Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P
2015-09-15
Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors.
E-cadherin-mediated force transduction signals regulate global cell mechanics
Muhamed, Ismaeel; Wu, Jun; Sehgal, Poonam; Kong, Xinyu; Tajik, Arash; Wang, Ning
2016-01-01
ABSTRACT This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors. PMID:26966187
Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis
Paniagua, Ricardo T.; Sharpe, Orr; Ho, Peggy P.; Chan, Steven M.; Chang, Anna; Higgins, John P.; Tomooka, Beren H.; Thomas, Fiona M.; Song, Jason J.; Goodman, Stuart B.; Lee, David M.; Genovese, Mark C.; Utz, Paul J.; Steinman, Lawrence; Robinson, William H.
2006-01-01
Tyrosine kinases play a central role in the activation of signal transduction pathways and cellular responses that mediate the pathogenesis of rheumatoid arthritis. Imatinib mesylate (imatinib) is a tyrosine kinase inhibitor developed to treat Bcr/Abl-expressing leukemias and subsequently found to treat c-Kit–expressing gastrointestinal stromal tumors. We demonstrate that imatinib potently prevents and treats murine collagen-induced arthritis (CIA). We further show that micromolar concentrations of imatinib abrogate multiple signal transduction pathways implicated in RA pathogenesis, including mast cell c-Kit signaling and TNF-α release, macrophage c-Fms activation and cytokine production, and fibroblast PDGFR signaling and proliferation. In our studies, imatinib attenuated PDGFR signaling in fibroblast-like synoviocytes (FLSs) and TNF-α production in synovial fluid mononuclear cells (SFMCs) derived from human RA patients. Imatinib-mediated inhibition of a spectrum of signal transduction pathways and the downstream pathogenic cellular responses may provide a powerful approach to treat RA and other inflammatory diseases. PMID:16981009
Antidepressive effects of targeting ELK-1 signal transduction.
Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T
2018-05-07
Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.
Chemokine receptor binding and signal transduction in native cells of the central nervous system.
Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K
2003-04-01
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.
Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue
2016-06-01
Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.
Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao
2016-07-01
The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.
Ras signaling in aging and metabolic regulation.
Slack, Cathy
2017-12-07
Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.
Activity Dependent Signal Transduction in Skeletal Muscle
NASA Technical Reports Server (NTRS)
Hamilton, Susan L.
1999-01-01
The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.
naked cuticle targets dishevelled to antagonize Wnt signal transduction
Rousset, Raphaël; Mack, Judith A.; Wharton, Keith A.; Axelrod, Jeffrey D.; Cadigan, Ken M.; Fish, Matthew P.; Nusse, Roel; Scott, Matthew P.
2001-01-01
In Drosophila embryos the protein Naked cuticle (Nkd) limits the effects of the Wnt signal Wingless (Wg) during early segmentation. nkd loss of function results in segment polarity defects and embryonic death, but how nkd affects Wnt signaling is unknown. Using ectopic expression, we find that Nkd affects, in a cell-autonomous manner, a transduction step between the Wnt signaling components Dishevelled (Dsh) and Zeste-white 3 kinase (Zw3). Zw3 is essential for repressing Wg target-gene transcription in the absence of a Wg signal, and the role of Wg is to relieve this inhibition. Our double-mutant analysis shows that, in contrast to Zw3, Nkd acts when the Wg pathway is active to restrain signal transduction. Yeast two hybrid and in vitro experiments indicate that Nkd directly binds to the basic-PDZ region of Dsh. Specially timed Nkd overexpression is capable of abolishing Dsh function in a distinct signaling pathway that controls planar-cell polarity. Our results suggest that Nkd acts directly through Dsh to limit Wg activity and thus determines how efficiently Wnt signals stabilize Armadillo (Arm)/β-catenin and activate downstream genes. PMID:11274052
Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction
Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude
2016-01-01
Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476
Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang
2017-12-01
The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .
Sweet taste transduction in hamster: role of protein kinases.
