Su, Rui; Fan, Wufa; Yu, Qin; Dong, Xiaochun; Qi, Jianping; Zhu, Quangang; Zhao, Weili; Wu, Wei; Chen, Zhongjian; Li, Ye; Lu, Yi
2017-01-01
Nanoemulsions have been widely applied to dermal and transdermal drug delivery. However, whether and to what depth the integral nanoemulsions can permeate into the skin is not fully understood. In this study, an environment-responsive dye, P4, was loaded into nanoemulsions to track the transdermal translocation of the nanocarriers, while coumarin-6 was embedded to represent the cargoes. Particle size has great effects on the transdermal transportation of nanoemulsions. Integral nanoemulsions with particle size of 80 nm can diffuse into but not penetrate the viable epidermis. Instead, these nanoemulsions can efficiently fill the whole hair follicle canals and reach as deep as 588 μm underneath the dermal surfaces. The cargos are released from the nanoemulsions and diffuse into the surrounding dermal tissues. On the contrary, big nanoemulsions, with mean particle size of 500 nm, cannot penetrate the stratum corneum and can only migrate along the hair follicle canals. Nanoemulsions with median size, e.g. 200 nm, show moderate transdermal permeation effects among the three-size nanoemulsions. In addition, colocalization between nanoemulsions and immunofluorescence labeled antigen-presenting cells was observed in the epidermis and the hair follicles, implying possible capture of nanoemulsions by these cells. In conclusion, nanoemulsions are advantageous for transdermal delivery and potential in transcutaneous immunization. PMID:28465469
NASA Astrophysics Data System (ADS)
Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho
2014-10-01
This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.
Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh
2008-01-01
Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981
Rai, Vineet Kumar; Mishra, Nidhi; Yadav, Kuldeep Singh; Yadav, Narayan Prasad
2018-01-28
The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin. Copyright © 2017 Elsevier B.V. All rights reserved.
Traversing the Skin Barrier with Nano-emulsions.
Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta
2017-01-01
In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zheng, Wen-wu; Zhao, Ling; Wei, Yu-meng; Ye, Yun; Xiao, Shun-han
2010-08-01
The objective of this study was to develop and evaluate nanoemulsion system for transdermal delivery of granisetron hydrochloride. Pseudo-ternary phase diagram was constructed to ascertain the concentration range of components of nanoemulsion composed of isopropyl myristate (IPM) as an oil phase, tween 85 as surfactant, ethanol as cosurfactant, water as aqueous phase. The effects of the content of IPM as an oil phase and n-methyl pyrrolidone (NMP) as transdermal enhancer on rat skin permeation of granisetron hydrochloride nanoemulsion were studied in vitro. The results showed that the mean particle size of nanoemulsion ranged from 50.4+/-1.5 to 82.4+/-0.9 nm with homogeneous size distribution. The resulted optimum formulation composed of 2.5% granisetron hydrochloride, 4% IPM, 40% tween 85/ethanol (1 : 1) and 10% NMP showed that the skin permeation rate was the highest (85.39+/-2.90 microg/cm(2)/h) and enhancement of drug permeability was 4.1-fold for transdermal delivery of granisetron hydrochloridein comparison with the control group (20% of tween 85 and 20% of ethanol micelle solution containing 2.5% of granisetron hydrochloride without IPM), and cumulative permeation amount was the highest (891.8+/-2.86 microg/cm(2)) with the shortest lag time (0.11+/-0.02 h) and was stable for at least 12 months. Therefore, the nanoemulsion system developed in this study offers a promising vehicle for the transdermal delivery system of granisetron hydrochloride, which may be as effective as oral or intravenous dosage forms and avoid some difficulties associated with these dosage forms.
Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien
2014-03-01
Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul
2009-10-01
Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.
Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Cardoso, Stephani Araujo; Nicoli, Sara; Padula, Cristina; Santi, Patrizia; Rossi, Francesca; de Holanda E Silva, K Gyselle; Mansur, Claudia R Elias
2017-07-01
Nanoemulsions (NE) have attracted much attention due to their as dermal delivery systems for lipophilic drugs such as psoralens. However, NE feature low viscosity which might be unsuitable for topical application. In this work, we produced hydrogel-thickened nanoemulsions (HTN) using chitosan as thickening polymer to overcome the low viscosity attributed to NE. The aim of this study is to develop and characterize oil-in-water (o/w) HTN based on sweet fennel and clove essential oil to transdermal delivery of 8-methoxsalen (8-MOP). NE components (oil, surfactant) were selected on the basis of solubility and droplet size and processed in a high-pressure homogenizer (HPH). Drug loaded NE and HTN were characterized for particle size, stability under storage and centrifugation, rheological behavior, transdermal permeation and skin accumulation. Transdermal permeation of 8-MOP from HTN was determined by using Franz diffusion cell. Transdermal permeation from HTN using clove essential oil showed strong dependency chitosan molecular weight. On the other hand, HTN using sweet fennel oil showed an unexpected pH-dependent behavior not fully understood at the moment. These results need further investigation, nevertheless HTN revealed to be interesting and complex dermal delivery systems for poorly soluble drugs. Copyright © 2016. Published by Elsevier B.V.
The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release
Zhang, Yue; Gao, Jungang; Zheng, Hetang; Zhang, Ran; Han, Yucui
2011-01-01
We have reported a novel procedure to prepare 3,5-dihydroxy-4-isopropylstilbene (DHPS) nanoemulsion, using a low-energy emulsification method. Based on the phase diagram, the optimum prescription of nanoemulsion preparation was screened. With polyoxyethylenated castor oil (EL-40) as the surfactant, ethanol as the co-surfactant, and isopropyl myristate (IPM) as the oil phase, the DHPS nanoemulsion was obtained with a transparent appearance, little viscosity, and spherically uniform distribution verified by transmission electron microscopy and laser scattering analyzer. The nanoemulsion was also determined by FT-Raman spectroscopy. The DHPS nanoemulsion demonstrated good stability and stable physical and chemical properties. The nanoemulsion dramatically improved the transdermal release of DHPS (from 8.02 μg · cm−2 to 273.15 μg · cm−2) and could become a favorable new dosage form for DHPS. PMID:21674020
Nanosuspension improves tretinoin photostability and delivery to the skin.
Lai, Francesco; Pireddu, Rosa; Corrias, Francesco; Fadda, Anna Maria; Valenti, Donatella; Pini, Elena; Sinico, Chiara
2013-12-15
The aims of this work were to improve cutaneous targeting and photostability of tretinoin by using nanosuspension formulation. Tretinoin is a drug widely used in the topical treatment of various dermatological diseases. The tretinoin nanosuspension was prepared by precipitation method and then characterized by photo correlation spectroscopy for mean size and size distribution, and by transmission electron microscopy for morphological studies. An oil in water tretinoin nanoemulsion was also prepared and used as a control. Dermal and transdermal delivery of both tretinoin nanosuspension and nanoemulsion were tested in vitro by using Franz diffusion cells and newborn pig skin. Photodegradation studies were carried out by UV irradiation (1h, λ=366 nm) of the tretinoin nanosuspension in comparison with the nanoemulsion and a methanolic solution of the drug. During 8h percutaneous experiments, the nanosuspesion was able to localize the drug into the pig skin with a very low transdermal drug delivery, whereas the nanoemulsion greatly improved drug permeation. UV irradiation of the nanosuspension showed a great improvement of tretinoin stability in comparison with both controls. Overall results show that nanosuspension might be a useful formulation for improving tretinoin dermal delivery and stability. Copyright © 2013 Elsevier B.V. All rights reserved.
Feng, Ai-Ling; Wang, Ying-Zi; Zhang, Sheng-Hai; Sun, Xiu-Yu; Duan, Fei-Peng; Li, Cai-Xia
2013-08-01
The research aimed at investigating the physicochemical properties, stability and skin penetration in vitro of total alkaloids of Sophora flavescens nanoemulsion. Prepare total alkaloids of S. flavescens nanoemulsion and detect the determination of matrine and oxymatrine in the nanoemulsion using HPLC method. Transmission electron microscopy and laser particle size analyzer were utilized to detect the shape and size of the nanoemulsion respectively. And also the stability of nanoemulsion was studied under the conditions of low temperature (4 degrees C), normal temperature (25 degrees C) and high temperature (60 degrees C). Franz diffusion cell was used to research the transdermal absorption of nanoemulsion in vitro. The results found that the nanoemulsion we prepared presented appearance of rounded, uniform; its average diameter was (15.55 +/- 2.24) nm, and particle size distribution value was 0. 161; the appearance, diameter and percentage determination of total alkaloids of S. flavescens had no variations after 15 d under 4, 25, 60 degrees C respectively. The steady-state permeation rate was 4.564 1 microg x cm(-2) x h(-1), 24 h cumulative amount of penetration was 110.7 microg x cm(-2), which was 1.86 fold of 24 h cumulative amount of aqueous solution (59.41 microg x cm(-2)). All the results demonstrated total alkaloids of S. flavescens nanoemulsion had good permeability, and could provide a new preparation for its clinical application.
Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia
2014-01-01
Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736
NASA Astrophysics Data System (ADS)
Lala, R. R.; Awari, N. G.
2014-02-01
In the present study, we have investigated the potential of a nanoemulsion (thermodynamically stable transparent dispersions of oil and water having a droplet size <200 nm) formulation for the topical delivery of COX-2 inhibitors using etoricoxib as a model drug. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudo-ternary phase diagrams. The prepared nanoemulsions were subjected to thermodynamic stability testing. Those that passed these tests were characterized for viscosity, droplet size and differential scanning calorimetry. Topical permeation of etoricoxib through porcine abdominal skin was estimated using the Franz diffusion cell. The ex vivo skin permeation profile of optimized formulations was compared with that of etoricoxib conventional gel. A significant increase in permeability was observed in optimized nanoemulsion formulations consisting of 2 % w/w of etoricoxib, 20 % w/w of Triacetin, 38 % w/w of a surfactant mixture (Cremophor RH 40:Transcutol P), and 42 % w/w of water. The anti-inflammatory effects of this formulation on carrageenan-induced paw edema in rats showed a significant increase in the percent inhibition value (84.61 % with the nanoemulsion gel and 92.30 % with the nanoemulsion) as compared with the conventional gel (69.23 %) after 6 h when compared with etoricoxib conventional gel. These results suggest that nanoemulsions can serve as potential vehicles for improved transdermal delivery of anti-inflammatory agents such as etoricoxib.
Kumar, Lalit; Verma, Shivani; Singh, Mehakjot; Tamanna, Tamanna; Utreja, Puneet
2018-06-04
Transdermal route of delivery of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) has several advantages over other routes like reduced adverse effects, less systemic absorption, and avoidance of first pass effect and degradation in the gastrointestinal tract (GIT). Transdermal route is also beneficial for drugs having a narrow therapeutic index. The skin acts as the primary barrier for transdermal delivery of various therapeutic molecules. Various advanced nanocarrier systems offer several advantages like improved dermal penetration along with an extended drug release profile due to their smaller size and high surface area. Various nanocarrier explored for transdermal delivery of NSAIDs are liposomes, niosomes, ethosomes, polymeric nanoparticles (NPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), dendrimers, nanosuspensions/nanoemulsion, and nanofibers Objectives: In the present review, our major aim was to explore the therapeutic potential of advanced nanocarrier systems enlisted above for transdermal delivery of NSAIDs. All literature search regarding advanced nanocarrier systems for transdermal delivery of NSAIDs was done using Google Scholar and Pubmed. Advanced nanocarrier have shown various advantages like reduced side effect, low dosing frequency, high skin permeation, and ease of application over conventional transdermal delivery systems of NSAIDs in various preclinical studies. However, clinical exploration of advanced nanocarrier systems for transdermal delivery of NSAIDs is still a challenge. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A
2016-08-01
The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.
Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M
2017-07-01
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity
Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao
2015-01-01
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food. PMID:26441935
Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong
Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol ® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm 2 ) > NG1 (213 μg/cm 2 ) > NG2 (123 μg/cm 2 ) > NG3 (74.3 μg/cm 2 ). The flux rates of citral decreased in the order NE (1,026 μg/cm 2 ) > NG1 (1,021 μg/cm 2 ) > NG2 (541 μg/cm 2 ) > NG3 (353 μg/cm 2 ). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE ( P <0.05) over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.
NASA Astrophysics Data System (ADS)
Paudel, Sumit Kumar
Listeria and Salmonella related recalls and outbreaks are of major concern to the melon industry. Cinnamon oil has shown its usefulness in food treatment due to strong antifungal, antiviral, and antibacterial activities. However, its applications are limited due to poor solubility of cinnamon oil in water. Utilization of Cinnamon oil nanoemulsion may offer effective antimicrobial washing treatment to melon industry. The purpose of this study was to test the antimicrobial efficacy of cinnamon oil nanoemulsion on melons against major food borne pathogens such as Listeria monocytogenes and Salmonella enterica. Different formulations of cinnamon oil nanoemulsion were made by ultrasonication using Tween 80 as an emulsifier. Nanoemulsion exhibiting the smallest oil droplets was applied. Oil droplets were characterized for particle size by dynamic light scattering. Microbroth dilution assay was performed on three strains each of Listeria monocytogenes and Salmonella enterica to find out the antimicrobial efficacy of cinnamon oil nanoemulsion. Honeydew and cantaloupe were artificially inoculated with the strains mentioned above followed by treatment in nanoemulsion (control, 0.1%, 0.25%, and 0.5%) for one minute. Samples were dried and enumerated after one hour of treatment on selective media (PALCAM and XLD agar). The average diameter of nanoemulsion was 9.63+/-0.3nm. Minimum inhibitory concentration (MIC) of cinnamon oil nanoemulsion for both Listeria and Salmonella strains was 0.078% v/v and 0.039% v/v, respectively and the minimum bactericidal concentration was 0.078125% v/v for both. Compared to the water control, 0.5% nanoemulsion showed up to 7.7 and 5.5 log CFU/gm reductions in L. monocytogenes and S. enterica, respectively. The data suggests that cinnamon oil nanoemulsion can be used as an effective natural microbial control agent for melons. Keywords: Nanoemulsion, ultrasonication, antimicrobial.
Lim, Chaw Jiang; Basri, Mahiran; Omar, Dzolkhifli; Abdul Rahman, Mohd Basyaruddin; Salleh, Abu Bakar; Raja Abdul Rahman, Raja Noor Zaliha
2013-01-01
Pesticides are developed with carriers to improve their physicochemical properties and, accordingly, the bioefficacy of the applied formulation. For foliar-applied herbicide, generally less than 0.1% of the active ingredient reaching the target site could reduce pesticide performance. Recently, a carrier of nanoemulsion consisting of oil, surfactant and water, with a particle size of less than 200 nm, has been shown to enhance drug permeability for skin penetration in pharmaceutical delivery systems. In the present work, the aim was to formulate a water-soluble herbicide, glyphosate isopropylamine (IPA), using a green nanoemulsion system for a biological activity study against the weeds creeping foxglove, slender button weed and buffalo grass. The nanoemulsion formulations displayed a significantly lower spray deposition on creeping foxglove (2.9-3.5 ng cm(-2) ), slender button weed (2.6-2.9 ng cm(-2) ) and buffalo grass (1.8-2.4 ng cm(-2) ) than Roundup(®) (3.7-5.1 ng cm(-2) ). The visible injury rates of weeds treated with the nanoemulsion formulations were statistically equivalent to those relating to Roundup(®) at 14 days after treatment, with a control range of 86.67-96.67%. It was hypothesised that the significant difference in spray deposition with equal injury rates can be attributed to enhanced bioactivity of the nanoemulsion formulations. This initial discovery could be the platform for developing better penetration of agrochemical formulations in the future. Copyright © 2013 Society of Chemical Industry.
Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.
2018-01-01
In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122
Submicron Emulsions and Their Applications in Oral Delivery.
Mundada, Veenu; Patel, Mitali; Sawant, Krutika
2016-01-01
A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.
Nanoemulsions prepared by a low-energy emulsification method applied to edible films
USDA-ARS?s Scientific Manuscript database
Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by ...
Ali, Ali; Mekhloufi, Ghozlene; Huang, Nicolas; Agnely, Florence
2016-03-16
To avoid the toxicological concerns associated to synthetic surfactants, proteins might be an alternative for the stabilization of pharmaceutical nanoemulsions. The present study investigates the use of β-lactoglobulin (β-lg) to stabilize oil in water biocompatible nanoemulsions intended for a pharmaceutical use and prepared by high pressure homogenization (HPH). The effects of composition (nature and weight fraction of oil, β-lg concentration) and of process parameters (pressure and number of cycles) on the droplet size and on the stability of nanoemulsions were thoroughly assessed. The nanoemulsions prepared with β-lg at 1 wt% and with 5 wt% Miglyol 812 (the oil with the lowest viscosity) displayed a relatively small particle size (about 200 nm) and a low polydispersity when a homogenization pressure of 100 MPa was applied for 4 cycles. These nanoemulsions were the most stable formulations over 30 days at least. Emulsification efficiency of β-lg was reduced at higher homogenization pressures (200 MPa and 300 MPa). The effect of HPH process on the interfacial properties of β-lg was evaluated by drop shape analysis. This treatment had an effect neither on the interfacial tension nor on the interfacial dilatational rheology of β-lg at the Miglyol 812/water interface. Copyright © 2016 Elsevier B.V. All rights reserved.
Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E
2016-01-01
We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity.
Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.
Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng
2009-11-14
A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.
Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions
NASA Astrophysics Data System (ADS)
Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin
2014-08-01
Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials. Electronic supplementary information (ESI) available: Stability of cyclohexane-in-water nanoemulsion at room temperature; analysis of the oil concentration in the permeate using GC; SEM images of the cellulose nanosheet membranes with different thicknesses. See DOI: 10.1039/c4nr03227f
Fluorine-containing nanoemulsions for MRI cell tracking
Janjic, Jelena M.; Ahrens, Eric T.
2009-01-01
In this article we review the chemistry and nanoemulsion formulation of perfluorocarbons used for in vivo 19F MRI cell tracking. In this application, cells of interest are labeled in culture using a perfluorocarbon nanoemulsion. Labeled cells are introduced into a subject and tracked using 19F MRI or NMR spectroscopy. In the same imaging session, a high-resolution, conventional (1H) image can be used to place the 19F-labeled cells into anatomical context. Perfluorocarbon-based 19F cell tracking is a useful technology because of the high specificity for labeled cells, ability to quantify cell accumulations, and biocompatibility. This technology can be widely applied to studies of inflammation, cellular regenerative medicine, and immunotherapy. PMID:19920872
Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok
2014-10-01
To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.
Pagán, E; Berdejo, D; Espina, L; García-Gonzalo, D; Pagán, R
2018-01-01
The application of essential oils in form of nanoemulsions has been proposed as a method to improve their solubility in aqueous solutions, and hence their antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of citral, applied directly or in combined treatments with heat or pulsed electric fields (PEF), as a function of the inoculation procedure assayed: (i) a simple, vigorous shaking method by vortex agitation (suspension of citral; s-citral) or (ii) the previous preparation of nanoemulsions by the emulsion phase inversion (EPI) method (nanoemulsion of citral; n-citral). n-Citral was more effective in either inhibiting or inactivating Escherichia coli O157:H7 Sakai than s-citral. However, when combined with heat, a greater synergistic effect was observed with s-citral rather than with n-citral, either in lab media (pH 7·0 and 4·0) or apple juice. For instance, while almost 5 log 10 cell cycles were inactivated in apple juice after 15 min at 53°C in the presence of 0·1 μl ml -1 of s-citral, the use of n-citral required 30 min. The use of nanoemulsions did not modify the slight synergism observed when citral and mild PEF were combined (150 μs, 30 kV cm -1 ). The exploration of different delivery systems of antimicrobial compounds such as citral in aqueous food products aids in the establishment of successful combined treatments for food preservation. While at room temperature, citral in form of a nanoemulsion shows a higher antimicrobial activity; its combination with heat would imply a partial loss of the outstanding synergistic lethal effect achieved when added in suspension form. Therefore, the most suitable procedure to magnify the synergism between heat and citral when processing juices would merely require an intense homogenization step prior to the combined treatment. © 2017 The Society for Applied Microbiology.
Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols.
Baccarin, Thaisa; Lemos-Senna, Elenara
2017-11-01
Pomegranate peel and seeds have demonstrated to possess antioxidant compounds with potential application to protect the skin against the ultraviolet radiation damage. However, the photoprotection activity is dependent on the amount of these compounds that reach the viable skin layers. In this paper, we describe the in vitro skin permeation and retention of the major pomegranate peel polyphenols using Franz diffusion cells, after entrapping a ethyl acetate fraction (EAF) from Punica granatum peel extract into nanoemulsions (NEs) prepared with pomegranate seed oil (PSO) or medium chain triglyceride oil (MCT). The in vitro skin permeation of gallic acid (GA), ellagic acid (EA), and punicalagin (PC) was evaluated using a HPLC-DAD validated method. After 8 h of skin permeation, all polyphenol compounds were mostly retained in the skin and did not reach the receptor compartment. However, a 2.2-fold enhancement of the retained amount of gallic acid in the stratum corneum was verified after EAF-loaded NEs are applied, when compared with the free EAF. GA and EA were delivered to the viable epidermis and dermis only when nanoemulsions were applied onto the skin. The mean retained amounts of GA and EA in the EP and DE after applying the EAF-loaded PSO-NE were 1.78 and 1.36 μg cm -2 and 1.10 and 0.97 μg cm -2 , respectively. Similar values were obtained after applying the EAF-loaded MCT-NE. The skin permeation results were supported by the confocal microscopy images. These results evidenced the promising application of nanoemulsions to deliver the pomegranate polyphenols into the deeper skin layers.
Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce.
Bhargava, Kanika; Conti, Denise S; da Rocha, Sandro R P; Zhang, Yifan
2015-05-01
Although antimicrobial activities of plant essential oils are well documented, challenges remain as to their application in fresh produce due to the hydrophobic nature of essential oils. Oregano oil nanoemulsions were formulated with a food-grade emulsifier and evaluated for their efficacy in inactivating the growth of foodborne bacteria on fresh lettuce. Lettuce was artificially inoculated with Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7, followed by a one-minute dipping in oregano oil nanoemulsions (0.05% or 0.1%). Samples were stored at 4 °C and enumerated for bacteria at fixed intervals (0 h, 3 h, 24 h, and 72 h). Compared to control, 0.05% nanoemulsion showed an up to 3.44, 2.31, and 3.05 log CFU/g reductions in L. monocytogenes, S. Typhimurium, and E. coli O157:H7, respectively. Up to 3.57, 3.26, and 3.35 log CFU/g reductions were observed on the same bacteria by the 0.1% treatment. Scanning Electron Microscopy (SEM) demonstrated disrupted bacterial membranes due to the oregano oil treatment. The data suggest that applying oregano oil nanoemulsions to fresh produce may be an effective antimicrobial control strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan
2016-09-14
Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.
Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao
2016-06-01
The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.
Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika
2015-01-01
Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.
Argenta, Débora Fretes; de Mattos, Cristiane Bastos; Misturini, Fabíola Dallarosa; Koester, Leticia Scherer; Bassani, Valquiria Linck; Simões, Cláudia Maria Oliveira; Teixeira, Helder Ferreira
2014-01-01
The aim of this study was to optimize topical nanoemulsions containing genistein, by means of a 23 full factorial design based on physicochemical properties and skin retention. The experimental arrangement was constructed using oil type (isopropyl myristate or castor oil), phospholipid type (distearoylphosphatidylcholine [DSPC] or dioleylphosphaditylcholine [DOPC]), and ionic cosurfactant type (oleic acid or oleylamine) as independent variables. The analysis of variance showed effect of third order for particle size, polydispersity index, and skin retention of genistein. Nanoemulsions composed of isopropyl myristate/DOPC/oleylamine showed the smallest diameter and highest genistein amount in porcine ear skin whereas the formulation composed of isopropyl myristate/DSPC/oleylamine exhibited the lowest polydispersity index. Thus, these two formulations were selected for further studies. The formulations presented positive ζ potential values (>25 mV) and genistein content close to 100% (at 1 mg/mL). The incorporation of genistein in nanoemulsions significantly increased the retention of this isoflavone in epidermis and dermis, especially when the formulation composed by isopropyl myristate/DOPC/oleylamine was used. These results were supported by confocal images. Such formulations exhibited antiherpetic activity in vitro against herpes simplex virus 1 (strain KOS) and herpes simplex virus 22 (strain 333). Taken together, the results show that the genistein-loaded nanoemulsions developed in this study are promising options in herpes treatment. PMID:25336951
Chew, Marci L; Mordenti, Joyce; Yeoh, Thean; Ranade, Gautam; Qiu, Ruolun; Fang, Juanzhi; Liang, Yali; Corrigan, Brian
2016-08-01
Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM). Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence. Twelve EMs and 7 PMs (50-79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration. Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].
NASA Astrophysics Data System (ADS)
Connell, Sean
Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the intrinsic antimicrobial attributes. The reported findings have key implications for the development and application of a new antimicrobial therapeutic platform for wound management.
Youssof, Abdullah M E; Salem-Bekhit, Mounir M; Shakeel, Faiyaz; Alanazi, Fars K; Haq, Nazrul
2016-07-01
The objective of the present investigation was to develop and validate a 'green' reversed phase high-performance liquid chromatography (RP-HPLC) method for rapid analysis of a cytotoxic drug 5-fluorouracil (5-FU) in bulk drug, marketed injection, water-in-oil (w/o) nanoemulsion, double water-in-oil-in-water (w/o/w) nanoemulsion and bacterial ghost (BG) matrix. The chromatography study was carried out at room temperature (25±1°C) using an HPLC system with the help of ultraviolet (UV)-visible detector. The chromatographic performance was achieved with a Nucleodur 150mm×4.6mm RP C8 column filled with 5µm filler as a static phase. The mobile phase consisted of ethyl acetate: methanol (7:3% v/v) which was delivered at a flow rate of 1.0mLmin(-1) and the drug was detected in UV mode at 254nm. The developed method was validated in terms of linearity (r(2)=0.998), accuracy (98.19-102.09%), precision (% RSD=0.58-1.17), robustness (% RSD=0.12-0.53) and sensitivity with satisfactory results. The efficiency of the method was demonstrated by the assay of the drug in marketed injection, w/o nanoemulsion, w/o/w nanoemulsion and BG with satisfactory results. The successful resolution of the drug along with its degradation products clearly established the stability-indicating nature of the proposed method. Overall, these results suggested that the proposed analytical method could be effectively applied to the routine analysis of 5-FU in bulk drug, various pharmaceutical dosage forms and BG. Copyright © 2016 Elsevier B.V. All rights reserved.
Tang, Siah Ying; Shridharan, Parthasarathy; Sivakumar, Manickam
2013-01-01
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different. Copyright © 2012 Elsevier B.V. All rights reserved.
Development and characterization of resveratrol nanoemulsions carrying dual-imaging agents
Herneisey, Michele; Williams, Jonathan; Mirtic, Janja; Liu, Lu; Potdar, Sneha; Bagia, Christina; Cavanaugh, Jane E; Janjic, Jelena M
2016-01-01
Aim: Delivery of the natural anti-inflammatory compound resveratrol with nanoemulsions can dramatically improve its tissue targeting, bioavailability and efficacy. Current assessment of resveratrol delivery efficacy is limited to indirect pharmacological measures. Molecular imaging solves this problem. Results/methodology: Nanoemulsions containing two complementary imaging agents, near-infrared dye and perfluoropolyether (PFPE), were developed and evaluated. Nanoemulsion effects on macrophage uptake, toxicity and NO production were also evaluated. The presence of PFPE did not affect nanoemulsion size, zeta potential, colloidal stability, drug loading or drug release. Conclusion: PFPE nanoemulsions can be used in future studies to evaluate nanoemulsion biodistribution without interfering with resveratrol delivery and pharmacological outcomes. Developed nanoemulsions show promise as a versatile treatment strategy for cancer and other inflammatory diseases. Graphical abstract PMID:27834615
Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms.
Koroleva, M; Nagovitsina, T; Yurtov, E
2018-04-18
The prevailing opinion in the literature is that the main mechanism of O/W nanoemulsion degradation is Ostwald ripening. Nevertheless, the experimental rates of Ostwald ripening are usually several orders of magnitude higher than the theoretical values. This suggests that other mechanisms, such as coalescence, flocculation and subsequent creaming, significantly influence nanoemulsion breakdown. We investigated O/W nanoemulsions stabilized by Brij 30 or by a mixture of Tween 80 and Span 80 and with liquid paraffin as a dispersed phase. The results indicate that Ostwald ripening is the main process leading to nanoemulsion coarsening only in nanoemulsions with low oil phase fractions of up to 0.05. For quasi-steady state conditions the rates of Ostwald ripening are equal to (1.5 ± 0.3) × 10-29 and (1.1 ± 0.3) × 10-29 m3 s-1 in nanoemulsions with Brij 30 and Tween 80 & Span 80, respectively. In nanoemulsions with oil phase fractions of 0.15-0.45, different mechanisms are identified. Flocculation prevails over other processes during the first days in nanoemulsions stabilized by Brij 30. Coalescence is the main mechanism of nanoemulsion degradation for long times. An increase in droplet size 5-10 days after nanoemulsion preparation due to Ostwald ripening takes place in the case of nanoemulsion stabilization by Tween 80 and Span 80. The stability behavior of these nanoemulsions at later stages is distinctly affected by coalescence and flocculation.
Transdermal water-in-oil nanocarriers of nitric oxide for triggering penile erection.
Nam, Eunryel; Yoo, Saejong; Kim, Hwi-Yool; Kim, Young-Rok; Heo, Yun Jung
2018-05-09
Men's sexual health can have significant effects on a man's self-esteem, sexual relationship and male reproductive functions. Although commercially available drugs (e.g., VIAGRA and CIALIS) show effective treatment of erectile dysfunction (ED), patients with severe ED fail to respond to these medicines. Topical nitric-oxide (NO) delivery to penis can be a painless, alternative solution with severe ED because NO triggers erection and diffuses to the trabecular arteries and smooth muscles in the penis. We here develop water-in-oil (W/O) nanoemulsions (NEs) that contain NO and can directly spread on the penis. We optimize NE formation conditions including hydrophilic-lipophilic balance (HLB) and ratio of oil, water and surfactants. Then, by spreading NEs on penis skin of intact middle aged dogs, we verify medication effects and safety of the NEs in vivo. The water-in-oil NEs can be a promising non-invasive medication for ED patients with low response to a phosphodiesterase type 5 (PDE5) inhibitor, thus increasing quality of life in the aging society.
Lee, Eun-Hye; Kim, Jin-Ki; Lim, Joon-Seok; Lim, Soo-Jeong
2015-12-01
Indocyanine green (ICG) is a near-infrared optical dye approved by the Food and Drug Administration. ICG has been investigated as a simultaneous color and fluorescence-imaging tracer for the intraoperative identification of sentinel lymph nodes, but its use has recently expanded to include application as a photosensitizer for the local photodynamic/thermal treatment of identified lymph node metastases. The current study was designed to develop an ICG-loaded nanoemulsion as an effective agent for both the diagnosis and treatment of lymph node metastases. Incorporating the cationic lipid stearylamine (SA) together with ICG in the shell of nanoemulsions did not affect the loaded ICG concentration, but changed the surface charge of nanoemulsions from a negative to a positive value and improved the physical stability of nanoemulsions. Loading ICG into SA-incorporated nanoemulsions more effectively blocked the aggregation and degradation of ICG compared to loading in SA-free nanoemulsions. SA incorporation also enhanced tumor cell uptake of ICG-loaded nanoemulsions, resulting in greater cell killing upon light irradiation. After subcutaneous injection into the footpad of mice, SA-incorporated nanoemulsions increased the concentration of ICG accumulated in popliteal lymph nodes to a greater extent than SA-free nanoemulsions without affecting the kinetics of lymph node uptake of nanoemulsions. These multiple beneficial effects of incorporating SA in nanoemulsions are likely attributable to the electrostatic interaction between anionic ICG and cationic SA, as well as the change in the nanoemulsion surface charge from negative to positive. Our findings indicate that SA-incorporated nanoemulsions are promising ICG carriers for combined diagnosis and treatment of lymph node metastases. Copyright © 2015 Elsevier B.V. All rights reserved.
Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.
Kotta, Sabna; Khan, Abdul Wadood; Pramod, Kannissery; Ansari, Shahid H; Sharma, Rakesh Kumar; Ali, Javed
2012-05-01
More than 40% of new chemical entities discovered are poorly water soluble and suffer from low oral bioavailability. In recent years, nanoemulsions are receiving increasing attention as a tool of delivering these low-bioavailable moieties in an efficient manner. This review gives a brief description about how oral nanoemulsions act as a tool to improve the bioavailability of poorly water-soluble drugs. The recurrent confusion found in the literature regarding the theory behind the formation of nanoemulsions is clarified, along with the difference between nanoemulsion and lyotropic 'microemulsion' phase. This paper gives a clear-cut idea about all possible methods for the preparation of nanoemulsions and the advantages and disadvantages of each method are described. A description of the stability problems of nanoemulsions and their prevention methods is also provided, in addition to a comprehensive update on the patents and research works done in the arena of oral nanoemulsions. Low-energy emulsification techniques can also produce stable nanoemulsions. It is guaranteed that oral nanoemulsions can act as a potential tool for the delivery of poorly water-soluble therapeutic moieties in a very efficient manner.
Wound healing effects of nanoemulsion containing clove essential oil.
Alam, Prawez; Ansari, Mohammad J; Anwer, Md Khalid; Raish, Mohammad; Kamal, Yoonus K T; Shakeel, Faiyaz
2017-05-01
The aim of this study was to investigate the wound healing effects of clove oil (CO) via its encapsulation into nanoemulsion. Optimized nanoemulsion (droplet size of 29.10 nm) was selected for wound healing investigation, collagen determination, and histopathological examination in rats. Optimized nanoemulsion presented significant would healing effects in rats as compared to pure CO. Nanoemulsion also presented significant enhancement in leucine content (0.61 mg/g) as compared to pure CO (0.50 mg/g) and negative control (0.31 mg/g). Histopathology of nanoemulsion treated rats showed no signs of inflammatory cells. These results suggested that nanoemulsion of CO was safe and nontoxic.
Aboalnaja, Khaled Omer; Yaghmoor, Soonham; Kumosani, Taha Abdullah; McClements, David Julian
2016-09-01
The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.
Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry
NASA Astrophysics Data System (ADS)
Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.
2009-04-01
This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.
Combination strategies for enhancing transdermal absorption of sumatriptan through skin.
Femenía-Font, A; Balaguer-Fernández, C; Merino, V; López-Castellano, A
2006-10-12
The aim of the present work was to characterize in vitro sumatriptan transdermal absorption through human skin and to investigate the effect of chemical enhancers and iontophoresis applied both individually and in combination. A secondary objective was to compare the results obtained with those in porcine skin under the same conditions, in order to characterize the relationship between the two skin models and validate the porcine model for further research use. Transdermal flux of sumatriptan was determined in different situations: (a) after pre-treatment of human skin with ethanol, Azone (1-dodecyl-azacycloheptan-2-one), polyethylene glycol 600 and R-(+)-limonene, (b) under iontophoresis application (0.25 and 0.50 mA/cm(2)) and (c) combining chemical pre-treatment and iontophoresis at 0.50 mA/cm(2) current density. All the strategies applied enhance sumatriptan transdermal absorption. A linear relationship between the fluxes in the two skin models in the different conditions assayed can be established. The combination of both strategies, Azone and iontophoresis, proved to be the most effective of the techniques for enhancing the transdermal absorption of sumatriptan. The flux obtained with porcine skin in vitro is approximately double that obtained in human skin.
Alayoubi, Alaadin; Ayoub, Nehad M; Malaviya, Abhita; Sylvester, Paul W; Nazzal, Sami
2014-05-01
The highly malignant +SA mouse mammary epithelial cells were used as the model cell line over the years to establish the anticancer activity of tocotrienols. Tocotrienols, however, have poor oral bioavailability and were therefore entrapped into parenteral nanoemulsions for parenteral administration. The objective of this work was to test whether the activity of tocotrienols in lipid nanoemulsions against the +SA cells was retained. A secondary objective was to test whether stabilizing the nanoemulsions with poloxamer or sodium oleate would affect their activity. Nanoemulsions were found to be significantly more potent than tocotrienol/albumin conjugate. The IC50 values of the poloxamer and sodium oleate nanoemulsions were 3 and 6 microM, respectively, whereas the IC50 value of the conjugate was 10 microM. The antiproliferative activity of the nanoemulsions was also found to inversely correlate with particle size. No activity was observed with nanoemulsions loaded with alpha-tocopherol or vehicle, which confirmed the cytotoxic activity of tocotrienols and the potential use of nanoemulsions in cancer therapy.
NASA Astrophysics Data System (ADS)
Yeranossian, Vahagn Frounzig
Nanoemulsions as an emerging technology have found many applications in consumer products, drug delivery, and even particle formation. However, knowledge gaps exist in how some of these emulsions are formed, specifically what pathways are traversed to reach the final state. Moreover, how these pathways affect the final properties of the nanoemulsions would affect the applications that these droplets possess. Some nanoemulsions possess unique properties, including the assembly of droplets. While the assembly of droplets is being studied in the Helgeson lab, work must be done to understand how the assembly itself could be used to control the growth of porous materials, such a hydrogels. Thus, this thesis aims to address two factors of nanoemulsions: the formation of water-in-oil nanoemulsions and the use of assemblying droplets in oil-in-water nanoemulsions to form macroporous hydrogels. To elucidate the formation mechanism of water-in-oil nanoemulsions, a combination of dynamic light scattering and small angle neutron scattering were used to study the intermediate and final states of the nanoemulsion during its formation. These nanoemulsions were prepared by slowly adding water to an oil and surfactant mixture and were diluted to effectively measure using scattering techniques without multiple scattering events. To develop a procedure to use assembled nanoemulsions for the growth of porous materials, a combination of optical microscopy and diffusional studies were employed. Optical microscopy images taken at various stages of the procedure help elucidate how the pore sizes of the final porous material is related to the droplet-rich domains of the assembled nanoemulsion. Meanwhile, diffusional measurements help confirm the size and interconnectedness of the macropores. From the work done in the completion of my thesis, the formation mechanism of the water-in-oil nanoemulsion studied has been elucidated. The neutron scattering measurements show that during the formation of the nanoemulsion, a combination of droplets and vesicles form. The presence of vesicles provides insight into how chemical additives in the water would affect the final droplet properties. This insight can be used to design water-in-oil nanoemulsions to be used for the controlled synthesis of solid nanoparticles. Additionally, this work demonstrates a potential procedure for developing macroporous hydrogels using nanoemulsions that are assembled into droplet-rich and droplet-poor domains. Through mild UV cross-linking conditions and mild solvent extraction techniques, the pore sizes could be equivalent to the droplet-rich domain sizes. The final hydrogels can control diffusivity of molecules, giving them potential applications in drug delivery.
Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui
2018-02-01
Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.
NASA Astrophysics Data System (ADS)
Fryd, Michael M.; Mason, Thomas G.
2012-05-01
Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.
Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A
2014-08-01
Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.
Lu, Wen-Chien; Huang, Da-Wei; Wang, Chiun-C R; Yeh, Ching-Hua; Tsai, Jen-Chieh; Huang, Yu-Ting; Li, Po-Hsien
2018-01-01
Citral is a typical essential oil used in the food, cosmetic, and drug industries and has shown antimicrobial activity against microorganisms. Citral is unstable and hydrophobic under normal storage conditions, so it can easily lose its bactericide activity. Nanoemulsion technology is an excellent way to hydrophilize, microencapsulate, and protect this compound. In our studies, we used a mixed surfactant to form citral-in-water nanoemulsions, and attempted to optimize the formula for preparing nanoemulsions. Citral-in-water nanoemulsions formed at S o 0.4 to 0.6 and ultrasonic power of 18 W for 120 seconds resulted in a droplet size of < 100 nm for nanoemulsions. The observed antimicrobial activities were significantly affected by the formulation of the nanoemulsions. The observed relationship between the formulation and activity can lead to the rational design of nanoemulsion-based delivery systems for essential oils, based on the desired function of antimicrobials in the food, cosmetics, and agrochemical industries. Copyright © 2017. Published by Elsevier B.V.
Qhattal, Hussaini Syed Sha; Wang, Shu; Salihima, Tri; Srivastava, Sanjay K; Liu, Xinli
2011-12-14
Benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, is an effective chemopreventive agent. The objective of this study was to develop nanoemulsion formulations for the oral delivery of BITC. Optimized oil-in-water BITC nanoemulsions were prepared by a spontaneous self-nanoemulsification method and a homogenization-sonication method. Both nanoemulsions entrapped high amounts of BITC (15-17 mg/mL), with low polydispersity and good colloidal stability. The BITC nanoemulsions showed enhanced solubility and dissolution compared to pure BITC. These formulations markedly increased the apical to basolateral transport of BITC in Caco-2 cell monolayers. The apparent permeability values were 3.6 × 10(-6) cm/s for pure BITC and (1.1-1.3) × 10(-5) cm/s for BITC nanoemulsions. The nanoemulsions were easily taken up by human cancer cells A549 and SKOV-3 and inhibited tumor growth in vitro. This work shows for the first time that BITC can be formulated into nanoemulsions and may show promise in enhancing absorption and bioavailability.
He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei
2011-01-01
Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355
He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei
2011-01-01
Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.
Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency.
Boche, Mithila; Pokharkar, Varsha
2017-04-01
To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.
Berton, Paula; Di Bona, Kristin R; Yancey, Denise; Rizvi, Syed A A; Gray, Marquita; Gurau, Gabriela; Shamshina, Julia L; Rasco, Jane F; Rogers, Robin D
2017-05-11
Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague-Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components.
2017-01-01
Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague–Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components. PMID:28523100
Spray-on transdermal drug delivery systems.
Ibrahim, Sarah A
2015-02-01
Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.
Thomas, Lydia; Zakir, Foziyah; Mirza, Mohd Aamir; Anwer, Md Khalid; Ahmad, Farhan Jalees; Iqbal, Zeenat
2017-08-01
In the present study, various nanoemulsions were prepared using Labrafac PG+Triacetin as oil, Tween 80 as a surfactant and polyethylene glycol (PEG 400) as a co-surfactant. The developed nanoemulsions (NE1-NE5) were evaluated for physicochemical characterizations and ex-vivo for skin permeation and deposition studies. The highest skin deposition was observed for NE2 with 46.07% deposition amongst all developed nanoemulsions (NE1-NE5). Optimized nanoemulsion (NE2) had vesicle size of 84.032±0.023nm, viscosity 78.23±22.2 cps, refractive index 1.404. Nanoemulsion gel were developed by incorporation of optimized nanoemulsion (NE2) into 1-3% chitosan and characterized by physical evaluation and rheological studies. Chitosan gel (2%) was found to be suitable for gelation of nanoemulsion based on its consistency, feel and ease of spreadability. The flux of nanoemulsion gel was found 68.88μg/cm 2 /h as compared to NE2 (76.05μg/cm 2 /h) is significantly lower suggesting limited skin permeation of curcumin form gel. However, the retained amount of curcumin on skin by gel formulation (980.75±88μg) is significantly higher than NE2 (771.25±67μg). Enhanced skin permeation of NE2 (46.07%) was observed when compared to nanoemulsion gel (31.25%) and plain gel (11.47%). The outcome of this study evidently points out the potential of curcumin entrapped nanoemulsion gel in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Mahboobian, Mohammad Mehdi; Seyfoddin, Ali; Rupenthal, Ilva D.; Aboofazeli, Reza; Foroutan, Seyed Mohsen
2017-01-01
Brinzolamide (BZ) is an intraocular pressure reducing agent with low bioavailability. The purpose of the present study was to overcome this issue by development of BZ containing nanoemulsions (NEs) as an ocular drug delivery system with desirable therapeutic efficacy. Brinzolamide NEs were prepared by the spontaneous emulsification method. Based on initial release studies, twelve formulations with the slowest release characteristics were subjected to further physicochemical investigations such as particle size, polydispersity index, pH, refractive index, osmolality and viscosity. The therapeutic efficacy of these formulations was assessed by measuring the intraocular pressure after instillation of the prepared NEs in normotensive albino rabbit eyes. Nanoemulsions with suitable physicochemical properties exhibited high formulation stability under different conditions. more over biological evaluations indicated that using lower drug concentrations in NE formulations (0.4%) had a similar or even better pharmacodynamic effect compared to the commercial suspension with a higher drug concentration (1%). Our findings suggest that NEs could be effectively used as carriers for enhancing the bioavailability of topically applied ophthalmic drugs. PMID:29201076
Matsui, Rakan; Ueda, Osamu; Uchida, Shinya; Namiki, Noriyuki
2015-06-01
The aim of this study was to evaluate the in vitro skin permeation and in vivo transdermal absorption of natural progesterone (Prog) from alcoholic gel-based transdermal formulations containing Prog dissolved stably at a concentration of 3%. 3% Prog dissolved gel formulations were prepared containing with water, ethanol, 1,3-butylene glycol, carboxyvinylpolymer, diisopropanolamine, polyoxyethylene (2) oleylether and benzyl alcohol. The gel formulations added different hydrophilic surfactants and isopropyl myristate or propylene glycol dicaprylate (PGDC) as oily solvents were applied in vitro permeation study through excised rat skin on unocclusive condition. The gel formulations added polyoxyethylene (20) oleylether (Oleth-20) as hydrophilic surfactant and PGDC were applied in vivo single- and repeated-dose transdermal absorption study of rat on unocclusive condition. The results of evaluation of the gel formulations by an in vitro skin permeation study revealed a high flux of Prog from the formulation containing Oleth-20 and Oleth-20 with PGDC. The results of single and repeated in vivo transdermal absorption studies confirmed that good plasma levels of Prog were achieved and maintained by Oleth-20 and PGDC containing gel formulation. The Oleth-20 and PGDC containing ethanolic gel formulation seemed to have the ability to maintain a high activity of Prog and high diffusivity or solubility of Prog in the epidermis on the practical formulation application.
Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar
2014-01-02
Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights reserved.
Ghaderi, L; Moghimi, R; Aliahmadi, A; McClements, D J; Rafati, H
2017-10-01
Thymol-rich medicinal plants have been used in traditional medicine to relieve infectious diseases. However, the application of essential oils as medicine is limited by its low water solubility and high vapour pressure. The objective of this study was to produce stable nanoemulsions of Thymus daenensis oil in water by preventing Ostwald ripening and phase separation. The antibacterial activity of bulk and emulsified essential oil against selected pathogenic bacteria including Gram-negative (Haemophilus influenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) were investigated in the liquid and vapour phase. The optimum formulation (L2) contained 2% Tween 80 (surfactant) and 0·1% lecithin (cosurfactant) had a mean droplet diameter of 131 nm. In the liquid phase, the optimized nanoemulsion exhibited good antibacterial activity against S. pneumonia with MIC value of 0·0039 mg mL -1 . In the vapour phase, the MIC values against S. pneumonia were similar (<7·35 μL L -1 ) for both bulk and emulsified essential oil. However, there was no antibacterial activity in the vapour phase against H. influenzae and P. aeruginosa. Analysis of thymol concentration in the head space indicated that the nanoemulsion retarded the release of thymol into the vapour phase. These findings highlight the potential applications of nanoemulsions containing essential oils as antibacterial products. The results of the current study highlight the advantages of nanoemulsification for improvement of the physicochemical properties and the antibacterial activity of T. daenensis EOs in the liquid and vapour phase for therapeutic purposes. © 2017 The Society for Applied Microbiology.
Grapentin, Christoph; Barnert, Sabine; Schubert, Rolf
2015-01-01
Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion. PMID:26098661
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...
Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design
Murthy, S. Narasimha; Sammeta, Srinivasa M.; Bower, C.
2017-01-01
Magnetophoresis is a method of enhancement of drug permeation across the biological barriers by application of magnetic field. The present study investigated the mechanistic aspects of magnetophoretic transdermal drug delivery and also assessed the feasibility of designing a magnetophoretic transdermal patch system for the delivery of lidocaine. In vitro drug permeation studies were carried out across the porcine epidermis at different magnetic field strengths. The magnetophoretic drug permeation “flux enhancement factor” was found to increase with the applied magnetic field strength. The mechanistic studies revealed that the magnetic field applied in this study did not modulate permeability of the stratum corneum barrier. The predominant mechanism responsible for magnetically mediated drug permeation enhancement was found to be “magnetokinesis”. The octanol/water partition coefficient of drugs was also found to increase when exposed to the magnetic field. A reservoir type transdermal patch system with a magnetic backing was designed for in vivo studies. The dermal bioavailability (AUC0–6 h) from the magnetophoretic patch system in vivo, in rats was significantly higher than the similarly designed nonmagnetic control patch. PMID:20728484
Lee, Oukseub; Ivancic, David; Allu, Subhashini; Shidfar, Ali; Kenney, Kara; Helenowski, Irene; Sullivan, Megan E; Muzzio, Miguel; Scholtens, Denise; Chatterton, Robert T; Bethke, Kevin P; Hansen, Nora M; Khan, Seema A
2015-12-01
Women at high risk of breast cancer and those with carcinoma in situ need non-toxic, well-tolerated preventive interventions. One promising approach is drug delivery through the breast skin (local transdermal therapy, LTT). Our goal was to test novel drugs for LTT, to establish that LTT is applicable to non-steroidal drugs. Athymic nude rats were treated with oral tamoxifen, transdermal 4-hydroxytamoxifen (4-OHT) or endoxifen gel applied daily to the axillary mammary gland for 6 weeks (Study 1). Study 2 was identical to Study 1, testing transdermal telapristone acetate (telapristone) gel versus subcutaneous implant. At euthanasia, mammary glands and blood were collected. In Study 3, consenting women requiring mastectomy were randomized to diclofenac patch applied to the abdomen or the breast for 3 days preoperatively. At surgery, eight tissue samples per breast were collected from predetermined locations, along with venous blood. Drug concentrations were measured using liquid chromatography-tandem mass spectroscopy. Mammary tissue concentrations of 4-OHT, endoxifen, and telapristone were significantly higher in the axillary glands of the gel-treated animals, compared to inguinal glands or to systemically treated animals. Plasma concentrations were similar in gel and systemically treated animals. The clinical trial showed significantly higher mammary concentrations when diclofenac was applied to the breast skin versus the abdominal skin, but concentrations were variable. These results demonstrate that lipophilic drugs can be developed for LTT; although the nude rat is suitable for testing drug permeability, delivery is systemic. In human, however, transdermal application to the breast skin provides local delivery.
Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong
2017-03-28
This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carlson, Amy M; Kelly, Richard; Fetterer, David P; Rico, Pedro J; Bailey, Emily J
2016-01-01
Fentanyl is a μ-opioid agonist that often is used as the analgesic component for balanced anesthesia in both human and veterinary patients. Minimal information has been published regarding appropriate dosing, and the pharmacokinetics of fentanyl are unknown in NHP. The pharmacokinetic properties of 2 transdermal fentanyl delivery methods, a solution (2.6 and 1.95 mg/kg) and a patch (25 µg/h), were determined when applied topically to the dorsal scapular area of cynomolgus macaques (Macaca fascicularis). Serum fentanyl concentrations were analyzed by using liquid chromatography–mass spectrometry. Compared with the patch, the transdermal fentanyl solution generated higher drug concentrations over longer time. Adverse reactions occurred in the macaques that received the transdermal fentanyl solution at 2.6 mg/kg. Both preparations showed significant interanimal variability in the maximal serum drug levels, time to achieve maximal fentanyl levels, elimination half-life, and AUC values. Both the maximal concentration and the time at which this concentration occurred were increased in macaques compared with most other species after application of the transdermal fentanyl patch and compared with dogs after application of the transdermal fentanyl solution. The pharmacokinetic properties of transdermal fentanyl in macaques are markedly different from those in other veterinary species and preclude its use as a long-acting analgesic drug in NHP. PMID:27423151
Jangdey, Manmohan S; Gupta, Anshita; Saraf, Swarnlata
2017-11-01
The aim of this study was to develop a potential novel formulation of carbopol-based nanoemulsion gel containing apigenin using tamarind gum emulsifier which was having the smallest droplet size, the highest drug content, and a good physical stability for Skin delivery. Apigenin loaded nanoemulsion was prepared by high speed homogenization method and they were characterized with respect to morphology, zeta potential, differential scanning calorimeter study, and penetration studies. In-vitro release studies and skin permeation of apigenin loaded nanoemulsion by goat abdominal skin was determined using Franz diffusion cell and confocal laser scanning microscope (CLSM). The cytotoxicity of the reported formulation was evaluated in HaCaT Cells (A) and A431 cells (B) by MTT assay. The nanoemulsion formulation showed droplet size, polydispersity index, and zeta potential of 183.31 nm, 0.532, and 31.9 mV, respectively. The nanoemulsions were characterized by TEM demonstrated spherical droplets and FTIR to ensure the compatibility among its ingredients. CLSM showed uniform fluorescence intensity across the entire depth of skin in nanocarriers treatment, indicating high penetrability of nanoemulsion gel through goatskin. The nanoemulsion gel showed toxicity on melanoma (A341) in a concentration range of 0.4-2.0 mg/ml, but less toxicity toward HaCaT cells. The carbopol-based nanoemulsion gel formulation of apigenin possesses better penetrability across goatskin as compared to marketed formulation. Hence, the study postulates that the novel nanoemulsion gel of apigenin can be proved fruitful for the treatment of skin cancer in near future.
