EST database, but also detected significant changes in the global APA profile that lead to lengthening of 3′ untranslated regions (UTR) in many mRNAs during stem cell differentiation. Together, our PAS-Seq analyses revealed a complex landscape of RNA polyadenylation in mammalian cells and the dynamic regulation of APA during stem cell differentiation. PMID:21343387

  17. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines.

    PubMed

    Houde, Mario; Diallo, Amadou Oury

    2008-08-27

    Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that differ in their response to Al were performed. Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.

  18. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    PubMed

    Vojvodic, Svjetlana; Johnson, Brian R; Harpur, Brock A; Kent, Clement F; Zayed, Amro; Anderson, Kirk E; Linksvayer, Timothy A

    2015-11-01

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.

  19. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay.

    PubMed

    Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward

    2016-10-26

    Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.

  20. Characterisation of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains

    PubMed Central

    Maratou, Klio; Behmoaras, Jacques; Fewings, Chris; Srivastava, Prashant; D’Souza, Zelpha; Smith, Jennifer; Game, Laurence; Cook, Terence; Aitman, Tim

    2010-01-01

    Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. WKY rats show marked susceptibility to CRGN, while Lewis rats are resistant. Glomerular injury and crescent formation are macrophage-dependent and mainly explained by seven quantitative trait loci (Crgn1-7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterised Crgn3-7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (>5-fold change, <1% False Discovery Rate) for basal and LPS-stimulated macrophages. Moreover, we identified 8 genes with differentially expressed alternatively spliced isoforms, by using an in depth analysis at probe-level that allowed us to discard false positives due to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation. In summary, our results identify distinct macrophage transcriptome profiles between two rat strains that differ in susceptibility to glomerulonephritis, provide novel positional candidates for Crgn3-7, and define groups of genes that play a significant role in differential regulation of macrophage activity. PMID:21179115

  1. Differential endothelial transcriptomics identifies semaphorin 3G as a vascular class 3 semaphorin.

    PubMed

    Kutschera, Simone; Weber, Holger; Weick, Anja; De Smet, Frederik; Genove, Guillem; Takemoto, Minoru; Prahst, Claudia; Riedel, Maria; Mikelis, Constantinos; Baulande, Sylvain; Champseix, Catherine; Kummerer, Petra; Conseiller, Emmanuel; Multon, Marie-Christine; Heroult, Melanie; Bicknell, Roy; Carmeliet, Peter; Betsholtz, Christer; Augustin, Hellmut G

    2011-01-01

    To characterize the role of a vascular-expressed class 3 semaphorin (semaphorin 3G [Sema3G]). Semaphorins have been identified as axon guidance molecules. Yet, they have more recently also been characterized as attractive and repulsive regulators of angiogenesis. Through a transcriptomic screen, we identified Sema3G as a molecule of angiogenic endothelial cells. Sema3G-deficient mice are viable and exhibit no overt vascular phenotype. Yet, LacZ expression in the Sema3G locus revealed intense arterial vascular staining in the angiogenic vasculature, starting at E9.5, which was detectable throughout adolescence and downregulated in adult vasculature. Sema3G is expressed as a full-length 100-kDa secreted molecule that is processed by furin proteases to yield 95- and a 65-kDa Sema domain-containing subunits. Full-length Sema3G binds to NP2, whereas processed Sema3G binds to NP1 and NP2. Expression profiling and cellular experiments identified autocrine effects of Sema3G on endothelial cells and paracrine effects on smooth muscle cells. Although the mouse knockout phenotype suggests compensatory mechanisms, the experiments identify Sema3G as a primarily endothelial cell-expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively.

  2. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order.

    PubMed

    Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí

    2005-03-05

    We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.

  4. Prior to extension, Transcriptomes of fibroblast-like Synoviocytes from extended and Polyarticular juvenile idiopathic arthritis are indistinguishable.

    PubMed

    Brescia, AnneMarie C; Simonds, Megan M; McCahan, Suzanne M; Sullivan, Kathleen E; Rose, Carlos D

    2018-01-08

    Our intent was to identify differences between the transcriptome of fibroblast-like synoviocytes (FLS) in oligoarticular juvenile idiopathic arthritis (JIA) before extension when compared to persistent subtype of JIA, when the two are clinically indistinguishable. Additionally, we sought to determine if differences between the transcriptomes of FLS from extended-to-be and polyarticular course JIA could be detected. Our hypothesis was that intrinsic differences in the transcriptome of the FLS from extended-to-be JIA would distinguish them from persistent oligoarticular JIA, before the course is clinically apparent. Global gene expression was defined in cultured FLS from 6 controls, 12 JIA with persistent course, 7 JIA prior to extension (extended-to-be), 4 JIA with extended course and 6 polyarticular onset, using Affymetrix Human GeneChips 133plus2.0. Bioconductor Linear Models for Microarray Analysis revealed 22 probesets with differential expression between persistent and extended-to-be FLS at 15% FDR, however only 2 probesets distinguished extended-to-be from extended and none distinguished extended-to-be and polyarticular at 15% FDR. Differences in extended and polyarticular gene expression profiles were not detected. Confirmation of select genes was done on the RNA level by RT-qPCR and on the protein level in synovial fluid by ELISA. The transcriptome of FLS from extended-to-be juvenile idiopathic arthritis is distinct from persistent course before a clinical distinction can be made. Additionally, the transcriptome of extended-to-be and polyarticular course, including those who have already extended, are indistinguishable. These gene expression data suggest that FLS already reflect a polyarticular behavior early in disease course, suggesting that extended-to-be may be "latent polyarticular" at onset. These differences can be used to develop early biomarkers of disease course, allowing for better-informed treatment decisions.

  5. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order

    PubMed Central

    Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří

    2005-01-01

    Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293

  6. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    PubMed Central

    2011-01-01

    Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). Conclusions This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture. PMID:21752295

  7. De novo transcriptome assembly and RNA-Seq expression analysis in blood from beluga whales of Bristol Bay, AK.

    PubMed

    Morey, Jeanine S; Burek Huntington, Kathy A; Campbell, Michelle; Clauss, Tonya M; Goertz, Caroline E; Hobbs, Roderick C; Lunardi, Denise; Moors, Amanda J; Neely, Marion G; Schwacke, Lori H; Van Dolah, Frances M

    2017-10-01

    Assessing the health of marine mammal sentinel species is crucial to understanding the impacts of environmental perturbations on marine ecosystems and human health. In Arctic regions, beluga whales, Delphinapterus leucas, are upper level predators that may serve as a sentinel species, potentially forecasting impacts on human health. While gene expression profiling from blood transcriptomes has widely been used to assess health status and environmental exposures in human and veterinary medicine, its use in wildlife has been limited due to the lack of available genomes and baseline data. To this end we constructed the first beluga whale blood transcriptome de novo from samples collected during annual health assessments of the healthy Bristol Bay, AK stock during 2012-2014 to establish baseline information on the content and variation of the beluga whale blood transcriptome. The Trinity transcriptome assembly from beluga was comprised of 91,325 transcripts that represented a wide array of cellular functions and processes and was extremely similar in content to the blood transcriptome of another cetacean, the bottlenose dolphin. Expression of hemoglobin transcripts was much lower in beluga (25.6% of TPM, transcripts per million) than has been observed in many other mammals. A T12A amino acid substitution in the HBB sequence of beluga whales, but not bottlenose dolphins, was identified and may play a role in low temperature adaptation. The beluga blood transcriptome was extremely stable between sex and year, with no apparent clustering of samples by principle components analysis and <4% of genes differentially expressed (EBseq, FDR<0.05). While the impacts of season, sexual maturity, disease, and geography on the beluga blood transcriptome must be established, the presence of transcripts involved in stress, detoxification, and immune functions indicate that blood gene expression analyses may provide information on health status and exposure. This study provides a wealth of transcriptomic data on beluga whales and provides a sizeable pool of preliminary data for comparison with other studies in beluga whale. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optimization Of A High-Throughput Transcriptomic (HTTr) Bioactivity Screen In MCF7 Cells Using Targeted RNA-Seq (SOT)

    EPA Science Inventory

    Recent advances in targeted RNA-Seq technology allow researchers to efficiently and cost-effectively obtain whole transcriptome profiles using picograms of mRNA from human cell lysates. Low mRNA input requirements and sample multiplexing capabilities has made time- and concentrat...

  9. Obesity modulates inflammation and lipid metabolism oocyte gene expression: A single cell transcriptome perspective

    USDA-ARS?s Scientific Manuscript database

    This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...

  10. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia

    PubMed Central

    Roberts, Kathryn G.; Morin, Ryan D.; Zhang, Jinghui; Hirst, Martin; Zhao, Yongjun; Su, Xiaoping; Chen, Shann-Ching; Payne-Turner, Debbie; Churchman, Michelle; Harvey, Richard C.; Chen, Xiang; Kasap, Corynn; Yan, Chunhua; Becksfort, Jared; Finney, Richard P.; Teachey, David T.; Maude, Shannon L.; Tse, Kane; Moore, Richard; Jones, Steven; Mungall, Karen; Birol, Inanc; Edmonson, Michael N.; Hu, Ying; Buetow, Kenneth E.; Chen, I-Ming; Carroll, William L.; Wei, Lei; Ma, Jing; Kleppe, Maria; Levine, Ross L.; Garcia-Manero, Guillermo; Larsen, Eric; Shah, Neil P.; Devidas, Meenakshi; Reaman, Gregory; Smith, Malcolm; Paugh, Steven W.; Evans, William E.; Grupp, Stephan A.; Jeha, Sima; Pui, Ching-Hon; Gerhard, Daniela S.; Downing, James R.; Willman, Cheryl L.; Loh, Mignon; Hunger, Stephen P.; Marra, Marco; Mullighan, Charles G.

    2012-01-01

    SUMMARY Genomic profiling has identified a subtype of high-risk B-progenitor acute lymphoblastic leukemia (B-ALL) with alteration of IKZF1, a gene expression profile similar to BCR-ABL1-positive ALL and poor outcome (Ph-like ALL). The genetic alterations that activate kinase signaling in Ph-like ALL are poorly understood. We performed transcriptome and whole genome sequencing on 15 cases of Ph-like ALL, and identified rearrangements involving ABL1, JAK2, PDGFRB, CRLF2 and EPOR, activating mutations of IL7R and FLT3, and deletion of SH2B3, which encodes the JAK2 negative regulator LNK. Importantly, several of these alterations induce transformation that is attenuated with tyrosine kinase inhibitors, suggesting the treatment outcome of these patients may be improved with targeted therapy. PMID:22897847

  11. Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms

    PubMed Central

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric; Mensberg, Karen-Lise D.; Frydenberg, Jane; Larsen, Peter Foged; Bekkevold, Dorte; Bernatchez, Louis

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change. PMID:24454810

  12. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    PubMed

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation.

  13. Transcriptome and Proteome Data Reveal Candidate Genes for Pollinator Attraction in Sexually Deceptive Orchids

    PubMed Central

    Sedeek, Khalid E. M.; Qi, Weihong; Schauer, Monica A.; Gupta, Alok K.; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P.; Schlüter, Philipp M.

    2013-01-01

    Background Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. Results We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Conclusion Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation. PMID:23734209

  14. Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae)

    PubMed Central

    Ren, Shuang; Hao, You-Jin; Chen, Bin; Yin, You-Ping

    2017-01-01

    The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction. PMID:29158334

  15. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome.