Varkevisser, B; Kinnamon, S C
2000-05-01
Two different second-messenger pathways have been implicated in sweet taste transduction: sugars produce cyclic AMP (cAMP), whereas synthetic sweeteners stimulate production of inositol 1,4, 5-tris-phosphate (IP(3)) and diacylglycerol (DAG). Both sugars and sweeteners depolarize taste cells by blocking the same resting K(+) conductance, but the intermediate steps in the transduction pathways have not been examined. In this study, the loose-patch recording technique was used to examine the role of protein kinases and other downstream regulatory proteins in the two sweet transduction pathways. Bursts of action currents were elicited from approximately 35% of fungiform taste buds in response to sucrose (200 mM) or NC-00274-01 (NC-01, 200 microM), a synthetic sweetener. To determine whether protein kinase C (PKC) plays a role in sweet transduction, taste buds were stimulated with the PKC activator PDBu (10 microM). In all sweet-responsive taste buds tested (n = 11), PDBu elicited burst of action currents. In contrast, PDBu elicited responses in only 4 of 19 sweet-unresponsive taste buds. Inhibition of PKC by bisindolylmaleimide I (0.15 microM) resulted in inhibition of the NC-01 response by approximately 75%, whereas the response to sucrose either increased or remained unchanged. These data suggest that activation of PKC is required for the transduction of synthetic sweeteners. To determine whether protein kinase A (PKA) is required for the transduction of sugars, sweet responses were examined in the presence of the membrane-permeant PKA inhibitor H-89 (10 and 19 microM). Surprisingly, H-89 did not decrease responses to either sucrose or NC-01. Instead, responses to both compounds were increased in the presence of the inhibitor. These data suggest that PKA is not required for the transduction of sugars, but may play a modulatory role in both pathways, such as adaptation of the response. We also examined whether Ca(2+)-calmodulin dependent cAMP phosphodiesterase (CaM-PDE) plays a role in sweet taste transduction, by examining responses to sucrose and synthetic sweeteners in the presence of the CaM-PDE inhibitor W-7 (100 microM). Inhibition resulted in an increase in the response to sucrose, whereas the response to NC-01 remained unchanged. These data suggest that the pathways for sugars and sweeteners are negatively coupled; the Ca(2+) that is released from intracellular stores during stimulation with synthetic sweeteners may inhibit the response to sucrose by activation of CaM-PDE.
Hou, Jun; Zheng, Dezhi; Xiao, Wenjing; Li, Dandan; Ma, Jie; Hu, Yonghe
2018-01-01
Mangiferin functions as a perfect anti-oxidative compound in the diabetic heart, however, the exact mechanism remains to be elucidated. Here, we show the cardioprotective effect of mangiferin under high glucose-induced cardiotoxic condition mainly contributed to enhanced autophagy via suppressing mTORC1 downstream signal transduction. Primary neonatal rat cardiomyocytes were cultured to detect myocytes injury, autophagy, and related signal transduction under different doses of glucose and mangiferin treatment. High glucose (30 mM) reduced autophagic flux, and increased myocyte apoptosis and death compared with normal glucose (5.5 mM) as determined by variation of autophagy markers LC3-II, p62, parkin, GFP-LC3, or mRFP-LC3 fluorescence puncta, cell viability, cleaved caspase 3, cleaved PARP apoptosis indices, reactive oxygen species (ROS), MAO, and PI death indices. Conversely, mangiferin inhibited hyperglycemia associated oxidative stress by reducing ROS, MAO, cleaved caspase 3, and cleaved PARP generation, reestablishing cell viability, mitochondrial membrane potential, and enhancing autophagic flux, thereby preventing myocytes from high glucose-induced toxicity. Furthermore, cardioprotection with mangiferin was potentially related to the decreased mTOR phosphorylation and suppression of mTORC1 downstream signaling pathway. These data indicated the valuable effects of mangiferin on regulation of cardiac autophagy and pointed to the promising utilization for hyperglycemia control.
Lu, D; Yang, H; Raizada, M K
1996-12-01
Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.
Alvarez-Ponce, David; Guirao-Rico, Sara; Orengo, Dorcas J; Segarra, Carmen; Rozas, Julio; Aguadé, Montserrat
2012-01-01
The IT-insulin/target of rapamycin (TOR)-signal transduction pathway is a relatively well-characterized pathway that plays a central role in fundamental biological processes. Network-level analyses of DNA divergence in Drosophila and vertebrates have revealed a clear gradient in the levels of purifying selection along this pathway, with the downstream genes being the most constrained. Remarkably, this feature does not result from factors known to affect selective constraint such as gene expression, codon bias, protein length, and connectivity. The present work aims to establish whether the selective constraint gradient detected along the IT pathway at the between-species level can also be observed at a shorter time scale. With this purpose, we have surveyed DNA polymorphism in Drosophila melanogaster and divergence from D. simulans along the IT pathway. Our network-level analysis shows that DNA polymorphism exhibits the same polarity in the strength of purifying selection as previously detected at the divergence level. This equivalent feature detected both within species and between closely and distantly related species points to the action of a general mechanism, whose action is neither organism specific nor evolutionary time dependent. The detected polarity would be, therefore, intrinsic to the IT pathway architecture and function.