Zhong, Jinfeng; Liu, Xiong; Wang, Yonghua; Qin, Xiaoli; Li, Zeling
2017-06-21
γ-Oryzanol is a natural antioxidant and nutraceutical compound, which makes it a good candidate for nutraceuticals, food supplements and pharmaceutical preparations. However, the incorporation of γ-oryzanol into aqueous formulations is rather difficult and its bioavailability can be severely decreased because of its water-insoluble property. In this study, γ-oryzanol-enriched nanoemulsion based fish oil and medium-chain triglyceride as carrier oils were proposed. The main objective was to optimize process parameters to form stable nanoemulsions and evaluate their physicochemical stability. The formulations of stable γ-oryzanol nanoemulsions were composed of 10% mixed carrier oils (weight ratio of fish oil to medium-chain triglyceride = 3 : 7) and 10% mixed surfactants (weight ratio of Tween 80 to Span 20 = 3 : 1). The nanoemulsions were stable at a broad pH range of 2-7 and high salt concentrations (≤0.8 mol L -1 ) and sucrose levels (≤16%). The nanoemulsions were much more stable at heating temperatures below 50 °C than at elevated heating temperatures (60 and 70 °C). The nanoemulsions maintained their physical stability at various storage temperatures (5-37 °C) for 18 days. Nanoemulsions at 5 and 23 °C had lower peroxide values and anisidine values than those at an elevated storage temperature (37 °C). These results demonstrate that the low-energy emulsification method can produce γ-oryzanol-enriched nanoemulsions using fish oil and medium-chain triglyceride as carrier oils, and provide useful information for producing bioactive lipids-loaded nanoemulsions for food systems, personal care and pharmaceutical products.
Anjali, C H; Sharma, Yamini; Mukherjee, Amitava; Chandrasekaran, Natarajan
2012-02-01
Nanoemulsion composed of neem oil and non-ionic surfactant Tween 20, with a mean droplet size ranging from 31.03 to 251.43 nm, was formulated for various concentrations of the oil and surfactant. The larvicidal effect of the formulated neem oil nanoemulsion was checked against Culex quinquefasciatus. O/W emulsion was prepared using neem oil, Tween 20 and water. Nanoemulsion of 31.03 nm size was obtained at a 1:3 ratio of oil and surfactant, and it was found to be stable. The larger droplet size (251.43 nm) shifted to a smaller size of 31.03 nm with increase in the concentration of Tween 20. The viscosity of the nanoemulsion increased with increasing concentration of Tween 20. The lethal concentration (LC50) of the nanoemulsion against Cx. quinquefasciatus was checked for 1:0.30, 1:1.5 and 1:3 ratios of oil and surfactant respectively. The LC50 decreased with droplet size. The LC50 for the ratio 1:3 nanoemulsions was 11.75 mg L(-1). The formulated nanoemulsion of 31.03 nm size was found to be an effective larvicidal agent. This is the first time that a neem oil nanoemulsion of this droplet size has been reported. It may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus. Copyright © 2011 Society of Chemical Industry.
Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice.
Ragelle, Héloïse; Crauste-Manciet, Sylvie; Seguin, Johanne; Brossard, Denis; Scherman, Daniel; Arnaud, Philippe; Chabot, Guy G
2012-05-10
The natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has shown antitumour activity but its administration is complicated by its low water solubility. Our aim was to incorporate fisetin into a nanoemulsion to improve its pharmacokinetics and therapeutic efficacy. Solubility and emulsification tests allowed to develop an optimal nanoemulsion composed of Miglyol 812N/Labrasol/Tween 80/Lipoid E80/water (10%/10%/2.5%/1.2%/76.3%). The nanoemulsion had an oil droplet diameter of 153 ± 2 nm, a negative zeta potential (-28.4 ± 0.6 mV) and a polydispersity index of 0.129. The nanoemulsion was stable at 4 °C for 30 days, but phase separation occurred at 20 °C. Pharmacokinetic studies in mice revealed that the fisetin nanoemulsion injected intravenously (13 mg/kg) showed no significant difference in systemic exposure compared to free fisetin. However, when the fisetin nanoemulsion was administered intraperitoneally, a 24-fold increase in fisetin relative bioavailability was noted, compared to free fisetin. Additionally, the antitumour activity of the fisetin nanoemulsion in Lewis lung carcinoma bearing mice occurred at lower doses (36.6 mg/kg) compared to free fisetin (223 mg/kg). In conclusion, we have developed a stable nanoemulsion of fisetin and have shown that it could improve its relative bioavailability and antitumour activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Baspinar, Yücel; Borchert, Hans-Hubert
2012-07-01
The surface of all tissues, including the stratum corneum, carries a negative charge. Following that fact it is assumed that a positively charged topical formulation could lead to an enhanced penetration because of an increased interaction with the negative charge of the membrane. The intention of this study is to prove an enhanced penetration of a positively charged nanoemulsion compared to a negatively charged nanoemulsion, both containing prednicarbate. The release and penetration of these nanoemulsions, produced with the high pressure homogenization method, were investigated. Regarding these results reveals that the release of the negatively charged formulation is higher compared to the positively charged nanoemulsion, while the penetration of the positively charged nanoemulsion is enhanced compared to the negatively charged formulation. The results of the investigated positively charged nanoemulsion containing prednicarbate show that its topical use could be advantageous for the therapy of atopic dermatitis, especially regarding phytosphingosine, which was responsible for the positive charge. Copyright © 2012 Elsevier B.V. All rights reserved.
Shakeel, Faiyaz
2010-01-01
The present study was undertaken for screening of different excipients in the development of nanoemulsion formulations of three anti-inflammatory drugs namely ketoprofen, celecoxib (CXB) and meloxicam. Based on solubility profiles of each drug in oil, Triacetin (ketoprofen and CXB) and Labrafil (meloxicam) were selected as the oil phase. Based on maximum solubilization potential of oil in different surfactants, Cremophor-EL (ketoprofen and CXB) and Tween-80 (meloxicam) were selected as surfactants. Based on maximum nanoemulsion region in the pseudoternary phase diagrams, Transcutol-HP was selected as cosurfactant for all three drugs. 1:1 (ketoprofen and CXB) and 2:1 (meloxicam) mass ratio of surfactant to cosurfactant was selected for selection of different nanoemulsions on the basis of maximum nanoemulsion region in the phase diagrams. All selected nanoemulsion formulations were found thermodynamically stable. Results of these studies showed that all excipients were properly optimized for the development of nanoemulsion formulation of ketoprofen, CXB and meloxicam.
Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization
Li, Yang; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei
2018-01-01
The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions. PMID:29735918
Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization.
Li, Yang; Wu, Chang-Ling; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei
2018-05-07
The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions.
Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion
NASA Astrophysics Data System (ADS)
Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad
2010-05-01
The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient was remained stable even when stored until three months. Coalescence process between the droplets was not occurred significantly and droplet size was still below 500 nm. Over all, the emulsion remained stable, even it was centrifuged at 12000 rpm for 30 minutes.
Duggan, Sean T; Curran, Monique P
2009-01-01
Granisetron is a highly selective serotonin 5-HT(3) receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. The transdermal granisetron system delivers continuous granisetron (3.1 mg/day) into the systemic circulation (via passive diffusion) for up to 7 days. In a large phase III trial in cancer patients receiving multi-day (3-5 days) moderately or highly emetogenic chemotherapy, transdermal granisetron applied 24-48 hours prior to chemotherapy and remaining in place for 7 days was noninferior to oral granisetron 2 mg once daily administered for 3-5 days 1 hour prior to chemotherapy. Efficacy was assessed according to the proportion of patients achieving complete response (no vomiting and/or retching, no more than mild nausea, no rescue medication) from the first day, until 24 hours after the start of the last day, of administration of the chemotherapy regimen. In a phase II trial in patients with cancer receiving single-day, moderately-emetogenic chemotherapy, transdermal granisetron applied at least 24 hours prior to chemotherapy and removed after 5 days was as effective as a single oral dose of granisetron 2 mg in achieving total control (no nausea, no vomiting/retching, no use of rescue medication and no study withdrawal) during the delayed (24-120 hours; primary endpoint) period after chemotherapy. Transdermal granisetron was generally well tolerated in clinical trials, with few adverse events being treatment related.
Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Ishihara, Chizuko; Matsubara, Takumi; Matsubara, Hiroaki; Onishi, Hiraku
2018-01-01
The aim of the present study was to investigate the influence of polysorbate 60 (Tween 60) on the development of morin-loaded nanoemulsions to improve the oral bioavailability of morin. Nanoemulsions were prepared using Tween 60 and polyvinyl alcohol (PVA) as emulsifiers, and medium chain triglycerides (MCT) as the lipid base. Low-saponification-degree PVA (LL-810) was also added to stabilize dispersed droplets. MCT-LL810 nanoemulsion containing LL-810 was prepared with a reduced amount of Tween 60. However, the area under the blood concentration-time curve (AUC) of MCT-LL810 (0.18) nanoemulsion containing a small amount of Tween 60 did not increase because the absorption of morin was limited by P-glycoprotein (P-gp)-mediated efflux. MCT-LL810 (0.24) nanoemulsion containing a large amount of Tween 60 showed the highest AUC, dispersed droplets containing Tween 60 may have been transported into epithelial cells in the small intestine, and P-gp transport activity appeared to be suppressed by permeated Tween 60. Based on the plasma concentration profile, dispersed droplets in MCT-LL810 (0.24) nanoemulsion permeated more rapidly through the mucus layer and the intestinal membrane than MCT (0.24) nanoemulsion without LL-810. In conclusion, a novel feature of Tween 60 incorporated into the dispersed droplets of a nanoemulsion interacting with P-gp was demonstrated herein. Dispersed droplets in MCT-LL810 (0.24) nanoemulsion containing LL-810 permeated rapidly through the mucus layer and intestinal membrane, and Tween 60 incorporated in dispersed droplets interacted with P-gp-mediated efflux, increasing the bioavailability of morin.
Najafi-Taher, Roqya; Ghaemi, Behnaz; Amani, Amir
2018-07-30
The aim of present study was to design and optimize 0.1% adapalene loaded nano-emulsion to improve the drug efficacy and increase its user compliance. Effect of type and concentration of surfactants was studied on size of 0.1% adapalene loaded nano-emulsion. Optimized formulation was then evaluated for particle size, polydispersity index, morphology, viscosity, and pH. Subsequently, 1% carbopol® 934 was incorporated to the optimized formulation for preparation of its gel form. The efficacy and safety of 0.1% adapalene loaded nano-emulsion gel was assessed compared to marketed gel containing 0.1% adapalene. In-vitro studies showed that adapalene permeation through the skin was negligible in both adapalene loaded nano-emulsion gel and adapalene marketed gel. Furthermore, drug distribution studies in skin indicated higher retention of adapalene in the dermis in adapalene loaded nano-emulsion gel compared with adapalene marketed gel. Antibacterial activity against Propionibacterium acnes showed that adapalene loaded nano-emulsion is effective in reducing minimum inhibitory concentration of the formulation in comparison with tea tree oil nano-emulsion, and pure tea tree oil. In vivo skin irritation studies showed absence of irritancy for adapalene loaded nano-emulsion gel. Also, blood and liver absorption of the drug, histological analysis of liver and liver enzyme activity of rats after 90 days' treatment were investigated. No drug was detected in blood/liver which in addition to an absence of any adverse effect on liver and enzymes showed the potential of adapalene loaded nano-emulsion gel as a novel carrier for topical delivery of adapalene. Copyright © 2018 Elsevier B.V. All rights reserved.
[Preparation of O/W ginseng saponins-based nanoemulsion and its amplified immune response].
Cao, Fahao; Ouyang, Wuqing; Wang, Yanping
2010-02-01
To prepare an O/W ginseng saponins-based nanoemulsion and investigate its amplified immune response. The formulation of ginseng saponins-based nanoemulsion was optimized via the range of nanoemulsion zone in phase diagrams and the solubility of ginseng saponins. Its physicochemical properties were investigated, including morphology, particle size distribution, pH, viscosity and stability. Ginseng saponins-based nanoemulsion as adjuvant was co-administrated with a model antigen ovalbumin (OVA) in mice. Two weeks after the boosting, the serum levels of OVA-specific antibody and its isotypes were determined. The optimized ginseng saponins-based nanoemulsion formulation consisted of ginseng saponins, IPM, Cremophor RH 40, glycerol and water (with the weight ratio of 2 : 4 : 17.8 : 17.8 : 58.4), which was a light yellow fluid. The shape of droplets was spherical under transmission electron microscopy with an average diameter of 72.20 nm and a polydispersity index of 0.052. The viscosity and pH value of it were 4.20 s and 6.02, respectively. And it showed good stability. When co-administered with OVA, no obvious side effects were observed in the mice immunized with ginseng saponin-based nanoemulsion. The serum levels of IgG, IgG1 and IgG2a antibody in the group of ginseng saponin-based nanoemulsion immunized mice was significantly increased compared to the groups of OVA and the saline solution of ginseng saponin. Compared with the adjuvant aluminium hydroxide, the serum levels of IgG and IgG1 antibodys in the groups of ginseng saponins-based nanoemulsion had no significant difference, but the level of IgG2a was obviously higher. ginseng saponin-based nanoemulsion could amplify the Th1 and Th2 immune responses, and can be used as the vaccine adjuvant.
Vyas, Tushar K; Shahiwala, Aliasgar; Amiji, Mansoor M
2008-01-22
The aim of this investigation was to develop novel oil-in-water (o/w) nanoemulsions containing Saquinavir (SQV), an anti-HIV protease inhibitor, for enhanced oral bioavailability and brain disposition. SQV was dissolved in different types of edible oils rich in essential polyunsaturated fatty acids (PUFA) to constitute the internal oil phase of the nanoemulsions. The external phase consisted of surfactants Lipoid-80 and deoxycholic acid dissolved in water. The nanoemulsions with an average oil droplet size of 100-200 nm, containing tritiated [(3)H]-SQV, were administered orally and intravenously to male Balb/c mice. The SQV bioavailability as well as distribution in different organ systems was examined. SQV concentrations in the systemic circulation administered in flax-seed oil nanoemulsions were threefold higher as compared to the control aqueous suspension. The oral bioavailability and distribution to the brain, a potential sanctuary site for HIV, were significantly enhanced with SQV delivered in nanoemulsion formulations. In comparing SQV in flax-seed oil nanoemulsion with aqueous suspension, the maximum concentration (C(max)) and the area-under-the-curve (AUC) values were found to be five- and threefold higher in the brain, respectively, suggesting enhanced rate and extent of SQV absorption following oral administration of nanoemulsions. The results of this study show that oil-in-water nanoemulsions made with PUFA-rich oils may be very promising for HIV/AIDS therapy, in particular, for reducing the viral load in important anatomical reservoir sites.
Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties
Janjic, Jelena M.; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K.; Bai, Mingfeng
2014-01-01
Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, 19F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. PMID:24674463
Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties.
Janjic, Jelena M; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K; Bai, Mingfeng
2014-06-01
Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, (19)F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemulsions
Patel, Sravan Kumar; Patrick, Michael J.; Pollock, John A.
2013-01-01
Abstract. Design and development of a new formulation as a unique assembly of distinct fluorescent reporters with nonoverlapping fluorescence spectra and a F19 magnetic resonance imaging agent into colloidally and optically stable triphasic nanoemulsion are reported. Specifically, a cyanine dye-perfluorocarbon (PFC) conjugate was introduced into the PFC phase of the nanoemulsion and a near-infrared dye was introduced into the hydrocarbon (HC) layer. To the best of our knowledge, this is the first report of a triphasic nanoemulsion system where each oil phase, HC, and PFC are fluorescently labeled and formulated into an optically and colloidally stable nanosystem. Having, each oil phase separately labeled by a fluorescent dye allows for improved correlation between in vivo imaging and histological data. Further, dual fluorescent labeling can improve intracellular tracking of the nanodroplets and help assess the fate of the nanoemulsion in biologically relevant media. The nanoemulsions were produced by high shear processing (microfluidization) and stabilized with biocompatible nonionic surfactants resulting in mono-modal size distribution with average droplet size less than 200 nm. Nanoemulsions demonstrate excellent colloidal stability and only moderate changes in the fluorescence signal for both dyes. Confocal fluorescence microscopy of macrophages exposed to nanoemulsions shows the presence of both fluorescence agents in the cytoplasm. PMID:23912666
Challenges and Future Prospects of Nanoemulsion as a Drug Delivery System.
Yukuyama, Megumi Nishitani; Kato, Edna Tomiko Myiake; Lobenberg, Raimar; Bou-Chacra, Nadia Araci
2017-01-01
Nanoemulsion has the potential to overcome several disadvantages in drug formulation. Loading poor water-soluble drugs in the appropriate nanoemulsions enhances their wettability and/or solubility. Consequently, this improves their pharmacokinetics and pharmacodynamics by different routes of administration. Associated with the optimum nanodroplets size or even combined with key components, the droplets act as a reservoir of drugs, enabling nanoemulsion to be multifunctional platform to treat diverse diseases. A number of important advantages, which comprise nanoemulsion attributes, such as efficient drug release with appropriate rate, prolonged efficacy, drug uptake control, low side effects and drug protection properties from enzymatic or oxidative processes, have been reported in last decade. The high flexibility of nanoemulsion includes also a variety of manufacturing process options and a combination of widely assorted components such as surfactants, liquid lipids or even drug-conjugates. These features provide alternatives for designing innovative nanoemulsions aiming at high-value applications. This review presents the challenges and prospects of different nanoemulsion types and its application. The drug interaction with the components of the formulation, as well as the drug mechanistic interaction with the biological environment of different routes of administration are also presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Transdermal rivastigmine: management of cutaneous adverse events and review of the literature.
Greenspoon, Jill; Herrmann, Nathan; Adam, David N
2011-07-01
Alzheimer's disease is a chronic neurodegenerative disorder resulting in part from the degeneration of cholinergic neurons in the brain. Rivastigmine, a cholinesterase inhibitor, is commonly used as a treatment for dementia due to its ability to moderate cholinergic neurotransmission; however, treatment with oral rivastigmine can lead to gastrointestinal adverse effects such as nausea and vomiting. Transdermal administration of rivastigmine can minimize these adverse effects by providing continuous delivery of the medication, while maintaining the effectiveness of the oral treatment. While the transdermal form of rivastigmine has been found to have fewer systemic adverse effects compared with the oral form, cutaneous reactions, such as contact dermatitis, can lead to discontinuation of the drug in its transdermal form. Lack of patient compliance with regard to applying the patch to the designated site, applying the patch for the correct length of time or rotating patch application sites increases the risk of cutaneous adverse reactions. This article outlines the diagnosis and management of irritant contact dermatitis and allergic contact dermatitis secondary to transdermal rivastigmine. The large majority of reactions to transdermal patches are of an irritant type, which can be diagnosed clinically by the presence of a pruritic, erythematous, eczematous plaque strictly confined to the borders of the patch. In contrast, an allergic reaction can be differentiated by the presence of vesicles and/or oedema, erythema beyond the boundaries of the transdermal patch and lack of improvement of the lesion 48 hours after removal of the offending treatment. By encouraging the patient to follow a regular rotation schedule for the patch, and using lipid-based emollients for irritant dermatitis and pre- and post-treatment topical corticosteroids for allergic dermatitis, cutaneous reactions can often be alleviated and patients can continue with their medication regimen. Other simple changes to a patient's treatment routine, including minimizing the use of harsh soaps, avoiding recently shaven or damaged areas of skin and carefully removing the patch after use, can help to further decrease the risk of dermatitis development.
Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.
Yu, Hailong; Huang, Qingrong
2012-05-30
Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.
Mishra, Prabhakar; R S, Suresh Kumar; Jerobin, Jayakumar; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan
2014-01-01
Presence of several biochemical constituents in neem makes it an efficient antimicrobial agent for pathogenic diseases. The current investigation was aimed to assess the therapeutic potential of neem nanoemulsion as a control measure for Pseudomonas aeruginosa infection in freshwater fish Labeo rohita. The median lethal concentration (LC50) for the neem oil and neem nanoemulsion was 73.9 and 160.3 mg/L, respectively. The biomarker enzymes of treated fish tissues showed a significant difference in the level of glutathione reductase, catalase, and lipid peroxidation in neem oil-treated samples than in neem nanoemulsion-treated samples at P<0.05. The results were corroborative with histopathology and ultrastructural analysis. The bacterial infection of P. aeruginosa treated using neem nanoemulsion was more effective in both in vitro and in vivo methods. Present findings suggest that neem-based nanoemulsion has negligible toxicity to Rohu fishes. This makes neem-based nanoemulsion as an efficient therapeutic agent against P. aeruginosa infection, leading to its possible usage in the aquaculture industry. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Cationic nanoemulsions as potential carriers for intracellular delivery
Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S.
2014-01-01
Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740
Hu, Zhenhua; Liao, Meiling; Chen, Yinghui; Cai, Yunpeng; Meng, Lele; Liu, Yajun; Lv, Nan; Liu, Zhenguo; Yuan, Weien
2012-01-01
Background Silicone oil, as a major component in conditioner, is beneficial in the moisture preservation and lubrication of hair. However, it is difficult for silicone oil to directly absorb on the hair surface because of its hydrophobicity. Stable nanoemulsions containing silicone oil may present as a potential solution to this problem. Methods Silicone oil nanoemulsions were prepared using the oil-in-water method with nonionic surfactants. Emulsion particle size and distribution were characterized by scanning electron microscopy. The kinetic stability of this nanoemulsion system was investigated under accelerated stability tests and long-term storage. The effect of silicone oil deposition on hair was examined by analyzing the element of hair after treatment of silicone oil nanoemulsions. Results Nonionic surfactants such as Span 80 and Tween 80 are suitable emulsifiers to prepare oil-in-water nanoemulsions that are both thermodynamically stable and can enhance the absorption of silicone oil on hair surface. Conclusion The silicone oil-in-water nanoemulsions containing nonionic surfactants present as a promising solution to improve the silicone oil deposition on the hair surface for hair care applications. PMID:23166436
Zhong, Jinfeng; Yang, Rong; Cao, Xiaoyi; Liu, Xiong; Qin, Xiaoli
2018-01-02
Fish oil has several dietary benefits, but its application in food formulations is limited because of its poor water-solubility, easy oxidation and strong odor. The purposes of this study were to produce a fish oil/γ-oryzanol nanoemulsion and to evaluate the effect of adding this nanoemulsion on the physicochemical and sensory characteristics of yogurts. Adding fish oil/γ-oryzanol nanoemulsion resulted in a significant reduction in the acidity and syneresis of yogurt. Yogurt with the nanoemulsion had significantly lower peroxide value (0.28 mmol/L after 21 days) and higher retention of eicosapentaenoic acid and docosahexaenoic acid contents (decreased to 95% and 94% of its initial value, respectively) than yogurt with fish oil/γ-oryzanol (peroxide value = 0.65 mmol/L; eicosapentaenoic acid and docosahexaenoic acid contents decreased to 72% and 53% of its initial value, respectively). Fish oil/γ-oryzanol nanoemulsion incorporated into yogurt had closer sensory attributes scores to plain yogurt. This study may have important implications for the application of fish oil/γ-oryzanol nanoemulsion in yogurt.
Edible Nanoemulsions as Carriers of Active Ingredients: A Review.
Salvia-Trujillo, Laura; Soliva-Fortuny, Robert; Rojas-Graü, M Alejandra; McClements, D Julian; Martín-Belloso, Olga
2017-02-28
There has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.
Grivès, Sophie; Phan, Guillaume; Bouvier-Capely, Céline; Suhard, David; Rebière, François; Agarande, Michelle; Fattal, Elias
2017-04-01
No emergency decontamination treatment is currently available in the case of radiological skin contamination by uranium compounds. First responders in the workplace or during an industrial nuclear accident must be able to treat internal contamination through skin. For this purpose, a calixarene nanoemulsion was developed for the treatment of intact skin or superficial wounds contaminated by uranium, and the decontamination efficiency of this nanoemulsion was investigated in vitro and ex vivo. The present work addresses the in vivo decontamination efficiency of this nanoemulsion, using a rat model. This efficiency is compared to the radio-decontaminant soapy water currently used in France (Trait rouge ® ) in the workplace. The results showed that both calixarene-loaded nanoemulsion and non-loaded nanoemulsion allowed a significant decontamination efficiency compared to the treatment with soapy water. Early application of the nanoemulsions on contaminated excoriated rat skin allowed decreasing the uranium content by around 85% in femurs, 95% in kidneys and 93% in urines. For skin wounded by microneedles, mimicking wounds by microstings, nanoemulsions allowed approximately a 94% decrease in the uranium retention in kidneys. However, specific chelation of uranium by calixarene molecules within the nanoemulsion was not statistically significant, probably because of the limited calixarene-to-uranium molar ratio in these experiment conditions. Moreover, these studies showed that the soapy water treatment potentiates the transcutaneous passage of uranium, thus making it bioavailable, in particular when the skin is superficially wounded. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kaur, Khushwinder; Kaur, Jaspreet; Kumar, Raj; Mehta, S K
2017-09-01
The unique properties such as high optical clarity, stability and enhanced bioavailability of nanoemulsion make them useful for food, cosmetic and pharmaceutical industries. In this work, sodium stearoyl lactate and Tween 80 surfactants were collectively used to fabricate alpha tocopherol based oil in water nanoemulsion using high energy ultrasonication method. The spherical nature of pure and drug loaded nanoemulsion has been confirmed with transmission electron microscopy (TEM). The influence of pH, dilution, surfactant concentration and ionic strength on average particle size of pure and nutraceutical (benzylisothiocyanate and curcumin) encapsulated emulsion was examined. The prepared emulsion exhibited good stability up to 90days in salt solution (50-200mM) and different pH conditions. The cumulative release % of benzylisothiocyanate and curcumin was found to be 50.29% in 36h and 89.15% in 150h respectively. The antioxidant activity of pure, benzylisothiocyanate, curcumin and cocktail (benzylisothiocyanate and curcumin) nanoemulsion was calculated with 2,2-diphenyl-1-picrylhydrazyl radical. The IC 50 value of different antioxidant showed that benzylisothiocyanate nanoemulsion acted as better antioxidant as compared to pure and curcumin encapsulated nanoemulsion. Also the cell viability of pure nanoemulsion was found to be 24% on hep G2 cell. The effect of UV light irradiation on curcumin and benzylisothiocyanate stability was carried out in different solvent conditions (water/ethanol and nanoemulsion). The degradation of curcumin by the impact of UV light was successfully controlled by trapping in NEm. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
McGough, James J.; Wigal, Sharon B.; Abikoff, Howard; Turnbow, John M.; Posner, Kelly; Moon, Eliot
2006-01-01
Objective: This study evaluates the efficacy, duration of action, and tolerability of methylphenidate transdermal system (MTS) in children with ADHD. Method: Participants were dose optimized over 5 weeks utilizing patch doses of 10, 16, 20, and 27 mg applied in the morning and worn for 9 hours. Following optimization, 80 participants were…
Cheong, Ai M; Tan, Chin P; Nyam, Kar L
2018-01-01
Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p < 0.05) on the particle sizes, polydispersity index and hence the physical stability of nanoemulsions. Homogenisation parameters at 28,000 psi for three cycles produced the most stable homogeneous nanoemulsions that were below 130 nm, below 0.16, and above -40 mV of particle size, polydispersity index, and zeta potential, respectively. Field emission scanning electron microscopy micrograph showed that the optimised nanoemulsions had a good distribution within nano-range. The optimised nanoemulsions were proved to be physically stable for up to six weeks of storage at room temperature. The results from this study also provided valuable information in producing stable kenaf seed oil nanoemulsions for the future application in food and nutraceutical industries.
Balasubramani, Sundararajan; Rajendhiran, Thamaraiselvi; Moola, Anil Kumar; Diana, Ranjitha Kumari Bollipo
2017-06-01
It is believed that nanoemulsions were emerged as a promising candidate to improve the qualities of natural essential oil towards antimicrobial and insecticidal applications. In the present study, we have focused on the encapsulation of Vitex negundo L. leaf essential oil using Polysorbate80 for its different biological activities including antioxidant, bactericidal and larvicidal activity against dengue fever vector Aedes aegypti L. Initially, the nanoemulsion was prepared by low energy method and droplet size of the formulated nanoemulsion was characterized by using Dynamic Light Scattering analysis. The freshly prepared V. negundo essential nanoemulsion was observed with the mean droplet size of below 200 nm indicating its excellent stability. Further, the larvicidal activity of essential oil and nanoemulsion with various concentrations (25, 50, 100, 200 and 400 ppm). The larvicidal activities were tested 2nd and 3rd instar larval mortality rate that was observed against the 12 and 24 h exposure period. After a 12 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (73.33 ± 1.88), nanoemulsion (81.00 ± 0.88) and the larvicidal activities of 3rd instar larva were displayed essential oil (70.33 ± 2.60) and nanoemulsion (79.00 ± 3.70). Likewise, after a 24 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (90.30 ± 2.15), nanoemulsion (94.33 ± 1.20) and the larvicidal activities of 3rd instar larva were essential oil (80.66 ± 0.66) and nanoemulsion (93.00 ± 1.25) respectively. We finally concluded that the developed plant-based emulsion essential oil systems were thermodynamically stable. Owing to its improved bioavailability and biocompatibility, formulated nanoemulsion can be used in various biomedical applications including drug delivery as well as disease transmitting mosquito vector control. Graphical abstract ᅟ.
Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry
NASA Astrophysics Data System (ADS)
Rao, Jiajia
There is growing interest in the use of nanoemulsions as delivery systems for lipophilic functional agents in food and beverage products due to their high optical clarity, physical stability and bioavailability. The goal of this research is to establish quantitative structure-function relationships to allow rational formulation of food-grade nanoemulsions for food and beverage applications. Initially, formation of oil-in-water nanoemulsions using a low energy method was examined. Nanoemulsions were formed using the phase inversion temperature (PIT) method, which involves heating a surfactant, oil, water (SOW) systems near the PIT, and then cooling rapidly with stirring. Preliminary experiments were carried out using a model system consisting of a non-ionic surfactant (C12E4), hydrocarbon oil (tetradecane), and water. Nanoemulsions were formed by holding SOW mixtures near their PIT (38.5 °C) and then cooling them rapidly to 10 °C. The PIT was measured using electrical, conductivity and turbidity methods. The optimum storage temperature for PIT-nanoemulsions was about 27 °C lower than the PIT. The stability of PIT-nanoemulsions at ambient temperatures can be improved by adding either Tween 80 (0.2 wt%) or SDS (0.1 wt%) to displace the C12E4 (Brij 30) from the nano-droplet surfaces. Experiments were then carried out to establish if stable nanoemulsions could be formed using the PIT method from food-grade ingredients. Nanoemulsions were fabricated from a non-ionic surfactant (Tween 80) and flavor oil (lemon oil) by heat treatment. Different types of colloidal dispersion could be formed by simple heat treatment (90 °C, 30 minutes) depending on the surfactant-to-oil ratio (SOR): emulsions at SOR < 1; nanoemulsions at 1 < SOR < 2; microemulsions at SOR > 2. The results suggested that there was a kinetic energy barrier in the SOW system at ambient temperature that prevented it from moving from a highly unstable system into a nanoemulsion system. The conditions where stable nanoemulsions could be fabricated were also established when sucrose monopalmitate (SMP) and lemon oil were used as the surfactant and oil phase. Nanoemulsions (r < 100 nm) were formed at low surfactant-to-oil ratios (SOR < 1) depending on homogenization conditions, whereas microemulsions (r < 10 nm) were formed at higher ratios (SOR > 1). Relatively stable nanoemulsions could be formed at pH 6 and 7, but extensive particle growth/aggregation occurred at lower and higher pH values. Flavor oil nanoemulsions were also formed using an emulsion titration method that involves titration of emulsion droplets into surfactant micelle solutions. In this study, the effectiveness of nanoemulsion formation using nonionic surfactants (sucrose monopalmitate (SMP) and/or Tween 80 (T80) was investigated. Lemon oil was transferred from emulsion droplets into the micelle phase until a critical lemon oil concentration (Csat ) was reached. The solubilization process was rapid (< few minutes), with the rate increasing with increasing surfactant concentration. The value of Csat increased with increasing surfactant concentration and was higher for SMP than Tween 80. The influence of lemon oil composition (1x, 3x, 5x, and 10x) on the formation and properties of oil-in-water nanoemulsions was also studied. Initially, the composition, molecular characteristics, and physicochemical properties of four lemon oils were established. The main constituents in 1-fold lemon oil were monoterpenes (> 90 %), whereas the major constituents in 10-fold lemon oil were monoterpenes (≈ 35%), sesquiterpenes (≈ 14%) and oxygenates (≈ 33%). The density, interfacial tension, viscosity, and refractive index of the lemon oils increased as the oil fold increased ( i.e., 1x < 3x < 5x < 10x). The stability of oil-in-water nanoemulsions produced by high pressure homogenization was strongly influenced by lemon oil composition. The lower fold oils were highly unstable to droplet growth during storage (1x, 3x, 5x) with the growth rate increasing with increasing storage temperature and decreasing oil fold. Oil fold also affected the solubilization and stability of lemon oil nanoemulsions titrated into a non-ionic surfactant (Tween 80) solution. The movement of oil molecules from nanoemulsion droplets to surfactant micelles increased with increasing lemon oil fold. Finally, nanoemulsions were used as delivery systems for beta-carotene, a bioactive lipophilic component. The influence of carrier oil composition (ratio of digestible to indigestible oil) on the physical stability, microstructure, and bioaccessibility of beta-carotene nanoemulsions was investigated using a simulated gastrointestinal tract model. The extent of free fatty acid production in the small intestine increased as the amount of digestible oil in the droplets increased. The bioaccessibility of beta-carotene also increased with increasing digestible oil content, ranging from ≈ 5% for the pure lemon oil system to ≈ 76% for the pure corn oil system.
Nanoethosomes mediated transdermal delivery of vinpocetine for management of Alzheimer's disease.
Moghaddam, Atefeh Afshar; Aqil, Mohd; Ahmad, Farhan J; Ali, Mushir M; Sultana, Yasmin; Ali, Asgar
2015-12-01
To develop and statistically optimize nanoethosomal formulation for transdermal delivery of vinpocetine as an anti-Alzheimer's drug. Box-Behnken experimental design was applied for optimization of nanoethosomes. The independent variables were phospholipid (X 1 ), Tween 80 (X 2 ) and Ethanol (X 3 ) while entrapment efficiency (Y 1 ), particle sizes (Y 2 ), elasticity (Y 3 ) and flux (Y 4 ) were the dependent variables. Optimized nanoethosomal vinpocetine formulation with mean particle size 50.57 ± 26.11 nm showed 97.51 ± 0.86% entrapment efficiency, achieved mean transdermal flux 925.60 ± 39.80 µg/cm 2 /h and elasticity of 86.61 ± 2.88. Ex-vivo study of nanoethosomal formulation showed a significant increase flux and entrapment efficiency compared with control vinpocetine solution. Our results suggest that nanoethosome is an efficient carrier for transdermal delivery of vinpocetine as compared to its oral form.
Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion
NASA Astrophysics Data System (ADS)
Aisyah, Y.; Irwanda, L. P.; Haryani, S.; Safriani, N.
2018-05-01
This study aimed to formulate corn starch-based edible films by varying concentrations of nutmeg oil nanoemulsion and glycerol. Furthermore, the resulted edible film was characterized by its mechanical properties and antibacterial activity. The edible films were made using corn starch, nutmeg oil nanoemulsion, and glycerol. Concentrations of nutmeg oil nanoemulsion were 1%, 2%, and 3%, and glycerol were 10%, 20%, and 30%. Results indicated that the increase of nutmeg oil nanoemulsion concentration could increase the film thickness. However, the nutmeg oil had no effect on the film tensile strength and elongation. Glycerol had no effect on the film tensile strength. The best treatment of the corn starch-based film was obtained by adding 1% of nutmeg oil and 30% of glycerol, yielding a tensile strength of 18.73 Kgf/mm2, elongation of 69.44% and thickness of 0.0840. The addition of 1% nutmeg oil nanoemulsion has been able to inhibit the growth of two types of the bacteria tested (Staphylococcus aureus and Escherichia coli).
Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.
Ma, Qiumin; Davidson, P Michael; Zhong, Qixin
2016-09-01
Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sedaghat Doost, Ali; Dewettinck, Koen; Devlieghere, Frank; Van der Meeren, Paul
2018-08-30
Cinnamaldehyde nanoemulsions were formulated to enable its application in an aqueous environment. The pure cinnamaldehyde nanoemulsions, stabilized by polysorbate 80 (at concentrations >0.5%), had both a higher stability and smaller droplet size, whereas the emulsions containing hydrophobically modified inulin (HMI) formed a colloidal dispersion with larger particle size. Incorporation of sunflower oil (SO) allowed postponement of Ostwald ripening for a sufficiently long period of time (at least 60 days). Cryo-SEM and droplet size analyses of the nanoemulsions emulsified by HMI revealed no significant changes during storage. Under these conditions, HMI as an emulsifier exhibited a powerful resistance to high salt contents (up to 2 M) and high thermal processing temperatures (90 °C). The surfactant type and SO content had no marked influence on the antimicrobial activity of the nanoemulsions. This study provides precious information for a commercial formulation of nanoemulsions with durable physical stability under severe stress conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.
Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan
2012-11-06
Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne
2018-04-15
The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.
Xue, Jia; Zhong, Qixin
2014-10-08
Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.
Patel, Sravan Kumar; Zhang, Yang; Pollock, John A.; Janjic, Jelena M.
2013-01-01
Cylcooxgenase-2 (COX-2) expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF) and 19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by 19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications. PMID:23409048
Ragavan, Gokulakannan; Muralidaran, Yuvashree; Sridharan, Badrinathan; Nachiappa Ganesh, Rajesh; Viswanathan, Pragasam
2017-07-01
Garlic oil nanoemulsion was formulated using ultrasonic emulsification and the optimized garlic oil nanoemulsion ratio (1:2) of oil: surfactant showed spherical, with tiny droplet size 24.9 ± 1.11 nm. It was observed that the prepared nanoemulsion has the zeta potential of -42.63 ± 1.58 mV and a low polydispersity index of 0.2 ± 0.09 with excellent stability. The formulation was subjected to in vivo acute and sub-acute toxicity. In acute toxicity study, single oral administration of 18.63 ml of garlic oil nanoemulsion/kg resulted in immediate mortality. However, garlic oil nanoemulsion (0.46 ml/kg) and tween 80 (0.5 ml/kg) administered rats did not exhibit any toxicity and showed no changes in hematological and histological parameters. Further, both preventive and curative studies of garlic oil nanoemulsion were evaluated in high-fat diet fed dyslipidemic Wistar rats. Garlic oil nanoemulsion administered groups showed a significant effect in reducing the levels of lipid profiles (p < 0.001) compared to atorvastatin and garlic oil. Evaluation of lipid deposits in hepatic tissues was analyzed by Oil Red O staining, which revealed that garlic oil nanoemulsion administered rats markedly reduced the fat depots. Our findings suggest that garlic oil nano-emulsified form reduced toxicity and improved efficacy in preventing and treating dyslipidemia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teo, Siew Yong; Yew, Mei Yeng; Lee, Siang Yin; Rathbone, Michael J; Gan, Seng Neon; Coombes, Allan G A
2017-01-01
Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.
Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A
2013-01-01
The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.
Mossa, Abdel-Tawab H; Afia, Sahar I; Mohafrash, Samia M M; Abou-Awad, Badawi A
2018-04-01
Green and nanoacaricides including essential oil (EO) nanoemulsions are important compounds to provide new, active, safe acaricides and lead to improvement of avoiding the risk of synthetic acaricides. This study was carried out for the first time on eriophyid mites to develop nanoemulsion of garlic essential oil by ultrasonic emulsification and evaluate its acaricidal activity against the two eriophyid olive mites Aceria oleae Nalepa and Tegolophus hassani (Keifer). Acute toxicity of nanoemulsion was also studied on male rats. Garlic EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and the major compounds were diallyl sulfide (8.6%), diallyl disulfide (28.36%), dimethyl tetrasulfide (15.26%), trisulfide,di-2-propenyl (10.41%), and tetrasulfide,di-2-propenyl (9.67%). Garlic oil nanoemulsion with droplet size 93.4 nm was formulated by ultrasonic emulsification for 35 min. Emulsification time and oil and surfactant ratio correlated to the emulsion droplet size and stability. The formulated nanoemulsion showed high acaricidal activity against injurious eriophyid mites with LC 50 298.225 and 309.634 μg/ml, respectively. No signs of nanoemulsion toxicity were noted in treating rats; thus, it may be considered non-toxic to mammals. Stability of garlic oil nanoemulsion, high acaricidal activity, and the absence of organic toxic solvents make the formulation that may be a possible acaricidal product. Results suggest the possibility of developing suitable natural nanoacaricide from garlic oil.
Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun
2010-05-01
The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p < 0.01). The highest Ae(infinity) (1267.7+/-65.2 ng) was found in the formulation containing 6% caprylic acid in propylene glycol (PG), which was 5.4- and 2.0-times higher than the PG only formulation and oral administration, respectively. Compared to oral administration, significantly delayed half-life values were obtained from all the formulated transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.
Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie
2015-09-01
The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.
Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina
2015-04-01
Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.
EGFR Targeted Theranostic Nanoemulsion For Image-Guided Ovarian Cancer Therapy
Ganta, Srinivas; Singh, Amit; Kulkarni, Praveen; Keeler, Amanda W.; Piroyan, Aleksandr; Sawant, Rupa R.; Patel, Niravkumar R.; Davis, Barbara; Ferris, Craig; O’Neal, Sara; Zamboni, William; Amiji, Mansoor M.; Coleman, Timothy P.
2015-01-01
Purpose Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. Methods The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. Results Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. Conclusions Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression. PMID:25732960
Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide.
Morsi, Nadia; Ibrahim, Magdy; Refai, Hanan; El Sorogy, Heba
2017-06-15
In the present work the antiglaucoma drug, acetazolamide, was formulated as an ion induced nanoemulsion-based in situ gel for ocular delivery aiming a sustained drug release and an improved therapeutic efficacy. Different acetazolamide loaded nanoemulsion formulations were prepared using peanut oil, tween 80 and/or cremophor EL as surfactant in addition to transcutol P or propylene glycol as cosurfactant. Based on physicochemical characterization, the nanoemulsion formulation containing mixed surfactants and transcutol P was selected to be incorporated into ion induced in situ gelling systems composed of gellan gum alone and in combination with xanthan gum, HPMC or carbopol. The nanoemulsion based in situ gels showed a significantly sustained drug release in comparison to the nanoemulsion. Gellan/xanthan and gellan/HPMC possessed good stability at all studied temperatures, but gellan/carbopol showed partial drug precipitation upon storage and was therefore excluded from the study. Gellan/xanthan and gellan/HPMC showed higher therapeutic efficacy and more prolonged intraocular pressure lowering effect relative to that of commercial eye drops and oral tablet. Gellan/xanthan showed superiority over gellan/HPMC in all studied parameters and is thus considered as a promising mucoadhesive nanoemulsion-based ion induced in situ gelling formula for topical administration of acetazolamide. Copyright © 2017. Published by Elsevier B.V.
Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process.
Kelmann, Regina G; Kuminek, Gislaine; Teixeira, Helder F; Koester, Letícia S
2007-09-05
Carbamazepine (CBZ), a widely used anticonvulsant drug, is a poorly soluble drug with no parenteral treatment available for patients. This study was aimed at developing a nanoemulsion for CBZ intravenous delivery. The spontaneous emulsification method was used to prepare different formulations containing 2mg/mL CBZ. Likewise, a 2(2) full factorial experimental design was applied to study the influence of two independent variables (type of oil and type of lipophilic emulsifier) on emulsion physicochemical characteristics. The nanoemulsions were evaluated concerning droplet size, zeta potential, viscosity, drug content and association to oily phase. The formulation, which presented the best characteristics required for intravenous administration was selected and refined with respect to the lipophilic emulsifier content (increase from 5% to 6% of soy lecithin). This formulation was characterized and kept its properties in a satisfactory range over the evaluated period (3 months), i.e. droplet size around 150 nm, drug content around 95% and zeta potential around -40 mV. The transmission electron microscopy revealed emulsion droplets almost spherical in shape with an amorphous core, whereas the in vitro release profile assessed by dialysis bags demonstrated a release kinetics square root time dependent, with 95% of ca. having been released within 11h.
Joung, Hee Joung; Choi, Mi-Jung; Kim, Jun Tae; Park, Seok Hoon; Park, Hyun Jin; Shin, Gye Hwa
2016-03-01
Curcumin nanoemulsions (Cur-NEs) were developed with various surfactant concentrations by using high pressure homogenization and finally applied to the commercial milk system. Characterization of Cur-NEs was performed by measuring the droplet size and polydispersity index value at different Tween 20 concentrations. The morphology of the Cur-NEs was observed by confocal laser scanning microscopy and transmission electron microscopy. Antioxidant activity and in vitro digestion ability were tested using 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, pH-stat method, and thiobarbituric acid reactive substances assays. Cur-NEs were found to be physically stable for 1 mo at room temperature. The surfactant concentration affects particle formation and droplet size. The mean droplet size decreased from 122 to 90 nm when surfactant concentration increased 3 times. Cur-NEs had shown an effective oxygen scavenging activity. Cur-NEs-fortified milk showed significantly lower lipid oxidation than control (unfortified) milk and milk containing curcumin-free nanoemulsions. These properties make Cur-NEs suitable systems for the beverage industry. © 2016 Institute of Food Technologists®
Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging
Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Nguyen, Thu-Mai; Lombardo, Michael; Pelivanov, Ivan; Pozzo, Lilo D.; O’Donnell, Matthew
2015-01-01
Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20–30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches. PMID:25893170
Chen, Tao; Lian, Guoping; Kattou, Panayiotis
2016-07-01
The purpose was to develop a mechanistic mathematical model for predicting the pharmacokinetics of topically applied solutes penetrating through the skin and into the blood circulation. The model could be used to support the design of transdermal drug delivery systems and skin care products, and risk assessment of occupational or consumer exposure. A recently reported skin penetration model [Pharm Res 32 (2015) 1779] was integrated with the kinetic equations for dermis-to-capillary transport and systemic circulation. All model parameters were determined separately from the molecular, microscopic and physiological bases, without fitting to the in vivo data to be predicted. Published clinical studies of nicotine were used for model demonstration. The predicted plasma kinetics is in good agreement with observed clinical data. The simulated two-dimensional concentration profile in the stratum corneum vividly illustrates the local sub-cellular disposition kinetics, including tortuous lipid pathway for diffusion and the "reservoir" effect of the corneocytes. A mechanistic model for predicting transdermal and systemic kinetics was developed and demonstrated with published clinical data. The integrated mechanistic approach has significantly extended the applicability of a recently reported microscopic skin penetration model by providing prediction of solute concentration in the blood.
Parikh, Rajesh H; Patel, Ravish J
2016-01-01
Amyotrophic Lateral Sclerosis (ALS), a motor neuron disease (MND), is a progressive neurodegenerative disorder characterized by the deterioration of both upper and lower motor neurons. Only one drug (riluzole) has been approved for the treatment of ALS. Riluzole is a BCS class II drug having 60% absolute bioavailability. It is a substrate of P-glycoprotein and BBB restricts its entry in brain. This investigation was aimed to develop O/W nanoemulsion system of riluzole to improve its brain bioavailability. Riluzole loaded nanoemulsion was prepared by phase titration method. It was consisting of 3% w/w Sefsol 218, 28.3% w/w Tween 80:Carbitol (1:1) and 68.7% w/w water. It was characterized for drop size, drop size distribution, transmittance, viscosity, pH, zeta potential, conductivity and nasal ciliotoxicity study. Thermodynamic stability and room temperature stability of prepared nanoemulsion formulation were evaluated. Pharmacokinetic and brain uptake study was carried out using albino rats (wistar) post intranasal and oral administration. Riluzole loaded nanoemulsion was having a drop size of 23.92±0.52 nm. It was free from nasal ciliotoxicity and stable for three months. Brain uptake of riluzole post intranasal administration of riluzole loaded nanoemulsion was significantly (P <4.10 × 10-6) higher when it was compared with oral administration of riluzole loaded nanoemulsion. This study indicates that nanoemulsion of riluzole for intranasal administration could be a promising approach for the treatment of ALS to minimize the dose of riluzole in order to avoid dose related adverse events.
2014-01-01
Background The effect of physical and chemical permeation enhancers on in vitro transdermal permeation of lidocaine was investigated in the horse. Therefore, the effect of six vehicles (phosphate-buffered saline (PBS), 50% ethanol, 50% propylene glycol, 50% isopropylalcohol, 50% isopropylalcohol/isopropylmyristate and 50% dimethylsulfoxide) was examined as well as the effect of microneedle pretreatment with different needle lengths on transdermal drug delivery of lidocaine. The skin was obtained from the thorax of six Warmblood horses and was stored up to two weeks at - 20°C. Franz-type diffusion cells were used to study the transdermal permeation through split skin (600 μm thickness). The amount of lidocaine in the receptor fluid was determined by UV–VIS high-performance liquid chromatography. Results All investigated vehicle supplementations diminished the transdermal flux of lidocaine through equine skin in comparison to pure PBS except dimethylsulfoxide, which resulted in comparable permeation rates to PBS. The maximum flux (Jmax) was 1.6-1.8 fold lower for lidocaine applied in 50% ethanol, propylene glycol, isopropylalcohol and isopropylalcohol/isopropylmyristate. A significant higher Jmax of lidocaine was observed when lidocaine was applied in PBS onto microneedle pretreated skin with similar permeation rates in both needle lengths. After 6 hours, 1.7 fold higher recovery rates were observed in the microneedle pretreated skin samples than in the untreated control samples. The lagtimes were reduced to 20–50% in the microneedle pretreated skin samples. Conclusion Microneedles represent a promising tool for transdermal lidocaine application in the horse with a rapid systemic bioavailability. PMID:24950611
Hill, K E; Gieseg, M A; Kingsbury, D; Lopez-Villalobos, N; Bridges, J; Chambers, P
2011-01-01
Previous studies on transdermal methimazole have used pluronic lecithin organogel as the vehicle. This might not be the most suitable vehicle for a lipophilic drug, such as methimazole. Once daily transdermal administration of a novel lipophilic formulation of methimazole is as safe and effective as oral carbimazole in treating hyperthyroidism in cats. Forty-five client-owned cats diagnosed with hyperthyroidism. Prospective study. Cats with newly diagnosed, untreated hyperthyroidism were treated with carbimazole (5 mg p.o., q12h) or methimazole (10 mg) applied to the inner pinnae q24h. Cats were examined after 0, 1, 4, 8, and 12 weeks of treatment. Clinical signs, body weight, systolic blood pressure, hematologic, serum biochemical and urine parameters, total serum thyroxine concentrations (TT4), and serum methimazole concentrations were recorded. No significant differences between groups were detected at day 0. Both formulations were effective in treating hyperthyroidism. No significant differences were detected in thyroxine concentrations, body weight, blood pressure, heart rate, alkaline phosphatase, alanine aminotransferase, creatinine, urea, and urine specific gravity (USG) between groups. The serum methimazole concentrations correlated poorly with TT4-concentrations in both groups. In this 12-week trial, once daily application of a novel formulation of transdermal methimazole applied to the pinnae was as effective and safe as twice daily oral carbimazole in the treatment of cats with hyperthyroidism. This novel formulation and transdermal application could have practical advantages to some pet owners. Copyright © 2011 by the American College of Veterinary Internal Medicine.
Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C
2018-02-01
This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.
Properties of active gelatin films incorporated with rutin-loaded nanoemulsions.
Dammak, Ilyes; de Carvalho, Rosemary Aparecida; Trindade, Carmen Sílvia Fávaro; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José
2017-05-01
Physico-chemical, mechanical, barrier, release profiles and antioxidant properties of composite gelatin based-films incorporated with rutin-loaded oil-in-water nanoemulsion, at various concentrations (5, 10, 15, or 20% (based on the weight of the gelatin powder)) were studied. All the gelatin/rutin-loaded nanoemulsion films displayed higher tensile strength and higher elongation at break than the gelatin control film. The composite films did not show significant differences in thickness, color, brightness and transparency. The structural properties evaluated by FTIR showed that the rutin-loaded nanoemulsion achieved complete miscibility within the gelatin matrix. All the gelatin/nanoemulsion films exhibited compact and homogenous microstructure. In addition, these films showed high antioxidant activities monitored by DPPH radical scavenging and reducing power activities. The Korsmeyer-Peppas model described well the rutin release profile. Rutin release was mainly governed by Fickian diffusion with simultaneous interfering swelling and disintegration phenomena. These results indicate that nanoemulsions-in-gelatin systems can function as potential active packaging systems to enhance shelf life of food products and then to provide a high-quality products (fresh/safe). Copyright © 2017 Elsevier B.V. All rights reserved.
Long-term stability of sodium caseinate-stabilized nanoemulsions.
Yerramilli, Manispuritha; Ghosh, Supratim
2017-01-01
Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size <200 nm, which remained unchanged over 6 months. However, all of them displayed rapid creaming due to unabsorbed protein induced depletion flocculation, whose extent increased with protein concentration, although the cream layer formed was weak and re-dispersible upon gentle mixing. Microstructural analysis of the cream layer showed compaction of flocculated nanodroplet network with time leaving the aqueous phase out. Calculation of depletion interaction energy showed an increase in inter-droplet attraction with protein concentration and decrease with a reduction in droplet size, making the nanoemulsions more resistant to flocculation than conventional emulsions. This work aids in understanding the dependence of protein concentration on long-term stability of sodium caseinate-stabilized nanoemulsions.
Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549
NASA Astrophysics Data System (ADS)
Lee, W. D.; Liang, Y. J.; Chen, B. H.
2016-12-01
Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.
Transdermal Photopolymerization for Minimally Invasive Implantation
NASA Astrophysics Data System (ADS)
Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer, R.
1999-03-01
Photopolymerizations are widely used in medicine to create polymer networks for use in applications such as bone restorations and coatings for artificial implants. These photopolymerizations occur by directly exposing materials to light in "open" environments such as the oral cavity or during invasive procedures such as surgery. We hypothesized that light, which penetrates tissue including skin, could cause a photopolymerization indirectly. Liquid materials then could be injected s.c. and solidified by exposing the exterior surface of the skin to light. To test this hypothesis, the penetration of UVA and visible light through skin was studied. Modeling predicted the feasibility of transdermal polymerization with only 2 min of light exposure required to photopolymerize an implant underneath human skin. To establish the validity of these modeling studies, transdermal photopolymerization first was applied to tissue engineering by using "injectable" cartilage as a model system. Polymer/chondrocyte constructs were injected s.c. and transdermally photopolymerized. Implants harvested at 2, 4, and 7 weeks demonstrated collagen and proteoglycan production and histology with tissue structure comparable to native neocartilage. To further examine this phenomenon and test the applicability of transdermal photopolymerization for drug release devices, albumin, a model protein, was released for 1 week from photopolymerized hydrogels. With further study, transdermal photpolymerization potentially could be used to create a variety of new, minimally invasive surgical procedures in applications ranging from plastic and orthopedic surgery to tissue engineering and drug delivery.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Zaibudeen, A. W.; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is a promising cancer treatment modality where alternating magnetic field is used for heating cancerous cells loaded with magnetic nanofluids. Of late, it is realized that magnetic nano-carriers in the size range ∼100-200 nm (e.g. magnetic nanocomposites, magnetic liposomes and magnetic nanoemulsions) are ideal candidates for multimodal MFH coupled with drug delivery or photodynamic therapy due to enhanced permeation and retention (EPR) in the leaky vasculature of cancerous tissues. Here, we study the radiofrequency alternating magnetic field induced heating in magnetically polarizable oil-in-water nanoemulsions of hydrodynamic diameter ∼200 nm, containing single domain superparamagnetic nanoparticles of average diameter ∼10 nm in the oil phase. We probe the effects of size polydispersity of the droplets and medium viscosity on the field induced heating efficiency. The contribution of Neel and Brown relaxation of the magnetic nanoparticles on specific absorption rate (SAR) of the magnetic nanoemulsions, was found to increase linearly with the square of the applied field, with a maximum value of 164.4 ± 4.3 W/gFe. In magnetic nanoemulsions, the heating is induced by the Neel-Brown relaxation of the MNP over a length scale of 10 nm, and the whole scale Brownian relaxation of the emulsion droplets has over a length scale of 200 nm. The magnetic nanoemulsion sample with lower polydispersity (σ = 0.2) exhibited a significantly higher SAR value (3.3 times higher) as compared to the sample with larger polydispersity (σ = 0.4). The SAR values of the samples with 4.6 and 1.7 wt.% of MNP loading with σ values 0.4 a 0.3, respectively were comparable, suggesting a higher heating efficiency in nanofluid containing particles of lower size polydispersity even at lower particle loading. The emulsion droplets, immobilized in an agar matrix (4 wt.%), gave a maximum SAR value of 41.7 ± 2.4 W/gFe as compared to 111.8 ± 3.4 W/gFe in the case of droplets dispersed in water, which indicate a ∼40-50% drop in SAR due to abrogation of whole scale Brownian relaxation of the emulsion droplets. This suggests the need for improving the heating efficiency during actual therapy in tissues. The residual SAR of the immobilized sample correlates well with the SAR of the magnetic nanofluid, albeit under a lower external field amplitude due to demagnetization effect of the clusters of MNP loaded inside the droplets. The observed heating efficiency of larger sized magnetic nanoemulsion offer new possibilities for multimodal therapy due to availability of large volume for loading anti-cancer drug or photodynamic agents.
NASA Astrophysics Data System (ADS)
Pangeni, Rudra; Sharma, Shrestha; Mustafa, Gulam; Ali, Javed; Baboota, Sanjula
2014-12-01
Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson’s disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml-1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of -35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.
Delamaide Gasper, Joy A; Barnes Heller, Heidi L; Robertson, Michelle; Trepanier, Lauren A
2015-04-01
Seizures are a common cause of neurologic disease, and phenobarbital (PB) is the most commonly used antiepileptic drug. Chronic oral dosing can be challenging for cat owners, leading to poor compliance. The purpose of this study was to determine if the transdermal administration of PB could achieve serum PB concentrations of between 15 and 45 μg/ml in healthy cats. Nineteen healthy cats were enrolled in three groups. Transdermal PB in pluronic lecithin organogel (PLO) was applied to the pinnae for 14 days at a dosage of 3 mg/kg q12h in group 1 (n = 6 cats) and 9 mg/kg q12h in group 2 (n = 7 cats). Transdermal PB in Lipoderm Activemax was similarly applied at 9 mg/kg q12h for 14 days in group 3 (n = 6 cats). Steady-state serum PB concentrations were measured at trough, and at 2, 4 and 6 h after the morning dose on day 15. In group 1, median concentrations ranged from 6.0-7.5 μg/ml throughout the day (observed range 0-11 μg/ml). Group 2 median concentrations were 26.0 μg/ml (observed range 18.0-37.0 μg/ml). For group 3, median concentrations ranged from 15.0-17.0 μg/ml throughout the day (range 5-29 μg/ml). Side effects were mild. One cat was withdrawn from group 2 owing to ataxia and sedation. These results show therapeutic serum PB concentrations can be achieved in cats following chronic transdermal administration of PB in PLO at a dosage of 9 mg/kg q12h. More individual variation was noted using Lipoderm Activemax. Transdermal administration may be an alternative for cats that are difficult to medicate orally. © ISFM and AAFP 2014.
Nano-emulsions as vehicles for topical delivery of forskolin.
Miastkowska, Małgorzata; Sikora, Elżbieta; Lasoń, Elwira; Garcia-Celma, Maria Jose; Escribano-Ferrer, Elvira; Solans, Conxita; Llinas, Meritxell
2017-01-01
Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm -2 ·h -1 and 9.21 · 10 -3 ±1.00 · 10 -3 cm · h -1 , respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.
Nanoemulsion: for improved oral delivery of repaglinide.
Akhtar, Juber; Siddiqui, Hefazat Hussain; Fareed, Sheeba; Badruddeen; Khalid, Mohammad; Aqil, Mohammed
2016-07-01
Repaglinide (RPG) is a fast-acting prandial glucose regulator. It acts by stimulating insulin release from pancreatic β-cells. Recurrent dosing of RPG before each meal is burdensome remedy. Hence the plan of the present study was to evaluate nanoemulsion as a hopeful carrier for RPG for persistent hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion to give improved biopharmaceutical properties as compared to the lipid-based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% w/w of oil from the o/w nanoemulsion region of phase diagrams. The optimized nanoemulsion formulation constituted sefsol-218 (5% v/v) as an oil phase, 30% v/v of Tween-80 and transcutol as a surfactant and co-surfactant to restrain nanodroplet size and low viscosity and distilled water (65%). In vitro dissolution studies showed higher drug release (98.22%), finest droplet size (76.23 nm), slightest polydispersity value (0.183), least viscosity (21.45 cps) and immeasurable dilution capability from the nanoemulsion as compared with existing oral tablet formulation. The optimized RPG nanoemulsion formulation showed better hypoglycemic effect in comparison to tablet formulation in experimental diabetic rats. No significant variations were also observed in the optimized formulation when subjected to accelerated stability study at different temperature and relative humidity over a period of 3 months.
Bush, Linda; Stevenson, Leo; Lane, Katie E
2017-10-23
There is growing demand for functional food products enriched with long chain omega-3 polyunsaturated fatty acids (LCω3PUFA). Nanoemulsions, systems with extremely small droplet sizes have been shown to increase LCω3PUFA bioavailability. However, nanoemulsion creation and processing methods may impact on the oxidative stability of these systems. The present systematic review collates information from studies that evaluated the oxidative stability of LCω3PUFA nanoemulsions suitable for use in functional foods. The systematic search identified seventeen articles published during the last 10 years. Researchers used a range of surfactants and antioxidants to create systems which were evaluated from 7 to 100 days of storage. Nanoemulsions were created using synthetic and natural emulsifiers, with natural sources offering equivalent or increased oxidative stability compared to synthetic sources, which is useful as consumers are demanding natural, cleaner label food products. Equivalent vegetarian sources of LCω3PUFA found in fish oils such as algal oils are promising as they provide direct sources without the need for conversion in the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that can produce nanoemulsion systems with equivalent/increased oxidative stability in comparison to other emulsifiers. Further studies to evaluate the oxidative stability of quillaja saponin nanoemulsions combined with algal sources of LCω3PUFA are warranted.
Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer
Ganta, Srinivas; Singh, Amit; Patel, Niravkumar R.; Cacaccio, Joseph; Rawal, Yashesh H.; Davis, Barbara J.; Amiji, Mansoor M.; Coleman, Timothy P.
2014-01-01
Purpose Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. Methods The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. Results The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Conclusion The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer. PMID:24643932
Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang
2009-10-01
Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.
Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C
2016-03-01
In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Rapoport, Natalya; Nam, Kweon-Ho; Gupta, Roohi; Gao, Zhongao; Mohan, Praveena; Payne, Allison; Todd, Nick; Liu, Xin; Kim, Taeho; Shea, Jill; Scaife, Courtney; Parker, Dennis L.; Jeong, Eun-Kee; Kennedy, Anne M.
2011-01-01
Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine (19F) MR contrast properties, which allows using multimodal imaging and 19F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the 19F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation two hours after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200 nm to 350 nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated mechanisms of the observed effects are discussed. PMID:21277919
Uluata, Sibel; McClements, D Julian; Decker, Eric A
2015-10-28
The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity.
Tang, Siah Ying; Sivakumar, Manickam; Ng, Angela Min-Hwei; Shridharan, Parthasarathy
2012-07-01
The present study investigated the anti-inflammatory and analgesic activities of novel aspirin oil-in-water (O/W) nanoemulsion and water-in-oil-in-water (W/O/W) nano multiple emulsion formulations generated using ultrasound cavitation techniques. The anti-inflammatory activities of nanoemulsion and nano multiple emulsion were determined using the λ-carrageenan-induced paw edema model. The analgesic activities of both nanoformulations were determined using acetic acid-induced writhing response and hot plate assay. For comparison, the effect of pretreatment with blank nanoemulsion and reference aspirin suspension were also studied for their anti-inflammatory and antinociceptive activities. The results showed that oral administration of nanoemulsion and nano multiple emulsion containing aspirin (60 mg/kg) significantly reduced paw edema induced by λ-carrageenan injection. Both nanoformulations decreased the number of abdominal constriction in acetic acid-induced writhing model. Pretreatment with nanoformulations led to a significant increase in reaction time in hot plate assay. Nanoemulsion demonstrated an enhanced anti-inflammatory and analgesic effects compared to reference suspension while nano multiple emulsion exhibited a mild inhibitory effects in the three experimental animal model tests. The results obtained for nano multiple emulsion were relatively lower than reference. However, administration of blank nanoemulsion did not alter the nociceptive response significantly though it showed slight anti-inflammatory effect. These experimental studies suggest that nanoemulsion and nano multiple emulsion produced a pronounced anti-inflammatory and analgesic effects in rats and may be candidates as new nanocarriers for pharmacological NSAIDs in the treatment of inflammatory disorders and alleviating pains. Copyright © 2012 Elsevier B.V. All rights reserved.
Innovative formulations for the delivery of levothyroxine to the skin.
Padula, Cristina; Nicoli, Sara; Santi, Patrizia
2009-05-08
The aim of this work was to realize innovative transdermal formulations containing sodium levothyroxine in view of topical administration. Permeation experiments were performed in vitro, using rabbit ear skin as barrier. At the end of the permeation experiments levothyroxine retained in the skin was extracted and quantified by HPLC. Formulations tested were microemulsions and transdermal films. Microemulsions containing isopropyl myristate and isobutanol were shown to be able to increase levothyroxine solubility by the inclusion in reverse micelles. However, the inclusion in reversed micelles reduced the drug release to a significant extent, and consequently skin retention, compared to aqueous solutions. When the microemulsion was included in the transdermal film, drug retention was increased, probably for the enhancer effect of its excipients. The transdermal film proposed in this work could be an interesting alternative to semisolid formulations for the ease of use and the control in the amount of active applied. Additional benefit can be obtained if the film is used in occlusive conditions.
Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.
Khani, Samira; Keyhanfar, Fariborz; Amani, Amir
2016-07-01
A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.
Nanoemulsions: a new vehicle for skincare products.
Sonneville-Aubrun, O; Simonnet, J-T; L'Alloret, F
2004-05-20
Nanoemulsions consist in very fine oil-in-water dispersions, having droplet diameter smaller than 100 nm. Compared to microemulsions, they are in a metastable state, and their structure depends on the history of the system. In the present work, nanoemulsions were prepared with a high shear device, which is less constraining than spontaneous emulsification procedures. Nanoemulsions are very fragile systems by nature. As they are transparent, the slightest sign of destabilisation appears visually. Two major sources of unstability were identified and extensively studied: Ostwald ripening and depletion induced floculation following the addition of thickening polymers. The control of these two mechanisms allowed the industrial production of a large variety of cosmetic products, from water-like fluids, to ringing gels obtained by increasing the oil phase content or by adding polymers. The nanoemulsions are easily valued in skin care due to their good sensorial properties (rapid penetration, merging textures) and their biophysical properties (especially their hydrating power).
Gulotta, Alessandro; Saberi, Amir Hossein; Nicoli, Maria Cristina; McClements, David Julian
2014-02-19
Nanoemulsion-based delivery systems are finding increasing utilization to encapsulate lipophilic bioactive components in food, personal care, cosmetic, and pharmaceutical applications. In this study, a spontaneous emulsification method was used to fabricate nanoemulsions from polyunsaturated (ω-3) oils, that is, fish oil. This low-energy method relies on formation of fine oil droplets when an oil/surfactant mixture is added to an aqueous solution. The influence of surfactant-to-oil ratio (SOR), oil composition (lemon oil and MCT), and cosolvent composition (glycerol, ethanol, propylene glycol, and water) on the formation and stability of the systems was determined. Optically transparent nanoemulsions could be formed by controlling SOR, oil composition, and aqueous phase composition. The spontaneous emulsification method therefore has considerable potential for fabricating nanoemulsion-based delivery systems for incorporating polyunsatured oils into clear food, personal care, and pharmaceutical products.
Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery
NASA Astrophysics Data System (ADS)
Nguyen, Thao M.
Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes, while the control showed no visible drugs at the same depth. Most importantly, it was determined that the delivery of drugs into the blood stream was stable within 20 minutes. The functionalization of CP was also studied in order to enhance the properties and drug loading capabilities of the polymers. The co-polymerization of poly(3,4-(2-methylene)propylenedioxythiophene) (PMProDot) with polystyrene (PS) and polyvinylcarbazole (PVK) through the highly reactive methylene group was achieved. The modified PMProDot nanotubes demonstrated response times that were two times faster than without modification. The modification of PEDOT nanotubes with polydopamine, a biocompatible polymer, was also investigated and achieved. In depth characterization of functionalized CP demonstrate the ability to fine tune the properties of the polymer in order to achieve the required therapeutic drug release profile.
Texturing formulations for uranium skin decontamination.
Belhomme-Henry, Corinne; Phan, Guillaume; Huang, Nicolas; Bouvier, Céline; Rebière, François; Agarande, Michelle; Fattal, Elias
2014-09-01
Since no specific treatment exists in case of cutaneous contamination by radionuclides such as uranium, a nanoemulsion comprising calixarene molecules, known for their good chelation properties, was previously designed. However, this fluid topical form may be not suitable for optimal application on the skin or wounds. To develop a texturing pharmaceutical form for the treatment of wounded skins contaminated by uranium. The formulations consisted in oil-in-water (O/W) nanoemulsions, loaded with calixarene molecules. The external phase of the initial liquid nanoemulsion was modified with a combination of thermosensitive gelifying polymers: Poloxamer and HydroxyPropylMethylcellulose (HPMC) or methylcellulose (MC). These new formulations were characterized then tested by ex vivo experiments on Franz cells to prevent uranyl ions diffusion through excoriated pig ear skin explants. Despite strong changes in rheological properties, the physico-chemical characteristics of the new nanoemulsions, such as the size and the zeta potential as well as macroscopic aspect were preserved. In addition, on wounded skin, diffusion of uranyl ions, measured by ICP-MS, was limited to less than 5% for both HPMC and MC nanoemulsions. These results demonstrated that a hybrid formulation of nanoemulsion in hydrogel is efficient to treat uranium skin contamination.
Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis.
Azami, Sanaz Jafarpour; Amani, Amir; Keshavarz, Hossein; Najafi-Taher, Roqya; Mohebali, Mehdi; Faramarzi, Mohammad Ali; Mahmoudi, Mahmood; Shojaee, Saeedeh
2018-05-30
Treatment of toxoplasmosis is necessary in congenital form and immunocompromised patients. Atovaquone is a powerful suppressor of protozoan parasites with a broad-spectrum activity, but an extremely low water solubility and bioavailability. In this study, nanoemulsion of this drug was prepared with grape seed oil using spontaneous emulsification method to increase bioavailability and efficacy of atovaquone for treatment of toxoplasmosis. In vitro activity of atovaquone nanoemulsion against T. gondii, RH and Tehran strains, was assessed in HeLa cell culture. For in vivo assessment, BALB/c mice were infected with RH and Tehran strains and then treated with nanoemulsion of atovaquone, compared to that treated with free atovaquone. Concentration of atovaquone nanoemulsion showed in vitro anti-parasitic effects in both strains of T. gondii. Furthermore, oral administration of atovaquone nanoemulsion increased oral bioavailability, tissue distribution and mice survival time and reduced parasitemia and number and size of the brain cysts. Decrease of cyst numbers was verified by down regulation of BAG1 using real-time polymerase chain reaction (real-time PCR) assay. Effective therapeutic activity of atovaquone at a reduced dose is the major achievement of this study. Copyright © 2018 Elsevier B.V. All rights reserved.
Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung
2017-10-01
Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.
Rittes, José Carlos; Cagno, Guilherme; Perez, Marcelo Vaz; Mathias, Ligia Andrade da Silva Telles
2016-01-01
The vehicle for propofol in 1 and 2% solutions is soybean oil emulsion 10%, which may cause pain on injection, instability of the solution and bacterial contamination. Formulations have been proposed aiming to change the vehicle and reduce these adverse reactions. To compare the incidence of pain caused by the injection of propofol, with a hypothesis of reduction associated with nanoemulsion and the occurrence of local and systemic adverse effects with both formulations. After approval by the CEP, patients undergoing gynecological procedures were included in this prospective study: control (n=25) and nanoemulsion (n=25) groups. Heart rate, noninvasive blood pressure and peripheral oxygen saturation were monitored. Demographics and physical condition were analyzed; surgical time and total volume used of propofol; local or systemic adverse effects; changes in variables monitored. A value of p<0.05 was considered significant. There was no difference between groups regarding demographic data, surgical times, total volume of propofol used, arm withdrawal, pain during injection and variables monitored. There was a statistically significant difference in pain intensity at the time of induction of anesthesia, with less pain intensity in the nanoemulsion group. Both lipid and nanoemulsion formulations of propofol elicited pain on intravenous injection; however, the nanoemulsion solution elicited a less intense pain. Lipid and nanoemulsion propofol formulations showed neither hemodynamic changes nor adverse effects of clinical relevance. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Cheong, Ai Mun; Tan, Chin Ping; Nyam, Kar Lin
2018-05-26
Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields. © 2018 Institute of Food Technologists®.
Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?
Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio
2016-03-01
Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
Baldissera, Matheus D; Da Silva, Aleksandro S; Oliveira, Camila B; Zimmermann, Carine E P; Vaucher, Rodrigo A; Santos, Roberto C V; Rech, Virginia C; Tonin, Alexandre A; Giongo, Janice L; Mattos, Cristiane B; Koester, Letícia; Santurio, Janio M; Monteiro, Silvia G
2013-07-01
The aim of this study was to investigate the susceptibility in vitro of Trypanosoma evansi to the essential oils of andiroba (Carapa guaianensis) and aroeira (Schinus molle), in their conventional and nanostructured forms. For that, pure oils at concentrations of 0.5%, 1.0% and 2.0% were used. A negative control (untreated) and a positive control (diminazene aceturate 0.5%) were used as comparative parameters. Later, the same tests were performed, using nanoemulsions oils at concentrations of 0.5% and 1.0%. The tests were carried out in triplicates and the numbers of parasites were quantified on 1, 3 and 6 h from onset of the study. A dose-dependent reduction in the number of parasites to the forms of two oils tested was observed after 1 h. The concentration of parasites was significantly reduced at low concentrations after 3 h, as well as at 6 h no alive parasites were observed for the essential oils tested. Ours findings indicate, for the first time, that oils of andiroba and aroeira (in their conventional and nanoemulsion forms) have high activity against T. evansi in vitro, leading to the suggestion that these oils may be applied as an alternative treatment for this disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Stability of lutein encapsulated whey protein nano-emulsion during storage
Guo, Mingruo
2018-01-01
Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071
Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine.
Zahi, Mohamed Reda; El Hattab, Mohamed; Liang, Hao; Yuan, Qipeng
2017-04-15
The objective of this research was to investigate the synergism between ε-polylysine and d-limonene and develop a novel nanoemulsion system by merging the positive effect of these two antimicrobial agents. Results from the checkerboard method showed that ε-polylysine and d-limonene exhibit strong synergistic and useful additive effects against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae. In addition, d-limonene nanoemulsion with the inclusion of ε-polylysine was successfully prepared by high pressure homogenizer technology. Its antimicrobial efficiency was compared with pure d-limonene nanoemulsion by measuring the minimal inhibitory concentration, electronic microscope observation and the leakage of the intercellular constituents. The results demonstrated a wide improvement of the antimicrobial activity of d-limonene nanoemulsion following the inclusion of ε-polylysine. Overall, the current study may have a valuable contribution to make in developing a more efficient antimicrobial system in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.
Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang
2016-04-15
Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian
2015-04-01
The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mehmood, Tahir; Ahmad, Asif; Ahmed, Anwaar; Ahmed, Zaheer
2017-08-15
The present study was conducted to prepare co-surfactant free, olive-oil based alpha tocopherol nanoemulsions, using a food grade non-ionic surfactant. Response surface methodology (RSM) was used to determine the effects of independent variables (ultrasonic homogenization time, olive oil concentrations and surfactant contents) on different physico-chemical characteristics of O/W nanoemulsions. This study was carried out using a central composite design. The coefficients of determination were greater than 0.900 for all response variables and there were significant effects of independent variables on all responses. The optimum levels of independent variables for the preparation of nanoemulsions were 3min. ultrasonic homogenization time, 4% olive oil content and 2.08% surfactant concentration. The physico-chemical responses at these levels were 151.68nm particle size, 7.17% p-anisidine and 88.64% antioxidant activity. These results will help in design of nanoemulsions with optimum independent variables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robledo, Nancy; Vera, Paola; López, Luis; Yazdani-Pedram, Mehrdad; Tapia, Cristian; Abugoch, Lilian
2018-04-25
Thymol nanoemulsions were produced by spontaneous emulsification, ultrasound, and a combination of both methods. The best result in terms of size and polydispersion was spontaneous emulsification where thymol was efficiently encapsulated, the nanoemulsions inhibited Botrytis cinerea at 110 ppm of thymol. A 10% dilution of this nanoemulsion in water was used to prepare quinoa-chitosan films. The film microstructure was porous and heterogeneous. The tensile strength of the film was significantly lower but its mean elongation at break was similar to that of the control film. The water vapour permeability was similar to that of the control film. The effect of nanoemulsion-thymol-quinoa protein/chitosan coating on mould growth in inoculated cherry tomatoes was evaluated. Compared with control samples (tomatoes without coating and those coated with quinoa protein/chitosan), tomatoes with this coating and inoculated with B. cinerea showed a significant decrease in fungal growth after 7 days at 5 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nano-Science-Engineering-Technology Applications to Food and Nutrition.
Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R
2015-01-01
Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.
2013-08-01
antimicrobial nanoparticles, chelating agents, and peptides . ACKNOWLEDGMENTS We thank Stephanie A. Brown and Hunter Radetsky for technical support. Funding...AUG 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial activity of nanoemulsion in combination with...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Antimicrobial Activity of Nanoemulsion in Combination
Hashtjin, Adel Mirmajidi; Abbasi, Soleiman
2015-05-01
The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001).
Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia
2015-04-05
Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficacy of nano- and microemulsion-based topical gels in delivery of ibuprofen: an in vivo study.
Azizi, Mosayeb; Esmaeili, Fariba; Partoazar, Alireza; Ejtemaei Mehr, Shahram; Amani, Amir
2017-03-01
Nanoemulsion has shown many advantages in drug delivery systems. In this study, for the first time, analgesic and anti-inflammatory properties of a nanomelusion of almond oil with and without ibuprofen was compared with corresponding microemulsion and commercial topical gel of the drug using formalin and carrageenan tests, respectively. Almond oil (oil phase) was mixed with Tween 80 and Span 80 (surfactants), and ethanol (co-surfactant) and them distilled water (aqueous phase) was then added to the mixture at once. Prepared nanoemulsions were pre-emulsified into a 100 ml beaker using magnet/stirrer (1000 rpm). Then, using a probe ultrasonicator (Hielscher UP400s, Hielscher, Ringwood, NJ) the nanoemulsions were formed. The optimised nanoemulsion formulation containing 2.5% ibuprofen, showed improved analgesic and anti-inflammatory effects compared with commercial product and corresponding microemulsion product containing 5% ibuprofen (i.e. twice the content of ibuprofen in the nanoemulsion) in vivo. The nanoemulsion preparation showed superior analgesic activities during chronic phase. Also, it decreased the inflammation from the first hour, while the microemulsion and the commercial product started to show their anti-inflammatory effects after 2 and 3 h, respectively. Our finding suggests that the size of the emulsion particles must be considered as an important factor in topical drug delivery systems.
Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana
2016-01-01
We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.
NASA Astrophysics Data System (ADS)
Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena
2007-12-01
Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.
Transdermal delivery of lercanidipine hydrochloride: effect of chemical enhancers and ultrasound.
Shetty, Pallavi K; Suthar, Neelam A; Menon, Jyothsna; Deshpande, Praful B; Avadhani, Kiran; Kulkarni, Raghavendra V; Mutalik, Srinivas
2013-08-01
The effects of permeation enhancers and sonophoresis on the transdermal permeation of lercanidipine hydrochloride (LRDP) across mouse skin were investigated. Parameters including drug solubility, partition coefficient, drug degradation and drug permeation in skin were determined. Tween-20, dimethyl formamide, propylene glycol, poly ethylene glycol (5% v/v) and different concentration of ethanol were used for permeation enhancement. Low frequency ultrasound was also applied in the presence and absence of permeation enhancers to assess its effect on augmenting the permeation of drug. All the permeation enhancers, except propylene glycol, increased the transdermal permeation of LRDP. Sonophoresis significantly increased the cumulative amount of LRDP permeating through the skin in comparison to passive diffusion. A synergistic effect was noted when sonophoresis was applied in presence of permeation enhancers. The results suggest that the formulation of LRDP with an appropriate penetration enhancer may be useful in the development of a therapeutic system to deliver LRDP across the skin for a prolonged period (i.e., 24 h). The application of ultrasound in association with permeation enhancers could further serve as non-oral and non-invasive drug delivery modality for the immediate therapeutic effect.
Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M
2017-06-01
The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect carvacrol structure and increase its efficiency and stability. Moreover, nano-encapsulation of carvacrol is more efficient than nano-emulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The viscoelastic evaluation of transdermal adhesive systems and the influence of excipients
NASA Astrophysics Data System (ADS)
Wick, Steven Marshall
1998-12-01
The transdermal dosage form requires simultaneous consideration of both drug delivery and adhesion to skin in order to achieve the desired therapeutic effect. A transdermal system with inadequate adhesion performance will produce a variable and unpredictable systemic blood level profile. It is therefore of paramount importance that the adhesive performance be fully contemplated within the development of a total transdermal system. An experimental strategy was developed within this thesis which utilizes a sequential combination of a dynamic stress followed by a static shear stress evaluation Within the dynamic stress evaluation, a sinusoidal stress of constant frequency, over a frequency of 0.065 to 64 Hz was applied normal to the surface of an adhesive system. The static shear stress apparatus (CIRUSS) applies a constant shear stress for a defined time interval (three minutes) followed by an instantaneous removal of the applied shear stress. The mechanical behavior of two distinct adhesive polymers (silicone and acrylate) was modeled as a one-dimensional four-parameter solid and five-parameter solid respectively for the two adhesive systems. The effects of several additives were examined including ethyl oleate, glyceryl monolaurate, an amine oxide, Teflon and a macromer. In addition, the effect of branching and cross-linking was examined using the acrylate adhesive system. A physical interpretation of the mechanical behavior was proposed associating the deformation within an adhesive system with the disruption of the hydrogen bonding network as well as the covalent bonds within the polymer backbone. The collected data was consistent with the author's postulate. The presented results verify the utility of the aforementioned sequential evaluation strategy in characterizing adhesive viscoelastic performance.
Bhaskar, Hemant; Kapoor, Pranav; Ragini
2010-01-01
Aims: This study was performed to compare the degree of post operative analgesia, patient compliance, and frequency of adverse events with the use of oral diclofenac tablets and transdermal diclofenac patch following multiple premolar extractions in patients undergoing orthodontic treatment. Materials and Methods: Twenty young pre-orthodontic patients requiring bilateral maxillary and mandibular first premolar extractions were selected for the study. The right maxillary and mandibular first premolars were extracted first and 50 mg oral diclofenac sodium tablets were prescribed to be taken thrice a day for three days. In the next appointment, the contralateral first premolars were extracted and a 100 mg transdermal diclofenac patch was applied once a day for three days. Pain relief and pain intensity with both the diclofenac formulations was recorded for each of the three postoperative days using 5-point Verbal Pain Intensity and Pain Relief Score Charts. Results and Conclusions: Statistical analyses revealed that there was a gradual increase in pain relief scores and a gradual decrease in pain intensity scores with the use of oral diclofenac tablets as well as with the transdermal patch. However, subjects reported that they were more comfortable using the transdermal patch particularly due to the once-a-day application and lesser frequency of systemic adverse effects. Results of this study indicate that the transdermal diclofenac patch provides as potent analgesia as the oral diclofenac tablets with the added advantage of better patient compliance and may be used for routine post extraction analgesia. PMID:22114407
Newton, Maria J; Harjot, Kaur
2017-01-01
Flunarizine dihydrochloride (FHC) is used for the prophylaxis to migraine. Flunarizine has solubility problems which is practically insoluble in water and alcohol. Nanoemulsion is the approach to increase the solubility of the insoluble drugs. Nanoemulsions of FHC was prepared which can be given through the alternate route such as nasal drug delivery for migraine. In this research work the solubility of the poorly soluble FHC was successfully improved by preparing it as a nano emulsion. Nanoemulsions can pass through the biological membrane easily so it can be delivered through nasal mucosa by which it may provide a quicker onset of action. The currently available dosage forms are in the form of tablet. The formulations were prepared by using Glycerl Monostearate (GMS), Tween 80 as surfactant and PEG 400: Ethanol as co-surfactant in the distilled water. Nanoemulsions were prepared by step by step procedure. The prepared nanoemulsions were analyzed preliminarily by Master Sizer followed by Zeta Sizer by using the technique Dynamic Photon Correlation Spectroscopy. The best nanoemulsion was subjected to Zeta Potential study. The TEM analysis was carried out on the best formulation to gain the detailed information about the formulation. The best formulation was selected based on the physical appearance, homogenecity of the preparation, Preliminary Master Sizer analysis report, Secondary Zeta Sizer analysis report with Zeta Potential and TEM. The best formulation demonstrated the size in nano range with improved solubility. The FHC nano emulsion was prepared successfully which improved the solubility of the drug. The drug release study on simulated nasal fluid revealed that the preparation is suitable to be delivered through the nasal route. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kumar, Deep Diyuti; Mann, Bimlesh; Pothuraju, Ramesh; Sharma, Rajan; Bajaj, Rajesh; Minaxi
2016-01-01
In the present investigation, the preparation and characterization of a curcumin nanoemulsion with milk protein (sodium caseinate) and its incorporation into ice cream were undertaken. Among the different combinations, the most stable formulation was observed using milk fat (8%), medium chain triglycerides (2%), curcumin (0.24%) and sodium caseinate (6%) with a mean particle size of 333.8 ± 7.18 nm, a zeta potential of -44.1 ± 0.72 mV and an encapsulation efficiency of 96.9 ± 0.28%. The effect of different processing conditions (heating, pH and ionic strength) on the particle size distribution and zeta potential of the nanoemulsion was evaluated. During heat treatment, the particle size of the nanoemulsion was increased from 333.8 ± 7.18 to 351.1 ± 4.04 nm. The nanoemulsion was destabilized at pH 4.6 and the particle size increased above and below pH 5.0. However, there was a slight increase in the particle size with a change in the ionic concentration. The release kinetics data suggested that in simulated gastro-intestinal digestion, the nanoemulsion was stable against pepsin digestion (a 5.25% release of curcumin), while pancreatic action led to a 16.12% release of curcumin from the nanoemulsion. Finally, our formulation was successfully incorporated into ice cream and the sensory attributes were evaluated. No significant difference was observed in the scores of the sensory attributes between the control and ice cream prepared with a curcumin nanoemulsion. Moreover, the encapsulation efficiency of the curcumin incorporated into the ice cream was 93.7%, which indicates that it can withstand the processing conditions. The findings suggest that ice cream is a suitable dairy product for the delivery of lipophilic bioactive components (curcumin) which can be used for therapeutic purposes.
Gulati, Gaurav Kumar; Chen, Tao; Hinds, Bruce Jackson
2017-01-01
To evaluate the performance of switchable carbon nanotubes (CNT) membrane devices for transdermal nicotine delivery, we have developed an in-vitro microdialysis method that allow us to detect variable transdermal fluxes of nicotine through CNT devices and can be applied directly to in-vivo studies. Microdialysis membranes were placed beneath the porcine skin and its nicotine levels increased 6-8 times when the CNT membrane on skin was turned from OFF to ON state by application of bias. Fluxes in the ON state were approximately 3 times that of commercial nicotine patches and switching times were less than two hours, thus suggesting the improved therapeutic potential of our device. Blue tooth enabled CNT devices that can be programmed by smartphone and coupled with remote counseling application for enhanced smoking cessation treatments. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun
2014-03-01
The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.
Đorđević, Sanela M; Santrač, Anja; Cekić, Nebojša D; Marković, Bojan D; Divović, Branka; Ilić, Tanja M; Savić, Miroslav M; Savić, Snežana D
2017-11-30
This work aimed to deepen the lately acquired knowledge about parenteral nanoemulsions as carriers for brain delivery of risperidone, a poorly water-soluble antipsychotic drug, through establishing the prospective relationship between their physicochemical, pharmacokinetic, biodistribution, and behavioral performances. For this purpose, two optimized risperidone-loaded nanoemulsions, stabilized by lecithin or lecithin/polysorbate 80 mixture, and costabilized by sodium oleate, were produced by high-pressure homogenization. The characterization revealed the favorable droplet size, narrow size distribution, high surface charge, with proven stability to autoclaving and long-term stability for at least one year at 25±2°C. Pharmacokinetic and tissue distribution results demonstrated improved plasma, liver, and brain pharmacokinetic parameters, resulting in 1.2-1.5-fold increased relative bioavailability, 1.1-1.8-fold decreased liver distribution, and about 1.3-fold improved brain uptake of risperidone active moiety following intraperitoneal administration of nanoemulsions relative to solution in rats. In behavioral study, investigated nanoemulsions showed pronounced reduction in basal and, more pertinently, amphetamine-induced locomotor activity in rats, with an early onset of antipsychotic action, and this effect lasted at least 90min after drug injection. Together, these findings corroborate the applicability of parenteral nanoemulsions as carriers for enhanced brain delivery of risperidone, further suggesting their promise in acute psychosis treatment or other emergency situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Davidov-Pardo, Gabriel; McClements, David Julian
2015-01-15
The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui
2017-11-07
With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.
Goh, Pik Seah; Ng, Mei Han; Choo, Yuen May; Amru, Nasrulhaq Boyce; Chuah, Cheng Hock
2015-11-05
In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.
Characterization of rice bran wax policosanol and its nanoemulsion formulation
Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail
2014-01-01
Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm), with optimum charge distribution (−55.8 to −45.12 mV), pH (6.79–6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. PMID:24872689
Ethinyl Estradiol and Norelgestromin Transdermal Patch
... the skin. One patch is applied once a week for 3 weeks, followed by a patch-free week. Follow the directions on your prescription label carefully, ... new patch on the same day of the week (the Patch Change Day). Apply a new patch ...
Transdermal deferoxamine prevents pressure-induced diabetic ulcers
Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.
2015-01-01
There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360
Transdermal drug delivery: from micro to nano
NASA Astrophysics Data System (ADS)
Pegoraro, Carla; MacNeil, Sheila; Battaglia, Giuseppe
2012-03-01
Delivery across skin offers many advantages compared to oral or intravenous routes of drug administration. Skin however is highly impermeable to most molecules on the basis of size, hydrophilicity, lipophilicity and charge. For this reason it is often necessary to temporarily alter the barrier properties of skin for effective administration. This can be done by applying chemical enhancers, which alter the lipid structure of the top layer of skin (the stratum corneum, SC), by applying external forces such as electric currents and ultrasounds, by bypassing the stratum corneum via minimally invasive microneedles or by using nano-delivery vehicles that can cross and deliver their payload to the deeper layers of skin. Here we present a critical summary of the latest technologies used to increase transdermal delivery.
Arora, Priyanka; Mukherjee, Biswajit
2002-09-01
In this study, matrix-type transdermal patches containing diclofenac diethylamine were prepared using different ratios of polyvinylpyrrolidone (PVP) and ethylcellulose (EC) by solvent evaporation technique. The drug matrix film of PVP and EC was casted on a polyvinylalcohol backing membrane. All the prepared formulations were subjected to physical studies (moisture content, moisture uptake, and flatness), in vitro release studies and in vitro skin permeation studies. In vitro permeation studies were performed across cadaver skin using a modified diffusion cell. Variations in drug release profiles among the formulations studied were observed. Based on a physicochemical and in vitro skin permeation study, formulation PA4 (PVP/EC, 1:2) and PA5 (PVP/EC, 1:5) were chosen for further in vivo experiments. The antiinflammatory effect and a sustaining action of diclofenac diethylamine from the two transdermal patches selected were studied by inducing paw edema in rats with 1% w/v carrageenan solution. When the patches were applied half an hour before the subplantar injection of carrageenan in the hind paw of male Wistar rats, it was observed that formulation PA4 produced 100% inhibition of paw edema in rats 12 h after carrageenan insult, whereas in the case of formulation PA5, 4% mean paw edema was obtained half an hour after the carrageenan injection and the value became 19.23% 12 h after the carrageenan insult. The efficacy of transdermal patches was also compared with the marketed Voveran gel and it was found that PA4 transdermal patches produced a better result as compared with the Voveran gel. Hence, it can be reasonably concluded that diclofenac diethylamine can be formulated into the transdermal matrix type patches to sustain its release characteristics and the polymeric composition (PVP/EC, 1:2) was found to be the best choice for manufacturing transdermal patches of diclofenac diethylamine among the formulations studied. Copyright 2002 Wiley-Liss, Inc.
2013-01-01
Background Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability. Methods Experiments were performed in an analytical centrifuge at 11×g to 1140×g (LUMiFuge® 116 particle separation analyzer). The samples in the LUMiFuge® 116 particle separation analyzer were centrifuged at 3000 rpm for 15 h at 32°C. Sample volume of 2 cm3 was used. The rheological property of nanoemulsions was investigated using oscillatory measurements test. A rotational/oscillatory viscometer, Kinexus Rheometer (Malvern Instrument, UK) was used. All measurements were performed with a stainless steel cone-plate sensor at 25.0 ± 0.1°C with 4°/40 mm. Results The stable nanoemulsions showed sedimentation rates at earth gravity of 5.2, 3.0 and 2.6 mm/month for 10%, 20% and 30% (w/w) oil phase, respectively. Rheological behavior is an important target during the design of palm oil esters-based nanocosmeceuticals. The presence of a network structure was indicated by measurements which showed G’ to be greater than G”. This result implied the predominant elastic response and high storage stability of the nanoemulsion. It was also observed that the increase in oil phase concentration led to the profile which strongly indicated that the solid like elastic property; where the values of phase angle, δ of these nanoemulsions was lower than 45°. Conclusions The nanoemulsions with higher oil phase concentration (30% (w/w)) showed greater elasticity which implied strong dynamic rigidity of the nanoemulsion. It was the most stable with longest shelf-life. PMID:24059593
NASA Astrophysics Data System (ADS)
Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.
2015-02-01
The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and concentration x genotype interaction were all highly significant sources of variation in seed germination; however, interaction was the first in importance as a source of variation followed by the concentration, while genotype was the least important source of variation. These results suggest the potential use of eugenol oil nanoemulsion for protecting seedcotton from Fusarium wilt infection.
Ishak, K A; Annuar, M Suffian M; Ahmad, N
2017-12-01
Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.
Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio
2017-09-20
Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.
Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate
NASA Astrophysics Data System (ADS)
Eid, Ahmad M. M.; Baie, Saringat Haji; Arafat, Osama
2012-11-01
Nanoemulsion is a type of emulsion that consists of fine oil-in-water dispersions, with the droplets covering the size range of 20-200 nm. It can be achieved through emulsification process. One of the processes is through low energy emulsification method. Olive oil was chosen in this study due to its efficiency in treating skin problem. Olive oil nanophase gel (NPG) formulations were performed through various ratios of olive oil, sucrose laurate and glycerin. The particle sizes and stability of the prepared olive oil nanophase gel were evaluated and the optimal formulation was then selected for the development of olive oil nanoemulsion. This study proved that the composition of oil and surfactant play an important roles in influencing the nanophase gel droplet size. Nanophase gels containing olive oil in the concentration of 50 and 60 % show good stability at 4 °C and room temperature while it was less stable at 40 °C. Olive oil nanophase gels in the concentration of 50 % and 60 % with sucrose laurate 25 % in each formulation were good candidates to prepare nanoemulsion because they have the suitable droplets size and Polydispersing Index (PDI) when compared to other formulations. A mixture of NPG 50 % and water in the ratio of 40:60 and NPG 60 % and water in the ratio of 33.3:66.7 were used to produce nanoemulsions containing 20 % of oil with negative values of zeta potential (>60) which indicate the good stability of the nanoemulsions.
Tunable stability of monodisperse secondary O/W nano-emulsions
NASA Astrophysics Data System (ADS)
Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.
2014-07-01
Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S3, and Tables S1-S6. See DOI: 10.1039/c4nr02273d
Piezoelectric control of needle-free transdermal drug delivery.
Stachowiak, Jeanne C; von Muhlen, Marcio G; Li, Thomas H; Jalilian, Laleh; Parekh, Sapun H; Fletcher, Daniel A
2007-12-04
Transdermal drug delivery occurs primarily through hypodermic needle injections, which cause pain, require a trained administrator, and may contribute to the spread of disease. With the growing number of pharmaceutical therapies requiring transdermal delivery, an effective, safe, and simple needle-free alternative is needed. We present and characterize a needle-free jet injector that employs a piezoelectric actuator to accelerate a micron-scale stream of fluid (40-130 microm diameter) to velocities sufficient for skin penetration and drug delivery (50-160 m/s). Existing jet injectors, powered by compressed springs and gases, are not widely used due to painful injections and poor reliability in skin penetration depth and dose. In contrast, our device offers electronic control of the actuator expansion rate, resulting in direct control of jet velocity and thus the potential for more precise injections. We apply a simple fluid-dynamic model to predict the device response to actuator expansion. Further, we demonstrate that injection parameters including expelled volume, jet pressure, and penetration depth in soft materials vary with actuator expansion rate, but are highly coupled. Finally, we discuss how electronically-controlled jet injectors may enable the decoupling of injection parameters such as penetration depth and dose, improving the reliability of needle-free transdermal drug delivery.
Tian, Huaixiang; Li, Danfeng; Xu, Ting; Hu, Jing; Rong, Yuzhi; Zhao, Bo
2017-07-01
Citral is one of the most important flavor compounds in fresh juice and lemon oil. Unfortunately, citral is chemically unstable and degrades over time in aqueous solutions. Here, citral nanoemulsions including a mixture of gelatin and Tween 20 as emulsifiers were produced in an effort to maintain the stability of citral in an acidic system. The mean droplet size and polydispersity index of the citral nanoemulsion were 467.83 nm and 0.259 respectively when the mass ratio of gelatin/Tween 20 was 3:1 and the total emulsifier concentration of the emulsion system was 10 g kg -1 . The citral nanoemulsion remained stable during storage for 14 days at 30 °C. Therefore this nanoemulsion system effectively protected citral from degradation and decreased the formation of off-flavor compounds (e.g. p-cymene, p-cresol and p-methylacetophenone) relative to a single emulsifier. The mixture of gelatin and Tween 20 enhanced the stability of citral under acidic conditions and could be used as an effective emulsifier to protect citral from degradation under acidic environments in the food industry. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Ben Jemaa, Mariem; Falleh, Hanen; Neves, Marcos A; Isoda, Hiroko; Nakajima, Mitsutoshi; Ksouri, Riadh
2017-02-15
The objective of this study is to evaluate the effect of either a solution of Thymus capitatus essential oil or its nanoemulsion on the quality of milk contaminated by bacteria. After 24h of S. aureus inoculation, bacterial growth reached 202×10(3)CFU/ml in the presence of the essential oil while it was limited to 132×10(3)CFU/ml when treated with nanoemulsion. The reduction of antioxidant capacity of milk treated with essential oil was higher when treated with nanoemulsion. Moreover, free essential oil was more efficient in protecting proteins from degradation than the nanoemulsion. For instance, after 24h of E. hirae contamination, 26% of the total proteins were consumed in the presence of nano-encapsulated essential oil, while only 14% of the initial content was consumed when free essential oil was added. Concerning milk acidity increase and the inhibition of peroxide production, no statistical differences have been recorded between the use of free essential oil or its nano-emulsion. In conclusion, bulk or nano-encapsulated T. capitatus essential oil preserve milk quality and can extend its shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Valentim, D S S; Duarte, J L; Oliveira, A E M F M; Cruz, R A S; Carvalho, J C T; Solans, C; Fernandes, C P; Tavares-Dias, M
2018-05-16
Monogeneans are ectoparasites that may cause losses in production and productivity in the aquaculture of Colossoma macropomum. Chemotherapeutics used in aquaculture usually have major adverse effects on fish; hence, the use of essential oils has been considered advantageous, but these are not soluble in water. Thus, the use of nanostructures to enhance water solubility of compounds and improve bioactivity may be very promising. This study investigated the antiparasitic activity of nanoemulsion prepared with Copaifera officinalis oleoresin (50, 100, 150, 200 and 300 mg/L), against monogenean parasites from the gills of C. macropomum. The particle size distribution and zeta potential suggested that a potentially kinetic stable system was generated. The nanoemulsion from C. officinalis oleoresin achieved high efficacy (100%) at low concentrations (200 and 300 mg/L) after 15 min of exposure. This was the first time that a nanoemulsion was generated from C. officinalis oleoresin using a solvent-free, non-heating and low-energy method. Moreover, this was the first time that an antiparasitic against monogeneans on fish gills, based on nanoemulsion of C. officinalis oleoresin, was tested. © 2018 John Wiley & Sons Ltd.
NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging
O’Hanlon, Claire E.; Amede, Konjit G.; O’Hear, Meredith R.; Janjic, Jelena M.
2012-01-01
Theranostic nanoparticle development recently took center stage in the field of drug delivery nanoreagent design. Theranostic nanoparticles combine therapeutic delivery systems (liposomes, micelles, nanoemulsions, etc.) with imaging reagents (MRI, optical, PET, CT). This combination allows for non-invasive in vivo monitoring of therapeutic nanoparticles in diseased organs and tissues. Here, we report a novel perfluoropolyether (PFPE) nanoemulsion with a water-insoluble lipophilic drug. The formulation enables non-invasive monitoring of nanoemulsion biodistribution using two imaging modalities, 19F MRI and near-infrared (NIR) optical imaging. The nanoemulsion is composed of PFPE-tyramide as a 19F MRI tracer, hydrocarbon oil, surfactants, and a NIR dye. Preparation utilizes a combination of self-assembly and high energy emulsification methods, resulting in droplets with average diameter 180 nm and low polydispersity index (PDI less than 0.2). A model nonsteroidal anti-inflammatory drug (NSAID), celecoxib, was incorporated into the formulation at 0.2 mg/mL. The reported nanoemulsion’s properties, including small particle size, visibility under 19F NMR and NIR fluorescence spectroscopy, and the ability to carry drugs make it an attractive potential theranostic agent for cancer imaging and treatment. PMID:22675234
Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.