    PubMed

    Anesi, Andrea; Stocchero, Matteo; Dal Santo, Silvia; Commisso, Mauro; Zenoni, Sara; Ceoldo, Stefania; Tornielli, Giovanni Battista; Siebert, Tracey E; Herderich, Markus; Pezzotti, Mario; Guzzo, Flavia

    2015-08-07

    The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.

  16. Search for sarcoidosis candidate genes by integration of data from genomic, transcriptomic and proteomic studies.

    PubMed

    Maver, Ales; Medica, Igor; Peterlin, Borut

    2009-12-01

    The search for gene candidates in multifactorial diseases such as sarcoidosis can be based on the integration of linkage association data, gene expression data, and protein profile data from genomic, transcriptomic and proteomic studies, respectively. In this study we performed a literature-based search for studies reporting such data, followed by integration of collected information. Different databases were examined--Medline, HugGE Navigator, ArrayExpress and Gene Expression Omnibus (GEO). Candidate genes were defined as genes which were reported in at least 2 different types of omics studies. Genes previously investigated in sarcoidosis were excluded from further analyses. We identified 177 genes associated with sarcoidosis as potential new candidate genes. Subsequently, 9 gene candidates identified to overlap in 2 different types of studies (genomic, transcriptomic and/or proteomic) were consistently reported in at least 3 studies: SERPINB1, FABP4, S100A8, HBEGF, IL7R, LRIG1, PTPN23, DPM2 and NUP214. These genes are involved in regulation of immune response, cellular proliferation, apoptosis, inhibition of protease activity, lipid metabolism. Exact biological functions of HBEGF, LRIG1, PTPN23, DPM2 and NUP214 remain to be completely elucidated. We propose 9 candidate genes: SERPINB1, FABP4, S100A8, HBEGF, IL7R, LRIG1, PTPN23, DPM2 and NUP214, as genes with high potential for association with sarcoidosis.

  17. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations.

    PubMed

    Liu, Jun-Jun; Shamoun, Simon Francis; Leal, Isabel; Kowbel, Robert; Sumampong, Grace; Zamany, Arezoo

    2018-05-01

    Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis.

    PubMed

    Chang, Yao-Ming; Liu, Wen-Yu; Shih, Arthur Chun-Chieh; Shen, Meng-Ni; Lu, Chen-Hua; Lu, Mei-Yeh Jade; Yang, Hui-Wen; Wang, Tzi-Yuan; Chen, Sean C-C; Chen, Stella Maris; Li, Wen-Hsiung; Ku, Maurice S B

    2012-09-01

    To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C(4) metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.

  19. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses).

    PubMed

    Tang, Sha; Li, Lin; Wang, Yongqiang; Chen, Qiannan; Zhang, Wenying; Jia, Guanqing; Zhi, Hui; Zhao, Baohua; Diao, Xianmin

    2017-08-30

    Understanding drought-tolerance mechanisms and identifying genetic dominance are important for crop improvement. Setaria italica, which is extremely drought-tolerant, has been regarded as a model plant for studying stress biology. Moreover, different genotypes of S. italica have evolved various drought-tolerance/avoidance mechanisms that should be elucidated. Physiological and transcriptomic comparisons between drought-tolerant S. italica cultivar 'Yugu1' and drought-sensitive 'An04' were conducted. 'An04' had higher yields and more efficient photosystem activities than 'Yugu1' under well-watered conditions, and this was accompanied by positive brassinosteroid regulatory actions. However, 'An04's growth advantage was severely repressed by drought, while 'Yugu1' maintained normal growth under a water deficiency. High-throughput sequencing suggested that the S. italica transcriptome was severely remodelled by genotype × environment interactions. Expression profiles of genes related to phytohormone metabolism and signalling, transcription factors, detoxification, and other stress-related proteins were characterised, revealing genotype-dependent and -independent drought responses in different S. italica genotypes. Combining our data with drought-tolerance-related QTLs, we identified 20 candidate genes that contributed to germination and early seedling' drought tolerance in S. italica. Our analysis provides a comprehensive picture of how different S. italica genotypes respond to drought, and may be used for the genetic improvement of drought tolerance in Poaceae crops.

  20. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios.

    PubMed

    Kao, Damian; Felix, Daniel; Aboobaker, Aziz

    2013-11-16

    Planarians can regenerate entire animals from a small fragment of the body. The regenerating fragment is able to create new tissues and remodel existing tissues to form a complete animal. Thus different fragments with very different starting components eventually converge on the same solution. In this study, we performed an extensive RNA-seq time-course on regenerating head and tail fragments to observe the differences and similarities of the transcriptional landscape between head and tail fragments during regeneration. We have consolidated existing transcriptomic data for S. mediterranea to generate a high confidence set of transcripts for use in genome wide expression studies. We performed a RNA-seq time-course on regenerating head and tail fragments from 0 hours to 3 days. We found that the transcriptome profiles of head and tail regeneration were very different at the start of regeneration; however, an unexpected convergence of transcriptional profiles occurred at 48 hours when head and tail fragments are still morphologically distinct. By comparing differentially expressed transcripts at various time-points, we revealed that this divergence/convergence pattern is caused by a shared regulatory program that runs early in heads and later in tails.Additionally, we also performed RNA-seq on smed-prep(RNAi) tail fragments which ultimately fail to regenerate anterior structures. We find the gene regulation program in response to smed-prep(RNAi) to display the opposite regulatory trend compared to the previously mentioned share regulatory program during regeneration. Using annotation data and comparative approaches, we also identified a set of approximately 4,800 triclad specific transcripts that were enriched amongst the genes displaying differential expression during the regeneration time-course. The regeneration transcriptome of head and tail regeneration provides us with a rich resource for investigating the global expression changes that occurs during regeneration. We show that very different regenerative scenarios utilize a shared core regenerative program. Furthermore, our consolidated transcriptome and annotations allowed us to identity triclad specific transcripts that are enriched within this core regulatory program. Our data support the hypothesis that both conserved aspects of animal developmental programs and recent evolutionarily innovations work in concert to control regeneration.

  1. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    PubMed Central

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics. PMID:29228005

  2. A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes.

    PubMed

    Barling, Adam; Swaminathan, Kankshita; Mitros, Therese; James, Brandon T; Morris, Juliette; Ngamboma, Ornella; Hall, Megan C; Kirkpatrick, Jessica; Alabady, Magdy; Spence, Ashley K; Hudson, Matthew E; Rokhsar, Daniel S; Moose, Stephen P

    2013-12-09

    The Miscanthus genus of perennial C4 grasses contains promising biofuel crops for temperate climates. However, few genomic resources exist for Miscanthus, which limits understanding of its interesting biology and future genetic improvement. A comprehensive catalog of expressed sequences were generated from a variety of Miscanthus species and tissue types, with an emphasis on characterizing gene expression changes in spring compared to fall rhizomes. Illumina short read sequencing technology was used to produce transcriptome sequences from different tissues and organs during distinct developmental stages for multiple Miscanthus species, including Miscanthus sinensis, Miscanthus sacchariflorus, and their interspecific hybrid Miscanthus × giganteus. More than fifty billion base-pairs of Miscanthus transcript sequence were produced. Overall, 26,230 Sorghum gene models (i.e., ~ 96% of predicted Sorghum genes) had at least five Miscanthus reads mapped to them, suggesting that a large portion of the Miscanthus transcriptome is represented in this dataset. The Miscanthus × giganteus data was used to identify genes preferentially expressed in a single tissue, such as the spring rhizome, using Sorghum bicolor as a reference. Quantitative real-time PCR was used to verify examples of preferential expression predicted via RNA-Seq. Contiguous consensus transcript sequences were assembled for each species and annotated using InterProScan. Sequences from the assembled transcriptome were used to amplify genomic segments from a doubled haploid Miscanthus sinensis and from Miscanthus × giganteus to further disentangle the allelic and paralogous variations in genes. This large expressed sequence tag collection creates a valuable resource for the study of Miscanthus biology by providing detailed gene sequence information and tissue preferred expression patterns. We have successfully generated a database of transcriptome assemblies and demonstrated its use in the study of genes of interest. Analysis of gene expression profiles revealed biological pathways that exhibit altered regulation in spring compared to fall rhizomes, which are consistent with their different physiological functions. The expression profiles of the subterranean rhizome provides a better understanding of the biological activities of the underground stem structures that are essentials for perenniality and the storage or remobilization of carbon and nutrient resources.

  3. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.

    PubMed

    Diray-Arce, Joann; Clement, Mark; Gul, Bilquees; Khan, M Ajmal; Nielsen, Brent L

    2015-05-06

    Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.

  4. Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling.

    PubMed

    Wang, Xiaolei; Wu, Dezhi; Yang, Qian; Zeng, Jianbin; Jin, Gulei; Chen, Zhong-Hua; Zhang, Guoping; Dai, Fei

    2016-01-01

    Low temperature is a major abiotic stress affecting crop growth and productivity. A better understanding of low temperature tolerance mechanisms is imperative for developing the crop cultivars with improved tolerance. We herein performed an Illumina RNA-sequencing experiment using two barley genotypes differing in freezing tolerance (Nure, tolerant and Tremois, sensitive), to determine the transcriptome profiling and genotypic difference under mild freezing shock treatment after a very short acclimation for gene induction. A total of 6474 differentially expressed genes, almost evenly distributed on the seven chromosomes, were identified. The key DEGs could be classified into six signaling pathways, i.e., Ca(2+) signaling, PtdOH signaling, CBFs pathway, ABA pathway, jasmonate pathway, and amylohydrolysis pathway. Expression values of DEGs in multiple signaling pathways were analyzed and a hypothetical model of mild freezing shock tolerance mechanism was proposed. Expression and sequence profile of HvCBFs cluster within Frost resistance-H2, a major quantitative trait locus on 5H being closely related to low temperature tolerance in barley, were further illustrated, considering the crucial role of HvCBFs on freezing tolerance. It may be concluded that multiple signaling pathways are activated in concert when barley is exposed to mild freezing shock. The pathway network we presented may provide a platform for further exploring the functions of genes involved in low temperature tolerance in barley.

  5. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    PubMed

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  6. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm.

    PubMed

    Liu, Peigang; Wang, Yongqiang; Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi

    2015-01-01

    Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis.

  7. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm

    PubMed Central

    Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi

    2015-01-01

    Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis. PMID:26274803

  8. Biomarkers in Immunoglobulin Light Chain Amyloidosis.

    PubMed

    Kufová, Z; Sevcikova, T; Growkova, K; Vojta, P; Filipová, J; Adam, Z; Pour, L; Penka, M; Rysava, R; Němec, P; Brozova, L; Vychytilova, P; Jurczyszyn, A; Grosicki, S; Barchnicka, A; Hajdúch, M; Simicek, M; Hájek, R

    2017-01-01

    Immunoglobulin light chain amyloidosis (AL amyloidosis - ALA) is a monoclonal gammopathy characterized by presence of aberrant plasma cells producing amyloidogenic immunoglobulin light chains. This leads to formation of amyloid fibrils in various organs and tissues, mainly in heart and kidney, and causes their dysfunction. As amyloid depositing in target organs is irreversible, there is a big effort to identify biomarker that could help to distinguish ALA from other monoclonal gammopathies in the early stages of disease, when amyloid deposits are not fatal yet. High throughput technologies bring new opportunities to modern cancer research as they enable to study disease within its complexity. Sophisticated methods such as next generation sequencing, gene expression profiling and circulating microRNA profiling are new approaches to study aberrant plasma cells from patients with light chain amyloidosis and related diseases. While generally known mutation in multiple myeloma patients (KRAS, NRAS, MYC, TP53) were not found in ALA, number of mutated genes is comparable. Transcriptome of ALA patients proves to be more similar to monoclonal gammopathy of undetermined significance patients, moreover level of circulating microRNA, that are known to correlate with heart damage, is increased in ALA patients, where heart damage in ALA typical symptom.Key words: amyloidosis - plasma cell - genome - transcriptome - microRNA.