Signal Transduction Pathways through TRK‐A and TRK‐B Receptors in Human Neuroblastoma Cells
Kuroda, Hiroshi; Horii, Yoshihiro; Moritake, Hiroshi; Tanaka, Takeo; Hattori, Seisuke
2001-01-01
Little is known about the signal transduction pathways of TRK family receptors in neuroblastoma (NB) cells. In this study, an NB cell line, designated MP‐N‐TS, was established from an adrenal tumor taken from a 2‐year‐old boy. This cell line expressed both TRK‐A and TRK‐B receptors, which is rare in a single NB cell line. Therefore, the MP‐N‐TS cell line was used to determine whether the signal transduction through these constitutive receptors is functional. Three neurotrophins, nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/ 5 (NT‐4/5), induced tyrosine phosphorylation of panTRK, and BDNF and NT‐4/5 induced tyrosine phosphorylation of TRK‐B. Tyrosine phosphorylation of panTRK and/or TRK‐B by the neurotro‐phins was inhibited in the presence of a tyrosine kinase inhibitor K252a. Tyrosine phosphorylation of Src homologous and collagen (She), extracellular signal‐regulated kinase (ERK)‐l and ERK‐2, and phospholipase C‐γl (PLC‐γl) was increased by the three neurotrophins and the increase was inhibited in the presence of K252a. Activation of Ras, detected as the GTP‐bound form of Ras, was induced by the three neurotrophins. The neurotrophins did not modulate the expressions of TRK‐A or TRK‐B mRNA, but they did induce the expression of c‐fos mRNA. Exogenous NGF induced weak neurite outgrowth, whereas exogenous BDNF and NT‐4/5 induced distinct neurite outgrowth. Exogenous BDNF and NT‐4/5 increased the number of viable cells, while NGF did not. Our results demonstrate that the signal transduction pathways through TRK‐A and TRK‐B in MP‐N‐TS cells are functional and similar, and the main downstream signaling pathways from the three neurotrophins are mitogen‐activated protein kinase (MAPK) cascades through She, activated Ras, ERK‐1 and ERK‐2, and the transduction pathway through PLC‐γl. Further, BDNF and NT‐4/5 increased cell viability. The MP‐N‐TS cell line should be useful for clarifying the TRK‐A and TRK‐B signaling pathways responsible for the different prognoses in patients with NB. PMID:11223544
Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi
2012-05-01
Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.
Hippo signaling: growth control and beyond
Halder, Georg; Johnson, Randy L.
2011-01-01
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration. PMID:21138973
Ma, Wei; Berkowitz, Gerald A
2011-05-01
Ca(2+) elevation in the cytosol is an essential early event during pathogen response signaling cascades. However, the specific ion channels involved in Ca(2+) influx into plant cells, and how Ca(2+) signals are initiated and regulate downstream events during pathogen defense responses, are at present unclear. Plant cyclic nucleotide gated ion channels (CNGCs) provide a pathway for Ca(2+) conductance across the plasma membrane (PM) and facilitate cytosolic Ca(2+) elevation in response to pathogen signals. Recent studies indicate that the recognition of pathogens results in cyclic nucleotide production and the activation of CNGCs, which leads to downstream generation of pivotal signaling molecules (such as nitric oxide (NO)). Calmodulins (CaMs) and CaM-like proteins (CMLs) are also involved in this signaling, functioning as Ca(2+) sensors and mediating the synthesis of NO during the plant pathogen response signaling cascade. In this article, these and other pivotal signaling components downstream from the Ca(2+) signal, such as Ca(2+)-dependent protein kinases (CDPKs) and CaM-binding transcription activators (CAMTAs), are discussed in terms of their involvement in the pathogen response signal transduction cascade. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
Role of ethylene receptors during senescence and ripening in horticultural crops
Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P.; Arora, Ajay
2012-01-01
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity. PMID:22751331
Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway
DONG, MENGHUA; YANG, GUIQING; LIU, HANCHEN; LIU, XIAOXU; LIN, SIXIANG; SUN, DONGNING; WANG, YISHAN
2014-01-01
Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105
The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varshney, Gaurav K.; Palmer, Ruth H.