Kabri, Tin-Hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel
2011-09-21
Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.
Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa
2012-01-01
Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666
Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita
2017-05-01
Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.
Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.
Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen
2014-11-01
Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. Copyright © 2014 Elsevier Inc. All rights reserved.
Winter, Evelyn; Dal Pizzol, Carine; Locatelli, Claudriana; Silva, Adny H.; Conte, Aline; Chiaradia-Delatorre, Louise D.; Nunes, Ricardo J.; Yunes, Rosendo A.; Creckzynski-Pasa, Tânia B.
2014-01-01
Several obstacles are encountered in conventional chemotherapy, such as drug toxicity and poor stability. Nanotechnology is envisioned as a strategy to overcome these effects and to improve anticancer therapy. Nanoemulsions comprise submicron emulsions composed of biocompatible lipids, and present a large surface area revealing interesting physical properties. Chalcones are flavonoid precursors, and have been studied as cytotoxic drugs for leukemia cells that induce cell death by different apoptosis pathways. In this study, we encapsulated chalcones in a nanoemulsion and compared their effect with the respective free compounds in leukemia and in non-tumoral cell lines, as well as in an in vivo model. Free and loaded-nanoemulsion chalcones induced a similar anti-leukemic effect. Free chalcones induced higher toxicity in VERO cells than chalcones-loaded nanoemulsions. Similar results were observed in vivo. Free chalcones induced a reduction in weight gain and liver injuries, evidenced by oxidative stress, as well as an inflammatory response. Considering the high toxicity and the side effects induced generally by all cancer chemotherapies, nanotechnology provides some options for improving patients’ life quality and/or increasing survival rates. PMID:25264679
Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang
2015-01-01
Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.
Daull, Philippe; Lallemand, Frédéric; Garrigue, Jean-Sébastien
2014-04-01
Topical ocular administration is the most convenient route of administration of drugs for the treatment of eye diseases. However, the bioavailability of drugs following eye instillations of eye drops is very low. Over the past 20 years, extensive efforts have been put into research to improve drug bioavailability without compromising treatment compliance and patients' quality of life. One of the most efficient ways to improve drug bioavailability is to increase the precorneal residence time of the eye drop formulations. As a result, new eye drops, with bioadhesive properties, have been developed based on the cationic oil-in-water (o/w) nanoemulsion technology. These low viscosity eye drop nanoemulsions have improved precorneal residence time through the electrostatic interactions between the positively charged oil nanodroplets and the negatively charged ocular surface epithelium. This review is the first to present the benefits of this new strategy used to improve ocular drug bioavailability. The roles of the cationic agent in the stabilization of a safe cationic o/w nanoemulsion have been discussed, as well as the unexpected benefits of the cationic o/w nanoemulsion for the protection and restoration of a healthy tear film and corneal epithelium.
Engen, Deborah J; McAllister, Samantha J; Whipple, Mary O; Cha, Stephen S; Dion, Liza J; Vincent, Ann; Bauer, Brent A; Wahner-Roedler, Dietlind L
2015-09-01
Fibromyalgia is a syndrome characterized by chronic pain, fatigue, depression, and sleep disturbances. Its primary cause is unclear. Several studies have reported decreased intracellular magnesium levels in patients with fibromyalgia and have found negative correlation between magnesium levels and fibromyalgia symptoms. To gather preliminary data on whether transdermal magnesium can improve quality of life for women who have fibromyalgia. This is a patient questionnaires and survey in a fibromyalgia clinic at a tertiary medical center. Forty female patients with the diagnosis of fibromyalgia were enrolled. Each participant was provided a spray bottle containing a transdermal magnesium chloride solution and asked to apply 4 sprays per limb twice daily for 4 weeks. Participants were asked to complete the Revised Fibromyalgia Impact Questionnaire, SF-36v2 Health Survey, and a quality-of-life analog scale at baseline, week 2, and week 4. Questionnaire and survey scores, evaluated through intent-to-treat and per-protocol analyses. Twenty-four patients completed the study (mean [SD] age, 57.2 [7.6] years; white, 95%; mean body mass index, 31.3 kg/m2). With intention-to-treat analysis, Revised Fibromyalgia Impact Questionnaire subscale and total scores were significantly improved at week 2 and week 4 (total score, P=0.001). Per-protocol analysis results were similar: all subscales of the Revised Fibromyalgia Impact Questionnaire were significantly improved at week 2 and week 4 (total score, P=0.001). This pilot study suggests that transdermal magnesium chloride applied on upper and lower limbs may be beneficial to patients with fibromyalgia. ClinicalTrials.gov.ldentifier NCT01968772.
NASA Astrophysics Data System (ADS)
Zhan, Zhigang; Wei, Huajiang; Jin, Ying
2015-02-01
Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.
Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C
2016-09-28
Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (p<0.05) higher delivery doses without visible skin damage compared to the use of a chemical penetration enhancer. Transdermal OVA doses of up to 1μg were achieved in a single 90-second treatment, which was sufficient to trigger an antigen-specific immune response. Furthermore, ultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Zhang, Yong-Tai; Xu, Yue-Ming; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Xu, Ding-Qin; Feng, Nian-Ping
2014-03-01
In this study, cinnamic acid-loaded transfersomes were prepared and dermal microdialysis sampling was used in Sprague-Dawley rats to compare the amount of drug released into the skin using transfersomes as transdermal carriers with that released on using conventional liposomes. The formulation of cinnamic acid-loaded transfersomes was optimized by a uniform design through in vitro transdermal permeation studies. Hydration time was confirmed as a significant factor influencing the entrapment efficiency of transfersomes, further affecting their transdermal flux in vitro. The fluxes of cinnamic acid from transfersomes were all higher than those from conventional liposomes, and the flux from the optimal transfersome formulation was 3.01-fold higher than that from the conventional liposomes (p < 0.05). An in vivo microdialysis sampling method revealed that the dermal drug concentrations from transfersomes applied on various skin regions were much lower than those required with conventional liposomes. After the administration of drug-containing transfersomes and liposomes on abdominal skin regions of rats for a period of 10 h, the Cmax of cinnamic acid from the compared liposomes was 3.21 ± 0.25 μg/mL and that from the transfersomes was merely 0.59 ± 0.02 μg/mL. The results suggest that transfersomes can be used as carriers to enhance the transdermal delivery of cinnamic acid, and that these vehicles may penetrate the skin in the complete form, given their significant deformability.
P-Glycoprotein in skin contributes to transdermal absorption of topical corticosteroids.
Hashimoto, Naoto; Nakamichi, Noritaka; Yamazaki, Erina; Oikawa, Masashi; Masuo, Yusuke; Schinkel, Alfred H; Kato, Yukio
2017-04-15
ATP binding cassette transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed in skin, but their involvement in transdermal absorption of clinically used drugs remains unknown. Here, we examined their role in transdermal absorption of corticosteroids. Skin and plasma concentrations of dexamethasone after dermal application were reduced in P-gp and BCRP triple-knockout (Mdr1a/1b/Bcrp -/- ) mice. The skin concentration in Mdr1a/1b/Bcrp -/- mice was reduced in the dermis, but not in the epidermis, indicating that functional expression of these transporters in skin is compartmentalized. Involvement of these transporters in dermal transport of dexamethasone was also supported by the observation of a higher epidermal concentration in Mdr1a/1b/Bcrp -/- than wild-type mice during intravenous infusion. Transdermal absorption after dermal application of prednisolone, but not methylprednisolone or ethinyl estradiol, was also lower in Mdr1a/1b/Bcrp -/- than in wild-type mice. Transport studies in epithelial cell lines transfected with P-gp or BCRP showed that dexamethasone and prednisolone are substrates of P-gp, but are minimally transported by BCRP. Thus, our findings suggest that P-gp is involved in transdermal absorption of at least some corticosteroids in vivo. P-gp might be available as a target for inhibition in order to deliver topically applied drugs and cosmetics in a manner that minimizes systemic exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Tschirner, M; Ritzdorf, I; Brünjes, R
2008-09-18
To obtain information on the efficacy, tolerability and safetyofa transdermal buprenorphine patch (Transtec PRO) in patients with moderate to severe chronic pain. In addition it should be evaluated to what extent the two fixed patch change days per weekare simplifyingthe therapy. In this prospective multi-center post marketing surveillance study patients with chronic cancer and non-cancer pain were treated with transdermal buprenorphine for up to eight weeks. The evaluation included pain intensity, the dosage of the applied analgesics and additional therapies, the renal function (by serum creatinine) and adverse events. 3654 patients were treated for a mean of 50.4 days. Using the NRS-11 the mean pain intensity decreased from 6.3 at the time when patients were switched to the transdermal buprenorphine patch to 2.6 at the last treatment evaluation. The matrix patch was safe and well tolerated also in patients with advanced renal insufficiency. Adverse events were reported in 6.7% of the patients. 89.3% of the physicians quoted to prefer transdermal buprenorphine with the two fixed patch change days per week compared to the pre-treatment. The buprenorphine-containing matrix patch was effective and well tolerated in patients with moderate to severe chronic cancer and noncancer pain. From the physicians view the two fixed patch change days per week facilitate the guidance of therapy. In patients with advanced renal insufficiency a dose adjustment is not necessary.
Korbonits, Márta; Slawik, Marc; Cullen, Derek; Ross, Richard J; Stalla, Günter; Schneider, Harald; Reincke, Martin; Bouloux, Pierre M; Grossman, Ashley B
2004-05-01
A novel delivery system has been developed for testosterone replacement. This formulation, COL-1621 (Striant), a testosterone-containing buccal mucoadhesive system, has been shown in preliminary studies to replace testosterone at physiological levels when used twice daily. Therefore, the current study compared the steady-state pharmacokinetics and tolerability of the buccal system with a testosterone-containing skin patch (Andropatch or Androderm) in an international multicenter study of a group of hypogonadal men. Sixty-six patients were randomized into two groups; one applied the buccal system twice daily, whereas the other applied the transdermal patch daily, in each case for 7 d. Serum total testosterone and dihydrotestosterone concentrations were measured at d 1, 3 or 4, and 6, and serially over the last 24 h of the study. Pharmacokinetic parameters for each formulation were calculated, and the two groups were compared. The tolerability of both formulations was also evaluated. Thirty-three patients were treated with the buccal preparation, and 34 were treated with the transdermal patch. The average serum testosterone concentration over 24 h showed a mean of 18.74 nmol/liter (SD =; 5.90) in the buccal system group and 12.15 nmol/liter (SD =; 5.55) in the transdermal patch group (P < 0.01). Of the patients treated with the buccal system, 97% had average steady-state testosterone concentrations within the physiological range (10.41-36.44 nmol/liter), whereas only 56% of the transdermal patch patients achieved physiological total testosterone concentrations (P < 0.001 between groups). Testosterone concentrations were within the physiological range in the buccal system group for a significantly greater portion of the 24-h treatment period than in the transdermal patch group (mean, 84.9% vs. 54.9%; P < 0.001). Testosterone/dihydrotestosterone ratios were physiological and similar in both groups. Few patients experienced major adverse effects from either treatment. No significant local tolerability problems were noted with the buccal system, other than a single patient withdrawal. We conclude that this buccal system is superior to the transdermal patch in achieving testosterone concentrations within the normal range. It may, therefore, be a valuable addition to the range of choices for testosterone replacement therapy.
Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light
NASA Astrophysics Data System (ADS)
Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young
2016-07-01
Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications. Electronic supplementary information (ESI) available: FE-SEM image of thiol-acrylate hydrogels; UV/Vis spectra of Ellman's assay; the temperature increase during transdermal photothermal hydrogelation. See DOI: 10.1039/c6nr01956k
Al-Subaie, Mutlaq M; Hosny, Khaled M; El-Say, Khalid Mohamed; Ahmed, Tarek A; Aljaeid, Bader M
2015-01-01
This study aimed to formulate an optimized acyclovir (ACV) nanoemulsion hydrogel in order to provide a solution for the slow, variable, and incomplete oral drug absorption in patient suffering from herpes simplex viral infection. Solubility of ACV in different oils, surfactants, and cosurfactants was explored utilizing a cubic model mixture design to obtain a nanoemulsion with minimum globule size. Preparation of an optimized ACV nanoemulsion hydrogel using a three-factor, three-level Box–Behnken statistical design was conducted. The molecular weight of chitosan (X1), percentage of chitosan (X2), and percentage of Eugenol as a skin permeation enhancer (X3) were selected to study their effects on hydrogel spreadability (Y1) and percent ACV permeated through rat skin after 2.5 hours (Y2). A pharmacokinetic study of the optimized ACV nanoemulsion hydrogel was conducted in rats. Mixtures of clove oil and castor oil (3:1 ratio), Tween 80 and Span 80 (3:1 ratio), and propylene glycol and Myo-6V (3:1 ratio) were selected as the oil, surfactant, and cosurfactant phases, respectively. Statistical analysis indicated that the molecular weight of chitosan has a significant antagonistic effect on spreadability, but has no significant effect on the percent ACV permeated. The percentage of chitosan also has a significant antagonistic effect on the spreadability and percent ACV permeated. On the other hand, the percentage of Eugenol has a significant synergistic effect on percent ACV permeated, with no effect on spreadability. The ex vivo study demonstrated that the optimized ACV nanoemulsion hydrogel showed a twofold and 1.5-fold higher permeation percentage than the control gel and marketed cream, respectively. The relative bioavailability of the optimized ACV nanoemulsion hydrogel improved to 535.2% and 244.6% with respect to the raw ACV hydrogel and marketed cream, respectively, confirming improvement of the relative bioavailability of ACV in the formulated nanoemulsion hydrogel. PMID:26109856
NASA Astrophysics Data System (ADS)
Kumar, Shobhit; Ali, Javed; Baboota, Sanjula
2016-10-01
Selegiline is a monoamine oxidase B (MAO-B) inhibitor and is used in the treatment of Parkinson’s disease. The main problem associated with its oral administration is its low oral bioavailability (10%) due to its poor aqueous solubility and extensive first pass metabolism. The aim of the present research work was to develop a nanoemulsion loaded with selegiline for direct nose-to-brain delivery for the better management of Parkinson’s disease. A quality by design (QbD) approach was used in a statistical multivariate method for the preparation and optimization of nanoemulsion. In this study, four independent variables were chosen, in which two were compositions and two were process variables, while droplet size, transmittance, zeta potential and drug release were selected as response variables. The optimized formulation was assessed for efficacy in Parkinson’s disease using behavioural studies, namely forced swimming, locomotor, catalepsy, muscle coordination, akinesia and bradykinesia or pole test in Wistar rats. The observed droplet size, polydispersity index (PDI), refractive index, transmittance, zeta potential and viscosity of selegiline nanoemulsion were found to be 61.43 ± 4.10 nm, 0.203 ± 0.005, 1.30 ± 0.01, 99.80 ± 0.04%, -34 mV and 31.85 ± 0.24 mPas respectively. Surface characterization studies demonstrated a spherical shape of nanoemulsion which showed 3.7 times enhancement in drug permeation as compared to drug suspension. The results of behaviour studies showed that treatment of haloperidol induced Parkinson’s disease in rats with selegiline nanoemulsion (administered intranasally) showed significant improvement in behavioural activities in comparison to orally administered drug. These findings demonstrate that nanoemulsion could be a promising new drug delivery carrier for intranasal delivery of selegiline in the treatment of Parkinson’s disease.
Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis.
Sosa, Lilian; Clares, Beatriz; Alvarado, Helen L; Bozal, Nuria; Domenech, Oscar; Calpena, Ana C
2017-10-01
The present study was designed to develop a nanoemulsion formulation of Amphotericin B (AmB) for the treatment of skin candidiasis and aspergillosis. Several ingredients were selected on the basis of AmB solubility and compatibility with skin. The formulation that exhibited the best properties was selected from the pseudo-ternary phase diagram. After physicochemical characterization its stability was assessed. Drug release and skin permeation studies were also accomplished. The antifungal efficacy and skin tolerability of developed AmB nanoemulsion was demonstrated. Finally, our results showed that the developed AmB formulation could provide an effective local antifungal effect without theoretical systemic absorption, based on its skin retention capacity, which might avoid related side effect. These results suggested that the nanoemulsion may be an optimal therapeutic alternative for the treatment of skin fungal infections with AmB. Copyright © 2017 Elsevier Inc. All rights reserved.
Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers.
Li, Ming; Cui, Jie; Ngadi, Michael O; Ma, Ying
2015-08-01
Curcumin (CCM) is a bioactive polyphenolic compound that suffers a low bioavailability because of its low water solubility. In this work β-lactoglobulin (β-Lg) and nanoemulsion were used as carriers to deliver curcumin. The pH stability of β-Lg-CCM was investigated. The digestion of β-Lg-CCM and the nanoemulsion was studied using an in vitro gastrointestinal model. The effect of different carriers on the permeability of curcumin was assessed using the Caco-2 cell monolayer model. The results revealed that the water solubility and the pH stability of curcumin significantly increased by binding with β-Lg. In SDS-PAGE experiments the β-Lg-CCM complex and nanoemulsion were found to be resistant to pepsin digestion but sensitive to trypsin. In the permeability experiment it was shown that the digested nanoemulsion and β-Lg-CCM improved significantly the permeation rate of curcumin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characteristics of Nano-emulsion for Cold Thermal Storage
NASA Astrophysics Data System (ADS)
Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi
Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.
... will be applying the patch. Cut open the envelope containing the patches, cutting on the dotted line ... it. Pull apart the zipper seal on the envelope and remove one patch. Reseal the envelope by ...
Nitroglycerin Transdermal Patch
... vasodilators. It works by relaxing the blood vessels so that the heart does not need to work ... patches may be applied in slightly different ways, so be sure to follow the directions included with ...
Rana, Sudha; Sharma, Navneet; Ojha, Himanshu; Shivkumar, Hosakote Gurumalappa; Sultana, Sarwat; Sharma, Rakesh Kumar
2014-05-01
This study aimed to develop p-tertbutylcalix[4]arene o/w nanoemulsion for decontamination of radioisotopes from skin. Formulation was characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), multi-photon confocal microscopy techniques and in vitro dissolution studies. In vivo evaluation of nano-emulsion was done using nuclear medicine technique. Stability studies and dermal toxicity studies were also carried out. Comparative decontamination efficacy (DE) studies were performed on synthetic human tissue equivalent material and Sprague Dawley rat against three commonly used medical radioisotopes, i.e., Technetium-99m ((99m)Tc), Iodine-131 ((131)I) and Thallium-201 ((201)Tl). Decontamination was performed using cotton swabs soaked in nanoemulsion at different time intervals of contaminants exposure. Whole body imaging and static counts were recorded using gamma camera before and after each decontamination attempt data was analyzed using one way analysis of variance (ANOVA) and found to be statistically significant (p<0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arene was observed to be 88±5%, 90±3% and 89±3% for (99m)Tc, (131)I and (201)Tl respectively. Dermal toxicity studies revealed no significant differences between treated and control animals. Skin histopathology slides with and without API (Active pharmaceutical ingredients) also found to be comparable. p-Tertbutylcalix[4]arene loaded nanoemulsion shows great promise for skin decontamination against broad ranges of radiological contaminants besides being stable and safe. Copyright © 2014 Elsevier B.V. All rights reserved.
Mishra, Prabhakar; Samuel, Merlyn Keziah; Reddy, Ruchishya; Tyagi, Brij Kishore; Mukherjee, Amitava; Chandrasekaran, Natarajan
2018-01-01
The increasing risk of vector-borne diseases and the environmental pollution in the day-to-day life due to the usage of the conventional pesticides makes the role of nanotechnology to come into the action. The current study deals with one of the applications of nanotechnology through the formulation of neem urea nanoemulsion (NUNE). NUNE was formulated using neem oil, Tween 20, and urea using the microfluidization method. Prior to the development of nanoemulsion, the ratio of oil/surfactant/urea was optimized using the response surface modeling method. The mean droplet size of the nanoemulsion was found to be 19.3 ± 1.34 nm. The nanoemulsion was found to be stable for the period of 4 days in the field conditions which aids to its mosquitocidal activity. The nanoemulsion exhibited a potent ovicidal and larvicidal activity against A. aegypti and C. tritaeniorhynchus vectors. This result was corroborated with the histopathological analysis of the NUNE-treated larvae. Further, the effect of NUNE on the biochemical profile of the target host was assessed and was found to be efficacious compared to the bulk counterpart. The nanoemulsion was then checked for its biosafety towards the non-target species like plant beneficial bacterium (E. ludwigii), and phytotoxicity was assessed towards the paddy plant (O. sativa). Nanometric emulsion at the concentration used for the mosquitocidal application was found to be potentially safe towards the environment. Therefore, the nanometric neem-laced urea emulsion tends to be an efficient mosquito control agent with an environmentally benign property.
Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery
Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F
2011-01-01
Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727
Lu, Pei Shan; Inbaraj, Baskaran Stephen; Chen, Bing Huei
2018-01-01
Curcuminoid from Curcuma longa Linnaeus has been demonstrated to be effective in anti-cancer and anti-inflammation. The objectives of the present study were to prepare curcuminoid dispersion and nanoemulsion from C. longa and determine their oral bioavailabilities in rats. After curcuminoid extraction using 99.5% ethanol, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin were separated within 10 min by high-performance liquid chromatography using an Eclipse XDB-C18 column (Agilent, Palo Alto, CA, USA) and a gradient mobile phase of 0.1% aqueous formic acid and acetonitrile, with a flow rate of 1 mL min -1 , column temperature of 35 °C and detection wavelength of 425 nm. Curcuminoid nanoemulsion at a particle size of 12.1 nm and encapsulation efficiency 98.8% was prepared using lecithin, Tween 80 and water. A pharmacokinetic study in rats revealed that the parameters including T max , C max , t 1/2 and the area under the curve were higher for curcuminoid nanoemulsions than for curcuminoid dispersion at the same dose employed for gavage administration, whereas, for intravenous injection, an opposite trend was shown. The oral bioavailabilities of BDMC, DMC, curcumin and total curcuminoids in nanoemulsion and dispersion were 34.39 and 4.65%, 39.93 and 5.49%, 47.82 and 9.38%, and 46 and 8.7%, respectively. The results of the present study demonstrate a higher oral bioavailability after incorporation of curcuminoid into nanoemulsion, facilitating its application as a botanic drug. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.
Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F
2011-01-01
Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.
Rotigotine transdermal system: a short review
Bunten, Sabine; Happe, Svenja
2006-01-01
Rotigotine (Neupro®) is a new non-ergolinic dopamine agonist transdermal patch that can be applied once daily. To date, it is approved for the treatment of early Parkinson’s disease as monotherapy and has been shown to be effective in the treatment of advanced-stage Parkinson’s disease and restless legs syndrome in several clinical trials. This review gives an overview of physical, chemical, and pharmaceutical characteristics, pharmacokinetics, biotransformation and elimination, drug interactions, and adverse events of rotigotine. Further, the rationale for the treatment of Parkinson’s disease and restless legs syndrome with rotigotine is discussed. PMID:19412491
NASA Astrophysics Data System (ADS)
Hsu, H. J.; Huang, R. F.; Kao, T. H.; Inbaraj, B. S.; Chen, B. H.
2017-03-01
Lycium barbarum L., a traditional Chinese herb widely used in Asian countries, has been demonstrated to be protective against chronic diseases such as age-related macular degeneration. The objectives of this study were to determine the carotenoid content in L. barbarum by high-performance liquid chromatography-mass spectrometry, followed by preparation of a carotenoid nanoemulsion to evaluate the mechanism of inhibition on HT-29 colon cancer cells. The highest extraction yield of carotenoids was attained by employing a solvent system of hexane-ethanol-acetone (1:1:1, v/v/v). Nine carotenoids, including neoxanthin (4.47 μg g-1), all-trans-zeaxanthin and its cis-isomers (1666.3 μg g-1), all-trans-β-cryptoxanthin (51.69 μg g-1), all-trans-β-carotene and its cis-isomers (20.11 μg g-1), were separated within 45 min and quantified using a YMC C30 column and a gradient mobile phase of methanol-water (9:1, v/v) (A) and methylene chloride (B). A highly stable carotenoid nanoemulsion composed of CapryolTM 90, Transcutol®HP, Tween 80 and deionized water was prepared with a mean particle size of 15.1 nm. Characterization of zeaxanthin standard, blank nanoemulsion, carotenoid extract and carotenoid nanoemulsion by differential scanning calorimetry curves and Fourier transform infrared spectra revealed a good dispersion of zeaxanthin-dominated carotenoid extract with no significant chemical change after incorporation into nanoemulsion. The in vitro release kinetic study showed a higher release profile at pH 5.2 than at physiological pH 7.4, suggesting a rapid release of carotenoids in the acidic environment (pH 4.5-6.5) characteristic of tumors. Both the carotenoid nanoemulsion and the extract were effective at inhibiting growth of HT-29 colon cancer cells, with an IC50 of 4.5 and 4.9 μg ml-1, respectively. Also, both treatments could up-regulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A and cyclin B expression and arrest the cell cycle at G2/M. The study may form a basis for further exploration of L. barbarum nanoemulsion in cancer treatment.
Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor
2013-12-28
Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the varying electric pulse amplitude, the amount of topical and transdermal drug delivery to the skin can be controlled. Furthermore, the newly developed monitoring system provides a tool for rapid real-time determination of both, transdermal and topical delivery, when the delivered molecule is fluorescent. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Modi, Nisarg
Rheological characterization of pharmaceutical gel is of importance as it provides fundamental information required for the assessment of some of the final properties of a product such as viscosity, elasticity, quality and physical storage stability. The effect of formulation and process variables on product characteristics such as consistency, drug release, and physical stability can also be attained. Moreover, some of the transdermal patch problems such as leaking from reservoir patch or cold flow in matrix patch can also be estimated using rheological characterization. During this research, various tests were employed to characterize the mechanical properties of gel such as oscillation test (Frequency and Amplitude Sweep), flow and viscosity curves and yield point measurements, as well as temperature sweep and temperature ramp test. The present studies evaluate rheological properties of hydroxypropyl cellulose (Klucel HF) gels prepared containing fatty acids with different carbon chain length at different homogenization speed. A controlled stress rheometer was used to study the effect of different number of carbon chain fatty acids, homogenization speed and storage period on the rheological properties and microstructure of transdermal gels. The studies demonstrated that as the carbon chain length increased (C10-C 18) the thixotropic area decreased, which suggested that the stability of gel structure was increased with increase in carbon chain of fatty acids. Cohesive Energy was affected by the homogenization speed and carbon chain of fatty acids. There was decreased in cohesive energy as increase in carbon chain of fatty acids. Temperature sweep data revealed that gels prepared with oleic acid (C18) at 25000 RPM gave the best thermal stability after the longest storage period (60-Days) compare to the capric(C10) acid and Lauirc (C12) acid. There was only 31% decreased in temperature loop area for oleic (C18) acid as compare to 54% and 86% for capric (C10) acid and lauric acid (C12) respectively. During different mixing speeds at initial time period (t=0), oleic acid showed lowest temperature loop area, which was not affected by storage period. Furthermore, by applying power law model to frequency sweep data, mechanical propereties of transdermal gels were evaluated. Transdermal gels are "physical gels" in nature which showed both frequency dependency and also had a cross-over point. Moreover, the value of n is less than 1. Time Temperature superposition principle can apply to the rheological data of Transdermal gels to obtain the thermal properties of formulations. Thermal properties of transdermal gels are very difficult to measure using traditional DSC equipment. By applying TTS principle, frequency sweep data were obtained between 5-50 °C and extrapolated to achieve the glass transition temperature, free volume and thermal expansion co-efficient of the formulations. Last but not least, In-vitro studies using human cadaver skin showed that Capric acid is the best permeability enhancing agent for escitalopram oxalate in current formulations. Furthermore, increase in carbon chain length of fatty acids decreased the permeability enhancing effect of Escitalopram Oxalate through human cadaver skin during In-vitro diffusion studies.
Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3
2011-01-01
Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design. PMID:21936893
Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick
2010-10-15
This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.
Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias
2010-09-01
Cutaneous contamination represents the second highest contamination pathway in the nuclear industry. Despite that the entry of actinides such as uranium into the body through intact or wounded skin can induce a high internal exposure, no specific emergency treatment for cutaneous contamination exists. In the present work, an innovative formulation dedicated to uranium skin decontamination was developed. The galenic form consists in an oil-in-water nanoemulsion, which contains a tricarboxylic calixarene known for its high uranium affinity and selectivity. The physicochemical characterization of this topical form revealed that calixarene molecules are located at the surface of the dispersed oil droplets of the nanoemulsion, being thus potentially available for uranium chelation. It was demonstrated in preliminary in vitro experiments by using an adapted ultrafiltration method that the calixarene nanoemulsion was able to extract and retain more than 80% of uranium from an aqueous uranyl nitrate contamination solution. First ex vivo experiments carried out in Franz diffusion cells on pig ear skin explants during 24 h showed that the immediate application of the calixarene nanoemulsion on a skin contaminated by a uranyl nitrate solution allowed a uranium transcutaneous diffusion decrease of about 98% through intact and excoriated skins. The calixarene nanoemulsion developed in this study thus seems to be an efficient emergency system for uranium skin decontamination.
Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions.
Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias
2010-03-01
Accidental cutaneous contamination by actinides such as uranium occurring to nuclear power plant workers can lead to their dissemination in other tissues and induce severe damages. Until now, no specific emergency treatment for such contamination has been developed. The aim of the present work was to formulate a tricarboxylic calix[6]arene molecule, known to exhibit good affinity and selectivity for complexing uranium, within a topical delivery system for the treatment of skin contamination. Since calixarene was shown to reduce oil/water interfacial tension, we have designed an oil-in-water nanoemulsion, taking advantage of the small droplet size offering a high contact surface with the contaminated aqueous medium. Characterization of the calixarene nanoemulsion was performed by determination of the oily droplet size, zeta potential and pH, measured as a function of the calixarene concentration. The obtained results have confirmed the surface localization of calixarene molecules being potentially available to extract uranyl ions from an aqueous contaminated solution. In a preliminary experiments, the calixarene nanoemulsion was used for the removal of free uranium from an aqueous contaminated solution. Results showed that the calixarene nanoemulsion extracted up to 80 +/- 5% of uranium, which demonstrates the potential interest of this delivery system for uranium skin decontamination. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang
2015-01-01
Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853
Tang, Siah Ying; Manickam, Sivakumar; Wei, Tan Khang; Nashiru, Billa
2012-03-01
In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.
Heli, Hossein; Pourbahman, Fatemeh; Sattarahmady, Naghmeh
2012-01-01
Nickel microspheres were synthesized via a water-in-oil reverse nanoemulsion system using nickel nitrate as the nickel precursor and hydrazine hydrate as the reducing agent. The nanoemulsion was a triton X-100/cyclohexane/water ternary system. The surface morphology of the nickel microspheres was studied by scanning electron microscopy, which indicated that the microspheres had a nanoporous structure. The electrochemical behavior of the nanoporous nickel microspheres were studied in alkaline solution and were then employed to fabricate a modified carbon paste electrode in order to investigate the electrocatalytic oxidation of the drug acyclovir. The oxidation process involved, and its kinetics were investigated using cyclic voltammetry and chronoamperometry. The rate constant of the catalytic oxidation of acyclovir and the electron-transfer coefficient are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of acyclovir. The proposed amperometric method was also applied to determine acyclovir in tablets and topical cream.
Elshoff, Jan-Peer; Cawello, Willi; Andreas, Jens-Otto; Mathy, Francois-Xavier; Braun, Marina
2015-04-01
This narrative review reports on the pharmacological and pharmacokinetic properties of rotigotine, a non-ergolinic D₃/D₂/D₁ dopamine receptor agonist approved for the treatment of early- and advanced-stage Parkinson's disease (PD) and moderate to severe restless legs syndrome (RLS). Rotigotine is formulated as a transdermal patch providing continuous drug delivery over 24 h, with a plasma concentration profile similar to that of administration via continuous intravenous infusion. Absolute bioavailability after 24 h transdermal delivery is 37 % of the applied rotigotine dose. Following a single administration of rotigotine transdermal system (24-h patch-on period), most of the absorbed drug is eliminated in urine and feces as sulphated and glucuronidated conjugates within 24 h of patch removal. The drug shows a high apparent volume of distribution (>2500 L) and a total body clearance of 300-600 L/h. Rotigotine transdermal system provides dose-proportional pharmacokinetics up to supratherapeutic dose rates of 24 mg/24 h, with steady-state plasma drug concentrations attained within 1-2 days of daily dosing. The pharmacokinetics of rotigotine transdermal patch are similar in healthy subjects, patients with early- or advanced-stage PD, and patients with RLS when comparing dose-normalized area under the plasma concentration-time curve (AUC) and maximum plasma drug concentration (Cmax), as well as half-life and other pharmacokinetic parameters. Also, it is not influenced in a relevant manner by age, sex, ethnicity, advanced renal insufficiency, or moderate hepatic impairment. No clinically relevant drug-drug interactions were observed following co-administration of rotigotine with levodopa/carbidopa, domperidone, or the CYP450 inhibitors cimetidine or omeprazole. Also, pharmacodynamics and pharmacokinetics of an oral hormonal contraceptive were not influenced by rotigotine co-administration. Rotigotine was generally well tolerated, with an adverse event profile consistent with dopaminergic stimulation and use of a transdermal patch. These observations, combined with the long-term efficacy demonstrated in clinical studies, support the use of rotigotine as a continuous non-ergot D₃/D₂/D₁ dopamine receptor agonist in the treatment of PD and RLS.
Sarheed, Omar; Abdul Rasool, Bazigha K
2011-01-01
It has now been known for over a decade that low frequency ultrasound can be used to effectively enhance transdermal drug penetration - an approach termed sonophoresis. Mechanistically, acoustic cavitation results in the creation of defects in the stratum corneum that allow accelerated absorption of topically applied molecules. The aim of this study was to develop an optimised sonophoresis protocol for studying transdermal drug delivery in vitro. To this end, caffeine was selected as a model hydrophilic drug while porcine skin was used as a model barrier. Following acoustic validation, 20kHz ultrasound was applied for different durations (range: 5 s to 10 min) using three different modes (10%, 33% or 100% duty cycles) and two distinct sonication procedures (either before or concurrent with drug deposition). Each ultrasonic protocol was assessed in terms of its heating and caffeine flux-enhancing effects. It was found that the best regimen was a concurrent 5 min, pulsed (10% duty cycle) beam of SATA intensity 0.37 W/cm2. A key insight was that in the case of pulsed beams of 10% duty cycle, sonication concurrent with drug deposition was superior to sonication prior to drug deposition and potential mechanisms for this are discussed. PMID:21629673
Braun, Marina; Cawello, Willi; Boekens, Hilmar; Horstmann, Rolf
2009-01-01
AIMS To evaluate the influence of the antiemetic agent domperidone on steady-state pharmacokinetics, safety and tolerability of multiple-dose treatment of the transdermally applied non-ergolinic dopamine agonist rotigotine. METHODS Sixteen healthy male subjects (mean age 30.3 years) participated in a randomized, two-way crossover clinical trial. Treatment A consisted of transdermal rotigotine patch (2 mg (24 h)−1, 10 cm2, total drug content 4.5 mg) applied daily for 4 days, and concomitant oral domperidone (10 mg t.i.d.) for 5 days. For treatment B, subjects received only transdermal rotigotine treatment (daily for 4 days). Pharmacokinetic variables describing systemic exposure and renal elimination of rotigotine and metabolites, and safety and tolerability of the treatment were assessed. RESULTS The primary steady-state pharmacokinetic parameters (Cmax,ss and AUC(0–24),ss) were similar with or without co-administration of domperidone. Geometric mean ratios were close to 1 and respective 90% confidence intervals were within the acceptance range of bioequivalence (0.8, 1.25): Cmax,ss 0.96 (0.86, 1.08) and AUC(0–24),ss 0.97 (0.87, 1.08). tmax,ss, t1/2, secondary parameters calculated on days 4/5 after repeated patch application (Cmin,ss, Cave,ss, AUC(0–tz)) and renal elimination for unconjugated rotigotine and its metabolites were also similar with and without comedication of domperidone. A reduction in the dopaminergic side-effect nausea was seen with domperidone comedication. CONCLUSIONS No changes of pharmacokinetic parameters describing systemic exposure and renal elimination of rotigotine were observed when domperidone was administered concomitantly with rotigotine. The lack of pharmacokinetic interactions indicates that a dose adjustment of rotigotine transdermal patch is not necessary with concomitant use of domperidone. PMID:19094160
Mahabadi, Vahid; Amory, John K; Swerdloff, Ronald S; Bremner, William J; Page, Stephanie T; Sitruk-Ware, Regine; Christensen, Peter D; Kumar, Narender; Tsong, Yun-Yen; Blithe, Diana; Wang, Christina
2009-07-01
Testosterone (T) plus progestin combinations are the most promising hormonal male contraceptives. Nestorone (NES), a progestin without estrogenic or androgenic activity, when combined with T may be an excellent candidate for male contraception. Our objective was to determine the effect of transdermal NES gel alone or with T gel on gonadotropin suppression. The randomized, unblinded clinical trial was conducted at two academic medical centers. A total of 140 healthy male volunteers participated. One hundred subjects were randomized initially (20 per group) to apply NES gel 2 or 4 mg, T gel 10 g, or T gel 10 g plus NES gel 2 or 4 mg daily for 20 d. Because only about half of the subjects in T plus NES 4 mg group suppressed serum gonadotropins to 0.5 IU/liter or less (suboptimal suppression), two additional groups of 20 men were randomized to apply daily T gel 10 g plus NES gel 6 or 8 mg. Suppression of serum LH and FSH concentrations to 0.5 IU/liter or less after treatment was the main outcome variable. A total of 119 subjects were compliant with gel applications with few study-related adverse events. NES alone reduced gonadotropins significantly but less than T gel alone. Combined T gel 10g plus NES gel 6 or 8 mg suppressed both serum gonadotropins to 0.5 IU/liter or less in significantly more men than either gel alone. Transdermal NES gel alone had gonadotropin suppression activity. Combined transdermal NES (6 or 8 mg) plus T gel demonstrated safe and effective suppression of gonadotropins, justifying a longer-term study of this combination for suppression of spermatogenesis.
Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.
Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni
2015-01-01
The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.
The Rule of Five for Non-Oral Routes of Drug Delivery: Ophthalmic, Inhalation and Transdermal
Choy, Young Bin; Prausnitz, Mark R.
2011-01-01
The Rule of Five predicts suitability of drug candidates, but was developed primarily using orally administered drugs. Here, we test whether the Rule of Five predicts drugs for delivery via non-oral routes, specifically ophthalmic, inhalation and transdermal. We assessed 111 drugs approved by FDA for those routes of administration and found that >98% of current non-oral drugs have physicochemical properties within the limits of the Rule of Five. However, given the inherent bias in the dataset, this analysis was not able to assess whether drugs with properties outside those limits are poor candidates. Indeed, further analysis indicates that drugs well outside the Rule of Five limits, including hydrophilic macromolecules, can be delivered by inhalation. In contrast, drugs currently administered across skin fall within more stringent limits than predicted by the Rule of Five, but new transdermal delivery technologies may make these constraints obsolete by dramatically increasing skin permeability. The Rule of Five does appear to apply well to ophthalmic delivery. We conclude that although current non-oral drugs mostly have physicochemical properties within the Rule of Five thresholds, the Rule of Five should not be used to predict non-oral drug candidates, especially for inhalation and transdermal routes. PMID:20967491
Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C
2016-11-01
The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Parthasarathi, S; Muthukumar, S P; Anandharamakrishnan, C
2016-05-18
Vitamin E (α-tocopherol) is a nutraceutical compound, which has been shown to possess potent antioxidant and anticancer activity. However, its biological activity may be limited by its poor bioavailability. Colloidal delivery systems have shown wide applications in the food and pharmaceutical industries to deliver lipophilic bioactive compounds. In this study, we have developed conventional and nanoemulsions of vitamin E from food grade ingredients (sunflower oil, saponin, and water) and showed the nanoemulsion formulation increased the oral bioavailability when compared to the conventional emulsion. The mean droplet diameters in the nano and conventional emulsions were 0.277 and 1.285 μm, respectively. The stability of the emulsion formulation after thermal processing, long-term storage at different temperatures, mechanical stress and in plasma was determined. The results showed that the saponin coated nanoemulsion was stable to droplet coalescence during thermal processing (30-90 °C), long-term storage and mechanical stress when compared to the conventional emulsion. The biological fate of the emulsion formulations were studied using male Wistar rats as an animal model. The emulsion droplet stability during passage through the gastrointestinal tract was evaluated by their introduction into rat stomachs. Microscopy was used to investigate the structural changes that occurred during digestion. Both the conventional emulsion and nanoemulsion formulations showed strong evidence of droplet flocculation and coalescence during in vivo digestion. The in vivo oral bioavailability study revealed that vitamin E in a nanoemulsion form showed a 3-fold increase in the AUC when compared to the conventional emulsion. The information reported in this study will facilitate the design of colloidal delivery systems using nanoemulsion formulations.
de Mattos, Cristiane Bastos; Argenta, Débora Fretes; Melchiades, Gabriela de Lima; Sechini Cordeiro, Marlon Norberto; Tonini, Maiko Luis; Moraes, Milene Hoehr; Weber, Tanara Beatriz; Roman, Silvane Souza; Nunes, Ricardo José; Teixeira, Helder Ferreira; Steindel, Mário; Koester, Letícia Scherer
2015-01-01
Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 22 full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant – soybean lecithin or sorbitan monooleate and type of co-surfactants – polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential −39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g−1) – the main response of interest – confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment. PMID:26366075
Schuh, Roselena Silvestri; de Carvalho, Talita Giacomet; Giugliani, Roberto; Matte, Ursula; Baldo, Guilherme; Teixeira, Helder Ferreira
2018-01-01
Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by the deficiency of alpha-L-iduronidase (IDUA). This study shows the use of nanoemulsions co-complexed with the plasmid of CRISPR/Cas9 system and a donor oligonucleotide aiming at MPS I gene editing in vitro. Nanoemulsions composed of MCT, DOPE, DOTAP, DSPE-PEG, and water were prepared by high-pressure homogenization. The DNA was complexed by adsorption (NA) or encapsulation (NE) of preformed DNA/DOTAP complexes with nanoemulsions at +4/-1 charge ratio. The incubation in pure DMEM or supplemented with serum showed that the complexation with DNA was stable after 1 h of incubation, but the complexes tended to release the adsorbed DNA after 24 h of incubation, while the encapsulated DNA remained complexed in the oil core of the nanoemulsions even 48 h after incubation with DMEM. The treatment of MPS I patient's fibroblasts homozygous for the p.Trp402 ∗ mutation led to a significant increase in IDUA activity at 2, 15, and 30 days when compared to MPS I untreated fibroblasts. Flow cytometry and confocal microscopy demonstrated that there was a reduction in the area of lysosomes to values similar to normal, an indicator of correction of the cellular phenotype. These results show that the nanoemulsions co-complexed with the CRISPR/Cas9 system and a donor oligonucleotide could effectively transfect MPS I p.Trp402 ∗ patient's fibroblasts, as well as enable the production of IDUA, and represent a potential new treatment option for MPS I. Copyright © 2017 Elsevier B.V. All rights reserved.
Bioactivity of Epigallocatechin Gallate Nanoemulsions Evaluated in Mice Model.
Koutelidakis, Antonios E; Argyri, Konstantina; Sevastou, Zoi; Lamprinaki, Dimitra; Panagopoulou, Elli; Paximada, Evi; Sali, Aggeliki; Papalazarou, Vassilis; Mallouchos, Athanasios; Evageliou, Vasiliki; Kostourou, Vasiliki; Mantala, Ioanna; Kapsokefalou, Maria
2017-09-01
The hypothesis that incorporation of epigallocatechin gallate (EGCG) into nanoemulsions may increase its bioactivity compared with EGCG aqueous solutions was examined in mice. After an in vitro study in a model system with stimulated gastrointestinal conditions, the following EGCG nanoemulsions were used in a mice experiment: Emulsion I: emulsion water in oil (W/O), which contained 0.23 mg/mL EGCG in aqueous phase; Emulsion II: emulsion oil in water (O/W), which contained 10% olive oil and 0.23 mg/mL esterified EGCG in fatty phase; and Emulsion III: emulsion O/W in water (W1/O/W2; 8:32:60), which contained 32% olive oil and 0.23 mg/mL EGCG in aqueous phase. After 2 h of mice administration by gavage with 0.1 mL of EGCG nanoemulsions, total antioxidant capacity (TAC) of plasma and some tissues (especially colon, jejunum, heart, spleen) was measured with Ferric-Reducing Antioxidant Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC) assays. No toxic effects were observed after administration of 0.23 mg/mL esterified EGCG in CD1 mouse strain. The study concluded that administration of mice with the three EGCG nanoemulsions did not increase their TAC in specific tissues, compared with an aqueous EGCG solution at the same concentration. Nevertheless, the esterified EGCG emulsion (Emulsion II) exerted an increase in mice plasma compared with aqueous EGCG and showed higher values of TAC in several tissues, compared with Emulsions I and III. EGCG nanoemulsions could be considered a useful method in plethora functional food applications, but further research is required for safer results.
Chang, Hong-Bin; Chen, Bing-Huei
2015-01-01
The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.
de Mattos, Cristiane Bastos; Argenta, Débora Fretes; Melchiades, Gabriela de Lima; Cordeiro, Marlon Norberto Sechini; Tonini, Maiko Luis; Moraes, Milene Hoehr; Weber, Tanara Beatriz; Roman, Silvane Souza; Nunes, Ricardo José; Teixeira, Helder Ferreira; Steindel, Mário; Koester, Letícia Scherer
2015-01-01
Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 2(2) full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant - soybean lecithin or sorbitan monooleate and type of co-surfactants - polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential -39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g(-1)) - the main response of interest - confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment.
Optimization of β-casein stabilized nanoemulsions using experimental mixture design.
Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H
2011-10-01
The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P < 0.0001) increases in viscosity and T(m) ' (P= 0.0003), and significant (P < 0.0001) decreases in T(g) '. A mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P < 0.0001) increase in viscosity (5 to 156 mPa.s), significant increase in particle size (P= 0.0115) from 186 to 199 nm, and significant decrease (P= 0.0001) in T(g) ' (-45 to -50 °C). Increasing the protein content resulted in a significant (P < 0.0001) increase in nanoemulsion stability. A mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®
Chang, Hong-Bin; Chen, Bing-Huei
2015-01-01
The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201
Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig.
Shaoul, Esther; Ayalon, Ari; Tal, Yossi; Lotan, Tamar
2012-01-01
Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max) of 30 minutes and C(max) 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.
Transdermal Delivery of Scopolamine by Natural Submicron Injectors: In-Vivo Study in Pig
Shaoul, Esther; Ayalon, Ari; Tal, Yossi; Lotan, Tamar
2012-01-01
Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with Tmax of 30 minutes and Cmax 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery. PMID:22363770
Lin, Ya-ping; Zhao, Ying; Zhang, Yong-ping; Liang, Guang-yi
2007-02-01
To study the transdermal osmosis process of Aconitum brachypodum's liniment, gel and patcher to provide basis for selecting dosage form and controlling the quality. Taking the cumulate rate of transdermal as index, a imitated Fick's diffusion device was used for the investigating the transdermal osmosis course of the three preparations. The best transdermal mathematics models are obtained and the relations between the transdermal course and the release course are analysed. The three preparations have different characteristics of transdermal osmosis course. The liniment meets dynamics 0 order process, the gel and the patcher meet dynamic 0 order process of non-corroded drug system. And the relation is good cubic equation between their transdermal course and release course. The transdermal osmosis experiment in vitro for three preparations can provide basis for selecting dosage form and the quality control in future studies.
Wan, Jiawei; Li, Dong; Song, Rong; Shah, Bakht Ramin; Li, Bin; Li, Yan
2017-04-15
Soy protein isolate (SPI) was selected to fabricate supersaturated self-emulsifying nanoemulsions, aiming to enhance physical stability and bioaccessibility of hydrophobic tangeretin. Dissolution studies demonstrated that tangeretin had the highest solubility in Tween 80, followed by oil phase solutions, and polymer solutions. Supersaturated tangeretin in oil phases easily formed crystals. That metastable zone was found to vary with its initial concentrations. After encapsulation by nanoemulsions, the addition of glycerol compressed the retention amount of tangeretin from 76% to 53%, but benefited the transparency. Whereas, the combination of glycerol and SPI could not only maintain high-loading tangeretin (>85%), but also provide high transparency for nanoemulsions. When tangeretin concentration was 4.83mM, combination of 50% glycerol and 1% SPI could maintain around 88% tangeretin in the nanoemulsion within one month. Its bioaccessibility of different systems were at 60-65%. These findings can provide useful information for protein to be a potential precipitation inhibitor. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Preparation and characterization of nanoemulsion].
Sun, Yu-Jing; Wu, Dao-Cheng; Cao, Yun-Xin; Sui, Yan-Fang
2005-01-01
To prepare nanoemulsion-encapsulated BSA-FITC (NEBSA-FITC), study its characteristics, and measure its uptake by dendritic cells (DCs) and peritoneal macrophages. NEBSA-FITC was prepared by a method of interfacial polymerization.The encapsulation rate, drug-carrying capacity and stability of the nanoemulsion were determined by Sephadex-G100 chromatography. The shape and size of NEBSA-FITC were observed under electron microscope. The uptake of NEBSA-FITC by DCs and macrophage cells was detected by FACS and laser confocal microscopy. The mean size of NEBSA-FITC was (25+/-10) nm. The encapsulation rate was 91%, the drug-carrying capacity was 0.091 g/L and NEBSA-FITC had a good stability. The FACS analysis showed that DCs and macrophage cells could take in more NEBSA-FITC than free BSA. The observation under laser confocal microscope found that NEBSA-FITC was located in the cytoplasm of DCs. Nanoemulsion can be efficiently taken by DCs and macrophage cells, and therefore may be promising efficient carrier of APCs-targeted antitumor vaccine.
Protection against soman and sarin exposure by transdermal physostigmine and scopolamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshulam, Y.; Davidovici, R.; Levy, A.
1993-05-13
The purpose of this study was to evaluate the prophylactic efficacy of physostigmine (physo), administered via sustained release (SR) methods, with and without scopolamine, against soman and sarin exposure in guinea-pigs. Transdermal physo pad (3 sq cm/kg; 60-80 ug/sq cm), containing a vehicle based on propionic acid, was applied onto the dorsal back of the animals, 24 hours before exposure to the cholinesterase (ChE) inhibitors. At the time of exposure, physo concentrations in brain and plasma were 3.6 ng/g and 4.1 ng/ml respectively. Brain and whole blood ChE activity were inhibited to 70% and 57% of their original activity. Transdermalmore » physo by itself protected up to 70% of the animals exposed to 1.5 LD(50) of soman or sarin (100% mortality was recorded in the control group). Combining transdermal physo with Scopoderm (by Ciba Geigy Inc.) provided full protection against 1.5 LD(50).« less
Mixon, William; Helms, Scott R
2008-01-01
Primary hypertension may be more common in cats than prior research has indicated. Untreated feline hypertension damages organs nourished by a rich vascular supply, and kidney disease, ocular impairment and cardiac irregularites can be caused by this silent and progressive disorder. The effects of hypertension can be minimized with treatment, however, and the long-acting dihydropyridine calcium anatgonist amlodipine has been proven safe and effective in the management of high blood pressure in cats. Because anxiety can increase blood pressure even in normotensive cats, hypertensive feline patients must be protected as much as possible from the stress caused by forced medication. A compounded preparation of amlodipine in a transdermal gel can be easily applied to the feline pinna without subjecting the patient to the trauma of oral treatment. In this report, the potency and effectiveness of amlodipine besylate in Lipoderm transdermal gel for the treatment of feline hypertension are examined, and two case reports describing the outcome of treatment with that preparation in hypertensive cats are presented.