  9. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling.

    PubMed

    Ko, Jae-Heung; Han, Kyung-Hwan; Park, Sunchung; Yang, Jaemo

    2004-06-01

    Wood is an important raw material and environmentally cost-effective renewable source of energy. However, the molecular biology of wood formation (i.e. secondary growth) is surprisingly understudied. A novel experimental system was employed to study the molecular regulation of secondary xylem formation in Arabidopsis. First, we demonstrate that the weight carried by the stem is a primary signal for the induction of cambium differentiation and the plant hormone, auxin, is a downstream carrier of the signal for this process. We used Arabidopsis whole-transcriptome (23 K) GeneChip analysis to examine gene expression profile changes in the inflorescent stems treated for wood formation by cultural manipulation or artificial weight application. Many of the genes up-regulated in wood-forming stems had auxin responsive cis-acting elements in their promoter region, indicating auxin-mediated regulation of secondary growth. We identified 700 genes that were differentially expressed during the transition from primary growth to secondary growth. More than 40% of the genes that were up-regulated (>5x) were associated with signal transduction and transcriptional regulation. Biological significance of these regulatory genes is discussed in light of the induction and development of secondary xylem.

  10. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    NASA Astrophysics Data System (ADS)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  11. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling

    PubMed Central

    Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Yamazaki, Mami; Knoch, Eva; Mori, Tetsuya; Umemoto, Naoyuki; Morita, Masaki; Hirai, Go; Sodeoka, Mikiko; Saito, Kazuki

    2016-01-01

    The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species. PMID:28066454

  12. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling.

    PubMed

    Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Yamazaki, Mami; Knoch, Eva; Mori, Tetsuya; Umemoto, Naoyuki; Morita, Masaki; Hirai, Go; Sodeoka, Mikiko; Saito, Kazuki

    2016-01-01

    The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana , also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana . All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana . To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis , we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.

  13. Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues.

    PubMed

    Maroilley, T; Berri, M; Lemonnier, G; Esquerré, D; Chevaleyre, C; Mélo, S; Meurens, F; Coville, J L; Leplat, J J; Rau, A; Bed'hom, B; Vincent-Naulleau, S; Mercat, M J; Billon, Y; Lepage, P; Rogel-Gaillard, C; Estellé, J

    2018-06-13

    The epithelium of the intestinal mucosa and the gut-associated lymphoid tissues (GALT) constitute an essential physical and immunological barrier against pathogens. In order to study the specificities of the GALT transcriptome in pigs, we compared the transcriptome profiles of jejunal and ileal Peyer's patches (PPs), mesenteric lymph nodes (MLNs) and peripheral blood (PB) of four male piglets by RNA-Seq. We identified 1,103 differentially expressed (DE) genes between ileal PPs (IPPs) and jejunal PPs (JPPs), and six times more DE genes between PPs and MLNs. The master regulator genes FOXP3, GATA3, STAT4, TBX21 and RORC were less expressed in IPPs compared to JPPs, whereas the transcription factor BCL6 was found more expressed in IPPs. In comparison between IPPs and JPPs, our analyses revealed predominant differential expression related to the differentiation of T cells into Th1, Th2, Th17 and iTreg in JPPs. Our results were consistent with previous reports regarding a higher T/B cells ratio in JPPs compared to IPPs. We found antisense transcription for respectively 24%, 22% and 14% of the transcripts detected in MLNs, PPs and PB, and significant positive correlations between PB and GALT transcriptomes. Allele-specific expression analyses revealed both shared and tissue-specific cis-genetic control of gene expression.

  14. Doubled Haploid ‘CUDH2107’ as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility

    PubMed Central

    Khosa, Jiffinvir S.; Lee, Robyn; Bräuning, Sophia; Lord, Janice; Pither-Joyce, Meeghan; McCallum, John; Macknight, Richard C.

    2016-01-01

    Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits. PMID:27861615

  15. Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets.

    PubMed

    Leroux, Christine; Bernard, Laurence; Faulconnier, Yannick; Rouel, Jacques; de la Foye, Anne; Domagalski, Jordann; Chilliard, Yves

    2016-01-01

    Fatty acid (FA) composition plays a crucial role in milk nutritional quality. Despite the known nutritional regulation of ruminant milk composition, the overall mammary mechanisms underlying this regulation are far from being understood. The aim of our study was to determine nutritional regulation of mammary transcriptomes in relation to the cow milk composition. Twelve cows received diets differing in the forage-to-concentrate ratio [high forage (HF) and low forage (LF)] supplemented or not with lipids [HF with whole intact rapeseeds (RS) and LF sunflower oil (SO)] in a 4 × 4 Latin square design. Milk production and FA composition were determined. The gene expression profile was studied using RT-qPCR and a bovine microarray. Our results showed a higher amplitude of milk composition and mammary transcriptome responses to lipid supplementation with the LF-SO compared with the LF diet than with the HF-RS compared with the HF diet. Forty-nine differentially expressed genes, including genes involved in lipid metabolism, were identified with LF-SO versus LF, whereas RS supplementation to the HF diet did not affect the mammary transcriptome. This study highlights different responses to lipid supplementation of milk production and composition and mammary transcriptomes depending on the nature of lipid supplementation and the percentage of dietary concentrate. © 2016 S. Karger AG, Basel.

  16. Gene Expression Profiles of Chlamydophila pneumoniae during the Developmental Cycle and Iron Depletion–Mediated Persistence

    PubMed Central

    Mäurer, André P; Mehlitz, Adrian; Mollenkopf, Hans J; Meyer, Thomas F

    2007-01-01

    The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle. PMID:17590080

  17. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    PubMed

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers.

    PubMed

    Broz, Amanda K; Guerrero, Rafael F; Randle, April M; Baek, You Soon; Hahn, Matthew W; Bedinger, Patricia A

    2017-04-24

    Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.

  19. A Comparative Analysis of Industrial Escherichia coli K–12 and B Strains in High-Glucose Batch Cultivations on Process-, Transcriptome- and Proteome Level

    PubMed Central

    Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M.; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald

    2013-01-01

    Escherichia coli K–12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (EttanTM DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K–12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation. PMID:23950949

  20. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level.

    PubMed

    Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald

    2013-01-01

    Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.

  1. Transcriptome architecture across tissues in the pig

    PubMed Central

    Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel

    2008-01-01

    Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811

  2. De novo transcriptome assembly of the calanoid copepod Neocalanus flemingeri: A new resource for emergence from diapause.

    PubMed

    Roncalli, Vittoria; Cieslak, Matthew C; Sommer, Stephanie A; Hopcroft, Russell R; Lenz, Petra H

    2018-02-01

    Copepods, small planktonic crustaceans, are key links between primary producers and upper trophic levels, including many economically important fishes. In the subarctic North Pacific, the life cycle of copepods like Neocalanus flemingeri includes an ontogenetic migration to depth followed by a period of diapause (a type of dormancy) characterized by arrested development and low metabolic activity. The end of diapause is marked by the production of the first brood of eggs. Recent temperature anomalies in the North Pacific have raised concerns about potential negative effects on N. flemingeri. Since diapause is a developmental program, its progress can be tracked using through global gene expression. Thus, a reference transcriptome was developed as a first step towards physiological profiling of diapausing females using high-throughput Illumina sequencing. The de novo transcriptome, the first for this species was designed to investigate the diapause period. RNA-Seq reads were obtained for dormant to reproductive N. flemingeri females. A high quality de novo transcriptome was obtained by first assembling reads from each individual using Trinity software followed by clustering with CAP3 Assembly Program. This assembly consisted of 140,841transcripts (contigs). Bench-marking universal single-copy orthologs analysis identified 85% of core eukaryotic genes, with 79% predicted to be complete. Comparison with other calanoid transcriptomes confirmed its quality and degree of completeness. Trinity assembly of reads originating from multiple individuals led to fragmentation. Thus, the workflow applied here differed from the one recommended by Trinity, but was required to obtain a good assembly. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Genome-Wide Mapping of Cystitis Due to Streptococcus agalactiae and Escherichia coli in Mice Identifies a Unique Bladder Transcriptome That Signifies Pathogen-Specific Antimicrobial Defense against Urinary Tract Infection

    PubMed Central

    Tan, Chee K.; Carey, Alison J.; Cui, Xiangqin; Webb, Richard I.; Ipe, Deepak; Crowley, Michael; Cripps, Allan W.; Benjamin, William H.; Ulett, Kimberly B.; Schembri, Mark A.

    2012-01-01

    The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens. PMID:22733575

  4. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    PubMed

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  5. RNASeq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar 'Riesling'

    USDA-ARS?s Scientific Manuscript database

    The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in heterozygous species. This is a promising approach to improving the annotation of the reference genome sequence of grapevine (Vitis vinifera L.), a species of high-l...

  6. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis)

    USDA-ARS?s Scientific Manuscript database

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis cv. 'Hongyang' at immature, mature, and postharvest ripening...

  7. Assessing mechanisms of toxicant response in the amphipod Melita plumulosa through transcriptomic profiling.

    PubMed

    Hook, Sharon E; Osborn, Hannah L; Spadaro, David A; Simpson, Stuart L

    2014-01-01

    This study describes the function of transcripts with altered abundance in the epibenthic amphipod, Melita plumulosa, following whole-sediment exposure to a series of common environmental contaminants. M. plumulosa were exposed for 48 h to sediments spiked and equilibrated with the following contaminants at concentrations predicted to cause sublethal effects to reproduction: porewater ammonia 30 mg L(-1); bifenthrin at 100 μg kg(-1); fipronil at 50 μg kg(-1); 0.6% diesel; 0.3% crude oil; 250 mg Cu kg(-1); 400 mg Ni kg(-1); and 400 mg Zn kg(-1). RNA was extracted and hybridized against a custom Agilent microarray developed for this species. Although the microarray represented a partial transcriptome and not all features on the array could be annotated, unique transcriptomic profiles were generated for each of the contaminant exposures. Hierarchical clustering grouped the expression profiles together by contaminant class, with copper and zinc, the petroleum products and nickel, and the pesticides each forming a distinct cluster. Many of the transcriptional changes observed were consistent with patterns previously described in other crustaceans. The changes in the transcriptome demonstrated that contaminant exposure caused changes in digestive function, growth and moulting, and the cytoskeleton following metal exposure, whereas exposure to petroleum products caused changes in carbohydrate metabolism, xenobiotic metabolism and hormone cycling. Functional analysis of these gene expression profiles can provide a better understanding of modes of toxic action and permits the prediction of mixture effects within contaminated ecosystems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells.

    PubMed

    Cavill, Rachel; Kamburov, Atanas; Ellis, James K; Athersuch, Toby J; Blagrove, Marcus S C; Herwig, Ralf; Ebbels, Timothy M D; Keun, Hector C

    2011-03-01

    Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.