Effect of different penetration enhancers on diclofenac permeation across horse skin.
Ferrante, M; Andreeta, A; Landoni, M F
2010-12-01
Diclofenac is a hydrophilic non-steroidal anti-inflammatory drug widely used in humans and animals. Previous reports have shown that this compound has low percutaneous absorption in horses. The effect of five penetration enhancers (10% urea, 15% and 20% oleic acid and 5% and 10% d-limonene) on the percutaneous absorption of diclofenac diethylamine through horse skin was evaluated in vitro using Franz-type diffusion cells. All tested penetration enhancers induced a significant increase in diclofenac diethylamine permeation, with limonene showing the highest enhancing effect at the lowest concentration (5%) applied. The presence of the permeation enhancers did not affect lag-time. This is the first in vitro study of the effects of penetration enhancers on transdermal permeation of diclofenac diethylamine across horse skin. The results suggested that urea, limonene and 5% oleic acid were useful for enhancing the transdermal absorption of diclofenac diethylamine and may assist in the development of a transdermal formulation of diclofenac diethylamine for use in horses. Copyright © 2009. Published by Elsevier Ltd.
Landry, Kyle S; Chang, Yuhua; McClements, David Julian; McLandsborough, Lynne
2014-09-18
Outbreaks of foodborne illness from consumption of sprouts have been linked to contaminated seeds prior to germination. Due to the long sprouting period at ambient temperatures and high humidity, germinating seeds contaminated with low pathogen levels (0.1logCFU/g) can result in sprouts with high numbers (≥10(8)CFU/g) of pathogens. Currently, the recommended treatment method involves soaking seeds in 20,000ppm (2%) calcium hypochlorite prior to germination. In this study, an alternative treatment involving soaking seeds in a carvacrol nanoemulsion was tested for its efficacy against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing E. coli O157:H7 (ATCC 42895) contaminated mung bean and alfalfa seeds. The antimicrobial treatment was performed by soaking inoculated seed batches in the spontaneous nanoemulsion (4000 or 8000ppm) for 30 or 60min. The spontaneous nanoemulsion was formed by titrating the oil phase (carvacrol and medium chain triglycerides) and water-soluble surfactant (Tween 80®) into sodium citrate buffer. Following treatment, the numbers of surviving cells were determined by suspending the seeds in TSB and performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of the appropriate pathogen. This treatment successfully inactivated low levels (2 and 3logCFU/g) of S. Enteritidis and E. coli on either seed types when soaked for either 30 or 60min at nanoemulsion concentrations corresponding to 4000 (0.4%) or 8000 (0.8%) ppm carvacrol. Inoculated alfalfa seeds treated with 4000ppm nanoemulsion, required a 60min treatment time to show a similar 2-3 log reduction. Complete inactivation was confirmed by germinating treated seeds and performing microbiological testing. Total sprout yield was not compromised by any of the tested treatments. These results show that carvacrol nanoemulsions may be an alternative antimicrobial treatment method for mung bean and alfalfa seeds. Copyright © 2014 Elsevier B.V. All rights reserved.
Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?
Kadri, Hani El; Devanthi, Putu Virgina Partha; Overton, Tim W; Gkatzionis, Konstantinos
2017-11-01
Nano-emulsions (typically droplet diameter<1μm) are common in foods, and have been extensively reported to present antimicrobial activity, however, the mechanism is not well defined, and some studies reported no effect. A review of the literature was conducted and revealed strongly contradictory reports regarding the antimicrobial effect of nano-emulsions even in reference to similar microbial species and formulations. Following up, this study aimed to investigate the effect of nano-emulsions on four bacterial species (Staphylococcus epidermidis, Bacillus cereus, Lactobacillus acidophilus and five Escherichia coli strains) possessing different surface charge and hydrophobicity. Model oil-in-water (O/W) emulsions with different size of oil droplets were prepared with sunflower oil stabilised by polysorbate 80 (Tween80) emulsifier (hydrophilic), using high shear mixing followed by ultrasonication. The viability of bacteria was monitored by culture, membrane integrity was assessed with flow cytometric analysis with propidium iodide (PI) staining and fluorescence microscopy monitored the spatial distribution of cells within the O/W emulsions. The stability of the nano-O/W emulsions in the presence of bacteria was assessed by monitoring the droplet size [D (4, 3)] and creaming height. In contrast to other reports the survival and growth of bacteria was not affected by the size of the oil droplets, no damage to the bacterial membrane was evident with flow cytometry and emulsion stability was not affected by the presence of bacteria during 7days of storage. Furthermore, the antimicrobial activity of caprylic acid (CA) was compared between O/W coarse and nano-emulsions while varying the concentration of the hydrophilic surfactant Tween80. The activity of CA was similar in nano-emulsion and coarse emulsion; however, it was higher than in bulk oil and was reduced with increasing Tween80 concentration, suggesting that its efficacy is dictated by formulation rather than oil droplet size. The results demonstrated no enhanced antimicrobial activity due to nano-sized oil droplets and that conclusions on nano-emulsions should be taken with caution. Copyright © 2017 Elsevier Ltd. All rights reserved.
... It works by stopping nerves from sending pain signals. ... time and the length of time you may wear the patches. Never apply more than three patches at one time, and never wear patches for more than 12 hours per day. ...
Chemistry, manufacturing and controls in passive transdermal drug delivery systems.
Goswami, Tarun; Audett, Jay
2015-01-01
Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.
NASA Astrophysics Data System (ADS)
Sengupta, Avery; Gupta, Surashree Sen; Ghosh, Mahua
2013-03-01
The purpose of the present study was to obtain optimal processing for preparation of uniform-sized nanoemulsion of conjugated linolenic acid (CLnA) rich oil to increase the oxidative stability of CLnA by using a high-speed disperser (HSD) and ultrasonication. The emulsifiers used were egg phospholipid and soya protein isolate. The effects of oil concentration [0.05 to 1.25 % (w/w)], emulsifier ratio [0.1:0.9 to 0.9:0.1 (phospholipid:protein)], speed of the HSD (2,000 to 12,000 rpm) and times of HSD and sonication treatments (10 to 50 min) were observed. Optimization was performed with and without response surface methodology (RSM). The optimum compositional variables i.e. concentration of oil was 1 % and phospholipid:protein molar ratio was 0.5:0.5. Maximum size reduction occurred at 10,000 rpm speed of HSD. HSD should be administered for 40 min followed by 40 min ultrasonication. The range of the size of the droplets in the nanoemulsion was between 173 ± 1.20 and 183 ± 0.94 nm. Nanoemulsion is a size reduction technique where the oil present in the emulsion can be easily stabilized which increases the shelf-life of the oil. The present study derived the reaction parameters were optimized using RSM to produce nanoemulsion of CLnA rich oils of minimum size to obtain maximum stability.
Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Soto-Rodríguez, Ida; Sanchez-Otero, Maria Guadalupe; Vernon-Carter, Eduardo J; García, Hugo S
2017-01-01
Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao
2016-01-01
Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362
Challenges and opportunities in dermal/transdermal delivery
Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L
2010-01-01
Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs. PMID:21132122
Desai, Sameer N; Badiger, Santhoshi V; Tokur, Shreesha B; Naik, Prashanth A
2017-03-01
Transdermal buprenorphine, which is used in chronic pain management, has rarely been studied for use in acute pain management. The aim of this study was to compare the safety and efficacy of transdermal buprenorphine patch to oral tramadol for post-operative analgesia, following proximal femur surgeries. Fifty adult patients undergoing surgery for hip fracture under spinal anaesthesia were included in this study. One group (Group TDB) received transdermal buprenorphine 10 mcg/h patch applied a day before the surgery and other group received oral tramadol 50 mg three times a day for analgesia (Group OT). They were allowed to take diclofenac and paracetamol tablets for rescue analgesia. Pain scores at rest, on movement, rescue analgesic requirement and side effects were compared between the groups over 7 days. Chi-square and independent sample t -test were used for categorical and continuous variables, respectively. Resting pain scores and pain on movement were significantly lower in TDB Group on all 7 days starting from 24 h post-operatively. Rescue analgesic requirement was significantly lower in TDB Group compared to OT Group. All the patients needed rescue analgesic in OT Group whereas 68% of the patients needed the same in TDB Group. Incidence of vomiting was less and satisfaction scores were much higher in TDB Group as compared to OT Group (79% vs. 66%, P < 0.001). Transdermal buprenorphine can be safely used for post-operative analgesia and is more efficacious in reducing post-operative pain after 24 hours, with fewer side effects when compared to oral tramadol.
Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G
2016-01-01
Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.
Ham, Anthony S; Buckheit, Robert W
2015-02-01
Current and emerging formulation strategies for skin permeation are poised to open the transdermal drug delivery to a broader range of small molecule compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Transdermal drug delivery offers several distinct advantages over traditional dosage forms. Current antiretroviral drugs used for the treatment of HIV infection include a variety of highly active small molecule compounds with significantly limited skin permeability, and thus new and novel means of enhancing transport through the skin are needed. Current and emerging formulation strategies are poised to open the transdermal drug delivery to a broader range of compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Thus, with continuing research into skin permeability and patch formulation strategies, there is a large potential for antiretroviral transdermal drug delivery.
Current and emerging formulation strategies for the effective transdermal delivery of HIV inhibitors
Ham, Anthony S; Buckheit, Robert W
2015-01-01
Current and emerging formulation strategies for skin permeation are poised to open the transdermal drug delivery to a broader range of small molecule compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Transdermal drug delivery offers several distinct advantages over traditional dosage forms. Current antiretroviral drugs used for the treatment of HIV infection include a variety of highly active small molecule compounds with significantly limited skin permeability, and thus new and novel means of enhancing transport through the skin are needed. Current and emerging formulation strategies are poised to open the transdermal drug delivery to a broader range of compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Thus, with continuing research into skin permeability and patch formulation strategies, there is a large potential for antiretroviral transdermal drug delivery. PMID:25690088
Krishnaiah, Yellela S R; Pavurala, Naresh; Yang, Yang; Manda, Prashanth; Katragadda, Usha; Yang, Yongsheng; Shah, Rakhi; Fang, Guodong; Khan, Mansoor A
2017-08-01
Study objective was to assess skin-to-skin drug transfer potential that may occur due to drug retention in human epidermis (DRE) pretreated with application of estradiol transdermal drug delivery systems (TDDS) and other estradiol transdermal dosage forms (gels and sprays). TDDS (products-A, B, and C) with varying formulation design and composition, and other estradiol transdermal products (gel and spray) were applied to heat separated human epidermis (HSE) and subjected to in vitro drug permeation study. Amounts of DRE were quantified after 24 h. The DRE with product-B was significantly (P < 0.001) higher than that with product-C, product-A, gel, and spray. However, products-A and C, gel, and spray showed almost the same (P > 0.05) amounts of DRE. A separate in vitro permeation study was carried out to determine amounts of drug transferred from drug-retaining epidermis to untreated HSE. The amounts of drug transferred, due to DRE after 8 h, with product-C were significantly (P < 0.001) higher than those with products-A and B, gel, and spray. The in vitro study results indicate a high potential of skin-to-skin drug transfer due to the DRE after labeled period of using estradiol TDDS, though the clinical relevance of these findings is yet to be determined.
Moghimi, Roya; Aliahmadi, Atousa; Rafati, Hasan
2017-11-01
Edible films containing essential oils (EO) as natural antibacterial agents are promising systems for food preservation. In this work, nanoemulsions of Thymus daenensis EO (wild; F1 and cultivated; F2) were loaded in hydroxyl propyl methyl cellulose (HPMC) films and the effect of different parameters (polymer, plasticizer, and EO concentration) on the film properties were analyzed and optimized. Prepared HPMC films were characterized in terms of EO loading, morphology, mechanical properties, and the antibacterial activity. The results of SEM showed uniform incorporation of nanoemulsions into the edible film. Investigation of the mechanical properties of two edible films revealed a plasticizing effect of T. daenensis EO on the films. Also, edible films had noticeable antimicrobial activity against selected microorganisms, i.e. 47.0±2.5mm and 22.6±0.5mm zone of inhibition against S. aureus for films containing F1 and F2, respectively. Incorporation of nanoemulsions into the HPMC films can be used for active food preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.
Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B
2017-05-01
Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.
Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao
2014-05-01
d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Nuchuchua, Onanong; Sakulku, Usawadee; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha
2009-01-01
The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195-220 nm) shifted toward a smaller size (150-160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami's equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion.
Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging
Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.
2016-01-01
Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409
Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M
2012-01-01
Background Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. Methods and results The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. Conclusion This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system. PMID:23055729
Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M
2012-01-01
Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.
Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca
2017-04-01
Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.
Bolinsson, Hans; Lu, Yi; Hall, Stephen; Nilsson, Lars; Håkansson, Andreas
2018-01-19
This study suggests a novel method for determination of the channel height in asymmetrical flow field-flow fractionation (AF4), which can be used for calibration of the channel for hydrodynamic radius determinations. The novel method uses an oil-in-water nanoemulsion together with multi angle light scattering (MALS) and elution theory to determine channel height from an AF4 experiment. The method is validated using two orthogonal methods; first, by using standard particle elution experiments and, secondly, by imaging an assembled and carrier liquid filled channel by x-ray computed tomography (XCT). It is concluded that the channel height can be determined with approximately the same accuracy as with the traditional channel height determination technique. However, the nanoemulsion method can be used under more challenging conditions than standard particles, as the nanoemulsion remains stable in a wider pH range than the previously used standard particles. Moreover, the novel method is also more cost effective. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya
2009-04-14
Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions andmore » tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.« less
Montes de Oca-Ávalos, J M; Candal, R J; Herrera, M L
2017-10-01
Nanoemulsions stabilized by sodium caseinate (NaCas) were prepared using a combination of a high-energy homogenization and evaporative ripening methods. The effects of protein concentration and sucrose addition on physical properties were analyzed by dynamic light scattering (DLS), Turbiscan analysis, confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Droplets sizes were smaller (~100nm in diameter) than the ones obtained by other methods (200 to 2000nm in diameter). The stability behavior was also different. These emulsions were not destabilized by creaming. As droplets were so small, gravitational forces were negligible. On the contrary, when they showed destabilization the main mechanism was flocculation. Stability of nanoemulsions increased with increasing protein concentrations. Nanoemulsions with 3 or 4wt% NaCas were slightly turbid systems that remained stable for at least two months. According to SAXS and Turbiscan results, aggregates remained in the nano range showing small tendency to aggregation. In those systems, interactive forces were weak due to the small diameter of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil
Oliveira, Anna E. M. F. M.; Duarte, Jonatas L.; Amado, Jesus R. R.; Cruz, Rodrigo A. S.; Rocha, Clarice F.; Souto, Raimundo N. P.; Ferreira, Ricardo M. A.; Santos, Karen; da Conceição, Edemilson C.; de Oliveira, Leandra A. R.; Kelecom, Alphonse; Fernandes, Caio P.; Carvalho, José C. T.
2016-01-01
Pterodon emarginatus Vogel is a Brazilian species that belongs to the family Fabaceae, popularly known as sucupira. Its oil has several biological activities, including potent larvicidal property against Aedes aegypti. This insect is the vector of dengue, a tropical disease that has been considered a critical health problem in developing countries, such as Brazil. Most of dengue control methods involve larvicidal agents suspended or diluted in water and making active lipophilic natural products available is therefore considered a technological challenge. In this context, nanoemulsions appear as viable alternatives to solve this major problem. The present study describes the development of a novel nanoemulsion with larvicidal activity against A. aegypti along with the required Hydrophile Lipophile Balance determination of this oil. It was suggested that the mechanism of action might involve reversible inhibition of acetylcholinesterase and our results also suggest that the P. emarginatus nanoemulsion is not toxic for mammals. Thus, it contributes significantly to alternative integrative practices of dengue control, as well as to develop sucupira based nanoproducts for application in aqueous media. PMID:26742099
Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract
2014-01-01
Background Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. Results It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. Conclusions The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea. PMID:24886215
Hussain, Afzal; Samad, Abdus; Singh, Sandeep Kumar; Ahsan, Mohd Neyaz; Faruk, Abdul; Ahmed, Farhan Jalees
2015-05-01
To characterize the enhanced stability and permeation potential of amphotericin B nanoemulsion comprising sefsol-218 oil at varying pH and temperature of aqueous continuous phase. Several batches of amphotericin B loaded nanoemulsion were prepared and evaluated for their physical and chemical stability at different pH and temperature. Also, a comparative study of ex vivo drug permeation across the albino rat skin was investigated with commercial Fungisome® and drug solution at 37 °C for 24 h. The extent of drug penetrated through the rat skin was thereby evaluated using the confocal laser scanning microscopy (CLSM). The optimized nanoemulsion demonstrated the highest flux rate 17.85 ± 0.5 µg/cm(2)/h than drug solution (5.37 ± 0.01 µg/cm(2)/h) and Fungisome® (7.97 ± 0.01 µg/cm(2)/h). Ex vivo drug penetration mechanism from the developed formulations at pH 6.8 and pH 7.4 of aqueous phase pH using the CLSM revealed enhanced penetration. Ex vivo drug penetration studies of developed formulation comprising of CLSM revealed enhanced penetration in aqueous phase at pH 6.8 and 7.4. The aggregation behavior of nanoemulsion at both the pH was found to be minimum and non-nephrotoxic. The stability of amphotericin B was obtained in terms of pH, optical density, globular size, polydispersity index and zeta potential value at different temperature for 90 days. The slowest drug degradation was observed in aqueous phase at pH 7.4 with shelf life 20.03-folds higher when stored at 4 °C (3.8 years) and 5-fold higher at 25 °C (0.951 years) than at 40 °C. The combined results suggested that nanoemulsion may hold an alternative for enhanced and sustained topical delivery system for amphotericin B.
Sarkar, Gunjan; Saha, Nayan Ranjan; Roy, Indranil; Bhattacharyya, Amartya; Bose, Madhura; Mishra, Roshnara; Rana, Dipak; Bhattacharjee, Debashis; Chattopadhyay, Dipankar
2014-05-01
The aim of this work is to examine the effectiveness of mucilage/hydroxypropylmethylcellulose (HPMC) based transdermal patch (matrix type) as a drug delivery device. We have successfully extracted mucilage from Colocasia esculenta (Taro) corms and prepared diltiazem hydrochloride incorporated mucilage/HPMC based transdermal patches using various wt% of mucilage by the solvent evaporation technique. Characterization of both mucilage and transdermal patches has been done by several techniques such as Molisch's test, organoleptic evaluation of mucilage, mechanical, morphological and thermal analysis of transdermal patches. Skin irritation test is studied on hairless Albino rat skin showing that transdermal patches are apparently free of potentially hazardous skin irritation. Fourier transform infrared analysis shows that there is no interaction between drug, mucilage and HPMC while scanning electron microscopy shows the surface morphology of transdermal patches. In vitro drug release time of mucilage-HPMC based transdermal patches is prolonged with increasing mucilage concentration in the formulation. Copyright © 2014 Elsevier B.V. All rights reserved.
Buprenorphine: revisiting the efficacy of transdermal delivery system.
Kitzmiller, Joseph P; Barnett, Christopher J; Steiner, Nathan S; Stoicea, Nicoleta; Kamar, Nawal; Luzum, Jasmine A; Mikulik, Eduard; Bergese, Sergio D
2015-01-01
Buprenorphine is a lipid-soluble pharmaceutic used in the management of chronic pain. It is a partial agonist at μ-opioid receptors, an antagonist at κ-opioid receptors, an agonist at δ-opioid receptors and a partial agonist at ORL-1 (nociceptin) receptors. An extensive literature search, including Google Scholar and Pubmed database, was conducted. Terms including and associated to 'efficacy of transdermal buprenorphine' were utilized to procure contemporary research articles in order to evaluate and compare the transdermal buprenorphine patch to commonly used traditional pain management medications. Transdermal buprenorphine has demonstrated better efficacy than conventional pain management pharmacotherapies. Side effects were similar to those associated with other opioids and included headache, dizziness, somnolence, constipation, dry mouth, nausea, vomiting, pruritus and erythema. Similar to transdermal delivery systems used with other medication, transdermal buprenorphine was associated with application-site pruritus and application-site reactions. Transdermal buprenorphine has significant potential for managing chronic pain. In addition to increased convenience and efficacy, advantages of transdermal buprenorphine include decreased tolerance and decreased withdrawal.
Lecithin/chitosan nanoparticles for transdermal delivery of melatonin.
Hafner, Anita; Lovrić, Jasmina; Pepić, Ivan; Filipović-Grčić, Jelena
2011-01-01
In this study, the potential of lecithin/chitosan nanoparticles (NPs) as colloidal nanosystem for transdermal melatonin delivery was investigated. Mean diameter and zeta-potential of NPs differing in lecithin type (Lipoid S45 and S100) and chitosan content ranged between 113.7 and 331.5 nm and 4.6 and 31.2 mV, respectively. Melatonin loadings were up to 7.2%. The potential of lecithin/chitosan NPs to enhance transdermal melatonin delivery was investigated by determining the drug flux across dermatomed porcine skin and its skin deposition. Lecithin/chitosan NPs provided 1.3-2.3-fold higher flux compared to melatonin solution. The highest flux, 9.0 ± 0.21 µg/cm²/h, was observed for S45 lecithin/chitosan NPs with lecithin/chitosan weight ratio of 20:1. NP possible cytotoxicity in vitro was evaluated using human skin keratinocytes and fibroblasts. It was demonstrated that lecithin/chitosan NPs can be applied to skin cells at concentrations up to 200 µg/mL without inducing plasma membrane damage or cell viability decrease.
Relative efficacy of the proposed Space Shuttle antimotion sickness medications
NASA Astrophysics Data System (ADS)
Hordinsky, J. R.; Schwartz, E.; Beier, J.; Martin, J.; Aust, G.
1982-07-01
Space motion sickness has been estimated as affecting between 1/3 and 1/2 of all space flight participants. NASA has at the moment proposed a combination of promethazine and ephedrine ( P/E) and one of scopolamine and dextroamphetamine ( S/D), both given orally, as well as a transdermally applied scopolamine (TAS), as preventive and ameliorative measures. The reported double-blind study tests the early phase actions and efficacy of the transdermal scopolamine (Transderm ™-V of ALZA Corporation) and compares these in detail to the oral medications. Motion sickness resistance was tested by standardized head movements while accelerating at 0.2°/sec 2 to a maximum rotation of 240°/sec, with an intermediate plateau of 10 min at 180°/sec. To permit weighting motion sickness protection against other system influences, cardiovascular, psychological (subjective and objective), and visual parameter changes were documented for the three therapeutic modes. The relative impact of the various modalities on operational and experimental components of space missions is discussed. A comparison to intramuscularly administered promethazine (a backup therapeutic mode suggested for Space Shuttle use) is also included.
Zhang, Yong-Hua; A Campbell, Stephen; Karthikeyan, Sreejith
2018-02-17
Transdermal drug delivery (TDD) based on microneedles is an excellent approach due to its advantages of both traditional transdermal patch and hypodermic syringes. In this paper, the fabrication method of hollow out-of-layer hafnium oxide (HfO 2 ) microneedles mainly based on deep reactive ion etching of silicon and atomic layer deposition of HfO 2 is described, and the finite element analysis of the microneedles based on ANSYS software is also presented. The fabrication process is simplified by using a single mask. The finite element analysis of a single microneedle shows that the flexibility of the microneedles can be easily adjusted for various applications. The finite element analysis of a 3 × 3 HfO 2 microneedle array applied on the skin well explains the "bed of nail" effect, i.e., the skin is not liable to be pierced when the density of microneedles in array increases. The presented research work here provides useful information for design optimization of HfO 2 microneedles used for TDD applications.
Topical cream-based dosage forms of the macrocyclic drug delivery vehicle cucurbit[6]uril.
Seif, Marian; Impelido, Michael L; Apps, Michael G; Wheate, Nial J
2014-01-01
The macrocycle family of molecules called cucurbit[n]urils are potential drug delivery vehicles as they are able to form host-guest complexes with many different classes of drugs. This study aimed to examine the utility of Cucurbit[6]uril (CB[6]) in topical cream-based formulations for either localised treatment or for transdermal delivery. Cucurbit[6]uril was formulated into both buffered cream aqueous- and oily cream-based dosage forms. The solid state interaction of CB[6] with other excipients was studied by differential scanning calorimetry and the macrocycle's transdermal permeability was determined using rat skin. Significant solid state interactions were observed between CB[6] and the other dosage form excipients. At concentrations up to 32% w/w the buffered aqueous cream maintained its normal consistency and could be effectively applied to skin, but the oily cream was too stiff and is not suitable as a dosage form. Cucurbit[6]uril does not permeate through skin; as such, the results imply that cucurbituril-based topical creams may potentially only have applications for localised skin treatment and not for transdermal drug delivery.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
Topical Cream-Based Dosage Forms of the Macrocyclic Drug Delivery Vehicle Cucurbit[6]uril
Seif, Marian; Impelido, Michael L.; Apps, Michael G.; Wheate, Nial J.
2014-01-01
The macrocycle family of molecules called cucurbit[n]urils are potential drug delivery vehicles as they are able to form host-guest complexes with many different classes of drugs. This study aimed to examine the utility of Cucurbit[6]uril (CB[6]) in topical cream-based formulations for either localised treatment or for transdermal delivery. Cucurbit[6]uril was formulated into both buffered cream aqueous- and oily cream-based dosage forms. The solid state interaction of CB[6] with other excipients was studied by differential scanning calorimetry and the macrocycle's transdermal permeability was determined using rat skin. Significant solid state interactions were observed between CB[6] and the other dosage form excipients. At concentrations up to 32% w/w the buffered aqueous cream maintained its normal consistency and could be effectively applied to skin, but the oily cream was too stiff and is not suitable as a dosage form. Cucurbit[6]uril does not permeate through skin; as such, the results imply that cucurbituril-based topical creams may potentially only have applications for localised skin treatment and not for transdermal drug delivery. PMID:24454850
NASA Astrophysics Data System (ADS)
Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June
2018-05-01
The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.
USDA-ARS?s Scientific Manuscript database
In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...
Maillard-Reaction-Functionalized Egg Ovalbumin Stabilizes Oil Nanoemulsions.
Liu, Gang; Yuan, Dan; Wang, Qi; Li, Wanrong; Cai, Jie; Li, Shuyi; Lamikanra, Olusola; Qin, Xinguang
2018-04-25
Egg white proteins are an excellent source of nutrition, with high biological and technological values. However, their limited functional properties prevent their widespread industrial applications. In this study, the ovalbumin functionality was improved via glycation by Maillard reaction with d-lactose. The free amino groups and sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile were determined, confirming that glycation occurred between ovalbumin and lactose. The emulsification of the conjugate was 2.69-fold higher than that of ovalbumin at pH 7.0 after glycation. The thermal stability also improved remarkably. The glycated protein products were used to form an oil-water nanoemulsion for polymethoxyflavone-rich aged orange peel oil. The resulting nanoemulsion showed good pH, thermal, and storage stabilities.
Herwadkar, Anushree; Banga, Ajay K
2012-03-01
A large number of biopharmaceuticals and other macromolecules are being developed for therapeutic applications. Conventional oral delivery is not always possible due to first-pass metabolism and degradation in the GI tract. Parenteral delivery is invasive and has poor patient compliance. Transdermal delivery provides one attractive route of administration. Transdermal administration can achieve the continuous and non-invasive delivery of drugs. However, passive transdermal delivery is restricted to small lipophilic molecules. Active physical-enhancement technologies are being investigated to increase the scope of transdermal delivery to hydrophilic molecules and macromolecules. Recent developments in transdermal technologies, such as microporation, iontophoresis and sonophoresis can enable therapeutic delivery of many drug molecules, biopharmaceuticals, cosmeceuticals and vaccines. This review provides an update of recent developments in transdermal delivery focusing on physical-enhancement technologies.
Charoo, Naseem Ahmad; Shamsher, Areeg Anwer Ali; Kohli, Kanchan; Pillai, Krishna; Rahman, Ziyaur
2008-09-01
Penetration enhancing potential of tulsi and turpentine oil on transdermal delivery of flurbiprofen, a potent non-steroidal anti-inflammatory agent, was investigated. The transdermal permeation rate of flurbiprofen across the rat abdominal skin from binary solvent mixture composition of propylene glycol (PG):isopropyl alcohol (IPA) (30:70%, v/v) was 98.88 microg/cm(2)/h, significantly higher than other binary solvent mixtures. The corresponding steady state plasma concentration, 0.71 microg/ml, was much lower than required steady state plasma concentration of 3-5 microg/ml. Hence influence of tulsi and turpentine oil in the optimized binary solvent mixture along with the increased drug load on the flurbiprofen permeation was evaluated. The magnitude of the flux enhancement factor with turpentine oil and tulsi oil was 2.4 and 2.0 respectively at 5% (v/v) concentration beyond which there was no significant increase in the flux. Addition of 2% (w/v) hydroxypropyl methylcellulose (HPMC), as a thickening agent, resulted in desired consistency for the fabrication of patch with insignificant effect on permeation rate of flurbiprofen. The reservoir type of transdermal patch formulation, fabricated by encapsulating the flurbiprofen reservoir solution within a shallow compartment moulded from polyester backing film and microporous ethyl vinyl acetate membrane, did not modulate the skin permeation of flurbiprofen through rat skin in case of turpentine formulations whereas flux of formulations with tulsi oil was significantly altered. The influence of penetration enhancer and solvents on the anatomical structure of the rat skin was studied. Enhancement properties exhibited by turpentine oil and tulsi oil in optimized binary solvent mixture were superior as compared to solvent treated and normal control groups with negligible skin irritation. The fabricated transdermal patches were found to be stable. The bioavailability of flurbiprofen with reference to orally administered flurbiprofen in albino rats was found to increase by 2.97, 3.80 and 5.56 times with transdermal patch formulation without enhancer, tulsi and turpentine oil formulations, respectively. The results were confirmed by pharmacodynamic studies in rat edema inflammation model.
A commentary on transdermal drug delivery systems in clinical trials.
Watkinson, Adam C
2013-09-01
The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.
Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing
2015-01-01
Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.
Yang, Chuanyu; Powell, Charles A.; Duan, Yongping; Shatters, Robert; Zhang, Muqing
2015-01-01
Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB. PMID:26207823
Enhanced antibacterial effects of clove essential oil by nanoemulsion.
Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz
2014-01-01
The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.
Gorain, Bapi; Choudhury, Hira; Tekade, Rakesh Kumar; Karan, Saumen; Jaisankar, P; Pal, Tapan Kumar
2016-12-01
Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Future of the transdermal drug delivery market--have we barely touched the surface?
Watkinson, Adam C; Kearney, Mary-Carmel; Quinn, Helen L; Courtenay, Aaron J; Donnelly, Ryan F
2016-01-01
Transdermal drug delivery is the movement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive transdermal products do not disrupt the stratum corneum to facilitate delivery whereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each highlighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.
TRANSDERMAL NITROGLYCERIN FOR THE TREATMENT OF PRETERM LABOR: A SYSTEMATIC REVIEW AND META-ANALYSIS
CONDE-AGUDELO, Agustín; ROMERO, Roberto
2014-01-01
OBJECTIVE To evaluate the efficacy and safety of transdermal nitroglycerin as tocolytic agent in women with preterm labor. STUDY DESIGN Systematic review and meta-analysis of randomized controlled trials. RESULTS Thirteen studies (1302 women) were included. Two studies evaluated transdermal nitroglycerin versus placebo (N=186), 9 evaluated transdermal nitroglycerin versus β2-adrenergic-receptor agonists (N=1024), and 1 each evaluated transdermal nitroglycerin versus nifedipine (N=50) and transdermal nitroglycerin versus magnesium sulfate (N=42). There were no significant differences between transdermal nitroglycerin and placebo for delivery within 48 hours of initiation of treatment or before 28, 34 or 37 weeks’ gestation, adverse neonatal outcomes, and neurodevelopmental status at 24 months of age. Nevertheless, one study found a marginally significant reduction in the risk of a composite outcome of significant neonatal morbidity and perinatal mortality (3/74 [4.1%] versus 11/79 [13.9%]; relative risk 0.29, 95% confidence interval 0.08–1.00). When compared with β2-adrenergic-receptor agonists, transdermal nitroglycerin was associated with a significant reduction in the risk of preterm birth <34 and <37 weeks’ gestation, admission to the neonatal intensive care unit, use of mechanical ventilation, and maternal side effects. There were no significant differences between transdermal nitroglycerin and nifedipine and magnesium sulfate in delivery within 48 hours of treatment and pregnancy prolongation, respectively. Overall, women receiving transdermal nitroglycerin had a higher risk of headache. CONCLUSION Although transdermal nitroglycerin appears to be more effective than β 2-adrenergic-receptor agonists, the current evidence does not support its routine use as tocolytic agent for the treatment of preterm labor. Further additional double-blind placebo-controlled trials are needed. PMID:23891631
Vecchione, Raffaele; Quagliariello, Vincenzo; Giustetto, Pierangela; Calabria, Dominic; Sathya, Ayyappan; Marotta, Roberto; Profeta, Martina; Nitti, Simone; Silvestri, Niccolò; Pellegrino, Teresa; Iaffaioli, Rosario V; Netti, Paolo Antonio
2017-01-01
Dual imaging dramatically improves detection and early diagnosis of cancer. In this work we present an oil in water (O/W) nano-emulsion stabilized with lecithin and loaded with cobalt ferrite oxide (Co 0.5 Fe 2.5 O 4 ) nanocubes for photo-acoustic and magnetic resonance dual imaging. The nanocarrier is responsive in in vitro photo-acoustic and magnetic resonance imaging (MRI) tests. A clear and significant time-dependent accumulation in tumor tissue is shown in in vivo photo-acoustic studies on a murine melanoma xenograft model. The proposed O/W nano-emulsion exhibits also high values of r 2 /r 1 (ranging from 45 to 85, depending on the magnetic field) suggesting a possible use as T 2 weighted image contrast agents. In addition, viability and cellular uptake studies show no significant cytotoxicity on the fibroblast cell line. We also tested the O/W nano-emulsion loaded with curcumin against melanoma cancer cells demonstrating a significant cytotoxicity and thus showing possible therapeutic effects in addition to the in vivo imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Rehman, Fiza Ur; Shah, Kifayat Ullah; Shah, Shefaat Ullah; Khan, Ikram Ullah; Khan, Gul Majid; Khan, Amjad
2017-11-01
Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.
Zhang, Xiangrong; Zhang, Yi; Guo, Shuang; Bai, Feifei; Wu, Tong; Zhao, Yuqing
2016-01-01
The aim of the study was to improve the oral absorption of the compound 25-OCH3-PPD with poor hydrophilicity and lipophilicity. 25-OCH3-PPD-phospholipid complex was prepared by solvent evaporation, then characterized by differential scanning calorimetry, scanning electron microscopy, and infrared absorption spectroscopy. The aqueous solubility and oil–water partition coefficient were compared with the free compound. A nanoemulsion loaded with 25-OCH3-PPD-phospholipid complex was developed by dissolving the complex in water in the presence of hydrophilic surfactant under sonication. After oral administration of the nanoemulsion and the suspension of 25-OCH3-PPD in rats, the concentrations of 25-OCH3-PPD in plasma were determined by high-performance liquid chromatography–tandem mass spectrometry method. The results showed that the solubility of the complex in water and n-octanol was enhanced. The oil–water partition coefficient improved 1.7 times. Peak plasma concentration and area under the curve(0–24 h) of the nanoemulsion of 25-OCH3-PPD-phospholipid complex were higher than that of free compound by 3.9- and 3.5-folds. PMID:27877020
Benitez, Arturo; Edens, Heather; Fishman, Jesse; Moran, Kimberly; Asgharnejad, Mahnaz
2014-11-01
Rotigotine is a nonergoline dopamine receptor agonist with structural similarity to dopamine. Rotigotine binds to the D1 through D5 dopamine receptors, having several times more affinity than dopamine does to the D2 and D3 receptors. Although rotigotine was demonstrated to restore locomotor activity in animal models of Parkinson's disease (PD), the rapid metabolism of rotigotine limited the development of an orally administered formulation. Rotigotine's high lipid solubility and extended duration of action when applied to the skin in experimental models of PD suggested that rotigotine was a candidate for transdermal application. The constant transdermal delivery of rotigotine over 24 h is hypothesized to approximate continuous agonist-receptor stimulation, which conceptually more closely mimics physiologic striatal dopamine receptor function. Randomized clinical studies have demonstrated rotigotine's efficacy, safety, and tolerability in patients with early- and advanced-stage PD, including improvements in motor symptoms and off-time. Although the etiology is unknown, restless legs syndrome (RLS) is thought to involve dopaminergic dysregulation. Randomized clinical studies also have demonstrated the efficacy of rotigotine in improving the symptoms of moderate-to-severe primary RLS. This review examines rotigotine's developmental history for transdermal administration leading to its approval for the treatment of early- and advanced-stage PD and moderate-to-severe primary RLS. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Schonberger, Robert B.; Worden, William S.; Shahmohammadi, Kaveh; Menn, Kirsten; Silverman, Tyler J.; Stout, Robert G.; Shelley, Kirk H.; Silverman, David G.
2007-01-01
Objective: Assessments of endothelial cell function with acetylcholine have typically used systemic, regional intra-arterial, or iontophoretic delivery of drug. Each of these techniques induces systemic and/or local changes that compromise their safety or effectiveness. Using translucent drug preparations applied under laser Doppler flowmetry (LDF) probes, we tested whether local vasodilation can be induced with non-iontophoretic transdermal delivery of acetylcholine and how such dilation would compare to the dilation achieved with topical nitroglycerin in healthy volunteers. Methods: Ten subjects without known vascular disease were recruited for LDF monitoring at sites of drug application for this preliminary investigation. Topical acetylcholine chloride, nitroglycerin, and placebo were applied via translucent patches to the forehead directly below LDF probes. Results: LDF readings increased by 406 percent (245 percent to 566 percent) and 36 percent (26 percent to 46 percent), respectively, at the acetylcholine and placebo sites (p = .005 by Wilcoxon Signed Rank Test (WSRT) for acetylcholine vs. placebo); and they increased by 365 percent (179 percent to 550 percent) at the nitroglycerin site (p = .005 by WSRT for nitroglycerin vs. placebo; p = .6 vs. acetylcholine). Conclusion: Transdermal delivery of acetylcholine can induce significant local vasodilatory responses comparable to those achieved with nitroglycerin without requiring iontophoresis. The means of transdermal delivery and monitoring described herein may constitute a new minimally invasive way to interrogate the microvasculature and thereby assess the microcirculatory changes induced by various disorders and therapeutic interventions. PMID:17876370
Lee, S; McAuliffe, D J; Kollias, N; Flotte, T J; Doukas, A G
2001-01-01
Photomechanical waves render the stratum corneum permeable and allow macromolecules to diffuse into the epidermis and dermis. The aim of this study was to investigate the combined action of photomechanical waves and sodium lauryl sulfate, an anionic surfactant, for transdermal delivery. A single photomechanical wave was applied to the skin of rats in the presence of sodium lauryl sulfate. The sodium lauryl sulfate solution was removed and aqueous solutions of rhodamine-B dextran (40 kDa molecular weight) were applied to the skin at time points 2, 30, and 60 minutes post-exposure. The presence of rhodamine-B dextran in the skin was measured by fluorescence emission spectroscopy in vivo and fluorescence microscopy of frozen biopsies. The use of sodium lauryl sulfate delayed the recovery of the stratum corneum barrier and extended the time available for the diffusion of dextran through it. The combination of photomechanical waves and surfactants can enhance transdermal drug delivery. Copyright 2001 Wiley-Liss, Inc.
Oosten, Astrid W; Abrantes, João A; Jönsson, Siv; de Bruijn, Peter; Kuip, Evelien J M; Falcão, Amílcar; van der Rijt, Carin C D; Mathijssen, Ron H J
2016-04-01
Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the pharmacokinetics of subcutaneous and transdermal fentanyl. Furthermore, we evaluated rotations from the subcutaneous to the transdermal route. Fifty-two patients treated with subcutaneous and/or transdermal fentanyl for moderate to severe cancer-related pain participated. A population pharmacokinetic model was developed and evaluated using non-linear mixed-effects modelling. For rotations from subcutaneous to transdermal fentanyl, a 1:1 dose conversion ratio was used while the subcutaneous infusion was continued for 12 h (with a 50 % tapering after 6 h). A 6-h scheme with 50 % tapering after 3 h was simulated using the final model. A one-compartment model with first-order elimination and separate first-order absorption processes for each route adequately described the data. The estimated apparent clearance of fentanyl was 49.6 L/h; the absorption rate constant for subcutaneous and transdermal fentanyl was 0.0358 and 0.0135 h(-1), respectively. Moderate to large inter-individual and inter-occasion variability was found. Around rotation from subcutaneous to transdermal fentanyl, measured and simulated plasma fentanyl concentrations rose and increasing side effects were observed. We describe the pharmacokinetics of subcutaneous and transdermal fentanyl in one patient cohort and report several findings that are relevant for clinical practice. Further research is warranted to study the optimal scheme for rotations from the subcutaneous to the transdermal route.
Machine learning study for the prediction of transdermal peptide
NASA Astrophysics Data System (ADS)
Jung, Eunkyoung; Choi, Seung-Hoon; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Yun-Jaie; Shin, Jae-Min; Choi, Kihang; Jung, Dong Hyun
2011-04-01
In order to develop a computational method to rapidly evaluate transdermal peptides, we report approaches for predicting the transdermal activity of peptides on the basis of peptide sequence information using Artificial Neural Network (ANN), Partial Least Squares (PLS) and Support Vector Machine (SVM). We identified 269 transdermal peptides by the phage display technique and use them as the positive controls to develop and test machine learning models. Combinations of three descriptors with neural network architectures, the number of latent variables and the kernel functions are tried in training to make appropriate predictions. The capacity of models is evaluated by means of statistical indicators including sensitivity, specificity, and the area under the receiver operating characteristic curve (ROC score). In the ROC score-based comparison, three methods proved capable of providing a reasonable prediction of transdermal peptide. The best result is obtained by SVM model with a radial basis function and VHSE descriptors. The results indicate that it is possible to discriminate between transdermal peptides and random sequences using our models. We anticipate that our models will be applicable to prediction of transdermal peptide for large peptide database for facilitating efficient transdermal drug delivery through intact skin.
Mitragotri, S
2013-01-01
Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field. © 2013 S. Karger AG, Basel.
Transdermal patches: history, development and pharmacology
Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S
2015-01-01
Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046
Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk
2017-01-01
High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of agents, including those in the herb C. longa , that can inhibit HMGB1 production and/or activity may aid the treatment of endotoxemia.
Feline Transdermal Formulation Considerations.
Forsythe, Lauren Eichstadt
2017-01-01
Transdermal delivery of drugs is comparatively new in feline patients. However, transdermal formulations can be a desirable option for treating feline patients that are not willing participants to medication administration. However, achieving drug penetration across the skin is not always easy, and there are a wide variety of variables that can further affect penetration. This, coupled with a lack of studies, make transdermal administration an unknown with regards to efficacy and safety for many drugs. This article focuses on drugs that are administered transdermally with the intent of producing systemic effects. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Hwang, Yoon Y; Ramalingam, Karthikeyan; Bienek, Diane R; Lee, Valerie; You, Tao; Alvarez, Rene
2013-08-01
Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥ 2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii.
NASA Astrophysics Data System (ADS)
Pandey, Yogendra Raj; Kumar, Shobhit; Gupta, Bijay Kumar; Ali, Javed; Baboota, Sanjula
2016-01-01
Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of -33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS.
NASA Astrophysics Data System (ADS)
Betzler de Oliveira de Siqueira, Luciana; da Silva Cardoso, Verônica; Almeida Rodrigues, Igor; Lúcia Vazquez-Villa, Ana; Pereira dos Santos, Elisabete; da Costa Leal Ribeiro Guimarães, Bruno; dos Santos Cerqueira Coutinho, Cristal; Vermelho, Alane Beatriz; Ricci Junior, Eduardo
2017-02-01
Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.
Galho, A R; Cordeiro, M F; Ribeiro, S A; Marques, M S; Antunes, M F D; Luz, D C; Hädrich, G; Muccillo-Baisch, A L; Barros, D M; Lima, J V; Dora, C L; Horn, A P
2016-04-29
Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg(-1). Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.
Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system.
Rachmawati, Heni; Arvin, Yang Aryani; Asyarie, Sukmadjaja; Anggadiredja, Kusnandar; Tjandrawinata, Raymond Rubianto; Storm, Gert
2018-06-01
Bupivacaine HCl (1-butyl-2',6'-pipecoloxylidide hydrochloride), an amide local anesthetic compound, is a local anesthetic drug utilized for intraoperative local anesthesia, post-operative analgesia and in the treatment of chronic pain. However, its utility is limited by the relative short duration of analgesia after local administration (approximately 9 h after direct injection) and risk for side effects. This work is aimed to develop a nanoemulsion of bupivacaine HCl with sustained local anesthetics release kinetics for improved pain management, by exhibiting extended analgesic action and providing reduced peak levels in the circulation to minimize side effects. Herein, biodegradable oils were evaluated for use in nanoemulsions to enable sustained release kinetics of bupivacaine HCl. Only with castor oil, a clear and stable nanoemulsion was obtained without the occurrence of phase separation over a period of 3 months. High loading of bupivacaine HCl into the castor oil-based nanoemulsion system was achieved with about 98% entrapment efficiency and the resulting formulation showed high stability under stress conditions (accelerated stability test) regarding changes in visual appearance, drug content, and droplet size. We show herein that the in vitro release and in vivo pharmacokinetic profiles as well as pharmacodynamic outcome (pain relief test) after subcutaneous administration in rats correlate well and clearly demonstrate the prolonged release and extended duration of activity of our novel nanoformulation. In addition, the lower C max value achieved in the blood compartment suggests the possibility that the risk for systemic side effects is reduced. We conclude that castor oil-based nanomulsion represents an attractive pain treatment possibility to achieve prolonged local action of bupivacaine HCl.
Deshpande, Dipti; Kethireddy, Sravani; Janero, David R.; Amiji, Mansoor M.
2016-01-01
Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease. PMID:26840601
Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C
2016-09-01
Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Hwang, Yoon Y.; Ramalingam, Karthikeyan; Bienek, Diane R.; Lee, Valerie; You, Tao
2013-01-01
Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii. PMID:23669390
NASA Astrophysics Data System (ADS)
Galho, A. R.; Cordeiro, M. F.; Ribeiro, S. A.; Marques, M. S.; Antunes, M. F. D.; Luz, D. C.; Hädrich, G.; Muccillo-Baisch, A. L.; Barros, D. M.; Lima, J. V.; Dora, C. L.; Horn, A. P.
2016-04-01
Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg-1. Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.
Mahmood, Syed; Taher, Muhammad; Mandal, Uttam Kumar
2014-01-01
Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon(®) 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm(2)/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug.
Mahmood, Syed; Taher, Muhammad; Mandal, Uttam Kumar
2014-01-01
Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon® 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm2/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug. PMID:25246789
Most brands of estradiol transdermal patches are used to treat hot flushes (hot flashes; sudden strong feelings of heat ... different medication that does not contain estrogen. Most brands of estradiol transdermal patches are also sometimes used ...
Characterization and mosquito repellent activity of citronella oil nanoemulsion.
Sakulku, Usawadee; Nuchuchua, Onanong; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha
2009-05-08
Encapsulated citronella oil nanoemulsion prepared by high pressure homogenization at varying amounts of surfactant and glycerol, was studied in terms of the droplet size, stability, release characteristics and in vivo mosquito protection. Transparent nanoemulsion can be obtained at optimal concentration of 2.5% surfactant and 100% glycerol. Physical appearance and the stability of the emulsion were greatly improved through an addition of glycerol, owing to its co-solvent and highly viscous property. The increasing emulsion droplet increased the oil retention. The release behavior could be attributed to the effect of droplet size and concentrations of surfactant and glycerol. By fitting to Higuchi's equation, an increase in glycerol and surfactant concentrations resulted in slow release of the oil. The release rate related well to the protection time where a decrease in release rate can prolong mosquito protection time.
Transdermal Patches for the Treatment of Neurologic Conditions in Elderly Patients: A Review
Somogyi, Monique
2011-01-01
Objective: The mode of drug delivery can be an important consideration in optimizing drug therapy, as it can affect treatment compliance and outcomes. It is particularly important to develop optimal drug formulations for chronic diseases or conditions in the elderly for which treatment compliance is known to be low. In this review, the features and benefits of transdermal formulations for treating neurologic conditions in elderly patients are described. Data Sources: English-language articles were identified by searching MEDLINE in November 2010 (there were no search parameters on date of publication) using the search terms transdermal patch, transdermal system, neurology, rivastigmine, rotigotine, selegiline, lidocaine, capsaicin, compliance, and neuropathic pain. Data Selection: Articles describing the development, use, efficacy, and safety of licensed transdermal patch treatments for neurologic conditions that affect the elderly were included. Data Extraction: The features of transdermal systems and comparisons between transdermal and oral formulations for the treatment of specific neurologic conditions in elderly patients were reviewed. Data Synthesis: There are 5 transdermal patch systems currently available for neurologic conditions in adults: rivastigmine, rotigotine, selegiline, lidocaine, and capsaicin. These are all modern formulations in matrix patches, developed to provide appropriate drug dosage in an acceptable and well-tolerated form. Conclusions: Transdermal patches can offer benefits to patients over oral formulations in terms of ease of use, simple treatment regimens, avoidance of the first-pass effect, and avoidance of high maximum plasma concentrations with rapid changes in drug levels, without the invasive procedures associated with intravenous treatment. PMID:22454804
Suzuki, Yoshiki; Kamijo, Yoshito; Yoshizawa, Tomohiro; Fujita, Yuji; Usui, Kiyotaka; Kishino, Tohru
2017-11-01
A 91-year-old woman was transferred to our Emergency Medical Center and Poison Center with somnolence, hypertension (186/61 mm Hg), and repeated vomiting. Three hours later, 10 transdermal patches, each containing 18 mg of rivastigmine (9.5 mg/24 h), were found on her lower back and both thighs, when miosis, facial and trunk sweating, enhanced bowel sound, hypertension, and sinus tachycardia were noted. She was diagnosed with acute cholinergic syndrome due to rivastigmine poisoning. Her hypertension and sinus tachycardia peaked 8 and 5 h after all the patches were removed, respectively. Her symptoms subsided spontaneously after 17 h. In the present case, our patient was presented with acute cholinergic syndrome due to carbamate intoxication after massive transdermal exposure to rivastigmine. Toxicological analysis revealed a remarkably high estimated serum rivastigmine concentration (150.6 ng/ml) and notably low serum butyrylcholinesterase activity (35 IU/l) on admission, with a markedly prolonged calculated elimination half-life of 6.5 h. Emergency physicians should consider acetylcholinesterase inhibitor exposure (e.g., rivastigmine) when patients are present with acute cholinergic syndrome.
Controlled Transdermal Iontophoresis by Polypyrrole/Poly(Acrylic Acid) Hydrogel
NASA Astrophysics Data System (ADS)
Chansai, Phithupha; Sirivat, Anuvat
2008-03-01
Transdermal drug delivery system delivers a drug into a body at desired site and rate. The conductive polymer-hydrogel blend between polypyrrole (PPy) doped with anionic drug and poly(acrylic acid) (PAA) were developed as a matrix/carrier of drug for the transdermal drug delivery in which the characteristic releases depend on the electrical field applied. The PAA films and their blend films were prepared by solution casting using ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. A mechanical blending of PPy particles and PAA matrix was then carried out. Drug diffusions in the blended PPy/PAA hydrogel and the non-blended one were investigated and determined by using a modified Franz-diffusion cell with an acetate buffer, pH 5.5, at 37 0C, for a period of 48 hours to determine the effects of crosslinking ratio and electric field strength. Amounts of the released drug were measured by UV-Visible spectrophotometry. The diffusion coefficient of drug was determined through the Higuchi equation via different conditions, with and without an electric field. Moreover, thermal properties and electrical conductivity of the polypyrrole and drug-loaded polypyrrole were investigated by means of the thermogravimetric analysis and by using a two-point probe meter, respectively.
PATIENTS' KNOWLEDGE OF MEDICAL PATCHES IN HUNGARY.
Somogyi, Orsolya; Zelko, Romana
2016-11-01
Transdermal therapy with medical patches is a simple possibility in home medication. As the correct use of patches has a decisive impact from the point of its modulator effect.A questionnaire survey was developed to explore level of patients' knowledge of the correct use of transdermal patches. A survey was administered in thirteen Hungarian community pharmacies from October of 2012 to May of 2015. Most of the participants, men and women over 18 years of age (n = 233), used major analgesic patches (fentanyl); the remainder were given nitroglycerin, NSAID analgesics patches during the survey. For the hypothesis testing it was assumed that men were more likely to use a razor for skin depilation before patch application than women as their denser pelage hinders patch adhesion. The hypothesis testing showed no significant gender difference in razor use (X² = 0.201; p = 0.654). Pharmacists should direct patients to avoid using soap for skin cleansing before patch application because only 22 percent of the participants always avoided its use. Since only 9 tests were flawless from 233 completed questionnaires. Many patients do not understand how to correctly apply a transdermal dosage patch. Pharmacists should teach their correct application based on results.
Hamed, Rania; Basil, Marwa; AlBaraghthi, Tamadur; Sunoqrot, Suhair; Tarawneh, Ola
2016-12-01
Chronic oral administration of the non-steroidal anti-inflammatory drug, diclofenac diethylamine (DDEA), is often associated with gastrointestinal ulcers and bleeding. As an alternative to oral administration, a nanoemulsion-based gel (NE gel) formulation of DDEA was developed for topical administration. An optimized formulation for the o/w nanoemulsion of oil, surfactant and cosurfactant was selected based on nanoemulsion mean droplet size, clarity, stability, and flowability, and incorporated into the gelling agent Carbopol® 971P. Rheological studies of the DDEA NE gel were conducted and compared to those of conventional DDEA gel and emulgel. The three gels exhibited an elastic behavior, where G' dominated G″ at all frequencies, indicating the formation of strong gels. NE gel exhibited higher G' values than conventional gel and emulgel, which indicated the formation of a stronger gel network. Strat-M® membrane, a synthetic membrane with diffusion characteristics that are well correlated to human skin, was used for the in vitro diffusion studies. The release of DDEA from conventional gel, emulgel and NE gel showed a controlled release pattern over 12 h, which was consistent with the rheological properties of the gels. DDEA release kinetics from the three gels followed super case II transport as fitted by Korsmeyer-Peppas model.
Walker, Rebecca; Decker, Eric A; McClements, David Julian
2015-01-01
Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (r<100 nm) that may be able to overcome many of the challenges of fortifying foods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.
Using cyclodextrin complexation to enhance secondary photoprotection of topically applied ibuprofen.
Godwin, Donald A; Wiley, Cody J; Felton, Linda A
2006-01-01
Each year millions of people are overexposed to the sun resulting in photodamage of the skin. Secondary photoprotection is the application of medicinal agents to the body after sun exposure to reduce this damage. The objective of this study was to determine the affects of hydroxypropyl-beta-cyclodextrin (HPCD) complexation on the secondary photoprotective properties of topically applied ibuprofen. Complexation of ibuprofen by HPCD was demonstrated by differential scanning calorimetry, while solubilities were determined using HPLC. A linear (r2>0.999) relationship was found between ibuprofen solubility and HPCD concentration. For subsequent experiments, the concentration of ibuprofen was held constant at the solubility in 10% HPCD (10.6 mg/ml), while the HPCD concentration varied from 0 to 20% (w/w). In vitro transdermal permeation experiments demonstrated a parabolic relationship between transdermal kinetic parameters and HPCD concentration, with maximum values for both flux and skin accumulation occurring with the 10% HPCD formulation. In vivo experiments were performed by exposing hairless mice to UV radiation and applying ibuprofen-HPCD formulations topically at various times following UV exposure. Edema and epidermal lipid damage data demonstrated that application of ibuprofen-HPCD formulations within 1h of UV exposure provided significant photoprotection.
Advanced Analgesic Drug Delivery and Nanobiotechnology.
Stoicea, Nicoleta; Fiorda-Diaz, Juan; Joseph, Nicholas; Shabsigh, Muhammad; Arias-Morales, Carlos; Gonzalez-Zacarias, Alicia A; Mavarez-Martinez, Ana; Marjoribanks, Stephen; Bergese, Sergio D
2017-07-01
Transdermal administration of analgesic medications offers several benefits over alternative routes of administration, including a decreased systemic drug load with fewer side effects, and avoidance of drug degradation by the gastrointestinal tract. Transdermal administration also offers a convenient mode of drug administration over an extended period of time, particularly desirable in pain medicine. A transdermal administration route may also offer increased safety for drugs with a narrow therapeutic window. The primary barrier to transdermal drug absorption is the skin itself. Transdermal nanotechnology offers a novel method of achieving enhanced dermal penetration with an extended delivery profile for analgesic drugs, due to their small size and relatively large surface area. Several materials have been used to enhance drug duration and transdermal penetration. The application of nanotechnology in transdermal delivery of analgesics has raised new questions regarding safety and ethical issues. The small molecular size of nanoparticles enables drug delivery to previously inaccessible body sites. To ensure safety, the interaction of nanoparticles with the human body requires further investigation on an individual drug basis, since different formulations have unique properties and side effects.
Transdermal patches: history, development and pharmacology.
Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S
2015-05-01
Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. © 2015 The British Pharmacological Society.
Spagnuolo, Carmela; Durante, Miriana; Mita, Giovanni; Aquino, Rita Patrizia
2017-01-01
Carotenoids, including β-carotene, lycopene, and derivatives, such as retinoic acid, have been studied for their significant antiproliferative and differentiating activity on cancer cells in experimental models and in clinics. We are presenting here data on the mechanism of action of a carotenoid-enriched extract obtained from the pumpkin Cucurbita moschata, variety “long of Naples,” on two malignant human cell lines, Caco-2 and SAOs, derived from a colon adenocarcinoma and an osteosarcoma, respectively. The carotenoid extract has been obtained from pumpkin pulp and seeds by supercritical CO2 extraction and employed to prepare oil-in-water nanoemulsions. The nanoemulsions, applied at a final carotenoid concentration of 200–400 μg/ml, were not cytotoxic, but induced a delay in cell growth of about 40% in both SAOs and Caco-2 cell lines. This effect was associated with the activation of a “nonprotective” form of autophagy and, in SAOs cells, to the induction of cell differentiation via a mechanism that involved AMPK activation. Our data suggest the presence of a pool of bioactive compounds in the carotenoid-enriched extract, acting additively, or synergistically, to delay cell growth in cancer cells. PMID:29430284
NASA Astrophysics Data System (ADS)
Suyanto, A.; Noor, E.; Fahma, F.; Rusli, M. S.; Djatna, T.
2018-01-01
‘Kawista’ (Feronia limonia) as a tropical fruit has unique flavor that can be applied as a flavor for food products. Flavor as volatile components are unstable by environment factors such as temperature and storage. Flavor nano emulsification form to improve the stability towards environment and increase its use in food products. Research carried out is system development of the nano emulsification Kawista extract flavor with sonication method. The best treatments are selected by Response Surface Methodology (RSM) for independent variable are amplitude (70-100%), time (90-150s) and temperature (5-45°C) controlled by the software of the device. The Flavor Extraction by maceration technique extended highest yield and flavor components. Nano-emulsions made with composition 1% (w/w) flavor extract, 2% (w/w) surfactant (tween 80), 0.25% Gum, and 96.75% (w/w) deionized water. The probe of sonication successfully for preparing stable O/W nano emulsions at amplitude, time and temperature 81.01%, 150s, 45°C, respectively. Characteristic of nano-emulsions i.e energy input (15.489J), viscosity (2.076 mPa.s), droplet size (13.446nm), and Polydispersity index (0.469).
Gavin, Paul D; Simon, Lee S; Schlagheck, Thomas; Smith, Alisha J; Shakib, Sepehr
2017-07-01
To characterize the pharmacokinetic profile and evaluate the safety and tolerability of a transdermal oxycodone patch containing tocopheryl phosphate mixture (TPM). Eleven healthy subjects received a single application of three TPM/oxycodone patches applied to the torso for 72 h. Oxycodone was detected 8.0 ± 2.7-h postpatch administration, reaching a mean maximum plasma concentration of 3.41 ± 1.34 ng/ml at 49.3 ± 21.2 h. The safety profile was consistent with the application method and known side-effect profile of oxycodone and naltrexone. No treatment-limiting skin irritation was observed. A 3-day application of the TPM/oxycodone patch demonstrated an acceptable safety profile and was well tolerated by healthy subjects, with limited dermal irritation following application.
NASA Technical Reports Server (NTRS)
Homick, J. L.; Reschke, M. F.; Degioanni, J.; Cintron-Trevino, N. M.; Kohl, R. L.
1983-01-01
This study evaluated the time course of efficacy of transdermal scopolamine in the prevention of motion sickness induced by exposure to coriolis stimulation in a rotating chair. We measured levels of efficacy, quantified side effects and symptoms, and determined inter- and intra-subject variability following use of transdermal scopolamine. The response to transdermal scopolamine was highly variable, although overall we recorded a 40 percent improvement in test scores 16-72 h after application of the transdermal system. This variability could not be explained solely by the levels of scopolamine present in the blood. The improvement was not due to the artifactual repression by scopolamine of selected symptoms of motion sickness. An unexpectedly high incidence of side effects was reported. It was concluded that the therapeutic use of transdermal scopolamine be evaluated individually and that individuals be cautioned that subsequent usage may not always be effective.
Transdermal delivery of biomacromolecules using lipid-like nanoparticles
NASA Astrophysics Data System (ADS)
Bello, Evelyn A.
The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.
NASA Astrophysics Data System (ADS)
Vishwanathan, Rohini
Lutein and zeaxanthin, two oxygenated carotenoids, exclusively accumulate in the macula, protecting the underlying photoreceptors and retinal pigment epithelial cells from damaging blue radiation of sunlight. As macular pigment, lutein and zeaxanthin are also potent antioxidants protecting the vulnerable regions of retina from free radical injury. Oxidative stress and cumulative light damage play an important role in pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly population. Antioxidant and lutein supplementation has been shown to decrease the risk and prevent the progression of AMD. The egg yolk is a highly bioavailable source of lutein and zeaxanthin and thus a possible contender for AMD prevention and treatment. Consumption of 2 egg yolks/d for 5 weeks was shown herein to significantly increase serum lutein and zeaxanthin concentration and clinically improve macular pigment concentrations at 0.5° retinal eccentricity in an older adult population taking cholesterol-lowering statins. Four egg yolks/d not only raised serum lutein and zeaxanthin significantly but also macular pigment densities at 0.25°, 0.5° and 1° retinal eccentricity. A positive outcome of the 2 egg yolk consumption was the significant increase in serum HDL-C with a tendency of serum LDL-C to decrease, although not significantly. Four egg yolks/d seemed to cross the threshold for dietary cholesterol tolerance as serum LDL-C tended to increase, although not significantly, despite the significant increase in serum HDL-C. There is a strong possibility that greater build up of lutein and zeaxanthin in the macula may have been observed with 2 egg yolks/d if the intervention period was longer than 5 weeks. Addition of up to 2 eggs a day to the diet is suggested to benefit an older adult population, especially those who are already taking cholesterol-lowering statins by (a) building their macular pigment and possibly protect against AMD and (b) raising serum HDL-C without an adverse affect on serum LDL-C and TC:HDL-C ratio. Increased cholesterol, lutein and zeaxanthin intake from the 2 and 4 egg yolk interventions did not decrease the absorption of other carotenoids, such as alpha-cryptoxanthin, beta-cryptoxanthin, lycopene, alpha-carotene and beta-carotene, tocopherols and retinol from the diet. An unexpected increase was observed in serum alpha-cryptoxanthin and gamma-tocopherol concentrations during the 4 egg yolk phase, these carotenoids are normally present in low concentrations in serum. Lipoprotein distribution of carotenoids and tocopherols was also not affected by the increased egg consumption. In the pursuit of designing a highly bioavailable matrix for lutein/zeaxanthin, similar to the egg yolk micellar matrix, nanoemulsion formulations of lutein were developed using the MicrofluidizerRTM Processor technology. Lutein nanoemulsions are O/W emulsions of lutein which have particle sizes in the nanometer range (≤ 200 nm). Lutein consumed orally as a nanoemulsion was shown to have significantly greater bioavailability than lutein supplement-pills in pilot-scale clinical studies described here. However, lutein nanoemulsions did not raise plasma lutein concentrations to the same extent as egg yolks in a study performed on BALB/c mice. Formation of mixed micelles in the intestinal lumen during digestion and uptake of these micelles by enterocytes are crucial steps that dictate bioavailability i.e. the proportion of ingested lutein/carotenoid that enters the blood circulation and accumulates in the peripheral tissues such as the macula. In-vitro stomach and intestinal digestion experiments showed lutein nanoemulsions have significantly greater micellarization efficiency compared to egg yolks. Nanoemulsions with a phospholipid (PL) emulsifier containing 80% phosphatidyl choline (PC) or Polysorbate 80 as the emulsifier had better ability to form micelles during the intestinal digestion phase compared to a PL emulsifier with only 45% PC content. The micellar matrix coupled with nanometer sized particles thus favored micelle formation even in the absence of additional fat. Despite the greater micellar efficiency with the nanoemulsions, significantly greater lutein uptake by Caco-2 cells was observed from egg yolk micelles compared to nanoemulsion micelles. These findings suggest that even though micellarization efficiency was higher with the nanoemulsions, the fat content of the micelles may play a role in cellular uptake of lutein. The lutein nanoemulsion delivery system could be improved by increasing the triglyceride content and modifying the phospholipid emulsifier (may be using emulsifiers with higher lysoPC content), in such a way so as to increase cellular uptake of lutein without increasing the particle size. Thus, nanometer particle size alone does not necessarily imply greater bioavailability in the case of lutein. The matrix of delivery of lutein is suggested to be of equal importance. With improved bioavailability nanoemulsions of lutein and zeaxanthin added to a beverage would be easier for an older adult population to consume as opposed to large supplement-pills. Nanometer particle size in combination with an ideal matrix may also avoid the need to consume pharmacological doses of these carotenoids to achieve significant health benefits.
Yang, Xinggang; Wang, Dun; Ma, Yan; Zhao, Qiang; Fallon, John K; Liu, Dan; Xu, Xian Emma; Wang, Yongjun; He, Zhonggui; Liu, Feng
2014-12-01
To develop a theranostic nanoemulsion (TNE) that can codeliver the conjugates of a hydrophobic drug paclitaxel (PTX) and a hydrophilic imaging probe sulforhodamine B (SRB). The TNE was established using core-matched technology, and can achieve high encapsulation efficiency and synchronized release of the loaded cargo. It has been examined for a correlation between the dynamic uptake of PTX and the intensity of SRB imaging signal in different organs. Our data demonstrate that the TNE, with improved circulation time, increases therapeutic efficacy and imaging efficiency in both drug-sensitive and drug-resistant cancer. The TNE could not satisfy the demand of visual diagnosis in the living animal because of interference. We therefore formulated a long-circulating theranostic nanoemulsion (LCTNE). Results showed that the LCTNE can meet imaging requirements in vivo. The LCTNE plays a good therapeutic and diagnostic role for subcutaneous tumors in the living animal.
Neem oil nanoemulsions: characterisation and antioxidant activity.
Rinaldi, Federica; Hanieh, Patrizia Nadia; Longhi, Catia; Carradori, Simone; Secci, Daniela; Zengin, Gokhan; Ammendolia, Maria Grazia; Mattia, Elena; Del Favero, Elena; Marianecci, Carlotta; Carafa, Maria
2017-12-01
The aim of the present work is to develop nanoemulsions (NEs), nanosized emulsions, manufactured for improving the delivery of active pharmaceutical ingredients. In particular, nanoemulsions composed of Neem seed oil, contain rich bioactive components, and Tween 20 as nonionic surfactant were prepared. A mean droplet size ranging from 10 to 100 nm was obtained by modulating the oil/surfactant ratio. Physicochemical characterisation was carried out evaluating size, ζ-potential, microviscosity, polarity and turbidity of the external shell and morphology, along with stability in simulated cerebrospinal fluid (CSF), activity of Neem oil alone and in NEs, HEp-2 cell interaction and cytotoxicity studies. This study confirms the formation of NEs by Tween 20 and Neem oil at different weight ratios with small and homogenous dimensions. The antioxidant activity of Neem oil alone and in NEs was comparable, whereas its cytotoxicity was strongly reduced when loaded in NEs after interaction with HEp-2 cells.
Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions
NASA Astrophysics Data System (ADS)
Helgeson, Matthew E.; Moran, Shannon E.; An, Harry Z.; Doyle, Patrick S.
2012-04-01
We report the formation of mesoporous organohydrogels from oil-in-water nanoemulsions containing an end-functionalized oligomeric gelator in the aqueous phase. The nanoemulsions exhibit an abrupt thermoreversible transition from a low-viscosity liquid to a fractal-like colloidal gel of droplets with mesoscale porosity and solid-like viscoelasticity with moduli approaching 100 kPa, possibly the highest reported for an emulsion-based system. We hypothesize that gelation is brought about by temperature-induced interdroplet bridging of the gelator, as shown by its dependence on the gelator chemistry. The use of photocrosslinkable gelators enables the freezing of the nanoemulsion’s microstructure into a soft hydrogel nanocomposite containing a large fraction of dispersed liquid hydrophobic compartments, and we show its use in the encapsulation and release of lipophilic biomolecules. The tunable structural, mechanical and optical properties of these organohydrogels make them a robust material platform suitable for a wide range of applications.
Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly.
Wang, Lei; Zhang, Yue
2017-03-31
Eugenol-loaded nanoemulsion by zein and sodium caseinate (NaCas) was prepared without using specific equipment or organic solvents. The deprotonated eugenol in hot alkaline was added to NaCas/zein mixtures with different mass ratios at pH 11.5 and then neutralized to pH 7.0. The nanoemulsions showed a well-defined diameter (around 109-139 nm) and a negative surface potential (from -28.5 to -35.8 mV) with spherical morphology. The entrapment efficiency (EE) of 1% (v/v) eugenol reached 84.24% by 2% (m/v) NaCas/zein at a mass ratio of 1:1. This formulation also showed the narrowest size distribution and extraordinary stability during ambient storage (22 °C) up to 30 days and retained good redispersibility after spray- or freeze-drying. The current study showed a promising clean and low-cost strategy to deliver lipophilic compounds containing the hydroxyl group.
Transdermal nicotine patches for eosinophilic pustular folliculitis.
Yoshifuku, Asuka; Higashi, Yuko; Matsushita, Shigeto; Kawai, Kazuhiro; Kanekura, Takuro
2013-09-01
We previously reported the clinical effectiveness of transdermal nicotine patches for the treatment of skin disorders with eosinophilic infiltration such as Kimura's disease, erythema nodosum and eosinophilic pustular folliculitis (EPF). We assessed the efficacy and safety of transdermal nicotine patches for EPF. We treated eight patients with EPF with transdermal nicotine patches and evaluated the treatment response by performing overall lesional assessment. Excellent 77and good responses were obtained in five and one patient(s), respectively. In the other two patients, the lesions remained unchanged. No severe adverse effects were observed. Our results suggest that transdermal nicotine patches may be useful and safe in the treatment of EPF. © 2013 Japanese Dermatological Association.
Keating, Gillian M; Duggan, Sean T; Curran, Monique P
2012-09-01
Transdermal granisetron (Sancuso®) is effective in the prevention of nausea and vomiting in patients with cancer who are receiving moderately or highly emetogenic chemotherapy for 3-5 days. Transdermal granisetron is noninferior to oral granisetron in this indication, and is generally well tolerated in this indication. Thus, transdermal granisetron provides a convenient option for the prevention of chemotherapy-induced nausea and vomiting, with the potential to improve patient compliance.
Markman, John D; Barbosa, William A; Gewandter, Jennifer S; Frazer, Maria; Rast, Shirley; Dugan, Michelle; Nandigam, Kiran; Villareal, Armando; Kwong, Tai C
2015-06-01
To determine whether the prevailing liquid chromatography and tandem mass spectroscopy assay (LC-MS/MS) assay designed to monitor buprenorphine compliance of the sublingual formulation used in the substance abuse treatment setting can be extrapolated to the transdermal formulation used in the chronic pain treatment setting, which is 1000-fold less concentrated. Retrospective chart review. Self-reported compliant patients using the transdermal or sublingual formulations of buprenorhphine. Transdermal patch application was also visually confirmed during clinic visits. Urine drug test results from a LC-MS/MS were compared between samples from transdermal and sublingual patients. While all sublingual patients tested positive for at least one metabolite of buprenorphine, only 69% of the transdermal patients did so. In addition, the most abundant metabolite in the transdermal patients was buprenorphine-glucuronide, as compared with norbuprenorphine-glucuronide in sublingual patients. These data suggest that currently available urine drug tests for buprenorphine, including the more expensive LC-MS/MS based assays, may not be sufficiently sensitive to detect the metabolites from transdermal buprenorphine patients. This study highlights the need to evaluate the value and sensitivity of urine drug tests given the wide range of buprenorphine dosing in clinical practice. These results underscore the need for additional cost benefit analyses comparing different confirmatory drug testing techniques including many commercially available drug testing options. © 2014 Wiley Periodicals, Inc. Wiley Periodicals, Inc.
Lee, Kang Joon; Cho, Seong-Jin; Kim, Byeong Chae; Park, Minseok; Lee, Jae-Hong
2017-02-01
The aim of this study was to assess caregiver preference and treatment compliance with oral and transdermal medications in a "real-world" setting in patients with mild-to-moderate Alzheimer's disease (AD) in South Korea. Real-world evaluation of compliance and preference in Alzheimer's disease treatment (RECAP) was a 24-week, multicenter, prospective, non-interventional study in patients with AD treated with oral or transdermal therapy. Here, we report data from patients living in South Korea. Eligible patients were grouped into one of two treatment cohorts: oral (donepezil, galantamine, rivastigmine, or memantine) or transdermal (rivastigmine patch). Caregiver preference, patient compliance, and physician preference were assessed at week 24 (end of the study). Safety was assessed by reported adverse events (AEs). A total of 398 patients were enrolled (oral 51.8%; transdermal 48.2%) and 79.4% completed the study. Caregivers of patients that were exposed to either the oral or transdermal monotherapy showed a preference for the treatment to which the patients were exposed (both p < 0.0001). However, caregivers of patients that were exposed to both forms of treatments reported a higher preference for transdermal monotherapy (65.9%; p < 0.0041). Patients in both treatment cohorts showed good compliance, with an overall mean (SD) score of 8.84 (1.514) (a median of 9). Of the 15 participating physicians, eight indicated their preference for transdermal therapy and seven preferred oral therapy at week 24. A total of 133 (33.4%) patients reported at least one AE during the study period (oral: 60 patients; transdermal: 73 patients). The study showed higher caregiver preference for transdermal monotherapy over oral monotherapy when patients with AD were exposed to both forms of treatment and good patient compliance for both oral and transdermal treatments.
Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.
Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R
2015-12-01
Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.
Drug crystallization - implications for topical and transdermal delivery.
Hadgraft, Jonathan; Lane, Majella E
2016-06-01
Crystallization of actives in skin following topical application was suggested by studies in the 1950s and 1960s but is poorly understood. In contrast, the problem of crystallization of actives on skin and in transdermal formulations has been known for many years. With respect to crystallization in skin, this review describes early reports of a skin 'reservoir' and possible reasons underlying its genesis. Techniques to study crystallization on and in skin and in transdermal patches are outlined. The role of the vehicle in skin delivery is emphasised. Studies which have investigated permeation from crystalline particles are described. Approaches to limit crystallization of actives are discussed. Using supersaturation and antinuclean polymers, control of crystal size is possible; controlled release from crystals is also employed in transdermal patches. Drug crystallization has significant implications for topical and transdermal delivery. Approaches have been developed to counteract the issue for transdermal patches but crystallization in and on the skin for other formulations remains unresolved. Greater knowledge of residence time of excipients and their interaction with skin at the molecular level is critical in order to address the problem. This will lay the foundations for better design of topical/transdermal formulations.
Yang, Chu-Ching; Hung, Chi-Feng; Chen, Bing-Huei
2017-01-01
Coffee grounds, a waste by-product generated after making coffee, contains approximately 15% coffee oil which can be used as a raw material in cosmetics. Algae oil rich in docosahexaenoic acid (DHA) has been demonstrated to possess anticancer and anti-inflammation functions. The objectives of this study were to develop a gas chromatography-mass spectrometry (GC-MS) method for the determination of fatty acids in coffee oil and algae oil and prepare a nanoemulsion for studying its inhibition effect on ultraviolet A-induced skin damage in mice and growth of melanoma cells B16-F10. A total of 8 and 5 fatty acids were separated and quantified in coffee oil and algae oil by GC-MS, respectively, with linoleic acid (39.8%) dominating in the former and DHA (33.9%) in the latter. A nanoemulsion with a particle size of 30 nm, zeta potential -72.72 mV, and DHA encapsulation efficiency 100% was prepared by using coffee oil, algae oil, surfactant (20% Span 80 and 80% Tween 80), and deionized water. Differential scanning calorimetry (DSC) analysis revealed a high stability of nanoemulsion when heated up to 110°C at a pH 6, whereas no significant changes in particle size distribution and pH occurred over a 90-day storage period at 4°C. Animal experiments showed that a dose of 0.1% coffee oil-algae oil nanoemulsion was effective in mitigating trans-epidermal water loss, skin erythema, melanin formation, and subcutaneous blood flow. Cytotoxicity test implied effective inhibition of melanoma cell growth by nanoemulsion with an IC 50 value of 26.5 µg/mL and the cell cycle arrested at G2/M phase. A dose-dependent upregulation of p53, p21, cyclin B, and cyclin A expressions and downregulation of CDK1 and CDK2 occurred. Also, both Bax and cytochrome c expressions were upregulated and bcl-2 expression downregulated, accompanied by a rise in caspase-3, caspase-8, and caspase-9 activities for apoptosis execution. Collectively, the apoptosis pathway of melanoma cells B16-F10 may involve both mitochondria and death receptor.
Tsai, Yin-Jieh; Chen, Bing-Huei
2016-01-01
Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential −66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 μg/mL and 8.5 μg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and caspase-9. Taken together, both caspase-dependent and caspase-independent pathways may be involved in apoptosis of PC-3 cells. PMID:27226712
Chen, Bing-Huei
2017-01-01
Coffee grounds, a waste by-product generated after making coffee, contains approximately 15% coffee oil which can be used as a raw material in cosmetics. Algae oil rich in docosahexaenoic acid (DHA) has been demonstrated to possess anticancer and anti-inflammation functions. The objectives of this study were to develop a gas chromatography-mass spectrometry (GC-MS) method for the determination of fatty acids in coffee oil and algae oil and prepare a nanoemulsion for studying its inhibition effect on ultraviolet A-induced skin damage in mice and growth of melanoma cells B16-F10. A total of 8 and 5 fatty acids were separated and quantified in coffee oil and algae oil by GC-MS, respectively, with linoleic acid (39.8%) dominating in the former and DHA (33.9%) in the latter. A nanoemulsion with a particle size of 30 nm, zeta potential −72.72 mV, and DHA encapsulation efficiency 100% was prepared by using coffee oil, algae oil, surfactant (20% Span 80 and 80% Tween 80), and deionized water. Differential scanning calorimetry (DSC) analysis revealed a high stability of nanoemulsion when heated up to 110°C at a pH 6, whereas no significant changes in particle size distribution and pH occurred over a 90-day storage period at 4°C. Animal experiments showed that a dose of 0.1% coffee oil-algae oil nanoemulsion was effective in mitigating trans-epidermal water loss, skin erythema, melanin formation, and subcutaneous blood flow. Cytotoxicity test implied effective inhibition of melanoma cell growth by nanoemulsion with an IC50 value of 26.5 µg/mL and the cell cycle arrested at G2/M phase. A dose-dependent upregulation of p53, p21, cyclin B, and cyclin A expressions and downregulation of CDK1 and CDK2 occurred. Also, both Bax and cytochrome c expressions were upregulated and bcl-2 expression downregulated, accompanied by a rise in caspase-3, caspase-8, and caspase-9 activities for apoptosis execution. Collectively, the apoptosis pathway of melanoma cells B16-F10 may involve both mitochondria and death receptor. PMID:28919754
Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin.
Xue, Jia; Michael Davidson, P; Zhong, Qixin
2015-10-01
Emulsions of essential oils are investigated as potential intervention strategies to improve food safety and are preferably prepared from generally-recognized-as-safe emulsifiers. Stable thyme oil nanoemulsions can be prepared using combinations of sodium caseinate (NaCas) and soy lecithin. The objective of the present research was to study the antimicrobial activity of these nanoemulsions and understand the impacts of emulsifier concentrations. 10 g/L thyme oil was emulsified using combinations of (A) 4% w/v NaCas and 0.5% w/v lecithin or (B) 2% w/v NaCas and 0.25% w/v lecithin by high shear homogenization. Combination A resulted in a transparent emulsion with a mean droplet diameter of 82.5 nm, while it was turbid for the Combination B with an average diameter of 125.5 nm. Nanoemulsified thyme oil exhibited quicker initial reductions of bacteria than free thyme oil in tryptic soy broth (TSB) and 2% reduced fat milk at 21 °C, due to the improved dispersibility of thyme oil. In TSB with 0.3 g/L thyme oil, it took less than 4 and 8 h for two nanoemulsions and free oil, respectively, to reduce Escherichia coli O157:H7 and Listeria monocytogenes to be below the detection limit. The emulsified thyme oil also demonstrated more significant reductions of bacteria initially (4 and 8 h) in 2% reduced fat milk than free thyme oil. Especially, with 4 g/L thyme oil, the nanoemulsion prepared with Combination A reduced L. monocytogenes to be below the detection limit after 72 h, while the free thyme oil treatment was only bacteriostatic and the turbid nanoemulsion treatment with Combination B resulted in about 1 log CFU/mL reduction. However, E. coli O157:H7 treated with 3 g/L emulsified thyme oil and Salmonella Enteritidis treated with 4 g/L emulsified thyme oil recovered to a higher extent in milk than free thyme oil treatments. The increased concentration of emulsifiers in Combination A apparently reduced the antimicrobials available to alter bacteria membrane permeability as tested by the crystal violet assay at low antimicrobial concentrations and short time (1 h). The findings suggest that nanoemulsions can be potentially used to incorporate thyme oil for use as antimicrobial preservatives in foods. Copyright © 2015 Elsevier B.V. All rights reserved.
Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles
NASA Astrophysics Data System (ADS)
Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan
2012-05-01
Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.
Priestley, Tony; Chappa, Arvind K; Mould, Diane R; Upton, Richard N; Shusterman, Neil; Passik, Steven; Tormo, Vicente J; Camper, Stephen
2017-09-29
To develop a model to predict buprenorphine plasma concentrations during transition from transdermal to buccal administration. Population pharmacokinetic model-based meta-analysis of published data. A model-based meta-analysis of available buprenorphine pharmacokinetic data in healthy adults, extracted as aggregate (mean) data from published literature, was performed to explore potential conversion from transdermal to buccal buprenorphine. The time course of mean buprenorphine plasma concentrations following application of transdermal patch or buccal film was digitized from available literature, and a meta-model was developed using specific pharmacokinetic parameters (e.g., absorption rate, apparent clearance, and volumes of distribution) derived from analysis of pharmacokinetic data for intravenously, transdermally, and buccally administered buprenorphine. Data from six studies were included in this analysis. The final transdermal absorption model employed a zero-order input rate that was scaled to reflect a nominal patch delivery rate and time after patch application (with decline in rate over time). The transdermal absorption rate constant became zero following patch removal. Buccal absorption was a first-order process with a time lag and bioavailability term. Simulations of conversion from transdermal 20 mcg/h and 10 mcg/h to buccal administration suggest that transition can be made rapidly (beginning 12 hours after patch removal) using the recommended buccal formulation titration increments (75-150 mcg) and schedule (every four days) described in the product labeling. Computer modeling and simulations using a meta-model built from data extracted from publications suggest that rapid and straightforward conversion from transdermal to buccal buprenorphine is feasible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
PHASE-SHIFT, STIMULI-RESPONSIVE PERFLUOROCARBON NANODROPLETS FOR DRUG DELIVERY TO CANCER
2012-01-01
This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery. PMID:22730185
Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials.
Gehrmann, Sandra; Bunjes, Heike
2016-09-25
The possibility to prepare nanoemulsions as drug carrier systems on small scale was investigated with disposable materials. For this purpose premix membrane emulsification (premix ME) as a preparation method for nanoemulsions with narrow particle size distributions on small scale was used. The basic principle of premix ME is that the droplets of a coarse pre-emulsion get disrupted by the extrusion through a porous membrane. In order to implement the common preparation setup for premix ME with disposable materials, the suitability of different syringe filters (made from polyethersulfone, cellulose acetate, cellulose ester and nylon) and different pharmaceutically relevant emulsifiers (phospholipids, polysorbate 80 and sucrose laurate) for the preparation of nanoemulsions was investigated. Already the preparation of the premix could be realized by emulsification with the help of two disposable syringes. As shown for a phospholipid-stabilized emulsion, the polyethersulfone filter was the most appropriate one and was used for the study with different emulsifiers. With this syringe filter, the median particle size of all investigated emulsions was below 500nm after 21 extrusion cycles through a 200nm filter and a subsequent extrusion cycle through a 100nm filter. Furthermore, the particle size distribution of the polysorbate 80- and sucrose laurate-stabilized emulsions prepared this way was very narrow (span value of 0.7). Copyright © 2016 Elsevier B.V. All rights reserved.
Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya
2016-01-01
Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301
Landry, Kyle S; Micheli, Sean; McClements, David Julian; McLandsborough, Lynne
2015-10-01
The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monge-Fuentes, Victoria; Muehlmann, Luis Alexandre; Longo, João Paulo Figueiró; Silva, Jaqueline Rodrigues; Fascineli, Maria Luiza; de Souza, Paulo; Faria, Fernando; Degterev, Igor Anatolievich; Rodriguez, Anselmo; Carneiro, Fabiana Pirani; Lucci, Carolina Madeira; Escobar, Patricia; Amorim, Rivadávio Fernandes Batista; Azevedo, Ricardo Bentes
2017-01-01
Melanoma is the most aggressive and lethal form of skin cancer, responsible for >80% of deaths. Standard treatments for late-stage melanoma usually present poor results, leading to life-threatening side effects and low overall survival. Thus, it is necessary to rethink treatment strategies and design new tools for the treatment of this disease. On that ground, we hereby report the use of acai oil in nanoemulsion (NanoA) as a novel photosensitizer for photodynamic therapy (PDT) used to treat melanoma in in vitro and in vivo experimental models. NIH/3T3 normal cells and B16F10 melanoma cell lines were treated with PDT and presented 85% cell death for melanoma cells, while maintaining high viability in normal cells. Flow cytometry indicated that cell death occurred by late apoptosis/necrosis. Tumor bearing C57BL/6 mice treated five times with PDT using acai oil in nanoemulsion showed tumor volume reduction of 82% in comparison to control/tumor group. Necrotic tissue per tumor area reached its highest value in PDT-treated mice, supporting PDT efficacy. Overall, acai oil in nanoemulsion was an effective photosensitizer, representing a promising source of new photosensitizing molecules for PDT treatment of melanoma, a tumor with an inherent tendency to be refractory for this type of therapy. Copyright © 2016. Published by Elsevier B.V.
Myth or Reality-Transdermal Magnesium?
Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus
2017-07-28
In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.
Peptide-chaperone-directed transdermal protein delivery requires energy.
Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping
2014-11-03
The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.
Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang
We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.
Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.
Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça
2017-05-01
In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.
Permeation enhancer strategies in transdermal drug delivery.
Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam
2016-01-01
Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.
Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang
2016-01-01
We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs. PMID:27822034
Myth or Reality—Transdermal Magnesium?
Gröber, Uwe; Werner, Tanja; Vormann, Jürgen
2017-01-01
In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract. PMID:28788060
High-dose transdermal nicotine replacement for tobacco cessation.
Brokowski, Laurie; Chen, Jiahui; Tanner, Sara
2014-04-15
The safety and efficacy of high-dose transdermal nicotine-replacement therapy (NRT) for the treatment of tobacco-use cessation were reviewed. Transdermal nicotine doses of 7, 14, and 21 mg daily are approved by the Food and Drug Administration for use in tobacco cessation. However, studies have suggested that these doses are more adequate for people who smoke fewer than 20 cigarettes per day. A literature search was conducted to identify English-language studies that evaluated the use of transdermal nicotine doses of ≥42 mg daily. A total of 11 articles were identified, representing 10 separate trials. In terms of safety, the majority of the trials had no reports of serious adverse events related to transdermal NRT at doses of ≥42 mg daily. A dose-response relationship with adverse events occurred in most trials. In terms of efficacy, a numerically higher abstinence rate was achieved with high-dose transdermal NRT in all trials but 1. However, none of the studies showed significant differences in final abstinence rates at follow-up. Some reasons why statistical significance was not achieved in these trials may be related to the limitations of these trials, such as their small samples and the lack of a power calculation. A more robust trial is needed to support higher nicotine transdermal doses in tobacco cessation and to help elucidate which patient population would be most suitable for their use. The safety and efficacy of high-dose transdermal NRT for tobacco cessation have not been established in the medical literature.
Hodinka, László; Bálint, Géza; Budai, Erika; Géher, Pál; Papp, Renáta; Somogyi, Péter; Szántó, Sándor; Vereckei, Edit
2017-12-01
In this review the available evidences regarding the most frequently applied medication (peroral and transdermal non-steroidal anti-inflammatory agents) for the most frequent musculoskeletal complaints (regional pain syndromes) have been collected for the appropriate medical professionals who are most frequently faced with these conditions (general practitioners, rheumatologists, orthopedics, occupational and sports medicine experts). The special population at risk (with repeated and high energy overuse because of occupational or sport activities) and the pathology of their syndromes are identified. Mode of action, pharmacological properties of the non-steroidal anti-inflammatory drugs and the unwanted effects of their application especially in infants and elderly are highlighted. Recommendations of the general and specific pain management guidelines have been selected and listed in the review. Orv Hetil. 2017; 158(Suppl. 3): 3-30.
Development and characterization of parenteral nanoemulsions containing thalidomide.
Araújo, F A; Kelmann, R G; Araújo, B V; Finatto, R B; Teixeira, H F; Koester, L S
2011-02-14
This study reports the development of nanoemulsions intended for intravenous administration of thalidomide (THD). The formulations were prepared by spontaneous emulsification method and optimized with respect to thalidomide (0.01-0.05%, w/w), and hydrophilic emulsifier (polysorbate 80; 0.5-4.0%, w/w) content. The formulations were evaluated concerning physical appearance and drug crystallization; droplet size; zeta potential and drug assay. Only the formulation containing 0.01% THD and 0.5% polysorbate kept its properties in a satisfactory range over the evaluated period (60 days), i.e. droplet size around 200nm, drug content around 95% and zeta potential around -30mV. The transmission electron microscopy revealed emulsion droplets almost spherical in shape confirming the results obtained by photon correlation spectroscopy. Drug crystallization observed for higher content (THD 0.05%, w/w) nanoemulsions was investigated. The crystals observed at optical microscopy presented a different crystal habit compared to that of the raw material used. It was speculated whether the kind of THD polymorph employed could influence nanoemulsion formulation. Formulations were prepared with either one of THD polymorphs (β- or α-) and crystals were characterized by fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). It was observed that regardless of the polymorph employed (β- or α-), drug crystallization occurs in the α-form. THD solubility in oils was not influenced by the polymorphic form. In addition, the in vitro dissolution profile of the selected formulation (THD 0.01%, w/w; polysorbate 0.5%, w/w) was assessed by bulk-equilibrium reverse dialysis sac technique and demonstrated a release profile similar to that of a THD acetonitrile solution, with around 95% THD being dissolved within 4h. Finally, a pharmacokinetic simulation of an intravenous infusion of 250mL of the selected nanoemulsion suggests that the parenteral administration of a dose as low as 25mg might lead to therapeutic plasma concentrations of thalidomide. Copyright © 2010 Elsevier B.V. All rights reserved.
Transungual Delivery of Ketoconazole Nanoemulgel for the Effective Management of Onychomycosis.
Mahtab, Asiya; Anwar, Mohammed; Mallick, Neha; Naz, Zrien; Jain, Gaurav K; Ahmad, Farhan J
2016-12-01
Ketoconazole (KCZ) nanoemulgel containing permeation enhancer was formulated as a vehicle for transungual drug delivery, and its efficacy to inhibit the growth of onychomycotic dermatophytes was investigated in vitro. Different components of oil-in-water nanoemulsions were moderately agitated by classical titration method and passed through a high-pressure homogenizer to formulate various nanoemulsions, which were further identified by constructing pseudo-ternary phase diagrams. Stress-stability testing was carried out for the nanoemulsions, and those that passed these tests were characterized for mean droplet size, zeta potential, morphology, pH, refractive index, viscosity and transmittance. Mean droplet size and zeta potential of the optimized nanoemulsion (NE3) were found to be 77.52 ± 0.92 nm (polydispersity index (PDI) = 0.128 ± 0.035) and -5.44 ± 0.67 mV, respectively. Optimized nanoemulsion was converted into nanoemulgel (NEG 1 ) with 1% (w/w) of gelling agent (Carbopol® Ultrez 21) and 1%-2% (v/v) thioglycolic acid as permeation enhancer, and evaluated for pH, viscosity, spreadability, extrudability, tensile strength and bio-adhesion measurement. In vitro cumulative drug released at the end of 24 h from NE3, NEG 1 and drug suspension were found to be 98.87 ± 1.29, 84.42 ± 2.78% and 54.86 ± 2.19%, respectively. Ex vivo transungual permeation values for KCZ through goat hooves from NE3, NEG 1 and drug suspension were found to be 62.49 ± 2.98, 77.54 ± 2.88% and 38.54 ± 2.54%, respectively, in 24 h. The antifungal effect of NEG 1 on Trichophyton rubrum and Candida albicans showed a significant (p < 0.05) zone of inhibition as compared to drug solution. Skin irritation and histopathology studies on rat skin showed the safe topical use and enhanced permeation of formulated nanoemulgel.
Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation
Zhao, Ling; Wei, Yumeng; Huang, Yu; He, Bing; Zhou, Yang; Fu, Junjiang
2013-01-01
Baicalin is one of the main bioactive flavone glucuronides derived as a medicinal herb from the dried roots of Scutellaria baicalensis Georgi, and it is widely used for the treatment of fever, inflammation, and other conditions. Due to baicalin’s poor solubility in water, its absolute bioavailability after oral administration is only 2.2%. The objective of this study was to develop a novel baicalin-loaded nanoemulsion to improve the oral bioavailability of baicalin. Based on the result of pseudoternary phase diagram, the nanoemulsion formulation consisting of soy-lecithin, tween-80, polyethylene glycol 400, isopropyl myristate, and water (1:2:1.5:3.75:8.25, w/w) was selected for further study. Baicalin-loaded nanoemulsions (BAN-1 and BAN-2) were prepared by internal or external drug addition and in vivo and in vitro evaluations were performed. The results showed that the mean droplet size, polydispersity index, and drug content of BAN-1 and BAN-2 were 91.2 ± 2.36 nm and 89.7 ± 3.05 nm, 0.313 ± 0.002 and 0.265 ± 0.001, and 98.56% ± 0.79% and 99.40% ± 0.51%, respectively. Transmission electron microscopy revealed spherical globules and confirmed droplet size analysis. After dilution 30-fold with water, the solubilization capacity of BAN-1 and BAN-2 did not change. In vitro release results showed sustained-release characteristics. BAN-1 formulation was stable for at least 6 months and was more stable than BAN-2. In rats, the area under the plasma drug concentration-time curve value of BAN-1 was 1.8-fold and 7-fold greater than those of BAN-2 and free baicalin suspension after oral administration at a dose of 100 mg/kg. In conclusion, these results demonstrated that the baicalin-loaded nanoemulsion formulation, in particular BAN-1, was very effective for improving the oral bioavailability of baicalin and exhibited great potential for future clinical application. PMID:24124365
Shi, Rui; Hong, Liu; Wu, Daocheng; Ning, Xiaoxuan; Chen, Yu; Lin, Tao; Fan, Daiming; Wu, Kaichun
2005-02-01
CpG oligodeoxynucleotides (CpG ODN) have been shown to have potent adjuvant activity for a wide range of antigens. Of particular interest is their improved activity when closely associated with the antigen. The purpose of this study is to construct a nanovaccine coencapsulated with a gastric cancer specific antigen MG7 mimotope peptide and adjuvant CpG ODN 1645 using new nanotechnology as nanoemulsion and evaluate its immunocompetence. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. BALB/c mice were immunized and the in vivo effectiveness was evaluated using tumor challenge assay. It was shown that the tumor masses formed in the mice immunized with coencapsulated nanovaccine (0.0825 g) markedly smaller (P < 0.01) than those formed in the mice immunized with nanovaccine encapsulated with antigen peptide alone (0.4465 g). A tumor inhibiting rate as high as 82.5% of the coencapsulated nanovaccine was obtained, while nanovaccine encapsulated with peptide only could not achieve the same effect (28.5%) (P < 0.01). Enzyme-linked immunospot assay (ELISPOT) showed that immunization using MG7 mimotope peptide coencapsulated with CpG ODN within the same nanoemulsion enhanced the frequency of splenocytes secreting IFN-gamma significantly (P < 0.01) when compared with immunization using MG7 peptide encapsulated in nanoemulsion alone (197spots/1 x 10(6) vs. 73 spots/1 x 10(6)). Cellular ELISA indicated that serum titer of antibody against MG7-Ag was significantly higher (P < 0.01) in mice immunized with coencapsulation form nanovaccine (0.7884) than that in the group immunized with nanovaccine encapsulated with MG7 peptide alone (0.3616). Using intracellular flow cytometric analysis, it was found that the IFN-gamma response was contributed by CD4+ T-cells. Our experiments suggest that a vaccinal approach using nano-delivery system carrying in tumoral epitope and CpG ODN as adjuvant may have important implications for cancer therapy.
Badr-Eldin, Shaimaa M; Ahmed, Osamaa AA
2016-01-01
Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (Cmax) and area under the curve and longer time to maxi mum plasma concentration (Tmax) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency. PMID:27103786
Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant
Kim, Ki Su; Kim, Hyemin; Park, Yunji; Kong, Won Ho; Lee, Seung Woo; Kwok, Sheldon J. J.
2016-01-01
Vaccines are commonly administered by injection using needles. Although transdermal microneedles are less-invasive promising alternatives, needle-free topical vaccination without involving physical damage to the natural skin barrier is still sought after as it can further reduce needle-induced anxiety and simply administration. However, this long-standing goal has been elusive since the intact skin is impermeable to most macromolecules. Here, we show an efficient, non-invasive transdermal vaccination in mice by employing two key innovations: first, the use of hyaluronan (HA) as vaccine carriers and, second, non-ablative laser adjuvants. Conjugates of a model vaccine ovalbumin (OVA) and HA—HA-OVA conjugates—induced more effective maturation of dendritic cells in vitro, compared to OVA or HA alone, through synergistic HA receptor-mediated effects. Following topical administration in the back skin, HA-OVA conjugates penetrated into the epidermis and dermis in murine and porcine skins up to 30% of the total applied quantity, as revealed by intravital microscopy and quantitative fluorescence assay. Topical administration of HA-OVA conjugates significantly elevated both anti-OVA IgG antibody levels in serum and IgA antibody levels in bronchioalveolar lavage, with peak levels at 4 weeks, while OVA alone had a negligible effect. An OVA challenge at week 8 elicited strong immune-recall humoral responses. With pre-treatment of the skin using non-ablative fractional laser beams (1410 nm wavelength, 10 ms pulse duration, 0.2 mJ/pulse) as laser adjuvant, strong immunization was achieved with much reduced doses of HA-OVA (1 mg/kg OVA). Our results demonstrate the potential of the non-invasive patch-type transdermal vaccination platform. PMID:27833475
Shin, Soo Hyeon; Ghosh, Priyanka; Newman, Bryan; Hammell, Dana C; Raney, Sam G; Hassan, Hazem E; Stinchcomb, Audra L
2017-09-01
At elevated temperatures, the rate of drug release and skin permeation from transdermal delivery systems (TDS) may be higher than at a normal skin temperature. The aim of this study was to compare the effect of heat on the transdermal delivery of two model drugs, nicotine and fentanyl, from matrix-type TDSs with different formulations, using in vitro permeation tests (IVPT). IVPT experiments using pig skin were performed on two nicotine and three fentanyl TDSs. Both continuous and transient heat exposures were investigated by applying heat either for the maximum recommended TDS wear duration or for short duration. Continuous heat exposure for the two nicotine TDSs resulted in different effects, showing a prolonged heat effect for one product but not the other. The J max enhancement ratio due to the continuous heat effect was comparable between the two nicotine TDS, but significantly different (p < 0.05) among the three fentanyl TDSs. The J max enhancement ratios due to transient heat exposure were significantly different for the two nicotine TDSs, but not for the three fentanyl TDSs. Furthermore, the transient heat exposure affected the clearance of drug from the skin depot after TDS removal differently for two drugs, with fentanyl exhibiting a longer heat effect. This exploratory work suggests that an IVPT study may be able to discriminate differences in transdermal drug delivery when different TDS are exposed to elevated temperatures. However, the clinical significance of IVPT heat effects studies should be further explored by conducting in vivo clinical studies with similar study designs.
A New Combination of Testosterone and Nestorone Transdermal Gels for Male Hormonal Contraception
Ilani, Niloufar; Roth, Mara Y.; Amory, John K.; Swerdloff, Ronald S.; Dart, Clint; Page, Stephanie T.; Bremner, William J.; Sitruk-Ware, Regine; Kumar, Narender; Blithe, Diana L.
2012-01-01
Context: Combinations of testosterone (T) and nestorone (NES; a nonandrogenic progestin) transdermal gels may suppress spermatogenesis and prove appealing to men for contraception. Objective: The objective of the study was to determine the effectiveness of T gel alone or combined with NES gel in suppressing spermatogenesis. Design and Setting: This was a randomized, double-blind, comparator clinical trial conducted at two academic medical centers. Participants: Ninety-nine healthy male volunteers participated in the study. Interventions: Volunteers were randomized to one of three treatment groups applying daily transdermal gels (group 1: T gel 10 g + NES 0 mg/placebo gel; group 2: T gel 10 g + NES gel 8 mg; group 3: T gel 10 g + NES gel 12 mg). Main Outcome Variable: The main outcome variable of the study was the percentage of men whose sperm concentration was suppressed to 1 million/ml or less by 20–24 wk of treatment. Results: Efficacy data analyses were performed on 56 subjects who adhered to the protocol and completed at least 20 wk of treatment. The percentage of men whose sperm concentration was 1 million/ml or less was significantly higher for T + NES 8 mg (89%, P < 0.0001) and T + NES 12 mg (88%, P = 0.0002) compared with T + NES 0 mg group (23%). The median serum total and free T concentrations in all groups were maintained within the adult male range throughout the treatment period. Adverse effects were minimal in all groups. Conclusion: A combination of daily NES + T gels suppressed sperm concentration to 1 million/ml or less in 88.5% of men, with minimal adverse effects, and may be further studied as a male transdermal hormonal contraceptive. PMID:22791756
Badr-Eldin, Shaimaa M; Ahmed, Osamaa Aa
2016-01-01
Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (C max) and area under the curve and longer time to maxi mum plasma concentration (T max) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency.
Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis
Hammell, D.C.; Zhang, L.P.; Ma, F.; Abshire, S.M.; McIlwrath, S.L.; Stinchcomb, A.L.; Westlund, K.N.