  9. Transcriptome Profiling of Chironomus kiinensis under Phenol Stress Using Solexa Sequencing Technology

    PubMed Central

    Cao, Chuanwang; Wang, Zhiying; Niu, Changying; Desneux, Nicolas; Gao, Xiwu

    2013-01-01

    Phenol is a major pollutant in aquatic ecosystems due to its chemical stability, water solubility and environmental mobility. To date, little is known about the molecular modifications of invertebrates under phenol stress. In the present study, we used Solexa sequencing technology to investigate the transcriptome and differentially expressed genes (DEGs) of midges (Chironomus kiinensis) in response to phenol stress. A total of 51,518,972 and 51,150,832 clean reads in the phenol-treated and control libraries, respectively, were obtained and assembled into 51,014 non-redundant (Nr) consensus sequences. A total of 6,032 unigenes were classified by Gene Ontology (GO), and 18,366 unigenes were categorized into 238 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. These genes included representatives from almost all functional categories. A total of 10,724 differentially expressed genes (P value <0.05) were detected in a comparative analysis of the expression profiles between phenol-treated and control C. kiinensis including 8,390 upregulated and 2,334 downregulated genes. The expression levels of 20 differentially expressed genes were confirmed by real-time RT-PCR, and the trends in gene expression that were observed matched the Solexa expression profiles, although the magnitude of the variations was different. Through pathway enrichment analysis, significantly enriched pathways were identified for the DEGs, including metabolic pathways, aryl hydrocarbon receptor (AhR), pancreatic secretion and neuroactive ligand-receptor interaction pathways, which may be associated with the phenol responses of C. kiinensis. Using Solexa sequencing technology, we identified several groups of key candidate genes as well as important biological pathways involved in the molecular modifications of chironomids under phenol stress. PMID:23527048

  10. Integrative Assessment of Chlorine-Induced Acute Lung Injury in Mice

    PubMed Central

    Pope-Varsalona, Hannah; Concel, Vincent J.; Liu, Pengyuan; Bein, Kiflai; Berndt, Annerose; Martin, Timothy M.; Ganguly, Koustav; Jang, An Soo; Brant, Kelly A.; Dopico, Richard A.; Upadhyay, Swapna; Di, Y. P. Peter; Hu, Zhen; Vuga, Louis J.; Medvedovic, Mario; Kaminski, Naftali; You, Ming; Alexander, Danny C.; McDunn, Jonathan E.; Prows, Daniel R.; Knoell, Daren L.

    2012-01-01

    The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4. PMID:22447970

  11. Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data.

    PubMed

    Menon, Vilas

    2017-12-11

    Advances in single-cell RNA-sequencing technology have resulted in a wealth of studies aiming to identify transcriptomic cell types in various biological systems. There are multiple experimental approaches to isolate and profile single cells, which provide different levels of cellular and tissue coverage. In addition, multiple computational strategies have been proposed to identify putative cell types from single-cell data. From a data generation perspective, recent single-cell studies can be classified into two groups: those that distribute reads shallowly over large numbers of cells and those that distribute reads more deeply over a smaller cell population. Although there are advantages to both approaches in terms of cellular and tissue coverage, it is unclear whether different computational cell type identification methods are better suited to one or the other experimental paradigm. This study reviews three cell type clustering algorithms, each representing one of three broad approaches, and finds that PCA-based algorithms appear most suited to low read depth data sets, whereas gene clustering-based and biclustering algorithms perform better on high read depth data sets. In addition, highly related cell classes are better distinguished by higher-depth data, given the same total number of reads; however, simultaneous discovery of distinct and similar types is better served by lower-depth, higher cell number data. Overall, this study suggests that the depth of profiling should be determined by initial assumptions about the diversity of cells in the population, and that the selection of clustering algorithm(s) is subsequently based on the depth of profiling will allow for better identification of putative transcriptomic cell types. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection.

    PubMed

    Florez, Juan Carlos; Mofatto, Luciana Souto; do Livramento Freitas-Lopes, Rejane; Ferreira, Sávio Siqueira; Zambolim, Eunize Maciel; Carazzolle, Marcelo Falsarella; Zambolim, Laércio; Caixeta, Eveline Teixeira

    2017-12-01

    We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.

  13. Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum.

    PubMed

    Dittmer, Neal T; Hiromasa, Yasuaki; Tomich, John M; Lu, Nanyan; Beeman, Richard W; Kramer, Karl J; Kanost, Michael R

    2012-01-01

    The insect cuticle is a composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly from hard and rigid to soft and flexible. Understanding how different cuticle types are assembled can aid in the development of novel biomimetic materials for use in medicine and technology. Toward this goal, we have taken a combined proteomics and transcriptomics approach with the red flour beetle, Tribolium castaneum, to examine the protein and gene expression profiles of the elytra and hindwings, appendages that contain rigid and soft cuticles, respectively. Two-dimensional gel electrophoresis analysis revealed distinct differences in the protein profiles between elytra and hindwings, with four highly abundant proteins dominating the elytral cuticle extract. MALDI/TOF mass spectrometry identified 19 proteins homologous to known or hypothesized cuticular proteins (CPs), including a novel low complexity protein enriched in charged residues. Microarray analysis identified 372 genes with a 10-fold or greater difference in transcript levels between elytra and hindwings. CP genes with higher expression in the elytra belonged to the Rebers and Riddiford family (CPR) type 2, or cuticular proteins of low complexity (CPLC) enriched in glycine or proline. In contrast, a majority of the CP genes with higher expression in hindwings were classified as CPR type 1, cuticular proteins analogous to peritrophins (CPAP), or members of the Tweedle family. This research shows that the elyra and hindwings, representatives of rigid and soft cuticles, have different protein and gene expression profiles for structural proteins that may influence the mechanical properties of these cuticles.

  14. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.

    PubMed

    Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh

    2015-07-01

    The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.

  15. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing.

    PubMed

    Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou

    2018-06-01

    The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.

  16. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  17. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice.

    PubMed

    Marco, Maria L; de Vries, Maaike C; Wels, Michiel; Molenaar, Douwe; Mangell, Peter; Ahrne, Siv; de Vos, Willem M; Vaughan, Elaine E; Kleerebezem, Michiel

    2010-11-01

    Probiotic bacteria provide unique opportunities to study the global responses and molecular mechanisms underlying the effects of gut-associated microorganisms in the human digestive tract. In this study, we show by comparative transcriptome analysis using DNA microarrays that the established probiotic Lactobacillus plantarum 299v specifically adapts its metabolic capacity in the human intestine for carbohydrate acquisition and expression of exopolysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a commensal microorganism in the human gut. A core L. plantarum transcriptome expressed in the mammalian intestine was also determined through comparisons of L. plantarum 299v activities in humans to those found for L. plantarum WCFS1 in germ-free mice. These results identify the niche-specific adaptations of a dietary microorganism to the intestinal ecosystem and provide novel targets for molecular analysis of microbial-host interactions which affect human health.

  18. Stage-Specific Transcriptome and Proteome Analyses of the Filarial Parasite Onchocerca volvulus and Its Wolbachia Endosymbiont

    PubMed Central

    Bennuru, Sasisekhar; Cotton, James A.; Ribeiro, Jose M. C.; Grote, Alexandra; Harsha, Bhavana; Holroyd, Nancy; Mhashilkar, Amruta; Molina, Douglas M.; Randall, Arlo Z.; Shandling, Adam D.; Unnasch, Thomas R.; Ghedin, Elodie; Berriman, Matthew

    2016-01-01

    ABSTRACT Onchocerciasis (river blindness) is a neglected tropical disease that has been successfully targeted by mass drug treatment programs in the Americas and small parts of Africa. Achieving the long-term goal of elimination of onchocerciasis, however, requires additional tools, including drugs, vaccines, and biomarkers of infection. Here, we describe the transcriptome and proteome profiles of the major vector and the human host stages (L1, L2, L3, molting L3, L4, adult male, and adult female) of Onchocerca volvulus along with the proteome of each parasitic stage and of its Wolbachia endosymbiont (wOv). In so doing, we have identified stage-specific pathways important to the parasite’s adaptation to its human host during its early development. Further, we generated a protein array that, when screened with well-characterized human samples, identified novel diagnostic biomarkers of O. volvulus infection and new potential vaccine candidates. This immunomic approach not only demonstrates the power of this postgenomic discovery platform but also provides additional tools for onchocerciasis control programs. PMID:27881553

  19. The chromatin accessibility signature of human immune aging stems from CD8+ T cells.

    PubMed

    Ucar, Duygu; Márquez, Eladio J; Chung, Cheng-Han; Marches, Radu; Rossi, Robert J; Uyar, Asli; Wu, Te-Chia; George, Joshy; Stitzel, Michael L; Palucka, A Karolina; Kuchel, George A; Banchereau, Jacques

    2017-10-02

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 + T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. © 2017 Ucar et al.

  20. The chromatin accessibility signature of human immune aging stems from CD8+ T cells

    PubMed Central

    Marches, Radu; Rossi, Robert J.; Uyar, Asli; Wu, Te-Chia; Stitzel, Michael L.; Palucka, A. Karolina

    2017-01-01

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. PMID:28904110

  1. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton.

    PubMed

    Wu, Jianyong; Zhang, Meng; Zhang, Bingbing; Zhang, Xuexian; Guo, Liping; Qi, Tingxiang; Wang, Hailin; Zhang, Jinfa; Xing, Chaozhu

    2017-06-08

    Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2 nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood. In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a backcross population (BC 8 F 1 ) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR, confirming the accuracy of the RNA-seq results. Through genome-wide comparative transcriptome analysis, the differential expression profiles of CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1 and the CMS-D2 cytoplasm.

  3. Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments.

    PubMed

    Lee, Sanghyeob; Choi, Doil

    2013-09-01

    Global transcriptome analysis revealed common regulons for biotic/abiotic stresses, and some of these regulons encoding signaling components in both stresses were newly identified in this study. In this study, we aimed to identify plant responses to multiple stress conditions and discover the common regulons activated under a variety of stress conditions. Global transcriptome analysis revealed that salicylic acid (SA) may affect the activation of abiotic stress-responsive genes in pepper. Our data indicate that methyl jasmonate (MeJA) and ethylene (ET)-responsive genes were primarily activated by biotic stress, while abscisic acid (ABA)-responsive genes were activated under both types of stresses. We also identified differentially expressed gene (DEG) responses to specific stress conditions. Biotic stress induces more DEGs than those induced by abiotic and hormone applications. The clustering analysis using DEGs indicates that there are common regulons for biotic or abiotic stress conditions. Although SA and MeJA have an antagonistic effect on gene expression levels, SA and MeJA show a largely common regulation as compared to the regulation at the DEG expression level induced by other hormones. We also monitored the expression profiles of DEG encoding signaling components. Twenty-two percent of these were commonly expressed in both stress conditions. The importance of this study is that several genes commonly regulated by both stress conditions may have future applications for creating broadly stress-tolerant pepper plants. This study revealed that there are complex regulons in pepper plant to both biotic and abiotic stress conditions.

  4. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network1[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico

    2016-01-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  5. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.

    PubMed

    Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk

    2016-03-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.