2015-01-01
Background Current arthritis treatments often have side-effects attributable to active compounds as well as route of administration. Cannabidiol (CBD) attenuates inflammation and pain without side-effects, but CBD is hydrophobic and has poor oral bioavailability. Topical drug application avoids gastrointestinal administration, first pass metabolism, providing more constant plasma levels. Methods This study examined efficacy of transdermal CBD for reduction in inflammation and pain, assessing any adverse effects in a rat complete Freund’s adjuvant-induced monoarthritic knee joint model. CBD gels (0.6, 3.1, 6.2 or 62.3 mg/day) were applied for 4 consecutive days after arthritis induction. Joint circumference and immune cell invasion in histological sections were measured to indicate level of inflammation. Paw withdrawal latency (PWL) in response to noxious heat stimulation determined nociceptive sensitization, and exploratory behaviour ascertained animal’s activity level. Results Measurement of plasma CBD concentration provided by transdermal absorption revealed linearity with 0.6–6.2 mg/day doses. Transdermal CBD gel significantly reduced joint swelling, limb posture scores as a rating of spontaneous pain, immune cell infiltration and thickening of the synovial membrane in a dose-dependent manner. PWL recovered to near baseline level. Immunohistochemical analysis of spinal cord (CGRP, OX42) and dorsal root ganglia (TNFα) revealed dose-dependent reductions of pro-inflammatory biomarkers. Results showed 6.2 and 62 mg/day were effective doses. Exploratory behaviour was not altered by CBD indicating limited effect on higher brain function. Conclusions These data indicate that topical CBD application has therapeutic potential for relief of arthritis pain-related behaviours and inflammation without evident side-effects. PMID:26517407
Enhanced transdermal delivery of sex hormones in swine with a novel topical aerosol.
Morgan, T M; Parr, R A; Reed, B L; Finnin, B C
1998-10-01
This study investigated the enhanced transdermal delivery of testosterone (Tes) and estradiol (E2) in swine in vivo with novel metered-dose topical aerosols containing the penetration enhancer padimate O (PadO) and predicted the dose deliverable in humans from the calculated drug flux across the skin. Weanling swine were catheterized and castrated under general anaesthesia and used as a conscious hypogonadal model. Tes and E2 (with and without PadO) were applied once, and venous blood samples were taken over 24 h. Tes and E2 plasma levels were determined by radioimmunoassay. After daily topical dosing of Tes for 6 days, the plasma Tes levels were determined and the transdermal flux was calculated by correcting the pseudo steady-state plasma concentration versus time profile with the clearance of an iv dose within the same swine. After a single application of the E2 aerosol over 30 cm2, or the Tes aerosol over 180 cm2, the mean AUC0-24 h when PadO was included in the spray was 14.1- and 2.0-fold greater than control, respectively (p < 0.03). After the sixth application of the Tes spray with PadO, the mean flux (+/-SE, n = 4) across swine skin in vivo was 2.12 +/- 0.35 microg/cm2.h, which gave a predicted flux in humans of 0.95 microg/cm2.h. From these data the expected plasma levels of Tes in hypogonadal men would compare well with the normal diurnal Tes profile in healthy men. These novel topical aerosols are capable of enhanced transdermal delivery of sex hormones in vivo, and they have the potential to deliver clinically relevant doses to humans.
Zhang, Xiaolan; Yu, Yuling; Gu, Yue; Li, Xiaojing; Zhang, Xinyu; Yu, Yingxin
2017-04-01
Synthetic musks, chemical constituents of personal care products, enter the human body through dermal contact. Elucidation of the mechanisms underlying transdermal permeation of synthetic musks should enhance our understanding of their uptake and distribution in human skin and allow accurate evaluation of associated human exposure. Here, the transdermal permeation dynamics and distribution of galaxolide (HHCB) and tonalide (AHTN) were investigated using an in vitro skin diffusion model. The transdermal permeation amounts of HHCB and AHTN increased rapidly during the first 6 h. The applied HHCB and AHTN amounts did not affect percutaneous absorption rates. HHCB and AHTN remained primarily in the stratum corneum, accounting for 70.0% and 70.3% of the totals during the 24-h period, respectively. The percutaneous absorption rate of both chemicals was ∼11%. HHCB, AHTN, musk ketone, musk xylene, and Musk-T were detected in 29 personal care products. The average total concentrations of the musks were 3990, 54.0, 17.7, and 9.8 μg g -1 in perfume, shampoo, lotion, and shower gel, respectively. Among the four product categories, HHCB was dominant (57.4%-99.6%), followed by AHTN. The data clearly indicate that polycyclic and nitro musks are most commonly used in personal care products. The total estimated dermal intake (51.6 μg kg -1 bw day -1 ) was markedly higher than total dermal uptake (5.9 μg kg -1 bw day -1 ) when percutaneous absorption rates of the chemicals were added into the calculation. Uptake of HHCB and AHTN via dermal contact of personal care products was significantly higher than that from dust inhalation calculated according to earlier literature data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cawello, Willi; Ahrweiler, Sascha; Sulowicz, Wladyslaw; Szymczakiewicz-Multanowska, Agnieszka; Braun, Marina
2012-01-01
To evaluate the influence of different stages of chronic renal insufficiency on the pharmacokinetics and safety/tolerability of the transdermally applied dopamine agonist rotigotine in an open label group comparison including 32 subjects (healthy, mild, moderate or severe impairment of renal function and patients with end-stage renal insufficiency requiring haemodialysis). METHODS All subjects received a single transdermal 10 cm² patch (24 h patch-on period) containing 4.5 mg rotigotine (nominal drug release 2 mg 24 h⁻¹). Main evaluations included relative bioavailability and renal elimination of rotigotine and its metabolites. Point estimates for the ratios between the groups with moderate to severe renal impairment and healthy subjects for the pharmacokinetic parameters AUC(0,t(last) ) and C(max) for the active substance unconjugated rotigotine were near 1:0.88 for AUC and 0.93 for C(max) for moderate renal impairment, 1.14 and 1.18 for severe renal impairment and 1.05 and 1.25 for end-stage renal insufficiency requiring haemodialysis. There was no correlation of these parameters with creatinine clearance. The amount of unconjugated rotigotine excreted into urine and renal clearance decreased with increasing severity of renal insufficiency but had no observable effect on total clearance as the amounts excreted were below 1% of the administered dose. Occurrence of adverse events did not increase with the degree of renal insufficiency. The pharmacokinetic profiles of unconjugated rotigotine were similar in healthy subjects and subjects with impaired renal function indicating that no dose adjustments are required for transdermal rotigotine in patients with different stages of chronic renal insufficiency including patients on haemodialysis. © 2011 UCB Biosciences GmbH. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Cawello, Willi; Ahrweiler, Sascha; Sulowicz, Wladyslaw; Szymczakiewicz-Multanowska, Agnieszka; Braun, Marina
2012-01-01
AIM To evaluate the influence of different stages of chronic renal insufficiency on the pharmacokinetics and safety/tolerability of the transdermally applied dopamine agonist rotigotine in an open label group comparison including 32 subjects (healthy, mild, moderate or severe impairment of renal function and patients with end-stage renal insufficiency requiring haemodialysis). METHODS All subjects received a single transdermal 10 cm2 patch (24 h patch-on period) containing 4.5 mg rotigotine (nominal drug release 2 mg 24 h−1). Main evaluations included relative bioavailability and renal elimination of rotigotine and its metabolites. RESULTS Point estimates for the ratios between the groups with moderate to severe renal impairment and healthy subjects for the pharmacokinetic parameters AUC(0,tlast) and Cmax for the active substance unconjugated rotigotine were near 1:0.88 for AUC and 0.93 for Cmax for moderate renal impairment, 1.14 and 1.18 for severe renal impairment and 1.05 and 1.25 for end-stage renal insufficiency requiring haemodialysis. There was no correlation of these parameters with creatinine clearance. The amount of unconjugated rotigotine excreted into urine and renal clearance decreased with increasing severity of renal insufficiency but had no observable effect on total clearance as the amounts excreted were below 1% of the administered dose. Occurrence of adverse events did not increase with the degree of renal insufficiency. CONCLUSIONS The pharmacokinetic profiles of unconjugated rotigotine were similar in healthy subjects and subjects with impaired renal function indicating that no dose adjustments are required for transdermal rotigotine in patients with different stages of chronic renal insufficiency including patients on haemodialysis. PMID:21707699
Nounou, Mohamed I; Zaghloul, Taha I; Ahmed, Nehal A; Eid, Amira A; El-Khordagui, Labiba K
2017-08-30
Enzymes may offer great potentials in topical pharmaceutical applications provided that treatment conditions are controlled for efficacy and safety. In this study, the effect of alkaline protease produced by recombinant Bacillus subtilis cells on the ex-vivo permeability of rabbit ear skin was investigated under different conditions of enzyme activity (5-60 units) and exposure time (15-60min). Data for transepidermal water loss (TEWL) and permeation of a hydrophilic dye, rhodamine B (Rb), indicated biphasic activity-dependent and exposure time-dependent skin permeability. Maximum effects were obtained at 20 proteolytic units and 30min exposure. Findings proved consistent with histopathological changes indicating progressive stratum corneum (SC) loss and disruption of the dermo-epidermal junction at 20 units and up to 30min exposure time followed by dermal hyalinization at longer exposure. This was associated with progressive loss of skin hair. Applying the identified pretreatment conditions to transdermal delivery of vardenafil in a gel base across dorsal rat skin indicated a significant increase in plasma levels at 30 and 60min with minimal histopathological changes 5days post enzyme treatment. Accordingly, the recombinant B. subtilis alkaline protease offers promise as a pharmaceutical enzyme for transdermal drug delivery bioenhancement and dermatological applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety
Donnelly, Ryan F.; Raj Singh, Thakur Raghu; Woolfson, A. David
2010-01-01
Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN. PMID:20297904
Transdermal iontophoresis of ranitidine: an opportunity in paediatric drug therapy.
Djabri, Asma; Guy, Richard H; Delgado-Charro, M Begoña
2012-10-01
The objective of this study was to examine the use of transdermal iontophoresis for the delivery of ranitidine hydrochloride in children. Constant, direct current, anodal iontophoresis of ranitidine was performed in vitro across dermatomed pig skin. The effect of donor vehicle, current intensity, and drug concentration were first examined using aqueous solutions. It was found that drug delivery was higher at pH 7 (donor: 5mM Tris) than pH 5.6 (donor: water). In the presence of low levels of competing background electrolyte, ranitidine delivery increased linearly with applied current but was independent of the donor drug concentration. The second part of the study evaluated two Pluronic(®) F-127 gels as potential vehicles for ranitidine delivery. The formulations were characterised in terms of apparent viscosity, conductivity and passive permeation measurements. Iontophoretic delivery of ranitidine was only slightly affected when delivered from the gels relative to aqueous solutions. Overall the results demonstrated that therapeutic paediatric doses of ranitidine (neonates: 0.09-0.17 μmol/kg h; 1 month to 12 years: 0.36-0.71 μmol/kg h) could be easily achieved by transdermal iontophoresis with simple gel patches of practical surface area (0.2-1.5 cm(2)/kg). Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of Night-Time Use of Rotigotine on Nocturnal Symptoms in Parkinson's Disease
Vallderiola, Francesc; Compta, Yaroslau; Aparicio, Javier; Tarradellas, Jaume; Salazar, Gabriel; Oliver, Josep María; Callén, Antonio; Delgado, Tania; Nobbe, Fritz
2015-01-01
Objectives. This open-label study assessed the efficacy and safety of exclusive night-time administration of transdermal rotigotine in patients with nocturnal and early morning PD symptoms. Methods. Patients with PD and nocturnal and early morning symptoms received transdermal rotigotine patches (2–16 mg/24 h) applied in the evening and removed in the morning for 3 months. Sleep disturbance was assessed with modified Parkinson's Disease Sleep Scale (PDSS-2). Other outcomes included a pain visual analogue scale (VAS) and short-form Parkinson's Disease Questionnaire (PDQ-8) for quality of life. Results. 74 patients completed treatment in this study. At the end of treatment, PDSS-2 total score had improved by mean 10.9 points from baseline (p < 0.001). All three PDSS-2 domain scores (sleep disturbances, nocturnal motor symptoms, and nocturnal symptoms) were also significantly improved by 41%, 56%, and 48%, respectively (p < 0.001). VAS-pain score decreased from 3.2 to 2.3 (p < 0.001). PDQ-8 score decreased from 23.8 to 18.1 (p < 0.001). The most frequently reported adverse events included nausea (9%), anxiety (4%), and dizziness (4%). Conclusions. Night-time administration of transdermal rotigotine is an effective and well tolerated treatment for nocturnal symptoms in patients with PD. PMID:26576319
Ita, Kevin
2017-06-01
With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.
Rotigotine Transdermal Patch: A Review in Restless Legs Syndrome.
Garnock-Jones, Karly P
2016-07-01
Rotigotine transdermal patch (Leganto(®), Neupro(®)) is indicated for the treatment of restless legs syndrome (RLS); this article reviews the pharmacological properties of rotigotine transdermal patch and its clinical efficacy and tolerability in patients with RLS. The transdermal patch allows for a continuous, stable release of rotigotine (avoiding first-pass metabolism), which in turn leads to continuous receptor stimulation, believed to closely mimic physiological striatal dopamine receptor function. In short-term and 6-month studies, especially at the higher dosages of 2 and 3 mg/24 h, rotigotine transdermal patch was generally associated with a significantly greater improvement in IRLS total score and CGI-S total score than placebo, and rotigotine recipients were generally more likely to respond to treatment and enter remission. In noncomparative extension studies, efficacy was sustained for ≤5 years. Rotigotine transdermal patch is generally well tolerated, and appears to have a tolerability profile that is similar to that of other non-ergolinic dopamine-receptor agonists. The most common adverse events in clinical trials included application-site reactions, nausea, headache and asthenic conditions. The drug has a relatively low risk of clinically significant augmentation of restless legs syndrome symptoms. In conclusion, rotigotine transdermal patch offers continuous administration of the drug in a daily treatment, and is a useful treatment option in patients with RLS.
Sinatra, Raymond
2005-01-01
Inadequate pain control in the postoperative period not only contributes to patient discomfort, but also causes physiological changes that may result in increased risk of myocardial ischaemia, deep vein thrombosis and pulmonary embolism. These events complicate postoperative recovery and may lead to longer hospital stays as well as increased healthcare costs. Patient-controlled analgesia (PCA) has emerged as an effective way for patients to manage their pain, allowing self-administration of small doses of analgesics to maintain a certain level of pain control. PCA is most commonly delivered via an intravenous (IV) or epidural route, and while patient satisfaction is higher with PCA than with conventional methods of analgesic administration, the invasiveness, costs and risk of errors associated with currently available modalities may limit their utility. These systems also require significant healthcare resources, as nurses must manually program the pumps to deliver the correct amount of medication. Several new PCA modalities are being developed to address these limitations. These systems deliver drug through a variety of routes, including nasal transmucosal and transdermal. Most notably, a self-contained, credit card-sized, transdermal PCA system is currently in the final stages of development. The fentanyl HCl patient-controlled transdermal system (PCTS; IONSYS, Ortho-McNeil Pharmaceutical, Inc., Raritan, NJ) uses an imperceptible, low-intensity direct current to transfer fentanyl on demand across the skin into the systemic circulation. This compact system is patient-activated, can be applied to the patient's upper arm or chest, and is designed to manage moderate-to-severe pain requiring opioid analgesia. The system delivers a preprogrammed amount of fentanyl HCI over 10 minutes, for a total of 80 doses, or for 24 hours, whichever occurs first. The on-demand dosing and pharmacokinetics of this system differentiate it from the passive transdermal formulation of fentanyl designed for the management of chronic pain. Clinical studies have shown that the fentanyl HCl PCTS is effective in the management of acute postoperative pain. These studies have also demonstrated that the system is safe and well tolerated by patients.
In Vitro and Ex Vivo Evaluations on Transdermal Delivery of the HIV Inhibitor IQP-0410
Ham, Anthony S.; Lustig, William; Yang, Lu; Boczar, Ashlee; Buckheit, Karen W.; Buckheit Jr, Robert W.
2013-01-01
The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w) IQP-0410. Composed of 60% (w/w) ethyl cellulose and 20% (w/w) HPMC, the films contained < 1.2% (w/w) of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS) and 0.58 ± 0.03 nM (PBMC). The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants further development. PMID:24058672
Zhang, Yong; Sadgrove, Matthew P; Mumper, Russell J; Jay, Michael
2013-10-01
The threat of nuclear terrorism by the deliberate detonation of a nuclear weapon or radiological dispersion device ("dirty bomb") has made emergency response planning a priority. The only FDA-approved treatments for contamination with isotopes of the transuranic elements Am, Pu, and Cm are the Ca and Zn salts of diethylenetriaminepentaacetic acid (DTPA). These injectable products are not well suited for use in a mass contamination scenario as they require skilled professionals for their administration and are rapidly cleared from the circulation. To overcome the mismatch in the pharmacokinetics of the DTPA and the biokinetics of these transuranic elements, which are slowly released from contamination sites, the penta-ethyl ester of DTPA (C2E5) was prepared and formulated in a nonaqueous gel for transdermal administration. When gels comprised of 40% C2E5, 40-45% Miglyol® 840, and 15-20% ethyl cellulose were spiked with [(14)C]-C2E5 and applied to rat skin; over 60% of the applied dose was absorbed within a 24-h period. Radioactivity was observed in urinary and fecal excretions for over 3 days after removal of the gel. Using an (241)Am wound contamination model, transdermal C2E5 gels were able to enhance total body elimination and reduce the liver and skeletal burden of (241)Am in a dose-dependent manner. The efficacy achieved by a single 1,000 mg/kg dose to contaminated rats was statistically comparable to intravenous Ca-DTPA at 14 mg/kg. The effectiveness of this treatment, favorable sustained release profile of pro-chelators, and ease of administration support its use following radiological emergencies and for its inclusion in the Strategic National Stockpile.
Dayal, Pankaj; Kanikkannan, Narayanasamy; Singh, Amarjit; Sing, Mandip
2002-03-01
Nimesulide is a non-steroidal anti-inflammatory drug (NSAID) applied topically for a variety of conditions characterized by pain and inflammation. One of the aims of this study was to compare the permeation profile of nimesulide from the commercially available transdermal gel formulations across dermatomed porcine and human skin. The in vitro transdermal absorption of nimesulide formulations across porcine skin and human skin was studiedfor 24 hr using a continuous flow-through diffusion cell. The three commercial gels used in this study were Nimulid, Nise Gel, and Orthobid. All gels contained 1% (w/w) nimesulide. An infinite dose of nimesulide gel (about 300mg) was applied on the skin over 0.636 cm2 surface area. The rank order for the drug permeation from these formulations using porcine skin was: Nimulid > Orthobid > Nise Gel. The rank order of the permeation across human skin was: Nimulid> Nise Gel> Orthobid. The permeation profiles followed zero-order kinetics without any significant lag time. The steady-state flux of nimesulide from Nimulid was significantly higher than that of Nise Gel and Orthobid in both porcine and human skin (p <.05). However, there were no significant differences in the delivery of nimesulide (24 hr) from Nise Gel and Orthobid across both human and porcine skins. The results suggest that the Nimulid gel may have a greater bioavailability of nimesulide compared to the other gels. In addition, permeation profiles of the various gels across porcine skin did show a positive profile behavior to human skin. However, the in vitro drug release of nimesulide gels across a synthetic membrane did not correlate with skin permeation profiles.
Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L
2012-03-01
The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.
USDA-ARS?s Scientific Manuscript database
The objectives were to determine the effects of altering time of transdermal flunixin meglumine (BTD; Banamine Transdermal, Merck Animal Health) administration relative to a viral-bacterial challenge in beef heifers. Thirty-two heifers (170 ± 21.1 kg BW) were assigned to one of four treatments: 1) C...
USDA-ARS?s Scientific Manuscript database
A trial was conducted to determine effects of altering time of transdermal flunixin meglumine (BTD; Banamine Transdermal, Merck Animal Health, Summit, NJ) administration relative to a viral-bacterial respiratory disease challenge in beef heifers. Thirty-two healthy heifers (170±21.1 kg BW) were assi...
Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong
2016-06-15
Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.
Droplet microfluidics with a nanoemulsion continuous phase.
Gu, Tonghan; Yeap, Eunice W Q; Somasundar, Ambika; Chen, Ran; Hatton, T Alan; Khan, Saif A
2016-07-05
We present the first study of a novel, generalizable method that uses a water-in-oil nanoemulsion as the continuous phase to generate uniform aqueous micro-droplets in a capillary-based microfluidic system. We first study the droplet generation mechanism in this system and compare it to the more conventional case where a simple oil/solvent (with surfactant) is used as the continuous phase. Next, we present two versatile methods - adding demulsifying chemicals and heat treatment - to allow active online chemical interaction between the continuous and dispersed phases. These methods allow each generated micro-droplet to act as a well-mixed micro-reactor with walls that are 'permeable' to the nanoemulsion droplets and their contents. Finally, we demonstrate an application of this system in the fabrication of uniform hydrogel (alginate) micro-beads with control over particle properties such as size and swelling. Our work expands the toolbox of droplet-based microfluidics, enabling new opportunities and applications involving active colloidal continuous phases carrying chemical payloads, both in advanced materials synthesis and droplet-based screening and diagnostic methods.
Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian
2015-11-15
The influence of carrier oil type on the bioaccessibility of vitamin D3 encapsulated within oil-in-water nanoemulsions prepared using a natural surfactant (quillaja saponin) was studied using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. The rate of free fatty acid release during lipid digestion decreased in the following order: medium chain triglycerides (MCT) > corn oil ≈ fish oil > orange oil > mineral oil. Conversely, the measured bioaccessibility of vitamin D3 decreased in the following order: corn oil ≈ fish oil > orange oil > mineral oil > MCT. These results show that carrier oil type has a considerable impact on lipid digestion and vitamin bioaccessibility, which was attributed to differences in the release of bioactives from lipid droplets, and their solubilization in mixed micelles. Nanoemulsions prepared using long chain triglycerides (corn or fish oil) were most effective at increasing vitamin bioaccessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perumal, O; Murthy, S N; Kalia, Y N
2013-01-01
Despite its remarkable barrier function, the skin remains an attractive site for systemic drug delivery given its easy accessibility, large surface area and the possibility to bypass the gastrointestinal tract and the liver and so modify drug absorption kinetics. The pioneering work of Scheuplein, Higuchi and others in the 1960s helped to explain the processes involved in passive percutaneous absorption and led to the development of mathematical models to describe transdermal drug delivery. The intervening years have seen these theories turned to practice and a significant number of transdermal systems are now available including some that employ active drug delivery. This review briefly discusses the evolution of transdermal therapeutic systems over the years and the potential of newer transdermal technologies to deliver hydrophilic drugs and macromolecules through the skin. © 2013 S. Karger AG, Basel.
Preparation and Characterization of a Lecithin Nanoemulsion as a Topical Delivery System
NASA Astrophysics Data System (ADS)
Zhou, Huafeng; Yue, Yang; Liu, Guanlan; Li, Yan; Zhang, Jing; Gong, Qiu; Yan, Zemin; Duan, Mingxing
2010-01-01
Purpose of this study was to establish a lecithin nanoemulsion (LNE) without any synthetic surfactant as a topical delivery vehicle and to evaluate its topical delivery potential by the following factors: particle size, morphology, viscosity, stability, skin hydration and skin penetration. Experimental results demonstrated that an increasing concentration of soybean lecithin and glycerol resulted in a smaller size LNE droplet and increasing viscosity, respectively. The droplet size of optimized LNE, with the glycerol concentration above 75% (w/w), changed from 92 (F10) to 58 nm (F14). Additionally, LNE, incorporated into o/w cream, improved the skin hydration capacity of the cream significantly with about 2.5-fold increase when the concentration of LNE reached 10%. LNE was also demonstrated to improve the penetrability of Nile red (NR) dye into the dermis layer, when an o/w cream, incorporated with NR-loaded LNE, applied on the abdominal skin of rat in vivo. Specifically, the arbitrary unit (ABU) of fluorescence in the dermis layer that had received the cream with a NR-loaded LNE was about 9.9-fold higher than the cream with a NR-loaded general emulsion (GE). These observations suggest that LNE could be used as a promising topical delivery vehicle for lipophilic compounds.
Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.
2015-01-01
Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161
NASA Astrophysics Data System (ADS)
de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.
2015-04-01
The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.
Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca
2018-02-05
In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.
Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.
Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T
2017-12-01
Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.
del Rio-Sancho, S; Serna-Jiménez, C E; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Merino, V; López-Castellano, A
2012-09-01
The transdermal administration of memantine may have advantages with respect to oral therapy when treating advanced stages of Alzheimer's disease. With the ultimate objective of administrating memantine through a transdermal patch, the absorption of the drug across skin was evaluated by means of in vitro permeation studies. The effect of several chemical enhancers was studied in order to enhance percutaneous absorption of the memantine. The iontophoretic transdermal transport of memantine hydrochloride using a current density of 0.5 mA/cm(2) was also investigated. Results demonstrated that pre-treatment of the skin with R-(+)-limonene, laurocapram, decenoic acid, or oleic acid produced a statistically significant increment in the transdermal flux of memantine hydrochloride with respect to the control. Iontophoresis exhibited the greatest ability to enhance the flux of drug with respect to the control; nevertheless, the results obtained with R-(+)-limonene indicate that this compound could be of great use as a percutaneous enhancer in a memantine transdermal delivery system. In this study, the relationship between enhancement activity and lipophilicity was also studied. Satisfactory correlations have been obtained between the optimum lipophilicity of the enhancer and n-octanol/water partition coefficients of drugs. This relationship is a very useful tool that could allow to reduce time and to optimize the selection of appropriate enhancers for transdermal formulations. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Time of flunixin meglumine transdermal (FTD; Finadyne Transdermal, Merck Animal Health, Summit, NJ) administration relative to a viral-bacterial challenge was evaluated in beef heifers. Thirty-two beef heifers (170 ± 21.1 kg BW) were randomly assigned to one of four treatments: 1) Control (CON), rec...
Transdermal nitroglycerin for the treatment of preterm labor: a systematic review and metaanalysis.
Conde-Agudelo, Agustín; Romero, Roberto
2013-12-01
The purpose of this study was to evaluate the efficacy and safety of transdermal nitroglycerin as a tocolytic agent in women with preterm labor. We conducted a systematic review and metaanalysis of randomized controlled trials. Thirteen studies were included (1302 women) comparing transdermal nitroglycerin vs placebo (2 studies; n = 186); β2-adrenergic receptor agonists (9 studies; n = 1024); nifedipine (1 study; n = 50); and magnesium sulfate (1 study; n = 42). There were no significant differences between transdermal nitroglycerin and placebo for delivery within 48 hours of the initiation of treatment or at <28, <34, or <37 weeks of gestation, adverse neonatal outcomes, and neurodevelopmental status at 24 months of life. Nevertheless, 1 study found a marginally significant reduction in the risk of a composite outcome of major neonatal morbidity and perinatal death (3/74 [4.1%] vs 11/79 [13.9%]; relative risk, 0.29; 95% confidence interval, 0.08-1.00). When compared with β2-adrenergic receptor agonists, transdermal nitroglycerin was associated with a significant reduction in the risk of preterm birth at <34 and <37 weeks of gestation, admission to the neonatal intensive care unit, use of mechanical ventilation, and maternal side effects. There were no significant differences between transdermal nitroglycerin and nifedipine and magnesium sulfate in delivery within 48 hours of treatment and pregnancy prolongation, respectively. Overall, women who received transdermal nitroglycerin had a higher risk of headache. Although transdermal nitroglycerin appears to be more effective than β2-adrenergic receptor agonists, the current evidence does not support its routine use as a tocolytic agent for the treatment of preterm labor. Further double-blind placebo-controlled trials are needed. Copyright © 2013 Mosby, Inc. All rights reserved.
3D printing applications for transdermal drug delivery.
Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis
2018-06-15
The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Ziv, I; Versano, D; Ruach, M; Izraeli, S; Almog, S; Alhalel, A; Alkalay, M; Menahem, S; Tochner, Z
1992-01-01
1. The value of low dosage of pyridostigmine (30 mg three times daily) in preventing peripheral anti-muscarinic side effects of a transdermal controlled-release formulation of hyoscine, was tested in a double-blind placebo-controlled study, involving 47 healthy subjects. 2. Salivary excretion was repeatedly measured during 48 h of combined therapy of two transdermal hyoscine patches with pyridostigmine and 14 h after its cessation. Blood acetylcholinesterase activity was also measured, serving as an index of pyridostigmine bioavailability. 3. The adjunctive therapy with pyridostigmine was highly effective in preventing the substantial impairment in salivary flow caused by the transdermal formulation. An associated 23% inhibition of blood acetylcholinesterase activity was observed. 4. Small doses of pyridostigmine may therefore have a role in increasing the tolerability of transdermal hyoscine therapy. In some patients this drug combination might also allow some increment of the hyoscine dose. PMID:1524963
Organogels in Drug Delivery: A Special Emphasis on Pluronic Lecithin Organogels.
Alsaab, Hashem; Bonam, Sindhu Prabha; Bahl, Dherya; Chowdhury, Pallabita; Alexander, Kenneth; Boddu, Sai Hs
2016-01-01
Organogels have emerged as an alternative carrier for small and macromolecules via transdermal, oral, rectal and ophthalmic routes. Pluronic lecithin organogels (PLO gels) are lecithin-based organogels widely used in compounding pharmacies as a vehicle for enhancing the transdermal permeability of many therapeutic drugs. However, the scientific and systematic evidence in support of how well PLO gels help in transdermal delivery is scanty. Recently, some clinical studies have reported nearly complete lack of bioavailability of certain topically administered drugs from PLO gels. The present review aims at summarizing gels and organogels, with a focus on the use of PLO gels in transdermal drug delivery. A special emphasis is placed on controversies looming over the use of PLO gels as a delivery platform for drugs via transdermal route. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Experimental motion sickness - Efficacy of transdermal scopolamine plus ephedrine
NASA Technical Reports Server (NTRS)
Graybiel, A.; Cramer, D. B.; Wood, C. D.
1981-01-01
A double-blind, placebo-controlled study compared the efficacy of transdermal therapeutic system-scopolamine administered alone and combined with ephedrine sulfate given orally in doses of 12.5, 25, and 50 mg. Eight normal male students were exposed to stressful accelerations in a slow-rotation room after receiving 10 apparently identical treatments comprising the four drugs and six placebos. Efficacy of the drug was defined in terms of the placebo range and categorized as beneficial, inconsequential, or detrimental. None of the effects was detrimental. Overall beneficial effects were 60% for transdermal therapeutic system-scopolamine (plus placebo) and 57% for the three transdermal therapeutic system-scopolamine plus ephedrine combinations.
Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.
Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin
2017-01-01
There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Enhanced in Vivo Delivery of 5-Fluorouracil by Ethosomal Gels in Rabbit Ear Hypertrophic Scar Model
Wo, Yan; Zhang, Zheng; Zhang, Yixin; Zhang, Zhen; Wang, Kan; Mao, Xiaohui; Su, Weijie; Li, Ke; Cui, Daxiang; Chen, Jun
2014-01-01
Applying Ethosomal Gels (EGs) in transdermal drug delivery systems has evoked considerable interest because of their good water-solubility and biocompatibility. However, there has not been an explicit description of applying EGs as a vehicle for hypertrophic scars treatment. Here, a novel transdermal EGs loaded with 5-fluorouracil (5-FU EGs) was successfully prepared and characterized. The stability assay in vitro revealed that 5-FU EGs stored for a period of 30 days at 4 ± 1 °C had a better size stability than that at 25 ± 1 °C. Furthermore, using confocal laser scanning microscopy, EGs labeled with Rhodamine 6 G penetrated into the deep dermis of the hypertrophic scar within 24 h in the rabbit ear hypertrophic model suggested that the EGs were an optional delivery carrier through scar tissues. In addition, the value of the Scar Elevation Index (SEI) of 5-FU EGs group in the rabbit ear scar model was lower than that of 5-FU Phosphate Buffered Saline gel and Control groups. To conclude, these results suggest that EGs delivery system loaded 5-fluorouracil is a perfect candidate drug for hypertrophic scars therapy in future. PMID:25501333
NASA Astrophysics Data System (ADS)
Silveira, F. L. F. D.; Barja, P. R.; Acosta-Avalos, D.
2010-03-01
The photoacoustic (PA) technique has been increasingly employed in biomedical studies, allowing in vivo skin measurements not easily performed with other techniques. It is possible to use PA measurements to evaluate transdermal delivery of products topically applied through manual massage or phonophoresis, that is the utilization of ultrasound waves to enhance drug absorption. The aim of this study was to analyze the influence of the period of phonophoresis application in the transdermal penetration of piroxicam gel. In vivo PA measurements employed a tungsten lamp as light source and a thin aluminum foil closing the PA chamber. The PA signals of the arm (i) clean; and (ii) after phonophoresis were utilized to estimate the concentration of piroxicam into skin. For all (4) volunteers, drug concentration in skin after phonophoresis application was the same for the different application times employed; in this way, phonophoresis for one minute seemed to be sufficient to enhance piroxicam penetration into skin. The actual amount of drug delivered into tissue depends on the person, suggesting a dependency with the skin type, which affects the PA signal level [2]. We conclude that drug delivery depends not only on the application method, but also on the specific skin type.
Chen, Jun; Hu, Wei; Qu, Ye-Qing; Dong, Jie; Gu, Wei; Gao, Ying; Fang, Yun; Fang, Fang; Chen, Zhi-Peng; Cai, Bao-Chang
2013-04-01
Before the design of brucine-containing transdermal formulations, the pharmacodynamics and pharmacokinetics of brucine following transdermal administration should be evaluated. In this study, the effect of addition of ethanol on solubility of bruicne was investigated and 20% ethanol was added into PBS to obtain 10mg/mL brucine solution. Then three transdermal doses (10, 20 and 40 mg/kg) were administered to mice to evaluate pharmacological activity. It had been demonstrated that brucine possessed analgesic and anti-inflammatory activity in a dose-dependent manner. Cytotoxicities of brucine against various tumor cells including skin tumor cell were also compared in vitro. Brucine was found to possess antitumor activity in a concentration and time-dependent manner and gastrointestinal tumor cells seemed to be more sensitive to brucine. Then in vitro skin permeation behavior and in vivo pharmacokinetics following transdermal administration were further investigated. The cumulative amounts of brucine across mouse skin in vitro were found to be higher than 90%. The absolute bioavailability of brucine was determined to be 40.83%. And compared with intravenous administration, MRT and T1/2 values were increased about 8~12-fold by transdermal route. Moreover, fluctuations of drug levels were found to be significantly decreased in tissues, especially in brain. Finally, no dermal toxicity of brucine was observed. The results of this study indicated that transdermal administration might be beneficial for the sustained efficacy and reduced toxicity of brucine. Copyright © 2013 Elsevier B.V. All rights reserved.
Transdermal fentanyl: pharmacology and toxicology.
Nelson, Lewis; Schwaner, Robert
2009-12-01
To evaluate the underlying pharmacology, safety, and misuse/abuse of transdermal fentanyl, one of the cornerstone pharmacotherapies for patients with chronic pain. Literature was identified through searches of Medline (PubMed) and several textbooks in the areas of pharmacology, toxicology, and pain management. A bibliographical review of articles identified by these searches was also performed. Search terms included combinations of the following: fentanyl, transdermal, patch, pharmacology, kinetics, toxicity, and poisoning. All pertinent clinical trials, retrospective studies, and case reports relevant to fentanyl pharmacology and transdermal fentanyl administered by any route and published in English were identified. Each was reviewed for data regarding the clinical pharmacology, abuse, misuse, and safety of transdermal fentanyl. Data from these studies and information from review articles and pharmaceutical prescribing information were included in this review. Fentanyl is a high-potency opioid that has many uses in the treatment of both acute and chronic pain. Intentional or unintentional misuse, as well as abuse, may lead to significant clinical consequences, including death. Both the US Food and Drug Administration (FDA) and Health Canada have warned of potential pitfalls associated with transdermal fentanyl, although these have not been completely effective in preventing life-threatening adverse events and fatalities related to its inappropriate use. Clinically consequential adverse effects may occur unexpectedly with normal use of transdermal fentanyl, or if misused or abused. Misuse and therapeutic error may be largely preventable through better education at all levels for both the prescriber and patient. The prevention of intentional misuse or abuse may require regulatory intervention.
Rotigotine transdermal patch for the treatment of Parkinson's Disease.
Perez-Lloret, Santiago; Rey, María Verónica; Ratti, Pietro Lucca; Rascol, Olivier
2013-02-01
Rotigotine, a non-ergot dopamine agonist, has been developed as a novel transdermal formulation. The rotigotine transdermal patch has received EMEA marketing authorization for the treatment of adult patients with early or advanced Parkinson's disease (PD) or with moderate to severe restless legs syndrome (RLS). FDA originally granted a marketing authorization for early PD, which was later suspended, and is now studying the authorization for RLS. The aim of this review is to review the pharmacokinetics, pharmacodynamics as well as the clinical efficacy and tolerability of the rotigotine transdermal patch in PD. Source material was identified using a PubMed search for the term 'rotigotine' and PD. Articles published up to January 2011 or abstract submitted to most relevant international neurology congresses were reviewed. The rotigotine transdermal patch is efficacious for the treatment of PD. Tolerability profile appears to be well within the range of that observed with other non-ergot dopamine agonists in PD. Application-site reactions were the most frequent adverse event, and they were considered mild to moderate in the majority of cases. The rotigotine transdermal patch offers a safe and efficacious alternative for the treatment of PD. Further studies should focus on the possibility that continuous dopamine stimulation by means of the transdermal patch has any influence on levodopa-related motor complications. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.
Wang, Xiaoqin; Xu, Weidong; Mohapatra, Subhra; Kong, Xiaoyuan; Li, Xu; Lockey, Richard F; Mohapatra, Shyam S
2008-01-01
Background Asthma is a complex disease, characterized by reversible airway obstruction, hyperresponsiveness and chronic inflammation. Principle pharmacologic treatments for asthma include bronchodilating beta2-agonists and anti-inflammatory glucocorticosteroids; but these agents do not target the main cause of the disease, the generation of pathogenic Th2 cells. We previously reported reduction in allergic inflammation in mice deficient in the ANP receptor NPRA. Here we determined whether siRNA for natriuretic peptide receptor A (siNPRA) protected against asthma when administered transdermally. Methods Imiquimod cream mixed with chitosan nanoparticles containing either siRNA green indicator (siGLO) or siNPRA was applied to the skin of mice. Delivery of siGLO was confirmed by fluorescence microscopy. The anti-inflammatory activity of transdermal siNPRA was tested in OVA-sensitized mice by measuring airway hyperresponsiveness, eosinophilia, lung histopathology and pro-inflammatory cytokines. Results SiGLO appearing in the lung proved the feasibility of transdermal delivery. In a mouse asthma model, BALB/c mice treated with imiquimod cream containing siNPRA chitosan nanoparticles showed significantly reduced airway hyperresponsiveness, eosinophilia, lung histopathology and pro-inflammatory cytokines IL-4 and IL-5 in lung homogenates compared to controls. Conclusion These results demonstrate that topical cream containing imiquimod and siNPRA nanoparticles exerts an anti-inflammatory effect and may provide a new and simple therapy for asthma. PMID:18279512
Transdermal drug delivery enhanced by low voltage electropulsation (LVE).
Sammeta, S M; Vaka, Siva Ram K; Murthy, S Narasimha
2009-01-01
The efficiency of low voltage electropulsation (LVE) technique for delivery of drugs and macromolecules across the skin was investigated. The in vitro studies were carried out across the porcine epidermis in Franz diffusion cells using salicylic acid and fluorescein labeled Dextran of molecular weight 10,000 Da (FD10K). LVE enhanced the transport of salicylic acid and FD10K by approximately 4-fold and approximately 2-fold, respectively over the control. The potential application of LVE in transdermal drug delivery was studied in the case of lidocaine hydrochloride. The transport of lidocaine hydrochloride was enhanced by approximately 8-fold over the control. The transport enhancement by LVE was compared with that of 1 min and 20 min constant DC iontophoresis at 0.5 mA/cm(2). Iontophoresis applied for 1 min delivers equivalent electrical dose as that of LVE (50 ms pulses for 20 min at 1 Hz) in the current set up. The transport by application of iontophoresis for 1 min was significantly less than the control (passive diffusion for 20 min). However, the application of iontophoresis for 20 min (electrical dose approximately 20-fold more than that of LVE) resulted in comparable drug transport as that of LVE. It is evident from the results of this experiment that the transdermal delivery of drugs could be enhanced by LVE which is a rather mild technique than electroporation or iontophoresis.
Kattou, Panayiotis; Lian, Guoping; Glavin, Stephen; Sorrell, Ian; Chen, Tao
2017-10-01
The development of a new two-dimensional (2D) model to predict follicular permeation, with integration into a recently reported multi-scale model of transdermal permeation is presented. The follicular pathway is modelled by diffusion in sebum. The mass transfer and partition properties of solutes in lipid, corneocytes, viable dermis, dermis and systemic circulation are calculated as reported previously [Pharm Res 33 (2016) 1602]. The mass transfer and partition properties in sebum are collected from existing literature. None of the model input parameters was fit to the clinical data with which the model prediction is compared. The integrated model has been applied to predict the published clinical data of transdermal permeation of caffeine. The relative importance of the follicular pathway is analysed. Good agreement of the model prediction with the clinical data has been obtained. The simulation confirms that for caffeine the follicular route is important; the maximum bioavailable concentration of caffeine in systemic circulation with open hair follicles is predicted to be 20% higher than that when hair follicles are blocked. The follicular pathway contributes to not only short time fast penetration, but also the overall systemic bioavailability. With such in silico model, useful information can be obtained for caffeine disposition and localised delivery in lipid, corneocytes, viable dermis, dermis and the hair follicle. Such detailed information is difficult to obtain experimentally.
Formulation and pharmacokinetics of diclofenac lipid nanoemulsions for parenteral application.
Ramreddy, Srividya; Kandadi, Prabhakar; Veerabrahma, Kishan
2012-01-01
The objective of the present study was to formulate and determine the pharmacokinetics of stable o/w parenteral lipid nanoemulsions (LNEs) of diclofenac acid used to treat arthritic conditions. The LNEs of diclofenac acid with a mean size ranging from 200 to 240 nm and a zeta potential of -29.4 ± 1.04 mV (negatively charged LNEs) and 62.1 ± 3.5 (positively charged LNEs) emulsions were prepared by hot homogenization and ultrasonication process. The influence of formulation variables, such as the change in proportion of cholesterol, was studied, and optimized formulations were developed. The optimized formulations were relatively stable during centrifugal stress, dilution stress, and storage. The drug content and entrapment efficiency were determined using high-performance liquid chromatography. The in vitro drug release was carried out in phosphate-buffered saline pH 7.4 and cumulative amount of drug released was estimated using a UV-visible spectro-photometer. During in vivo pharmacokinetic studies in male Wistar rats, diclofenac serum concentration from LNEs was higher than that of Voveran injection and was detectable up to 12 h. Diclofenac in LNEs showed improved pharmacokinetic profile with increase in area under the curve, elimination half-life and mean residence time in comparison to Voveran. Our aim was to prepare and determine the pharmacokinetics of injectable lipid nanoemulsions of diclofenac acid for treating arthritic conditions by reducing the frequency of dosing and pain at site of injection. The nanoemulsions of diclofenac acid were prepared by homogenization and ultrasonication process. The sizes and charges of oil globules were determined. The effect of cholesterol on stability of emulsion was studied, and an optimized preparation was developed. The optimized formulations were stable during centrifugation, dilution, and storage. The total amount of drug in emulsion and percentage amount of drug present in emulsion globules were determined using high-performance liquid chromatography. The drug release from preparation was carried out in phosphate-buffered saline pH 7.4. The cumulative amount of drug released was estimated using a spectrophotometer. The time course of the released drug in rat serum was determined. Diclofenac concentrations from lipid nanoemulsions were higher than that of Voveran injection (solution form) in serum.
NASA Astrophysics Data System (ADS)
Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.
2015-07-01
Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03474d
Gumus, Z Pinar; Guler, Emine; Demir, Bilal; Barlas, F Baris; Yavuz, Murat; Colpankan, Dilara; Senisik, A Murat; Teksoz, Serap; Unak, Perihan; Coskunol, Hakan; Timur, Suna
2015-09-01
The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles.
Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Er-Rafik, Mériem; Blanck, C; Schmutz, Marc; Kraus, Isabelle; Messaddeq, Nadia; Sutter, Christophe; Anton, Halina; Klymchenko, Andrey S; Vandamme, Thierry F
2015-09-30
In this study, we report on a novel method for the synthesis of poly(acrylamide) Trojan microparticles containing ketoprofen loaded poly(ethyl acrylate) or poly(methyl acrylate) nanoparticles. To develop these composite particles, a polymerizable nanoemulsion was used as a template. This nanoemulsion was obtained in an elongational-flow micromixer (μRMX) which was linked to a capillary-based microfluidic device for its emulsification into micron range droplets. Downstream, the microdroplets were hardened into Trojan particles in the size range of 213-308 μm by UV initiated free radical polymerization. The nanoemulsion size varied from 98 -132 nm upon changes in surfactant concentration and number of operating cycles in μRMX. SEM and confocal microscopy confirmed the Trojan morphology. Under SEM it was observed that the polymerization reduced the size of the nanoemulsion down to 20-32 nm for poly(ethyl acrylate) and 10-15 nm for poly(methyl acrylate) nanoparticles. This shrinkage was confirmed by cryo-TEM studies. We further showed that Trojan microparticles released embedded nanoparticles on contact with suitable media as confirmed by transmission electron microscopy. In a USP phosphate buffer solution of pH 6.8, Trojan microparticles containing poly(ethyl acrylate) nanoparticles released 35% of encapsulated ketoprofen over 24h. The low release of the drug was attributed to the overall low concentration of nanoparticles and attachment of some of nanoparticles to the poly(acrylamide) matrix. Thus, this novel method has shown possibility to develop Trojan particles convieniently with potential to deliver nanoparticles in the gastrointestinal tract. Copyright © 2015 Elsevier B.V. All rights reserved.
Ultrasound mediated transdermal drug delivery.
Azagury, Aharon; Khoury, Luai; Enden, Giora; Kost, Joseph
2014-06-01
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Ise, Yuya; Wako, Tetsuya; Miura, Yoshihiko; Katayama, Shirou; Shimizu, Hisanori
2009-12-01
The present study was undertaken to determine the pharmacoeconomics of switching from sustained-release morphine tablet to matrix type (MT) of transdermal fontanel or sustained-release Oxycodone tablet. Cost-effective analysis was performed using a simulation model along with decision analysis. The analysis was done from the payer's perspective. The cost-effective ratio/patient of transdermal MT fontanel (22, 539 yen)was lower than that of sustained -release Oxycodone tablet (23, 630 yen), although a sensitivity analysis could not indicate that this result was reliable. These results suggest the possibility that transdermal MT fontanel was much less expensive than a sustained-release Oxycodone tablet.
Cationic nanoemulsions as nucleic acids delivery systems.
Teixeira, Helder Ferreira; Bruxel, Fernanda; Fraga, Michelle; Schuh, Roselena Silvestri; Zorzi, Giovanni Konat; Matte, Ursula; Fattal, Elias
2017-12-20
Since the first clinical studies, knowledge in the field of gene therapy has advanced significantly, and these advances led to the development and subsequent approval of the first gene medicines. Although viral vectors-based products offer efficient gene expression, problems related to their safety and immune response have limited their clinical use. Thus, design and optimization of nonviral vectors is presented as a promising strategy in this scenario. Nonviral systems are nanotechnology-based products composed of polymers or lipids, which are usually biodegradable and biocompatible. Cationic liposomes are the most studied nonviral carriers and knowledge about these systems has greatly evolved, especially in understanding the role of phospholipids and cationic lipids. However, the search for efficient delivery systems aiming at gene therapy remains a challenge. In this context, cationic nanoemulsions have proved to be an interesting approach, as their ability to protect and efficiently deliver nucleic acids for diverse therapeutic applications has been demonstrated. This review focused on cationic nanoemulsions designed for gene therapy, providing an overview on their composition, physicochemical properties, and their efficacy on biological response in vitro and in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Ribeiro, Renato Cesar de Azevedo; Barreto, Stella Maria de Andrade Gomes; Ostrosky, Elissa Aarantes; da Rocha-Filho, Pedro Alves; Veríssimo, Lourena Mafra; Ferrari, Márcio
2015-02-02
This study aimed to produce and characterize an oil in water (O/W) nanoemulsion containing Opuntia ficus-indica (L.) Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX) and 0.5% of xanthan gum and 1% of Opuntia ficus-indica MILL extract (FXE) were white, homogeneus and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5-6.0); droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI) around 0.200 and a zeta potential from -26.71 to -47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L.) Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.
Edible lipid nanoparticles: digestion, absorption, and potential toxicity.
McClements, David Julian
2013-10-01
Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Han, In Hee; Choi, Sung-Up; Nam, Dae Young; Park, Young Mi; Kang, Myung Joo; Kang, Kyoung Hoon; Kim, Yong Min; Bae, Gunho; Oh, Il Young; Park, Jong Hyeok; Ye, Jin Soo; Choi, Yoon Bae; Kim, Duk Ki; Lee, Jaehwi; Choi, Young Wook
2010-02-01
As an initial step to develop the transdermal delivery system of glucosamine hydrochloride (GL-HCl), the permeation study across the rat skin in vitro was performed to identify the most efficient vehicle with regard to the ability to deliver GL-HCl transdermally. The GL-HCl formulations such as o/w cream, liposome suspension, liposomal gel, and liquid crystalline vehicles were prepared and compared for transdermal flux of GL-HCl. The liquid crystalline vehicles were more effective in increasing the skin permeation of GL-HCl than o/w cream and liposomal vehicles. Of the liquid crystalline vehicles tested, the permeation enhancing ability of the cubic phase was greater than that of the hexagonal phase when the nanoparticle dispersion was used. The skin permeation enhancing ability of the cubic nanoparticles for GL-HCl was further increased by employing both oleic acid and polyethylene glycol 200. Therefore, the cubic liquid crystalline nanodispersion containing oleic acid and PEG 200 can provide a possibility of clinical application of transdermal GL-HCl.
Prodrugs for transdermal drug delivery - trends and challenges.
Ita, Kevin B
2016-09-01
Prodrugs continue to attract significant interest in the transdermal drug delivery field. These moieties can confer favorable physicochemical properties on transdermal drug delivery candidates. Alkyl chain lengthening, pegylation are some of the strategies used for prodrug synthesis. It is usually important to optimize partition coefficient, water and oil solubilities of drugs. In this review, progress made in the field of prodrugs for percutaneous penetration is highlighted and the challenges discussed.
A case of overdose via tattoo.
Borg, Roberta; Ashton, Antony
2015-08-01
Transdermal fentanyl patches are used frequently for the management of both acute and chronic pain. Adverse events with their use, in particular overdose, are not uncommon. We describe a case of fentanyl overdose from transdermal patch placed over a five-day old tattoo. The report will review the pharmacology of transdermal fentanyl and the physiology of tattooing, as well as the potential link between the two, which may have lead to the overdose.
Rao, Yue-feng; Chen, Wei; Liang, Xing-guang; Huang, Yong-zhuo; Miao, Jing; Liu, Lin; Lou, Yan; Zhang, Xing-guo; Wang, Ben; Tang, Rui-kang; Chen, Zhong; Lu, Xiao-yang
2015-01-14
The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI-SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI-SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g(-1) . They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI-SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hair, W M; Kitteridge, K; O'Connor, D B; Wu, F C
2001-11-01
This study investigated the effect of transdermal T and oral desogestrel on the reproductive axis of healthy men. Twenty-three men were randomized to 1 of 3 treatment groups and received a daily transdermal T patch plus oral desogestrel at a dose of 75, 150, or 300 microg/d for 24 wk. Baseline blood and semen samples were obtained and then every 4 wk thereafter for 32 wk. The outcome measures were sperm density and plasma levels of FSH, LH, total and free T. The results show a dose-dependent suppression of spermatogenesis and gonadotropins. Seven of the 17 subjects became azoospermic. Desogestrel (300 microg daily) in combination with 5 mg daily transdermal T was the most effective (57% azoospermic), whereas a dose of 75 microg was ineffective (0% azoospermic). Total and free plasma T were reduced by approximately 30%. High density lipoprotein cholesterol was significantly reduced. No serious side-effects were encountered. We conclude that daily self-administered desogestrel with transdermal T is capable of suppressing the male reproductive axis, although the efficacy was less marked and less consistent than injectable regimens. The lower efficacy is likely to be due to failure of the transdermal T system to maintain circulating T levels consistently in the required range.
Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Chun-Hsun
2016-07-01
Laser pretreatment of skin can be used to enable drugs used in dermatology to penetrate the skin to the depth necessary for their effect to take place. To compare the permeation of tranexamic acid after conventional non-fractionated ablative Er:YAG and CO2 laser pretreatment in a laser-aided transdermal delivery system. An erbium-doped yttrium aluminium garnet (Er:YAG) and a CO2 laser were used to pretreat dorsal porcine skin. Scanning electron microscopy was used to examine disruption of the skin surface. Confocal laser scanning microscopy was used to determine the depth of penetration of a reporter molecule (fluorescein isothiocyanate) into the skin. A Franz diffusion assembly was used to examine fluency-related increases in transdermal delivery of transexamic acid. Transdermal delivery of tranexamic acid increased as Er:YAG laser fluency increased. Transdermal delivery was higher when CO2 laser pretreatment was used than when Er:YAG laser pretreatment was used, but a "ceiling effect" was present and increasing the wattage did not cause a further increase in delivery. CO2 laser pretreatment also caused more extensive and deeper skin disruption than Er:YAG laser pretreatment. For conventional, non-fractionated ablative laser pretreatment, the Er:YAG laser would be an optimal choice to enhance transdermal penetration of transexamic acid.
Effect of casting solvent on crystallinity of ondansetron in transdermal films.
Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun
2011-03-15
The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, Honsoul; Jang, Eun-Ji; Kim, Sang Kyum; Hyung, Woo Jin; Choi, Dong Kyu; Lim, Soo-Jeong; Lim, Joon Seok
2017-01-01
Purpose A sentinel lymph node (SLN) tracer can gain multi-functionality by combining it with additional components. We developed a SLN tracer consisting of iodine and docetaxel and applied it as a theragnostic nanoparticle to simultaneously perform SLN computed tomography (CT) lymphography and locoregional chemotherapy of the draining lymphatic system. Results Docetaxel could be loaded in iodine emulsions at a drug-to-surfactant weight ratio as high as that in the drug formulation Taxotere®. The particle size and drug concentration were stable during storage for up to 3 months in optimized nanoemulsions. Popliteal LN enhancement on CT was observed in all healthy rabbits (n=3) and VX2 tumor-implanted rabbits (n=6) 12 hours after injection. The rate of SLN metastasis was significantly lower in the treatment group (29.4%, 5/17) than in the non-treatment group (70.6%, 12/17) (P=0.038). Material and Methods We prepared a nanoemulsion carrying both iodine and docetaxel in a single structure by optimizing the composition of surfactants surrounding the inner iodized oil core. CT was performed 12 hours after subcutaneous injection of the emulsion in healthy rabbits (n=3) and VX2 tumor-implanted rabbits (n=6) for SLN imaging. Next, we tested the effect of treatment by histopathologically assessing the popliteal LN metastasis rate in VX2 tumor-implanted rabbits 7 days after subcutaneous injection of the emulsion (treatment group, n=17) and comparing it with that of non-treatment group rabbits (n=17). Conclusions We developed an iodine-docetaxel emulsion and demonstrated that it can be applied to simultaneously achieve CT SLN imaging and local chemotherapy against nodal metastasis. PMID:28460444
Hirst, Alexander; Knight, Chris; Hirst, Matt; Dunlop, Will; Akehurst, Ron
2016-03-01
Opioid treatment for chronic pain is a known risk factor for falls and/or fractures in elderly patients. The latter cause a significant cost to the National Health Service and the Personal Social Services in the UK. Tramadol has a higher risk of fractures than some other opioid analgesics used to treat moderate-to-severe pain and, in the model described here, we investigate the cost effectiveness of transdermal buprenorphine treatment compared with tramadol in a high-risk population. A model was developed to assess the cost effectiveness of tramadol compared with transdermal buprenorphine over a 1-year time horizon and a patient population of high-risk patients (female patients age 75 or older). To estimate the total cost and quality-adjusted life years (QALYs) of treatment, published odds ratios are used in combination with the published incidence rates of four types of fracture: hip, wrist, humerus and other. The model shows tramadol to be associated with 1,058 more fractures per 100,000 patients per year compared with transdermal buprenorphine, resulting in transdermal buprenorphine being cost-effective with an incremental cost-effectiveness ratio of less than £7,000 compared with tramadol. Sensitivity analysis found this result to be robust. In the UK data, there is uncertainty regarding the transdermal buprenorphine odds ratios for fractures. Odds ratios published in Danish and Swedish studies show similar point estimates but are associated with less uncertainty. Transdermal buprenorphine is cost-effective compared to tramadol at a willingness-to-pay threshold of £20,000 per QALY.
Transdermal nicotine for induction of remission in ulcerative colitis.
McGrath, J; McDonald, J W D; Macdonald, J K
2004-10-18
Ulcerative colitis is largely a disease of nonsmokers. Intermittent smokers often experience improvement in their symptoms while smoking. Nonsmokers with ulcerative colitis who begin smoking may go into remission. Randomized controlled trials were developed to test the efficacy of transdermal nicotine for the induction of remission in ulcerative colitis. (1) To determine the efficacy of transdermal nicotine for induction of remission in ulcerative colitis. (2) To assess adverse events associated with transdermal nicotine therapy for ulcerative colitis The MEDLINE (via PubMed) and EMBASE databases were searched using the search criteria "ulcerative colitis" and "transdermal nicotine" or "nicotine" to identify relevant papers published between 1970 and December 2003. Manual searches of reference lists from potentially relevant papers were performed to identify additional studies. Abstracts from major gastroenterological meetings were searched to identify research submitted in abstract form only. The Cochrane Central Register of Controlled Trials and the Cochrane Inflammatory Bowel Disease Group Specialized Trials Register were also searched. We included only randomized controlled trials in which patients with active mild to moderate ulcerative colitis were randomly allocated to receive transdermal nicotine (15 to 25 mg/day) or a placebo or another treatment (corticosteroids or mesalamine). Data extraction and assessment of the methodological quality of each trial were independently performed by each author. Any disagreement among reviewers was resolved by consensus. The primary outcome measure was the number of patients achieving clinical or sigmoidoscopic remission as defined by the primary studies (e.g. no symptoms of ulcerative colitis), and expressed as a percentage of the patients randomized (intention to treat analysis). Secondary outcomes included clinical response, adverse events and withdrawal because of adverse events. Seven studies were identified, five of which met the inclusion criteria. A meta-analysis of two trials in which 71 patients were randomized to nicotine and 70 to placebo showed a statistically significant benefit for nicotine treatment. After four to six weeks of treatment 19 of 71 patients treated with transdermal nicotine were in clinical remission compared to 9 of 70 treated with placebo (OR=2.56, 95% CI 1.02-6.45). In the same group of patients improvement or remission was noted in 29 of the 71 patients assigned to nicotine compared to 14 of 70 patients assigned to placebo (OR=2.72, 95% CI 1.28 - 5.81). For patients with left sided colitis the odds ratio was 2.31 (95% CI 1.05-5.10). When transdermal nicotine was compared to standard medical therapy no significant benefit for nicotine was observed. After four to six weeks of standard therapy (oral prednisone or mesalamine), 34 of 63 patients were in clinical or sigmoidoscopic remission compared to 33 of 66 patients treated with transdermal nicotine (OR=0.77, 95% CI 0.37-1.60). A meta-analysis of all five studies which included 137 patients treated with transdermal nicotine and 133 patients treated with a placebo or standard therapy demonstrated no statistically significant benefit of nicotine therapy (OR=1.23; 95% CI 0.71-2.14). Patients treated with transdermal nicotine were significantly more likely to withdrawal due to adverse events than patients treated with placebo or standard medical therapy (OR=5.82, 95% CI, 1.66 - 20.47) and were significantly more likely to suffer from an adverse event than patients treated with placebo or standard medical therapy (OR=3.54, 95% CI, 2.07 - 6.08). The results of this review provide evidence that transdermal nicotine is superior to placebo for the induction of remission in patient's with ulcerative colitis. The review did not identify any significant advantage for transdermal nicotine therapy compared to standard medical therapy. Adverse events associated with transdermal nicotine are significant and limit its use in some patients.
Mücke, M; Conrad, R; Marinova, M; Cuhls, H; Elsner, F; Rolke, R; Radbruch, L
2016-12-01
To date, no studies investigating titration with oral transmucosal fentanyl for the dose-finding of transdermal fentanyl treatment have been published. In an open randomized study 60 patients with chronic malignant (n = 39) or nonmalignant pain (n = 21), who required opioid therapy according to step three of the guidelines of the World Health Organization (WHO), were investigated. In two groups of 30 patients each titration with immediate release morphine (IRM) or oral transmucosal fentanyl citrate (OTFC) was undertaken. For measurement purposes the Brief Pain Inventory (BPI) and Minimal Documentation System (MIDOS) were used. After a 24-h titration phase, in which patients documented the intensity of pain, nausea, and tiredness, treatment with transdermal fentanyl was evaluated over a 10-day period by means of the necessary dose adaptation (responder ≤ 1 dose adaptation; conversion formula 1:1 [OTFC group] vs 100:1 [IRM group]).The pain reduction over the first 24 h (titration phase) did not differ significantly between the groups. The number of responders (17 OTFC vs. 21 IRM) over the 10-day period did not show any difference either. In both groups there was a significant reduction in pain intensity (p < 0.001). Over the course of the study, there were significantly more drop-outs because of adverse effects in the OTFC group than in the IRM group (8 vs 1, p = 0.028).Oral transmucosal fentanyl citrate can be applied for the titration of transdermal fentanyl, but it does not show any clinically relevant advantage. For example, the risk of side effects-induced drop-outs was greater in the present study. Whether the unnecessary opioid switching to treat chronic pain and breakthrough pain is advantageous with regard to minimizing conversion errors cannot be definitively answered within the scope of this study.
Progress in the use of microemulsions for transdermal and dermal drug delivery.
Ita, Kevin
2017-06-01
Transdermal drug delivery continues to attract considerable interest in the scientific community. However, due to the hindrance provided by the stratum corneum, it is not possible to deliver most medications in therapeutically significant amounts. One of the ways of increasing the penetration of drugs across the skin is through the use of microemulsions (MEs). This review focuses on the role of MEs in enhancing topical and transdermal drug delivery.
Chen, Chunhong; Wang, Haiyan; Han, Chuanlong; Deng, Jiang; Wang, Jing; Li, Mingming; Tang, Minghui; Jin, Haiyan; Wang, Yong
2017-02-22
The soft template method is broadly applied to the fabrication of hollow-structured nanomaterials. However, due to the instability and the typical spherical shape of these soft templates, the resultant particles have a spherical morphology with a wide size distribution. Herein, we developed a sustainable route to fabricate asymmetric flasklike hollow carbonaceous structures with a highly uniform morphology and a narrow size distribution using the soft template method. A dynamic growth mechanism induced by the synergetic interactions between template and biomass is proposed. The precursors (ribose) provide an acidic environment for sodium oleate during the hydrothermal process in which oleic acid nanoemulsions are initially formed and serve as both template and benign solvent for the amphiphilic derivatives of the precursor. Simultaneously, the cosurfactant P123 facilitates the uniform dispersion of the nanoemulsion and is believed to cause the carbonaceous shells to rupture, providing openings through which the intermediates can enter. These subtle interactions facilitate the formation of the flasklike, asymmetric, hollow, carbonaceous nanoparticles. Furthermore, this unique structure contributes to the high surface area (2335 m 2 g -1 ) of the flasklike carbon particles, which enhances the performance of supercapacitors. These findings may open up an exciting field for exploring anisotropic carbonaceous nanomaterials and for understanding the related mechanisms to provide guidance for the design of increasingly complex carbonaceous materials.
Effect of Penetration Enhancers on the Percuaneous Delivery of Hormone Replacement Actives.
Trimble, John O; Light, Bob
2017-01-01
Transdermal compositions for hormone replacement are comprised of exogenous hormones that are biochemically similar to those produced endogenously by the ovaries or elsewhere in the body. In this work, estradiol, estriol, and testosterone were loaded in transdermal vehicles, prepared using one of three selected penetration enhancer mixtures: Vehicle 1 (olive oil and oleic acid), Vehicle 2 (isopropyl palmitate and lecithin), and Vehicle 3 (isopropyl myristate and lecithin). The influence of penetration enhancers on transdermal delivery was evaluated using Franz-type diffusion cells and Normal Human 3D Model of Epidermal Tissue. Results showed that drug delivery is affected by the penetration enhancer used in the transdermal composition. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna
2014-09-01
A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.
Musa, Siti Hajar; Basri, Mahiran; Fard Masoumi, Hamid Reza; Shamsudin, Norashikin; Salim, Norazlinaliza
2017-01-01
Psoriasis is a chronic autoimmune disease that cannot be cured. It can however be controlled by various forms of treatment, including topical, systemic agents, and phototherapy. Topical treatment is the first-line treatment and favored by most physicians, as this form of therapy has more patient compliance. Introducing a nanoemulsion for transporting cyclosporine as an anti-inflammatory drug to an itchy site of skin disease would enhance the effectiveness of topical treatment for psoriasis. The addition of nutmeg and virgin coconut-oil mixture, with their unique properties, could improve cyclosporine loading and solubility. A high-shear homogenizer was used in formulating a cyclosporine-loaded nanoemulsion. A D-optimal mixture experimental design was used in the optimization of nanoemulsion compositions, in order to understand the relationships behind the effect of independent variables (oil, surfactant, xanthan gum, and water content) on physicochemical response (particle size and polydispersity index) and rheological response (viscosity and k -value). Investigation of these variables suggests two optimized formulations with specific oil (15% and 20%), surfactant (15%), xanthan gum (0.75%), and water content (67.55% and 62.55%), which possessed intended responses and good stability against separation over 3 months' storage at different temperatures. Optimized nanoemulsions of pH 4.5 were further studied with all types of stability analysis: physical stability, coalescence-rate analysis, Ostwald ripening, and freeze-thaw cycles. In vitro release proved the efficacy of nanosize emulsions in carrying cyclosporine across rat skin and a synthetic membrane that best fit the Korsmeyer-Peppas kinetic model. In vivo skin analysis towards healthy volunteers showed a significant improvement in the stratum corneum in skin hydration.
Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C
2014-01-01
Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.
Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion.
Kim, In-Hah; Lee, Hanna; Kim, Jung Eun; Song, Kyung Bin; Lee, Youn Suk; Chung, Dae Sung; Min, Sea C
2013-10-01
Nanoemulsions containing lemongrass oil (LO) were developed for coating plums and the effects of the nanoemulsion coatings on the microbial safety and physicochemical storage qualities of plums during storage at 4 and 25 °C were investigated. The emulsions used for coating were produced by mixing a carnauba wax-based solution (18%, w/w) with LO at various concentrations (0.5% to 4.0%, w/w) using dynamic high pressure processing at 172 MPa. The coatings were evaluated for their ability to inhibit the growth of Salmonella Typhimurium and Escherichia coli O157:H7 and their ability to preserve various physicochemical qualities of plums. Uniform and continuous coatings on plums, formed with stable emulsions, initially inhibited S. Typhimurium and E. coli O157:H7 by 0.2 to 2.8 and 0.8 to 2.7 log CFU/g, respectively, depending on the concentration of LO and the sequence of coating. The coatings did not significantly alter the flavor, fracturability, or glossiness of the plums. The antimicrobial effects of the coatings against S. Typhimurium and E. coli O157:H7 were demonstrated during storage at 4 and 25 °C. The coatings reduced weight loss and ethylene production by approximately 2 to 3 and 1.4 to 4.0 fold, respectively, and also retarded the changes in lightness and the concentration of phenolic compounds in plums during storage. The firmness of coated plums was generally higher than uncoated plums when stored at 4 °C and plum respiration rates were reduced during storage. Coatings containing nanoemulsions of LO have the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums and may extend plum shelf life. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.
Rapoport, Natalya; Gupta, Roohi; Kim, Yoo-Shin; O'Neill, Brian E
2015-05-28
Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.
2017-08-01
Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.
Tao, Ran; Wang, Chengzhang; Zhang, Changwei; Li, WenJun; Zhou, Hao; Chen, Hongxia; Ye, Jianzhong
2018-07-01
The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO 2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO 2 -FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO 2 . And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO 2 -FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO 2 -NE, GBP-TiO 2 -NE, TiO 2 -FA-CS-NPs, and GBP-TiO 2 -FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO 2 -FA-CS-NPs at low TiO 2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO 2 -FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca 2+ into extracellular spaces via inhibiting Ca 2+ -ATPase and Ca 2+ /Mg 2+ -ATPase.
Ahmed, Tarek A; El-Say, Khalid M; Aljaeid, Bader M; Fahmy, Usama A; Abd-Allah, Fathy I
2016-03-16
This work aimed to develop an optimized ethosomal formulation of glimepiride then loading into transdermal films to offer lower drug side effect, extended release behavior and avoid first pass effect. Four formulation factors were optimized for their effects on vesicle size (Y1), entrapment efficiency (Y2) and vesicle flexibility (Y3). Optimum desirability was identified and, an optimized formulation was prepared, characterized and loaded into transdermal films. Ex-vivo permeation study for the prepared films was conducted and, the permeation parameters and drug permeation mechanism were identified. Penetration through rat skin was studied using confocal laser microscope. In-vivo study was performed following transdermal application on human volunteers. The percent of alcohol was significantly affecting all the studied responses while the other factors and their interaction effects were varied on their effects on each response. The optimized ethosomal formulation showed observed values for Y1, Y2 and Y3 of 61 nm, 97.12% and 54.03, respectively. Ex-vivo permeation of films loaded with optimized ethosomal formulation was superior to that of the corresponding pure drug transdermal films and this finding was also confirmed after confocal laser microscope study. Permeation of glimepiride from the prepared films was in favor of Higushi-diffusion model and exhibited non-Fickian or anomalous release mechanism. In-vivo study revealed extended drug release behavior and lower maximum drug plasma level from transdermal films loaded with drug ethosomal formulation. So, the ethosomal formulation could be considered a suitable drug delivery system especially when loaded into transdermal vehicle with possible reduction in side effects and controlling the drug release. Copyright © 2016 Elsevier B.V. All rights reserved.
Systemic delivery of β-blockers via transdermal route for hypertension
Ahad, Abdul; Al-Jenoobi, Fahad I.; Al-Mohizea, Abdullah M.; Akhtar, Naseem; Raish, Mohammad; Aqil, Mohd.
2014-01-01
Hypertension is the most common cardiovascular disease worldwide. Moreover, management of hypertension requires long-term treatment that may result in poor patient compliance with conventional dosage forms due to greater frequency of drug administration. Although there is availability of a plethora of therapeutically effective antihypertensive molecules, inadequate patient welfare is observed; this arguably presents an opportunity to deliver antihypertensive agents through a different route. Ever since the transdermal drug delivery came into existence, it has offered great advantages including non-invasiveness, prolonged therapeutic effect, reduced side effects, improved bioavailability, better patient compliance and easy termination of drug therapy. Attempts were made to develop the transdermal therapeutic system for various antihypertensive agents, including β-blockers, an important antihypertensive class. β-blockers are potent, highly effective in the management of hypertension and other heart ailments by blocking the effects of normal amounts of adrenaline in the heart and blood vessels. The shortcomings associated with β-blockers such as more frequent dose administration, extensive first pass metabolism and variable bioavailability, make them an ideal candidate for transdermal therapeutic systems. The present article gives a brief view of different β-blockers formulated as transdermal therapeutic system in detail to enhance the bioavailability as well as to improve patient compliance. Constant improvement in this field holds promise for the long-term success in technologically advanced transdermal dosage forms being commercialized sooner rather than later. PMID:26702253
Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y
2011-01-01
Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508
Case report of severe bradycardia due to transdermal fentanyl.
Hawley, Pippa
2013-09-01
This case report describes a patient who developed severe bradycardia due to transdermal fentanyl. There have been no prior case reports of this occurring in palliative care, but the frequency of association of fentanyl with bradycardia in the anesthesia setting suggests it may be more common than realized. Palliative care settings often have a policy of not routinely checking vital signs, and symptoms of bradycardia could be misinterpreted as the dying process. A patient with recurrent ovarian cancer was admitted with nausea and abdominal pain due to bowel obstruction and fever from a urinary tract infection. A switch from injectable hydromorphone to transdermal fentanyl resulted in symptomatic severe bradycardia within 36 h, without any other signs of opioid toxicity and with good analgesic effect. The fentanyl patch was removed. Atropine was not required. The patient made an uneventful recovery. Transdermal buprenorphine was subsequently used satisfactorily for long-term background pain control, with additional hydromorphone when needed. The delayed absorption of fentanyl via the transdermal route makes early identification of fentanyl-induced bradycardia key to prompt reversal. Patients with resting or relative bradycardia may be at higher than average risk.
Navigating sticky areas in transdermal product development.
Strasinger, Caroline; Raney, Sam G; Tran, Doanh C; Ghosh, Priyanka; Newman, Bryan; Bashaw, Edward D; Ghosh, Tapash; Shukla, Chinmay G
2016-07-10
The benefits of transdermal delivery over the oral route to combat such issues of low bioavailability and limited controlled release opportunities are well known and have been previously discussed by many in the field (Prausnitz et al. (2004) [1]; Hadgraft and Lane (2006) [2]). However, significant challenges faced by developers as a product moves from the purely theoretical to commercial production have hampered full capitalization of the dosage forms vast benefits. While different technical aspects of transdermal system development have been discussed at various industry meetings and scientific workshops, uncertainties have persisted regarding the pharmaceutical industry's conventionally accepted approach for the development and manufacturing of transdermal systems. This review provides an overview of the challenges frequently faced and the industry's best practices for assuring the quality and performance of transdermal delivery systems and topical patches (collectively, TDS). The topics discussed are broadly divided into the evaluation of product quality and the evaluation of product performance; with the overall goal of the discussion to improve, advance and accelerate commercial development in the area of this complex controlled release dosage form. Published by Elsevier B.V.
Immune modulation using transdermal photodynamic therapy
NASA Astrophysics Data System (ADS)
Levy, Julia G.; Chowdhary, R. K.; Ratkay, Leslie G.; Waterfield, Douglas; Obochi, Modestus; Leong, Simon; Hunt, David W. C.; Chan, Agnes H.
1995-01-01
The photosensitizer benzoporphyrin derivative monoacid ring A (VerteporfinR or BPD) has maximum absorption characteristics (690 nm) and biodistribution characteristics which permit activation of the drug in capillaries of the skin without causing skin photosensitivity (transdermal PDT). This permits targeting of cells in the circulation for selective ablation. Since BPD has been shown to accumulate preferentially in activated lymphocytes and monocytes, studies have been undertaken to determine the effect of transdermal PDT on murine models for rheumatoid arthritis (the MRL/lpr adjuvant enhanced model) and multiple sclerosis (the experimental allergic encephalomyelitis (EAE) model in PL mice). Localized transdermal PDT with BPD was found to be completely successful in preventing the development of adjuvant enhanced arthritis in the MRL/lpr mouse as well as improving the underlying arthritic condition of these animals. In the EAE model, in which an adoptive transfer system was used, it was found that transdermal PDT of recipients was effective in preventing EAE if treatments were implemented up to 24 hours after cell transfer but was not effective if given later, indicating the requirement for circulating T cells for effective treatment.
Numerical simulations of crystal growth in a transdermal drug delivery system
NASA Astrophysics Data System (ADS)
Zeng, Jianming; Jacob, Karl I.; Tikare, Veena
2004-02-01
Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.
Not so patchy story of attempted suicide…leading to 24 hours of deep sleep and survival!
Trist, Adam Joseph; Sahota, Hardeep; Williams, Lucy
2017-01-17
Here, we present a somewhat unusual suicide attempt where, despite an unbelievable overdose with transdermal fentanyl patches, the patient survived. The patient-a woman aged 70 years, who has suffered from chronic back pain despite starting transdermal fentanyl patches in 2007. The unconventional method of attempted suicide was based on online research into deaths from fentanyl patch toxicity. She had gradually accumulated 100 µg fentanyl patches from repeat prescriptions, applying 14 patches with fatal intent, alongside 2 45 mg mirtazapine tablets, and concurrent therapeutic doses of tramadol and morphine sulfate oral solution. However, after 24 hours, she awoke from a deep sleep to the sound of the telephone ringing, somewhat amazed her drastic efforts had failed. During admission to Great Western hospital, she was seen by liaison psychiatry and subsequently transferred to the care of the pain management team, to which she had already been referred. 2017 BMJ Publishing Group Ltd.
Huang, Chi-Te; Tsai, Chia-Hsun; Tsou, Hsin-Yeh; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu
2011-01-01
Response surface methodology (RSM) was used to develop and optimize the mesomorphic phase formulation for a meloxicam transdermal dosage form. A mixture design was applied to prepare formulations which consisted of three independent variables including oleic acid (X(1)), distilled water (X(2)) and ethanol (X(3)). The flux and lag time (LT) were selected as dependent variables. The result showed that using mesomorphic phases as vehicles can significantly increase flux and shorten LT of drug. The analysis of variance showed that the permeation parameters of meloxicam from formulations were significantly influenced by the independent variables and their interactions. The X(3) (ethanol) had the greatest potential influence on the flux and LT, followed by X(1) and X(2). A new formulation was prepared according to the independent levels provided by RSM. The observed responses were in close agreement with the predicted values, demonstrating that RSM could be successfully used to optimize mesomorphic phase formulations.
Caudill, Cassie L; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M
2018-06-09
Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery. Copyright © 2018. Published by Elsevier B.V.
Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I
2004-12-01
One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association
Pharmacokinetics of a Transdermal Fentanyl Solution in Suffolk Sheep (Ovis aries)
Jen, Kimberly Y; Dyson, Melissa C; Lester, Patrick A; Nemzek, Jean A
2017-01-01
Sheep used as surgical models require appropriate pain management, and the commonly used transdermal fentanyl patches require a long predosing period to achieve adequate plasma concentrations. The aim of this study was to assess the pharmacokinetic parameters of an FDA-approved transdermal fentanyl solution (TFS) that has yet to be tested in sheep. In this study, we compared TFS at 2.7 mg/kg (n = 2), 1.7 mg/kg (n = 3), and 0.5 mg/kg (n = 3) with the control fentanyl patch at 2 µg/kg/h (n = 1); both products were applied topically to the intrascapular region. Plasma concentrations showed significant interanimal variability. Severe adverse effects occurred at both 2.7 and 1.7 mg/kg TFS and mild to moderate adverse effects were noted at 0.5 mg/kg. At all 3 doses, TFS had greater maximal concentration, clearance rate, and volume of distribution; shorter time to maximal concentration; and similar half-lives to those of the patch. In addition, we validated the use of a commercial human fentanyl ELISA kit, which positively correlated with the liquid chromatography–mass spectroscopy data, but absolute values did not match. Overall, at all 3 dosages tested (0.5, 1.7, and 2.7 mg/kg), TFS delivered fentanyl plasma concentrations that exceeded the minimal effective concentration; however, adverse effects were noted at all 3 dosages. Caution and further study are required before the use of TFS in sheep can be recommended fully. PMID:28903827
Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery.
Sala, M; Locher, F; Bonvallet, M; Agusti, G; Elaissari, A; Fessi, H
2017-09-01
Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery. This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation. Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond. Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale. Graphical Abstract ᅟ.
Tang, Jian; Fan, Jin; Yao, Yilun; Cai, Weihua; Yin, Guoyong; Zhou, Wei
2017-01-01
Abstract This study aimed to investigate the perioperative analgesic effect of a buprenorphine transdermal patch in patients who underwent simple lumbar discectomy. In total, 96 patients were randomly divided into parecoxib intravenous injection (Group A), oral celecoxib (Group B), and buprenorphine transdermal patch groups (Group C). The pain status, degree of satisfaction, adverse effects, and condition in which the patient received tramadol hydrochloride for uncontrolled pain were recorded on the night before surgery, postoperative day 1, postoperative day 3, and postoperative day 5. The degree of patient satisfaction in Group C was higher than that in Groups A and B, with minimal adverse effects. The buprenorphine transdermal patch had a better perioperative analgesic effect in patients who underwent simple lumbar discectomy. PMID:28514299
Kong, Hui; Qu, Huihua; Qu, Baoping; Zeng, Wenhao; Zhao, Yan; Wang, Xueqian; Wang, Qingguo
2016-04-01
To analyze the transdermal profile of pseudoephedrine and amygdalin in the Traditional Chinese Medicine majiepingchuan in rat skin and to reveal their interaction. A Franz diffusion cell was used in vitro to evaluate the transdermal parameters of cumulative transdermal flux (Q(tot)), cumulative transmission (T(tot)), and mean penetration rate (Kp) of pseudoephedrine and amygdalin in majiepingchuan. Linear regression analyses of Q(tot) over time of pseudoephedrine vs amygdalin and their ratios was adopted for correlation evaluation. At 1, 2, 4, 6, and 8 h, the Q(tot), T(tot) and Kp of pseudoephedrine showed a good correlation with that of amygdalin. There was a small difference in the ratios of Q(tot), T(tot) and Kp between pseudoephedrine and amygdalin, and a correlation between them.
Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain
2013-10-01
Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien
2013-01-01
Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404
Evaluation of Stability and In Vitro Security of Nanoemulsions Containing Eucalyptus globulus Oil
Quatrin, Priscilla Maciel; Sagrillo, Michele Rorato; Nascimento, Kátia
2017-01-01
Essential oil of Eucalyptus globulus presents several pharmacological properties. However, their therapeutic efficacy may be affected by limitations due to several conditions, rendering it difficult to obtain stable and effective pharmaceutical formulations. The use of nanotechnology is an alternative to improve their characteristics aiming to ensure their stability and effectiveness. Furthermore, studies about the possible toxic effects of nanostructures are necessary to evaluate safety when the formulation comes into contact with human cells. Hence, in this paper, we evaluate for the first time the stability and in vitro cytogenotoxicity of nanoemulsions containing Eucalyptus globulus in peripheral blood mononuclear cells. As a result, the stability study found that the best condition for storage up to 90 days was refrigeration (4°C); it was the condition that best preserved the nanometric features. The content of the major compounds of oil was maintained after nanoencapsulation and preserved over time. In tests to evaluate the safety of this formulation, we can conclude that, at a low concentration (approximately 0.1%), Eucalyptus globulus nanoemulsion did not cause toxicity in peripheral blood mononuclear cells and also showed a protective effect in cells against possible damage when compared to oil in free form. PMID:28691021
Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar
2012-02-01
To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.
Transport of lipid nano-droplets through MDCK epithelial cell monolayer.
Khatri, Pulkit; Shao, Jun
2017-05-01
This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes
Fan, Yuting; Yokoyama, Wally; Yi, Jiang
2017-01-01
The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633
Zitzmann, M; Rohayem, J; Raidt, J; Kliesch, S; Kumar, N; Sitruk-Ware, R; Nieschlag, E
2017-05-01
Although several progestins have been tested for hormonal male contraception, the effects of dosage and nature of various progestins on gonadotropin suppression combined with and without additional testosterone has not been performed in a comparative trial. The aim of this study was to evaluate the differential impact of four oral or transdermal progestins on the suppression of gonadotropins in healthy men: oral: cyproterone acetate (CPA), levonorgestrel (LNG), norethisterone acetate (NETA), and transdermal: Nestorone ® (NES), all in combination with transdermal testosterone (T). Randomized clinical trial testing was performed with four progestins at two doses each. After a 2-week progestin-only treatment, transdermal T was added for further 4 weeks and was followed by a 3-week recovery period. Progestin-dose per day: CPA 10 mg/20 mg, NES 2 mg/3 mg/dose e.g. 200/300 μg/day absorbed, NETA 5 mg/10 mg, LNG 120 μg/240 μg. From an andrology outpatient clinic, 56 healthy men aged 18-50 years, with body mass index ≤33 kg × m -2 were included in the study. Serum concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were studied. Secondary outcome measure included were serum testosterone concentrations, sperm concentrations, and safety parameters. Intergroup comparisons demonstrated that CPA and LNG had the strongest effect on LH/FSH suppression. Nevertheless, every substance showed significant inhibitory effects on gonadotropin secretion, especially in combination with transdermal T. A decrease in hematocrit and insulin sensitivity as well as cholesterol subfractions and triglycerides was uniformly seen for every group. The combination of oral or transdermal progestins with a transdermal testosterone preparation is able to suppress gonadotropins. Further dose titration studies with sperm suppression as an end-point should be conducted to determine the lowest effective dose for hormonal male contraception. © 2017 American Society of Andrology and European Academy of Andrology.
Meyer, Stefanie; Peters, Nils; Mann, Tobias; Wolber, Rainer; Pörtner, Ralf; Nierle, Jens
2014-04-01
The topical application of two different anti-inflammatory extracts incorporated in adhesive transdermal drug delivery systems (TDDSs) was investigated. Therefore, anti-inflammatory properties and percutaneous absorption behavior of adhesive TDDSs were characterized in vitro conducting experiments with a dermatologically relevant human skin model. Anti-inflammatory efficacy against UV irradiation of both TDDSs was determined in vitro with EpiDerm™. The reduction of the release of proinflammatory cytokines by topically applied TDDSs was compared with the reduction during the presence of the specific cyclooxygenase inhibitor diclofenac in the culture medium. A similar anti-inflammatory efficacy of the topically applied TDDSs in comparison with the use of diclofenac in the culture medium should be achieved. Furthermore, percutaneous absorption in efficacy tests was compared with percutaneous absorption in diffusion studies with porcine cadaver skin. Both the topically applied TDDSs showed a significant anti-inflammatory activity. Permeation coefficients through the stratum corneum and the epidermis gained from the release studies on porcine cadaver skin (Magnolia: 2.23·10(-5) cm/h, licorice: 4.68·10(-6) cm/h) were approximately five times lower than the permeation coefficients obtained with the EpiDerm™ skin model (Magnolia: 9.48·10(-5) cm/h, licorice: 24.0·10(-6) cm/h). Therefore, an adjustment of drug doses during experiments with the EpiDerm™ skin model because of weaker skin barrier properties should be considered.
Rivastigmine Transdermal Patch
... also used to treat dementia in people with Parkinson's disease (a brain system disease with symptoms of slowing ... cure Alzheimer's disease or dementia in people with Parkinson's disease. Continue to use transdermal rivastigmine even if you ...
Transdermal delivery of heparin: Physical enhancement techniques.
Ita, Kevin
2015-12-30
Thromboembolic complications are the most common preventable cause of mortality and morbidity in trauma patients. Thrombosis is also the common cause of ischemic heart disease (acute coronary syndrome), stroke, and venous thromboembolism. Heparin, as a potent anticoagulant, has been used in clinical practice for more than five decades and remains the major medicine for the prevention and treatment of venous thromboembolism. However it binds to the endothelium and has a high affinity for plasma proteins resulting in a short half-life and unpredictable bioavailability. Transdermal drug delivery can address the problems of short half-life and unpredictable bioavailability. Other advantages of transdermal drug delivery include convenience, improved patient compliance, prompt termination of dosing and avoidance of the first-pass effect. This review focuses on different approaches used for transdermal delivery of heparin. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen.
Manikkath, Jyothsna; Hegde, Aswathi R; Kalthur, Guruprasad; Parekh, Harendra S; Mutalik, Srinivas
2017-04-15
The aim of this study was to determine the individual and combined effects of peptide dendrimers and low frequency ultrasound on the transdermal permeation of ketoprofen. Arginine terminated peptide dendrimers of varying charges (4 + , 8 + and 16 + , named as A4. A8 and A16 respectively) were synthesized and characterized. Ketoprofen was subjected to passive, peptide dendrimer-assisted and sonophoretic permeation studies (with and without dendrimer application) across Swiss albino mouse skin, both in vitro and in vivo. The studies revealed that the synthesized peptide dendrimers considerably increased the transdermal permeation of ketoprofen and displayed enhancement ratios of up to 3.25 (with A16 dendrimer), compared to passive diffusion of drug alone in vitro. Moreover, the combination of peptide dendrimer treatment and ultrasound application worked in synergy and gave enhancement ratios of up to 1369.15 (with ketoprofen-A16 dendrimer complex). In vivo studies demonstrated that dendrimer and ultrasound-assisted permeation of drug achieved much higher plasma concentration of drug, compared to passive diffusion. Comparison of transdermal and oral absorption studies revealed that transdermal administration of ketoprofen with A8 dendrimer showed comparable absorption and plasma drug levels with oral route. The excised mouse skin after in vivo permeation study with dendrimers and ultrasound did not show major toxic reactions. This study demonstrates that arginine terminated peptide dendrimers combined with sonophoresis can effectively improve the transdermal permeation of ketoprofen. Copyright © 2017 Elsevier B.V. All rights reserved.
Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.
Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L
2013-01-01
The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.
Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd
2016-01-01
Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.
Kajaysri, Jatuporn; Chumchoung, Chaiwat; Wutthiwitthayaphong, Supphathat; Suthikrai, Wanvipa; Sangkamanee, Praphai
2017-09-15
Estrous synchronization with progesterone based protocols has been essentially used in cattle industry. Although intravaginal devices have been commonly used, this technique may induce vaginitis. This study aimed at examining the efficiency of novel transdermal progestin patch on follicle development and comparing the progestin patch versus CIDR device on estrous synchronization, complication at treated site and pregnancy in beef cattle. In experiment 1, seven beef cows were treated with an adhesive transdermal progestin patch on the ventral surface of the proximal part of the tail for 7 days. The cows were daily examined the follicular development using ultrasonography starting on Day 0 till 3 days after hormone removal. Experiment 2, forty beef cows were divided into two equal groups (20 cows per group). The cows randomly allocated to received either vaginal insertion of CIDR (n = 20) or treated with an adhesive transdermal progestin patch (n = 20). The levels of plasma progesterone during the experiment and the numbers of standing estrous cows were recorded. Timed artificial inseminated (TAI) was performed at 60 h after CIDR or patch termination. Pregnancy rates were determined at 60 days after TAI. Experiment 1 revealed that the novel transdermal progestin patch could efficiently control follicular growth. All the seven treated cows had dominant follicle upon dermal patch removal indicating the effectiveness of the progestin patch. In experiment 2, the percentages of cows exhibited standing estrus were similar between transdermal patch (72.22%) and CIDR (70.00%). The levels of plasma progesterone during CIDR treatment were significantly higher (4.06 ± 1.65 ng/mL on Day 1 and 3.62 ± 1.60 ng/mL on Day 7) compared with transdermal patch (2.60 ± 1.43 ng/mL on Day 1 and 1.81 ± 1.57 ng/mL on Day 7). Three cows treated with CIDR (15%) developed vaginitis while none of cows had physically dermal reaction at adhesive site. Cows synchronized with these two protocols had similar pregnancy rates (50.00%) following fixed time artificial insemination. It is concluded that transdermal progestin patch was equally effective in estrus synchronization as compared with traditional CIDR. However, the transdermal patch demonstrated less complication. This device should therefore be considered as an alternative method for estrus synchronization in postpartum beef cattle. Copyright © 2017 Elsevier Inc. All rights reserved.
Shinde, Viraj Ashok; Kalikar, Mrunalini; Jagtap, Satyajeet; Dakhale, Ganesh N; Bankar, Mangesh; Bajait, Chaitali S; Motghare, Vijay M; Pashilkar, Ashlesha A; Raghute, Latesh B; Khamkar, Ajita D
2017-01-01
To compare the efficacy, safety, and tolerability of transdermal patches of diclofenac sodium with oral diclofenac sustained release (SR) in patients of chronic musculoskeletal MSK pain conditions. The eligible patients were given either transdermal diclofenac patch or tablet diclofenac SR. Pain was assessed at 2 and 4 weeks using a visual analog scale. Adverse events were recorded. Patients with 18-65 years old of either gender with score of ≥4 on a 11-item numeric rating scale-numeric version of visual analog scale for pain with diagnosis of primary osteoarthritis (OA) of the knee or hand of at least 3 months duration, with independent radiological confirmation of OA or having pain associated with other MSK conditions such as soft-tissue rheumatism, cervical and lumbar back pain, and fibromyalgia, of at least 3 months duration were included in this study. Transdermal diclofenac diethylamine patch and tablet diclofenac sodium sustained release (SR) do not significantly differ in the reduction of numerical rating scores at the end of 4 weeks (P = 0.8393). Transdermal diclofenac was equi-efficacious as tablet diclofenac sodium SR in reducing pain due to chronic MSK pain conditions.
Perspectives on Transdermal Electroporation
Ita, Kevin
2016-01-01
Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191
Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro
2015-04-10
Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.
Non-Ablative Fractional Laser to Facilitate Transdermal Delivery.
Ganti, Sindhu S; Banga, Ajay K
2016-11-01
The advances in laser technology have led to its rapidly expanding applications in dermatology. This study aims at the novel use of a non-ablative fractional laser to enhance transdermal permeation of diclofenac sodium and sumatriptan succinate. The effects of the laser on skin were characterized visually with dye binding, scanning electron microscopy, pore permeability index, and histology. In vitro transdermal permeation of drugs through laser treated and untreated human dermatomed skin was analyzed over 24 h and quantified by HPLC. Drug transport through untreated skin resulted in transdermal delivery of 72.61 μg/cm 2 ± 50.35 and 22.80 ± 0.64 μg/cm 2 of diclofenac sodium and sumatriptan succinate, respectively. Laser treatment of skin significantly increased (p < 0.005) delivery of diclofenac sodium to 575.66 ± 207.18 μg/cm 2 and sumatriptan succinate to 498.32 ± 97.54 μg/cm 2 . This is a first of its kind study that demonstrates the use of 1410 nm non-ablative fractional laser to enhance transdermal permeation of 2 small molecular weight drugs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Dave, Kaushalkumar; Alsharif, Fahd M; Islam, Saiful; Dwivedi, Chandradhar; Perumal, Omathanu
2017-09-01
Almost all breast cancers originate from epithelial cells lining the milk ducts in the breast. To this end, the study investigated the feasibility of localized transdermal delivery of α-santalol, a natural chemopreventive agent to the breast. Different α-santalol formulations (cream, solution and microemulsion) were developed and the in vitro permeability was studied using excised animal (porcine and rat) and human breast skin/mammary papilla (nipple). The in vivo biodistribution and efficacy studies were conducted in female rats. A chemical carcinogenesis model of breast cancer was used for the efficacy studies. Phospholipid based α-santalol microemulsion showed the highest penetration through the nipple and breast skin. Delivery of α-santalol through the entire breast (breast skin and nipple) in vivo in rats resulted in significantly higher concentration in the mammary gland compared to transdermal delivery through the breast skin or nipple. There was no measurable α-santalol concentration in the blood. Transdermal delivery of α-santalol reduced the tumor incidence and tumor multiplicity. Furthermore, the tumor size was significantly reduced with α-santalol treatment. The findings from this study demonstrate the feasibility of localized transdermal delivery of α-santalol for chemoprevention of breast cancer.
Rapid pain relief using transdermal film forming polymeric solution of ketorolac.
Ammar, H O; Ghorab, M; Mahmoud, A A; Makram, T S; Ghoneim, A M
2013-01-01
Ketorolac is one of the most potent nonsteroidal anti-inflammatory drugs and is an attractive alternative to opioids for pain management. Development and evaluation of transdermal ketorolac film forming polymeric solution. Eudragits(®) RLPO, RSPO and E100 as well as polyvinyl pyrrolidone K30 dissolved in ethanol were used as film forming solutions. In vitro experiments were conducted to optimize formulation parameters. Different permeation enhancers were monitored for potentiality of enhancing drug permeation across excised pigskin. The use of 10% oleic acid, Lauroglycol(®) 90 or Azone(®) with 5% Eudragit(®) RSPO, showed the highest enhancement effect on ketorolac skin permeation and showed faster analgesic effect compared to the ketorolac tablet. The formula comprising 5% Eudragit(®) RSPO and 10% Lauroglycol(®) 90 showed the greatest pharmacodynamic effect and thus was subjected to pharmacokinetic studies. The pharmacodynamic and pharmacokinetic results didn't run paralleled to each other, as the ketorolac tablets showed higher plasma concentrations compared to the selected ketorolac transdermal formulation. This might be due to the induction of analgesia by the available ethanol in the transdermal preparation. Optimized transdermal ketorolac formulation showed marked ability to ensure fast and augmented analgesic effect that is an essential request in pain management.
Song, Pan-Pan; Jiang, Li; Li, Xiu-Juan; Hong, Si-Qi; Li, Shuang-Zi; Hu, Yue
2017-01-01
To evaluate the efficacy and tolerability of a clonidine transdermal patch in the treatment of children with tic disorders (TD) and to establish a predictive model for patients. Forty-one patients who met the inclusion criteria entered into 12 weeks of prospective, open, single-group, self-controlled treatment with a clonidine transdermal patch. The Yale Global Tic Severity Scale (YGTSS) was employed before therapy (baseline) and at 4, 8, and 12 weeks after therapy. (1) The total effect rates of treatment with a clonidine transdermal patch were 29.27, 53.66, and 63.41% at 4, 8, and 12 weeks, respectively. Compared with the baseline, the differences were significant at three different observation periods. (2) Compared to the level of 25% reduction, there were significant decreases in the score-reducing rate of motor tic and total tic severities at 12 weeks. (3) If the disease course was ≤24 months and the motor tic score was <16 at the baseline, there was an effective rate of 100% for treatment with the clonidine transdermal patch. If the disease course was ≤24 months and the motor tic score was >16, there was an effective rate of 57.1%. If the disease course was >24 months and the clinical classification was chronic TD, there was an effective rate of 62.5%. If the disease course was >24 months and the clinical classification was Tourette's syndrome, 90% of the patients were invalid. (4) The main adverse events were rash, slight dizziness, and headache. (1) When patients were pretreated with a D2-dopamine receptor antagonist that was ineffective or not tolerated well, switching to a clonidine transdermal patch treatment was effective and safe. (2) A clonidine transdermal patch could be a first-line medication for mild and moderate TD cases that are characterized by motor tics.
Sessler, Nelson E; Walker, Ekaterina; Chickballapur, Harsha; Kacholakalayil, James; Coplan, Paul M
2017-01-01
Positive-controlled clinical studies have shown a dose dependent effect of buprenorphine transdermal system on QTc interval prolongation. This study provides assessment of the buprenorphine transdermal system and cardiac arrhythmia using US FDA and WHO postmarketing reporting databases. Disproportionality analysis of spontaneously reported adverse events to assess whether the reporting rate of cardiac arrhythmia events was disproportionately elevated relative to expected rates of reporting in both FDA and WHO databases. Cardiac arrhythmia events were identified using the standardized Medical Dictionary for Regulatory Activities query for torsade de pointes and/or QT prolongation (TdP/QTP). The threshold for a signal of disproportionate adverse event reporting was defined as the lower 90% confidence limit ≥ 2 of the Empiric Bayes geometric mean in FDA database and as the lower 95% confidence limit of the Informational Component >0 in WHO database. There were 124 (<1%) and 77 (2%) cardiac arrhythmia event cases associated with buprenorphine transdermal as compared to 3206 (12%) and 2913 (14%) involving methadone in the FDA and WHO databases, respectively. In the FDA database methadone was associated with a signal of disproportionate reporting for TdP/QTP (EB05 3.26); however, buprenorphine transdermal was not (EB05 0.33). In the WHO database methadone was associated with a signal of disproportionate reporting for TdP/QTP (IC025 2.66); however, buprenorphine transdermal was not (IC025 -0.88). Similar trends were observed in sensitivity analyses by age, gender, and specific terms related to ventricular arrhythmia. The signal identified in the transdermal buprenorphine thorough QTc study, which led to a dose limitation in its US label, does not translate into a signal of increased risk for cardiac arrhythmia in real world use, as assessed by this method of analyzing post-market surveillance data.
Woodall, Rachel; Arnold, John J; McKay, Doug; Asbill, C Scott
2013-01-01
The purpose of this study was to assess the impact of altering formulation pH on the transdermal penetration of several commonly used antiemetic, weakly basic drugs incorporated into poloxamer lecithin organogel vehicle. Poloxamer lecithin organogel formulations containing promethazine hydrochloride (25 mg/mL), metoclopramide hydrochloride (10 mg/mL), and ondansetron hydrochloride (8 mg/mL) were examined for both drug release and transdermal penetration across porcine skin in modified Franz diffusion cells for a period of 24 hours. For the transdermal studies, each antiemetic drug was formulated at a pH above and below their acid dissociation constant (pKa) in an attempt to assure that the drug would be primarily in their respective ionized or non-ionized states. In addition, drug content in skin was assessed at the end of the 24-hour experiment. Drug content analysis was determined via high-performance liquid chromatography. As a percent of total drug release from the poloxamer lecithin organogel vehicle, promethazine hydrochloride demonstrated the most transdermal drug penetration after 24 hours (30.2% +/- 20.2%), followed by ondansetron hydrochloride (2.7% +/- 1.1%) and metoclopramide hydrochloride (1.8% +/- 1.6%). Subsequently, the pH of the Pluronic F-127 gel was adjusted in order to ensure that each antiemetic drug would be primarily in its unionized state. The transdermal permeation of each antiemetic drug primarily in its unionized state increased over that observed with the drug primarily in its ionized state after 24 hours (promethazine: 1.6-fold increase; metoclopramide: 1.3-fold increase; ondansetron: 1.8-fold increase). A similar trend was noted in the amount of each drug found in the skin after 24 hours (promethazine: 1.2-fold increase; metoclopramide: 2.4-fold increase; ondansetron: 3.0-fold increase). These results suggest that proper optimization of drug ionization state may be a useful strategy for compounding pharmacists to increase the efficacy of drugs intended for inclusion in transdermal formulations.
Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.
Szunerits, Sabine; Boukherroub, Rabah
2018-01-01
Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of examples of thermal technologies for local and systemic transdermal drug delivery will be discussed and put into perspective.
Matsui, Sumika; Yasui, Toshiyuki; Kasai, Kana; Keyama, Kaoru; Yoshida, Kanako; Kato, Takeshi; Uemura, Hirokazu; Kuwahara, Akira; Matsuzaki, Toshiya; Irahara, Minoru
2017-07-01
Oral oestrogen increases the risk of venous thromboembolism (VTE) and increases production of sex hormone-binding globulin (SHBG) in a dose-dependent manner. SHBG has been suggested to be involved in venous thromboembolism. We examined the effects of oral ultra-low-dose oestradiol on circulating levels of SHBG and coagulation parameters, and we compared the effects to those of transdermal oestradiol. Twenty women received oral oestradiol (500 μg) every day (oral ultra-low-dose group) and 20 women received a transdermal patch (50 μg) as a transdermal group. In addition, the women received dydrogesterone continuously (5 mg) except for women who underwent hysterectomy. Circulating SHBG, antithrombin III (ATIII) activity, d-dimer, thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex were measured before and 3 months after the start of treatment. SHBG was significantly increased at 3 months in the oral ultra-low-dose group, but not in the transdermal group. However, percent changes in SHBG were not significantly different between the two groups. In both groups, ATIII was significantly decreased at 3 months. In conclusion, even ultra-low-dose oestradiol orally increases circulating SHBG level. However, the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. Impact statement Oral oestrogen replacement therapy increases production of SHBG which may be related to increase in VTE risk. However, the effect of oral ultra-low-dose oestradiol on SHBG has not been clarified. Even ultra-low-dose oestradiol orally increases circulating SHBG levels, but the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. VTE risk in women receiving oral ultra-low-dose oestradiol may be comparable to that in women receiving transdermal oestradiol.
Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice
NASA Astrophysics Data System (ADS)
Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro
2012-05-01
Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30651d