    PubMed

    Shi, Kui; Gu, Jiayu; Guo, Huijun; Zhao, Linshu; Xie, Yongdun; Xiong, Hongchun; Li, Junhui; Zhao, Shirong; Song, Xiyun; Liu, Luxiang

    2017-01-01

    Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.

  7. Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.).

    PubMed

    Chen, Xia; Zhang, Min; Tan, Jie; Huang, Shuping; Wang, Chunli; Zhang, Hongyuan; Tan, Taiming

    2017-01-01

    Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) eggplant lines were analyzed using RNA-sequencing (RNA-seq) technology. These sequences were assembled into 38925 unigenes, of which 22683 had an annotated function and 3419 were predicted as novel genes or from alternative splicing. 4864 and 1592 unigenes that were identified as DEGs between comparison groups PP05 vs PnP05 and PP05 vs GnP05, respectively. 506 common DEGs were found contained in both comparison groups, including 258 up-regulated and 248 down-regulated genes. Functional enrichment analyses identified many common or specific biological processes and gene set potentially associated with plant development. The most pronounced findings are that differentially regulated genes potentially-related with auxin signaling between parthenocarpic and non-parthenocarpic eggplants, e.g. calcium-binding protein PBP1 and transcription factor E2FB, which mediate the auxin distribution and auxin-dependent cell division, respectively, are up-regulated in the PP05; whereas homologs of GH3.1 and AUX/IAA, which are involved in inactivation of IAA and interference of auxin signaling, respectively, are down-regulated in PP05. Furthermore, gibberellin and cytokinin signaling genes and genes related to flower development were found differentially regulated between these eggplant lines. The present study provides comprehensive transcriptomic profiles of eggplants with or without parthenocarpic capacity. The information will deepen our understanding of the molecular mechanisms of eggplant parthenocarpy. The DEGs, especially these filtered from PP05 vs PnP05 + GnP05, will be valuable for further investigation of key genes involved in the parthenocarpic fruit development and genomics-assisted breeding.

  8. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.

    PubMed

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Santana, Eliane Silva; Zanini, Guilherme Keppe; Dos Santos, Renato Augusto Corrêa; de Oliveira Pontes, Angélica; de Souza, Aline Tieppo; Dal'Mas, Roberta Maria Menegaldo Tavares Soares; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2017-06-30

    Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement.

  9. Transcriptome profiling of Diachasmimorpha longicaudata towards useful molecular tools for population management.

    PubMed

    Mannino, M Constanza; Rivarola, Máximo; Scannapieco, Alejandra C; González, Sergio; Farber, Marisa; Cladera, Jorge L; Lanzavecchia, Silvia B

    2016-10-12

    Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is a solitary parasitoid of Tephritidae (Diptera) fruit flies of economic importance currently being mass-reared in bio-factories and successfully used worldwide. A peculiar biological aspect of Hymenoptera is its haplo-diploid life cycle, where females (diploid) develop from fertilized eggs and males (haploid) from unfertilized eggs. Diploid males were described in many species and recently evidenced in D. longicaudata by mean of inbreeding studies. Sex determination in this parasitoid is based on the Complementary Sex Determination (CSD) system, with alleles from at least one locus involved in early steps of this pathway. Since limited information is available about genetics of this parasitoid species, a deeper analysis on D. longicaudata's genomics is required to provide molecular tools for achieving a more cost effective production under artificial rearing conditions. We report here the first transcriptome analysis of male-larvae, adult females and adult males of D. longicaudata using 454-pyrosequencing. A total of 469766 reads were analyzed and 8483 high-quality isotigs were assembled. After functional annotation, a total of 51686 unigenes were produced, from which, 7021 isotigs and 20227 singletons had at least one BLAST hit against the NCBI non-redundant protein database. A preliminary comparison of adult female and male evidenced that 98 transcripts showed differential expression profiles, with at least a 10-fold difference. Among the functionally annotated transcripts we detected four sequences potentially involved in sex determination and three homologues to two known genes involved in the sex determination cascade. Finally, a total of 4674SimpleSequence Repeats (SSRs) were in silico identified and characterized. The information obtained here will significantly contribute to the development of D. longicaudata functional genomics, genetics and population-based genome studies. Thousands of new microsatellite markers were identified as toolkits for population genetics analysis. The transcriptome characterized here is the starting point to elucidate the molecular bases of the sex determination mechanism in this species.

  10. Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers

    PubMed Central

    Tishchenko, Inna; Milioli, Heloisa Helena; Riveros, Carlos; Moscato, Pablo

    2016-01-01

    Despite constituting approximately two thirds of all breast cancers, the luminal A and B tumours are poorly classified at both clinical and molecular levels. There are contradictory reports on the nature of these subtypes: some define them as intrinsic entities, others as a continuum. With the aim of addressing these uncertainties and identifying molecular signatures of patients at risk, we conducted a comprehensive transcriptomic and genomic analysis of 2,425 luminal breast cancer samples. Our results indicate that the separation between the molecular luminal A and B subtypes—per definition—is not associated with intrinsic characteristics evident in the differentiation between other subtypes. Moreover, t-SNE and MST-kNN clustering approaches based on 10,000 probes, associated with luminal tumour initiation and/or development, revealed the close connections between luminal A and B tumours, with no evidence of a clear boundary between them. Thus, we considered all luminal tumours as a single heterogeneous group for analysis purposes. We first stratified luminal tumours into two distinct groups by their HER2 gene cluster co-expression: HER2-amplified luminal and ordinary-luminal. The former group is associated with distinct transcriptomic and genomic profiles, and poor prognosis; it comprises approximately 8% of all luminal cases. For the remaining ordinary-luminal tumours we further identified the molecular signature correlated with disease outcomes, exhibiting an approximately continuous gene expression range from low to high risk. Thus, we employed four virtual quantiles to segregate the groups of patients. The clinico-pathological characteristics and ratios of genomic aberrations are concordant with the variations in gene expression profiles, hinting at a progressive staging. The comparison with the current separation into luminal A and B subtypes revealed a substantially improved survival stratification. Concluding, we suggest a review of the definition of luminal A and B subtypes. A proposition for a revisited delineation is provided in this study. PMID:27341628

  11. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales. PMID:24666982

  12. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis

    PubMed Central

    Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping

    2015-01-01

    Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen responses may play important roles in regulating the yield of oleoresin. These DEGs are worthy of special attention in future studies. PMID:26167875

  13. Comparative Transcriptomics of Seasonal Phenotypic Flexibility in Two North American Songbirds.

    PubMed

    Cheviron, Z A; Swanson, D L

    2017-11-01

    Phenotypic flexibility allows organisms to reversibly alter their phenotypes to match the changing demands of seasonal environments. Because phenotypic flexibility is mediated, at least in part, by changes in gene regulation, comparative transcriptomic studies can provide insights into the mechanistic underpinnings of seasonal phenotypic flexibility, and the extent to which regulatory responses to changing seasons are conserved across species. To begin to address these questions, we sampled individuals of two resident North American songbird species, American goldfinch (Spinus tristis) and black-capped chickadee (Poecile atricapillus) in summer and winter to measure seasonal variation in pectoralis transcriptomic profiles and to identify conserved and species-specific elements of these seasonal profiles. We found that very few genes exhibited divergent responses to changes in season between species, and instead, a core set of over 1200 genes responded to season concordantly in both species. Moreover, several key metabolic pathways, regulatory networks, and gene functional classes were commonly recruited to induce seasonal phenotypic shifts in these species. The seasonal transcriptomic responses mirror winter increases in pectoralis mass and cellular metabolic intensity documented in previous studies of both species, suggesting that these seasonal phenotypic responses are due in part to changes in gene expression. Despite growing evidence of muscle nonshivering thermogenesis (NST) in young precocial birds, we did not find strong evidence of upregulation of genes putatively involved in NST during winter in either species, suggesting that seasonal modification of muscular NST is not a prominent contributor to winter increases in thermogenic capacity for adult passerine birds. Together, these results provide the first comprehensive overview of potential common regulatory mechanisms underlying seasonally flexible phenotypes in wild, free-ranging birds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis.

    PubMed

    Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M

    2014-03-15

    Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.

  15. Mitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosis

    PubMed Central

    Konradi, Christine; Sillivan, Stephanie E.; Clay, Hayley B.

    2011-01-01

    Gene expression studies of bipolar disorder (BPD) have shown changes in transcriptome profiles in multiple brain regions. Here we summarize the most consistent findings in the scientific literature, and compare them to data from schizophrenia (SZ) and major depressive disorder (MDD). The transcriptome profiles of all three disorders overlap, making the existence of a BPD-specific profile unlikely. Three groups of functionally related genes are consistently expressed at altered levels in BPD, SZ and MDD. Genes involved in energy metabolism and mitochondrial function are downregulated, genes involved in immune response and inflammation are upregulated, and genes expressed in oligodendrocytes are downregulated. Experimental paradigms for multiple sclerosis demonstrate a tight link between energy metabolism, inflammation and demyelination. These studies also show variabilities in the extent of oligodendrocyte stress, which can vary from a downregulation of oligodendrocyte genes, such as observed in psychiatric disorders, to cell death and brain lesions seen in multiple sclerosis. We conclude that experimental models of multiple sclerosis could be of interest for the research of BPD, SZ and MDD. PMID:21310238

  16. Benchmarking Water Quality from Wastewater to Drinking Waters Using Reduced Transcriptome of Human Cells.

    PubMed

    Xia, Pu; Zhang, Xiaowei; Zhang, Hanxin; Wang, Pingping; Tian, Mingming; Yu, Hongxia

    2017-08-15

    One of the major challenges in environmental science is monitoring and assessing the risk of complex environmental mixtures. In vitro bioassays with limited key toxicological end points have been shown to be suitable to evaluate mixtures of organic pollutants in wastewater and recycled water. Omics approaches such as transcriptomics can monitor biological effects at the genome scale. However, few studies have applied omics approach in the assessment of mixtures of organic micropollutants. Here, an omics approach was developed for profiling bioactivity of 10 water samples ranging from wastewater to drinking water in human cells by a reduced human transcriptome (RHT) approach and dose-response modeling. Transcriptional expression of 1200 selected genes were measured by an Ampliseq technology in two cell lines, HepG2 and MCF7, that were exposed to eight serial dilutions of each sample. Concentration-effect models were used to identify differentially expressed genes (DEGs) and to calculate effect concentrations (ECs) of DEGs, which could be ranked to investigate low dose response. Furthermore, molecular pathways disrupted by different samples were evaluated by Gene Ontology (GO) enrichment analysis. The ability of RHT for representing bioactivity utilizing both HepG2 and MCF7 was shown to be comparable to the results of previous in vitro bioassays. Finally, the relative potencies of the mixtures indicated by RHT analysis were consistent with the chemical profiles of the samples. RHT analysis with human cells provides an efficient and cost-effective approach to benchmarking mixture of micropollutants and may offer novel insight into the assessment of mixture toxicity in water.

  17. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    PubMed Central

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  18. Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress.

    PubMed

    Sutherland, Ben J G; Jantzen, Stuart G; Yasuike, Motoshige; Sanderson, Dan S; Koop, Ben F; Jones, Simon R M

    2012-12-01

    The salmon louse Lepeophtheirus salmonis is a marine ectoparasite of wild and farmed salmon in the Northern Hemisphere. Infections of farmed salmon are of economic and ecological concern. Nauplius and copepodid salmon lice larvae are free-swimming and disperse in the water column until they encounter a host. In this study, we characterized the sublethal stress responses of L. salmonis copepodid larvae by applying a 38K oligonucleotide microarray to profile transcriptomes following 24 h exposures to suboptimal salinity (30-10 parts per thousand (‰)) or temperature (16-4 °C) environments. Hyposalinity exposure resulted in large-scale gene expression changes relative to those elicited by a thermal gradient. Subsequently, transcriptome responses to a more finely resolved salinity gradient between 30 ‰ and 25 ‰ were profiled. Minimal changes occurred at 29 ‰ or 28 ‰, a threshold of response was identified at 27 ‰, and the largest response was at 25 ‰. Differentially expressed genes were clustered by pattern of expression, and clusters were characterized by functional enrichment analysis. Results indicate larval copepods adopt two distinct coping strategies in response to short-term hyposaline stress: a primary response using molecular chaperones and catabolic processes at 27 ‰; and a secondary response up-regulating ion pumps, transporters, a different suite of chaperones and apoptosis-related transcripts at 26 ‰ and 25 ‰. The results further our understanding of the tolerances of L. salmonis copepodids to salinity and temperature gradients and may assist in the development of salmon louse management strategies. © 2012 Blackwell Publishing Ltd.

  19. Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth.

    PubMed

    Ko, Jae-Heung; Han, Kyung-Hwan

    2004-05-01

    Secondary growth in the inflorescence stems of Arabidopsis plants was induced by a combination of short-day and long-day treatments. The induced stems were divided into three different stem developmental stages (i.e., immature, intermediate, and mature) with regard to secondary growth. Whole transcriptome microarrays were used to examine the changes in global gene expression occurring at the different stem developmental stages. Over 70% of the Arabidopsis transcriptome was expressed in the stem tissues. In the mature stems with secondary growth, 567 genes were upregulated 5-fold or higher and 530 were downregulated, when compared to immature stems (with no secondary growth) and 10-day old seedlings (with no inflorescence stem). The transcription phenotypes obtained from the stems at different developmental stages largely confirm the existing insights into the biochemical processes involved in the sequential events that lead to wood formation. The major difference found between the stems undergoing secondary growth and only primary growth was in the expression profiles of transcriptional regulation-and signal transduction-related genes. An analysis of several shoot apical meristem (SAM) activity-related gene expression patterns in the stems indicated that the genetic control of secondary meristem activity might be governed by a different mechanism from that of SAM. The current study established the expression patterns of many unknown genes and identified candidate genes that are involved in the genetic regulation of secondary growth. The findings described in this report should improve our understanding of the molecular mechanisms that regulate the growth and development of the stem.

  20. RNA sequencing-based longitudinal transcriptomic profiling gives novel insights into the disease mechanism of generalized pustular psoriasis.

    PubMed

    Wang, Lingyan; Yu, Xiaoling; Wu, Chao; Zhu, Teng; Wang, Wenming; Zheng, Xiaofeng; Jin, Hongzhong

    2018-06-05

    Generalized pustular psoriasis (GPP) is a rare, episodic, potentially life-threatening inflammatory disease. However, the pathogenesis of GPP, and universally accepted therapies for treating it, remain undefined. To better understand the disease mechanism of GPP, we performed a transcriptome analysis to profile the gene expression of peripheral blood mononuclear cells (PBMCs) from patients enrolled at the time of diagnosis and receiving follow-up treatment for up to 6 months. RNA sequencing data revealed that gene expression in five GPP patients' PBMCs was profoundly altered following acitretin treatment. Differentially expressed gene (DEG) analysis suggested that genes related to psoriatic inflammation, including CXCL1, CXCL8 (IL-8), S100A8, S100A9, S100A12 and LCN2, were significantly downregulated in patients in remission from GPP. Functional enrichment and annotation analysis unveiled a cluster of DEGs significantly associated with the function of leukocytes, particularly neutrophils. Pathway analysis suggested that a variety of pro-inflammatory pathways were inhibited in patients in remission. This analysis not only reaffirmed known signaling pathways in GPP pathogenesis, but also implicated novel factors and pathways, such as cell cycle regulation pathways. Furthermore, regulator network analysis provided bioinformatics-based support for upstream molecules as potential therapeutic targets such as oncostatin M. This longitudinal analysis of blood transcriptomes provides the first evidence that dysregulated gene expression in peripheral blood may significantly contribute to psoriatic inflammation in GPP patients. Novel canonical pathways and biomarkers identified in the current research may provide insights to help understand GPP pathobiology and advance novel therapeutics.

  1. Nasal mucosa and blood cell transcriptome profiles do not reflect respiratory symptoms associated with moisture-damage.

    PubMed

    Ndika, Joseph; Suojalehto, Hille; Täubel, Martin; Lehto, Maili; Karvala, Kirsi; Pallasaho, Paula; Sund, Jukka; Auvinen, Petri; Järvi, Kati; Pekkanen, Juha; Kinaret, Pia; Greco, Dario; Hyvärinen, Anne; Alenius, Harri

    2018-05-04

    Upper and lower respiratory symptoms and asthma are adverse health effects associated with moisture-damaged buildings. Quantitative measures to detect adverse health effects related to exposure to dampness and mold are needed. Here, we investigate differences in gene expression between occupants of moisture-damaged and reference buildings. Moisture-damaged (N=11) and control (N=5) buildings were evaluated for dampness and mold by trained inspectors. The transcriptomics cohort consisted of nasal brushings and peripheral blood mononuclear cells (PBMCs) from 86 teachers, with/without self-perceived respiratory symptoms. Subject categories comprised reference (R) and damaged (D) buildings with (S) or without (NS) symptoms; i.e. R-S, R-NS, DS and D-NS. Component analyses and k-means clustering of transcriptome profiles did not distinguish building status (R/D) or presence of respiratory symptoms (S/NS). Only one nasal mucosa gene (YBX3P1) exhibited a significant change in expression between D-S and D-NS. Nine other nasal mucosa genes were differentially expressed between R-S and D-S teachers. No differentially expressed genes were identified in PBMCs. We conclude that the observed mRNA differences provide very weak biological evidence for adverse health effects associated with subject occupancy of the specified moisture-damaged buildings. This emphasizes the need to evaluate all potential factors (including those not related to toxicity) influencing perceived/self-reported ill-health in moisture-damaged buildings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (Cryptomeria japonica).

    PubMed

    Tsubomura, Miyoko; Kurita, Manabu; Watanabe, Atsushi

    2016-05-01

    The molecular mechanisms that control male strobilus development in conifers are largely unknown because the developmental stages and related genes have not yet been characterized. The determination of male strobilus developmental stages will contribute to genetic research and reproductive biology in conifers. Our objectives in this study were to determine the developmental stages of male strobili by cytological and transcriptome analysis, and to determine the stages at which aberrant morphology is observed in a male-sterile mutant of Cryptomeria japonica D. Don to better understand the molecular mechanisms that control male strobilus and pollen development. Male strobilus development was observed for 8 months, from initiation to pollen dispersal. A set of 19,209 expressed sequence tags (ESTs) collected from a male reproductive library and a pollen library was used for microarray analysis. We divided male strobilus development into 10 stages by cytological and transcriptome analysis. Eight clusters (7324 ESTs) exhibited major changes in transcriptome profiles during male strobili and pollen development in C. japonica Two clusters showed a gradual increase and decline in transcript abundance, respectively, while the other six clusters exhibited stage-specific changes. The stages at which the male sterility trait of Sosyun was expressed were identified using information on male strobilus and pollen developmental stages and gene expression profiles. Aberrant morphology was observed cytologically at Stage 6 (microspore stage), and differences in expression patterns compared with wild type were observed at Stage 4 (tetrad stage). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Transcriptome changes and cAMP oscillations in an archaeal cell cycle.

    PubMed

    Baumann, Anke; Lange, Christian; Soppa, Jörg

    2007-06-11

    The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 microM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. The analysis of cell cycle-specific transcriptome changes of H. salinarum allowed to identify a strategy of transcript level regulation that is different from all previously characterized species. The transcript levels of only 3% of all genes are regulated, a fraction that is considerably lower than has been reported for four eukaryotic species (6%-28%) and for the bacterium C. crescentus (19%). It was shown that cAMP is present in significant concentrations in an archaeon, and the phylogenetic profile of the adenylate cyclase indicates that this signaling molecule is widely distributed in archaea. The occurrence of cell cycle-dependent oscillations of the cAMP concentration in an archaeon and in several eukaryotic species indicates that cAMP level changes might be a phylogenetically old signal for cell cycle progression.

  4. Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410.

    PubMed

    Yoneda, Aki; Wittmann, Bruce J; King, Jeremy D; Blankenship, Robert E; Dantas, Gautam

    2016-08-01

    Acaryochloris species are a genus of cyanobacteria that utilize chlorophyll (chl) d as their primary chlorophyll molecule during oxygenic photosynthesis. Chl d allows Acaryochloris to harvest red-shifted light, which gives them the ability to live in filtered light environments that are depleted in visible light. Although genomes of multiple Acaryochloris species have been sequenced, their analysis has not revealed how chl d is synthesized. Here, we demonstrate that Acaryochloris sp. CCMEE 5410 cells undergo chlorosis by nitrogen depletion and exhibit robust regeneration of chl d by nitrogen repletion. We performed a time course RNA-Seq experiment to quantify global transcriptomic changes during chlorophyll recovery. We observed upregulation of numerous known chl biosynthesis genes and also identified an oxygenase gene with a similar transcriptional profile as these chl biosynthesis genes, suggesting its possible involvement in chl d biosynthesis. Moreover, our data suggest that multiple prochlorophyte chlorophyll-binding homologs are important during chlorophyll recovery, and light-independent chl synthesis genes are more dominant than the light-dependent gene at the transcription level. Transcriptomic characterization of this organism provides crucial clues toward mechanistic elucidation of chl d biosynthesis.

  5. Physiological and Transcriptomic Responses of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) to Salt Stress

    PubMed Central

    Gao, Jianwei

    2017-01-01

    Salt stress is one of the major abiotic stresses that severely impact plant growth and development. In this study, we investigated the physiological and transcriptomic responses of Chinese cabbage “Qingmaye” to salt stress, a main variety in North China. Our results showed that the growth and photosynthesis of Chinese cabbage were significantly inhibited by salt treatment. However, as a glycophyte, Chinese cabbage could cope with high salinity; it could complete an entire life cycle at 100 mM NaCl. The high salt tolerance of Chinese cabbage was achieved by accumulating osmoprotectants and by maintaining higher activity of antioxidant enzymes. Transcriptomic responses were analyzed using the digital gene expression profiling (DGE) technique after 12 h of treatment by 200 mM NaCl. A total of 1235 differentially expressed genes (DEGs) including 740 up- and 495 down-regulated genes were identified. Functional annotation analyses showed that the DEGs were related to signal transduction, osmolyte synthesis, transcription factors, and antioxidant proteins. Taken together, this study contributes to our understanding of the mechanism of salt tolerance in Chinese cabbage and provides valuable information for further improvement of salt tolerance in Chinese cabbage breeding programs. PMID:28895882

  6. Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis

    PubMed Central

    Sreeharsha, Rachapudi V.; Mudalkar, Shalini; Singha, Kambam T.; Reddy, Attipalli R.

    2016-01-01

    Pongamia pinnata (L.) (Fabaceae) is a promising biofuel tree species which is underexploited in the areas of both fundamental and applied research, due to the lack of information either on transcriptome or genomic data. To investigate the possible metabolic pathways, we performed whole transcriptome analysis of Pongamia through Illumina NextSeq platform and generated 2.8 GB of paired end sequence reads. The de novo assembly of raw reads generated 40,000 contigs and 35,000 transcripts, representing leaf, flower and seed unigenes. Spatial and temporal expression profiles of photoperiod and floral homeotic genes in Pongamia, identified GIGANTEA (GI) - CONSTANS (CO) - FLOWERING LOCUS T (FT) as active signal cascade for floral initiation. Four prominent stages of seed development were selected in a high yielding Pongamia accession (TOIL 1) to follow the temporal expression patterns of key fatty acid biosynthetic genes involved in lipid biosynthesis and accumulation. Our results provide insights into an array of molecular events from flowering to seed maturity in Pongamia which will provide substantial basis for modulation of fatty acid composition and enhancing oil yields which should serve as a potential feedstock for biofuel production. PMID:27677333

  7. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq.

    PubMed

    Chen, Jun; Suo, Shengbao; Tam, Patrick Pl; Han, Jing-Dong J; Peng, Guangdun; Jing, Naihe

    2017-03-01

    Conventional gene expression studies analyze multiple cells simultaneously or single cells, for which the exact in vivo or in situ position is unknown. Although cellular heterogeneity can be discerned when analyzing single cells, any spatially defined attributes that underpin the heterogeneous nature of the cells cannot be identified. Here, we describe how to use Geo-seq, a method that combines laser capture microdissection (LCM) and single-cell RNA-seq technology. The combination of these two methods enables the elucidation of cellular heterogeneity and spatial variance simultaneously. The Geo-seq protocol allows the profiling of transcriptome information from only a small number cells and retains their native spatial information. This protocol has wide potential applications to address biological and pathological questions of cellular properties such as prospective cell fates, biological function and the gene regulatory network. Geo-seq has been applied to investigate the spatial transcriptome of mouse early embryo, mouse brain, and pathological liver and sperm tissues. The entire protocol from tissue collection and microdissection to sequencing requires ∼5 d, Data analysis takes another 1 or 2 weeks, depending on the amount of data and the speed of the processor.

  8. Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).

    PubMed

    Hu, Yulong; Huang, Meng; Wang, Weiji; Guan, Jiantao; Kong, Jie

    2016-01-01

    The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.

  9. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis

    PubMed Central

    Hu, Ping; Wang, Jingzhen; Cui, Mingming; Tao, Jing; Luo, Youqing

    2016-01-01

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers. PMID:27222053

  10. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation

    PubMed Central

    2010-01-01

    Background Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Results Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Conclusion Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing. PMID:20707912

  11. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    PubMed

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day-night cycles.

    PubMed

    Ni, Jun; Dong, Lixiang; Jiang, Zhifang; Yang, Xiuli; Chen, Ziying; Wu, Yuhuan; Xu, Maojun

    2018-01-01

    Ginkgo leaves are raw materials for flavonoid extraction. Thus, the timing of their harvest is important to optimize the extraction efficiency, which benefits the pharmaceutical industry. In this research, we compared the transcriptomes of Ginkgo leaves harvested at midday and midnight. The differentially expressed genes with the highest probabilities in each step of flavonoid biosynthesis were down-regulated at midnight. Furthermore, real-time PCR corroborated the transcriptome results, indicating the decrease in flavonoid biosynthesis at midnight. The flavonoid profiles of Ginkgo leaves harvested at midday and midnight were compared, and the total flavonoid content decreased at midnight. A detailed analysis of individual flavonoids showed that most of their contents were decreased by various degrees. Our results indicated that circadian rhythms affected the flavonoid contents in Ginkgo leaves, which provides valuable information for optimizing their harvesting times to benefit the pharmaceutical industry.

  13. Massively parallel digital transcriptional profiling of single cells

    PubMed Central

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  14. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain.

    PubMed

    Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J

    2018-02-01

    Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.

  15. The reference transcriptome of the adult female biting midge (Culicoides sonorensis) and differential gene expression profiling during teneral, blood, and sucrose feeding conditions.

    PubMed

    Nayduch, Dana; Lee, Matthew B; Saski, Christopher A

    2014-01-01

    Unlike other important vectors such as mosquitoes and sandflies, genetic and genomic tools for Culicoides biting midges are lacking, despite the fact that they vector a large number of arboviruses and other pathogens impacting humans and domestic animals world-wide. In North America, female Culicoides sonorensis midges are important vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), orbiviruses that cause significant disease in livestock and wildlife. Libraries of tissue-specific transcripts expressed in response to feeding and oral orbivirus challenge in C. sonorensis have previously been reported, but extensive genome-wide expression profiling in the midge has not. Here, we successfully used deep sequencing technologies to construct the first adult female C. sonorensis reference transcriptome, and utilized genome-wide expression profiling to elucidate the genetic response to blood and sucrose feeding over time. The adult female midge unigene consists of 19,041 genes, of which less than 7% are differentially expressed during the course of a sucrose meal, while up to 52% of the genes respond significantly in blood-fed midges, indicating hematophagy induces complex physiological processes. Many genes that were differentially expressed during blood feeding were associated with digestion (e.g. proteases, lipases), hematophagy (e.g., salivary proteins), and vitellogenesis, revealing many major metabolic and biological factors underlying these critical processes. Additionally, key genes in the vitellogenesis pathway were identified, which provides the first glimpse into the molecular basis of anautogeny for C. sonorensis. This is the first extensive transcriptome for this genus, which will serve as a framework for future expression studies, RNAi, and provide a rich dataset contributing to the ultimate goal of informing a reference genome assembly and annotation. Moreover, this study will serve as a foundation for subsequent studies of genome-wide expression analyses during early orbivirus infection and dissecting the molecular mechanisms behind vector competence in midges.

  16. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid.

    PubMed

    Herranz, Mari Carmen; Niehl, Annette; Rosales, Marlene; Fiore, Nicola; Zamorano, Alan; Granell, Antonio; Pallas, Vicente

    2013-05-28

    Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies.

  17. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid

    PubMed Central

    2013-01-01

    Background Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Results Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Conclusions Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies. PMID:23710752

  18. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  19. 20180312 - Application of a Multiplexed High Content Imaging (HCI) Based Cell Viability and Apoptosis Chemical Screening Assay with Results in MCF-7 Cells (SOT)

    EPA Science Inventory

    The NCCT high throughput transcriptomics (HTTr) screening program uses whole transcriptome profiling assay in human-derived cells to collect concentration-response data for large numbers (100s-1000s) of environmental chemicals. To contextualize HTTr data, chemical effects on cell...

  20. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames

    PubMed Central

    Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David

    2015-01-01

    Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724

  1. mRNA-Seq Analysis of the Pseudoperonospora cubensis Transcriptome During Cucumber (Cucumis sativus L.) Infection

    PubMed Central

    Hamilton, John P.; Vaillancourt, Brieanne; Buell, C. Robin; Day, Brad

    2012-01-01

    Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host. PMID:22545137

  2. Next generation sequencing of extraskeletal myxoid chondrosarcoma.

    PubMed

    Davis, Elizabeth J; Wu, Yi-Mi; Robinson, Dan; Schuetze, Scott M; Baker, Laurence H; Athanikar, Jyoti; Cao, Xuhong; Kunju, Lakshmi P; Chinnaiyan, Arul M; Chugh, Rashmi

    2017-03-28

    Extraskeletal myxoid chondrosarcoma (EMC) is an indolent translocation-associated soft tissue sarcoma with a high propensity for metastases. Using a clinical sequencing approach, we genomically profiled patients with metastatic EMC to elucidate the molecular biology and identify potentially actionable mutations. We also evaluated potential predictive factors of benefit to sunitinib, a multi-targeted tyrosine kinase inhibitor with reported activity in a subset of EMC patients. Between January 31, 2012 and April 15, 2016, six patients with EMC participated in the clinical sequencing research study. High quality DNA and RNA was isolated and matched normal samples underwent comprehensive next generation sequencing (whole or OncoSeq capture exome of tumor and normal, tumor PolyA+ and capture transcriptome). The expression levels of sunitinib targeted-kinases were measured by transcriptome sequencing for KDR, PDGFRA/B, KIT, RET, FLT1, and FLT4. The previously reported EWSR1-NR4A3 translocation was identified in all patient tumors; however, other recurring genomic abnormalities were not detected. RET expression was significantly greater in patients with EMC relative to other types of sarcomas except for liposarcoma (p<0.0002). The folate receptor was overexpressed in two patients. Our study demonstrated that similar to other translocation-associated sarcomas, the mutational profile of metastatic EMC is limited beyond the pathognomonic translocation. The clinical significance of RET expression in EMC should be explored. Additional pre-clinical investigations of EMC may help elucidate molecular mechanisms contributing to EMC tumorigenesis that could be translated to the clinical setting.

  3. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

    PubMed

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2011-01-07

    MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.

  4. Transcriptional Profiling of Metabolic Transitions during Development and Diapause Preparation in the Copepod Calanus finmarchicus.

    PubMed

    Tarrant, Ann M; Baumgartner, Mark F; Lysiak, Nadine S J; Altin, Dag; Størseth, Trond R; Hansen, Bjørn Henrik

    2016-12-01

    Calanus finmarchicus, like many other copepods in the family Calanidae, can enter into a facultative diapause during the last juvenile phase (fifth copepodid, C5) to enable survival during unfavorable periods. Diapause is essential to the persistence of Calanus populations and profoundly impacts energy flow within oceanic ecosystems, yet regulation of diapause is not understood in these animals. Transcriptional profiling has begun to provide insight into metabolic changes occurring as C. finmarchicus prepares for and enters into diapause or skips diapause to prepare for the terminal molt. In particular, components of the glycolysis, pentose phosphate and lipid synthesis pathways are upregulated early in the C5 stage when lipid stores are low. Currently, our ability to identify metabolic patterns is limited by the incomplete functional annotation of the C. finmarchicus transcriptome. Such limitations are widespread among studies of non-model organisms and addressing them should be a priority for future research. In addition, integrating the results across multiple emerging complementary transcriptomic studies will provide a more complete picture of copepod physiology than isolated studies. Ultimately, identifying molecular markers of copepod physiology could enable robust identification of animals preparing to enter into diapause and ultimately lead to a greatly improved understanding of diapause regulation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood.

    PubMed

    Pennings, Jeroen L A; Jennen, Danyel G J; Nygaard, Unni C; Namork, Ellen; Haug, Line S; van Loveren, Henk; Granum, Berit

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances.

  6. Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization.

    PubMed

    Sager, Monica; Yeat, Nai Chien; Pajaro-Van der Stadt, Stefan; Lin, Charlotte; Ren, Qiuyin; Lin, Jimmy

    2015-01-01

    Transcriptomic technologies are evolving to diagnose cancer earlier and more accurately to provide greater predictive and prognostic utility to oncologists and patients. Digital techniques such as RNA sequencing are replacing still-imaging techniques to provide more detailed analysis of the transcriptome and aberrant expression that causes oncogenesis, while companion diagnostics are developing to determine the likely effectiveness of targeted treatments. This article examines recent advancements in molecular profiling research and technology as applied to cancer diagnosis, clinical applications and predictions for the future of personalized medicine in oncology.

  7. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.

    PubMed

    Obudulu, Ogonna; Bygdell, Joakim; Sundberg, Björn; Moritz, Thomas; Hvidsten, Torgeir R; Trygg, Johan; Wingsle, Gunnar

    2016-02-18

    Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20-160 μm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease in early xylem zones. We observed upregulation of two forms of xylem cysteine protease (Potri.002G005700.1 and Potri.005G256000.2; Pt-XCP2.1) in early xylem and their downregulation in late maturing xylem. Our data also show that Pt-KOR1.3 (Potri.003G151700.2) exhibits an expression pattern that supports the hypothesis put forward in previous studies that this is a key xyloglucanase involved in cellulose biosynthesis in primary cell walls and reduction of cellulose crystallinity in secondary walls. Our novel multivariate approach highlights important processes and provides confirmatory insights into the molecular foundations of wood development.

  8. Comprehensive Analysis of the Triterpenoid Saponins Biosynthetic Pathway in Anemone flaccida by Transcriptome and Proteome Profiling

    PubMed Central

    Zhan, Chuansong; Li, Xiaohua; Zhao, Zeying; Yang, Tewu; Wang, Xuekui; Luo, Biaobiao; Zhang, Qiyun; Hu, Yanru; Hu, Xuebo

    2016-01-01

    Background: Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as ‘Di Wu’ in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. Results: In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value < 1e-5) to the known proteins in the public database. Of the total 46,962 unigenes, 36,617 open reading frame (ORFs) were predicted. By the fragments per kilobases per million reads (FPKM) statistics, 14,004 isoforms/unigenes were found to be upregulated, and 14,090 isoforms/unigenes were down-regulated in the rhizomes as compared to those in the leaves. Based on the bioinformatics analysis, all possible enzymes involved in the triterpenoid saponins biosynthetic pathway of A. flaccida were identified, including cytosolic mevalonate pathway (MVA) and the plastidial methylerythritol pathway (MEP). Additionally, a total of 126 putative cytochrome P450 (CYP450) and 32 putative UDP glycosyltransferases were selected as the candidates of triterpenoid saponins modifiers. Among them, four of them were annotated as the gene of CYP716A subfamily, the key enzyme in the oleanane-type triterpenoid saponins biosynthetic pathway. Furthermore, based on RNA-Seq and proteome analysis, as well as quantitative RT-PCR verification, the expression level of gene and protein committed to triterpenoids biosynthesis in the leaf versus the rhizome was compared. Conclusion: A combination of the de novo transcriptome and proteome profiling based on the Illumina HiSeq 2000 sequencing platform and iTRAQ technique was shown to be a powerful method for the discovery of candidate genes, which encoded enzymes that were responsible for the biosynthesis of novel secondary metabolites in a non-model plant. The transcriptome data of our study provides a very important resource for the understanding of the triterpenoid saponins biosynthesis of A. flaccida. PMID:27504115

  9. How to normalize metatranscriptomic count data for differential expression analysis.

    PubMed

    Klingenberg, Heiner; Meinicke, Peter

    2017-01-01

    Differential expression analysis on the basis of RNA-Seq count data has become a standard tool in transcriptomics. Several studies have shown that prior normalization of the data is crucial for a reliable detection of transcriptional differences. Until now it has not been clear whether and how the transcriptomic approach can be used for differential expression analysis in metatranscriptomics. We propose a model for differential expression in metatranscriptomics that explicitly accounts for variations in the taxonomic composition of transcripts across different samples. As a main consequence the correct normalization of metatranscriptomic count data under this model requires the taxonomic separation of the data into organism-specific bins. Then the taxon-specific scaling of organism profiles yields a valid normalization and allows us to recombine the scaled profiles into a metatranscriptomic count matrix. This matrix can then be analyzed with statistical tools for transcriptomic count data. For taxon-specific scaling and recombination of scaled counts we provide a simple R script. When applying transcriptomic tools for differential expression analysis directly to metatranscriptomic data with an organism-independent (global) scaling of counts the resulting differences may be difficult to interpret. The differences may correspond to changing functional profiles of the contributing organisms but may also result from a variation of taxonomic abundances. Taxon-specific scaling eliminates this variation and therefore the resulting differences actually reflect a different behavior of organisms under changing conditions. In simulation studies we show that the divergence between results from global and taxon-specific scaling can be drastic. In particular, the variation of organism abundances can imply a considerable increase of significant differences with global scaling. Also, on real metatranscriptomic data, the predictions from taxon-specific and global scaling can differ widely. Our studies indicate that in real data applications performed with global scaling it might be impossible to distinguish between differential expression in terms of transcriptomic changes and differential composition in terms of changing taxonomic proportions. As in transcriptomics, a proper normalization of count data is also essential for differential expression analysis in metatranscriptomics. Our model implies a taxon-specific scaling of counts for normalization of the data. The application of taxon-specific scaling consequently removes taxonomic composition variations from functional profiles and therefore provides a clear interpretation of the observed functional differences.

  10. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues.

    PubMed

    Xiang, Ruidong; Oddy, Victor Hutton; Archibald, Alan L; Vercoe, Phillip E; Dalrymple, Brian P

    2016-01-01

    Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E-46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different between the species and different between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to play a role in the degradation of starch or glycogen, was highly expressed in the small and large intestines. Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably derived from the oesophagus, which has gained some liver-like and other specialized metabolic functions, but probably not by expression of pre-existing colon metabolic programs. Changes in gene transcription downstream of the rumen also appear have occurred as a consequence of the evolution of the rumen and its effect on nutrient composition flowing down the GIT.

  11. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues

    PubMed Central

    Xiang, Ruidong; Oddy, Victor Hutton; Archibald, Alan L.; Vercoe, Phillip E.

    2016-01-01

    Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E−46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different between the species and different between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to play a role in the degradation of starch or glycogen, was highly expressed in the small and large intestines. Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably derived from the oesophagus, which has gained some liver-like and other specialized metabolic functions, but probably not by expression of pre-existing colon metabolic programs. Changes in gene transcription downstream of the rumen also appear have occurred as a consequence of the evolution of the rumen and its effect on nutrient composition flowing down the GIT. PMID:26989612

  12. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis.

    PubMed

    Kong, Ling-An; Wu, Du-Qing; Huang, Wen-Kun; Peng, Huan; Wang, Gao-Feng; Cui, Jiang-Kuan; Liu, Shi-Ming; Li, Zhi-Gang; Yang, Jun; Peng, De-Liang

    2015-10-16

    Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae.

  13. Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress.

    PubMed

    Lee, Jungeun; Noh, Eun Kyeung; Choi, Hyung-Seok; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2013-03-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been studied as an extremophile that has successfully adapted to marginal land with the harshest environment for terrestrial plants. However, limited genetic research has focused on this species due to the lack of genomic resources. Here, we present the first de novo assembly of its transcriptome by massive parallel sequencing and its expression profile using D. antarctica grown under various stress conditions. Total sequence reads generated by pyrosequencing were assembled into 60,765 unigenes (28,177 contigs and 32,588 singletons). A total of 29,173 unique protein-coding genes were identified based on sequence similarities to known proteins. The combined results from all three stress conditions indicated differential expression of 3,110 genes. Quantitative reverse transcription polymerase chain reaction showed that several well-known stress-responsive genes encoding late embryogenesis abundant protein, dehydrin 1, and ice recrystallization inhibition protein were induced dramatically and that genes encoding U-box-domain-containing protein, electron transfer flavoprotein-ubiquinone, and F-box-containing protein were induced by abiotic stressors in a manner conserved with other plant species. We identified more than 2,000 simple sequence repeats that can be developed as functional molecular markers. This dataset is the most comprehensive transcriptome resource currently available for D. antarctica and is therefore expected to be an important foundation for future genetic studies of grasses and extremophiles.

  14. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur).

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2013-01-01

    Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens.

  15. Comparative transcriptome analysis reveals conserved branching morphogenesis related genes involved in chamber formation of catfish swimbladder.

    PubMed

    Yang, Yujia; Fu, Qiang; Liu, Yang; Wang, Xiaozhu; Dunham, Rex; Liu, Shikai; Bao, Lisui; Zeng, Qifan; Zhou, Tao; Li, Ning; Qin, Zhenkui; Jiang, Chen; Gao, Dongya; Liu, Zhanjiang

    2018-01-01

    The swimbladder is an internal gas-filled organ in teleosts. Its major function is to regulate buoyancy. The swimbladder exhibits great variation in size, shape, and number of compartments or chambers among teleosts. However, genomic control of swimbladder variation is unknown. Channel catfish ( Ictalurus punctatus), blue catfish ( Ictalurus furcatus), and their F1 hybrids of female channel catfish × male blue catfish (C × B hybrid catfish) provide a good model in which to investigate the swimbladder morphology, because channel catfish possess a single-chambered swimbladder, whereas blue catfish possess a bichambered swimbladder; C × B hybrid catfish possess a bichambered swimbladder but with a significantly reduced posterior chamber. Here we determined the transcriptional profiles of swimbladder from channel catfish, blue catfish, and C × B hybrid catfish. We examined their transcriptomes at both the fingerling and adult stages. Through comparative transcriptome analysis, ~4,000 differentially expressed genes (DEGs) were identified. Among these DEGs, members of the Wnt signaling pathway ( wnt1, wnt2, nfatc1, rac2), Hedgehog signaling pathway ( shh), and growth factors ( fgf10, igf-1) were identified. As these genes were known to be important for branching morphogenesis of mammalian lung and of mammary glands, their association with budding of the posterior chamber primordium and progressive development of bichambered swimbladder in fish suggest that these branching morphogenesis-related genes and their functions in branching are evolutionarily conserved across a broad spectrum of species.

  16. Vascular biology: cellular and molecular profiling.

    PubMed

    Baird, Alison E; Wright, Violet L

    2006-02-01

    Our understanding of the mechanisms underlying cerebrovascular atherosclerosis has improved in recent years, but significant gaps remain. New insights into the vascular biological processes that result in ischemic stroke may come from cellular and molecular profiling studies of the peripheral blood. In recent cellular profiling studies, increased levels of a proinflammatory T-cell subset (CD4 (+)CD28 (-)) have been associated with stroke recurrence and death. Expansion of this T-cell subset may occur after ischemic stroke and be a pathogenic mechanism leading to recurrent stroke and death. Increases in certain phenotypes of endothelial cell microparticles have been found in stroke patients relative to controls, possibly indicating a state of increased vascular risk. Molecular profiling approaches include gene expression profiling and proteomic methods that permit large-scale analyses of the transcriptome and the proteome, respectively. Ultimately panels of genes and proteins may be identified that are predictive of stroke risk. Cellular and molecular profiling studies of the peripheral blood and of atherosclerotic plaques may also pave the way for the development of therapeutic agents for primary and secondary stroke prevention.

  17. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE

    PubMed Central

    2011-01-01

    Background The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. Results We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress. Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. Conclusions This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE. PMID:21320317

  18. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.

    PubMed

    Molina, Carlos; Zaman-Allah, Mainassara; Khan, Faheema; Fatnassi, Nadia; Horres, Ralf; Rotter, Björn; Steinhauer, Diana; Amenc, Laurie; Drevon, Jean-Jacques; Winter, Peter; Kahl, Günter

    2011-02-14

    The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress.Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE.

  19. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    PubMed Central

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  20. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    PubMed

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-08-14

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.

Top