2006-12-29
During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function resultsmore » in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.« less
Response to Hyperosmotic Stress
Saito, Haruo; Posas, Francesc
2012-01-01
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast. PMID:23028184
IGF-1 signaling mediated cell-specific skeletal mechano-transduction.
Tian, Faming; Wang, Yongmei; Bikle, Daniel D
2018-02-01
Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lei; Department of Physiology, Nankai University School of Medicine, Tianjin 300071; Carr, Aprell L.
2014-07-11
Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STILmore » interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.« less
Jordan, Martha S; Koretzky, Gary A
2010-04-01
The adaptor protein SLP-76 is expressed in multiple hematopoietic lineages including T cells, platelets, and neutrophils. SLP-76 mediated signaling is dependent on its multiple protein interaction domains, as it creates a scaffold on which key signaling complexes are built. SLP-76 is critical for supporting signaling downstream of both immunoreceptors and integrins. The signaling molecules used both upstream and downstream of SLP-76 are similar among these receptors and across cell types; however, important differences exist. Appreciating how SLP-76 coordinates signal transduction across different cell and receptor types provides insights into the complex interplay of pathways critical for activation of cells of the immune system that are essential for host defense.
Gill, Tejpal; Levine, Alan D
2013-09-06
T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.
HIV-1 Tat binds to SH3 domains: cellular and viral outcome of Tat/Grb2 interaction
Rom, Slava; Pacifici, Marco; Passiatore, Giovanni; Aprea, Susanna; Waligorska, Agnieszka; Valle, Luis Del; Peruzzi, Francesca
2011-01-01
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia. PMID:21745501
Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang
2015-01-01
Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.
Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D
2018-01-01
Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199
Du, Jun-Ying; Fang, Jian-Qiao; Liang, Yi; Fang, Jun-Fan
2014-09-01
Electroacupuncture (EA) has a substantial analgesic effect on inflammatory pain induced by complete Freund's adjuvant (CFA). The activation of the c-Jun N-terminal kinase 1/2 (JNK1/2) signal transduction pathway in the spinal cord is associated with inflammatory pain. However, the relationship between EA's analgesic effect and the JNK1/2 signal transduction pathway in the inflammatory pain remain unclear. In the present study, we used the established rat model of CFA-induced inflammatory pain to investigate the role of the spinal JNK1/2 pathway in EA-mediated analgesia. We observed a decrease in paw withdrawal thresholds and an increase in paw edema at 1 and 3 days after injecting CFA into the right hindpaw. CFA, 3 days after injection, upregulated expression of phospho-c-Jun N-terminal kinase1/2 (p-JNK1/2) protein and its downstream targets, the transcriptional regulators p-c-Jun and activator protein-1 (AP-1), as well as cyclooxygenase-2 (COX-2) and the transient receptor potential vanilloid 1 (TRPV1). EA significantly alleviated CFA-induced inflammatory pain. In addition, EA reduced p-JNK1/2 protein levels and COX-2 mRNA expressions, a degree of down-regulated p-c-Jun protein level and AP-1 DNA binding activity in the spinal dorsal horn of CFA-administered animals, but it had no effect on TRPV1 mRNA expression. Furthermore, EA and the JNK inhibitor SP600125 synergistically inhibited CFA-induced hyperalgesia and suppressed the COX-2 mRNA expression in the spinal dorsal horn. Our findings indicate that EA alleviates inflammatory pain behavior, at least in part, by reducing COX-2 expression in the spinal cord via the JNK1/2 signaling pathway. Inactivation of the spinal JNK1/2 signal transduction pathway maybe the potential mechanism of EA's antinociception in the inflammatory pain model. Copyright © 2014 Elsevier Inc. All rights reserved.
p21-activated kinases in cancer.
Kumar, Rakesh; Gururaj, Anupama E; Barnes, Christopher J
2006-06-01
The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, which results in tumour formation and cell invasiveness. Alterations in Pak expression have been detected in human tumours, which makes them an attractive new therapeutic target.
The mechanisms of Ag85A DNA vaccine activates RNA sensors through new signal transduction.
Zhai, Jingbo; Wang, Qiubo; Gao, Yunfeng; Zhang, Ran; Li, Shengjun; Wei, Bing; You, Yong; Sun, Xun; Lu, Changlong
2018-06-01
Low immunogenicity is one of the major problems limiting the clinical use for DNA vaccines, which makes it impossible to obtain a strong protective immune response after vaccination. In order to explore whether Ag85A DNA vaccine could mount more efficiently protective immune response through new RNA sensor and its signal transduction pathway of antigen presentation we designed and synthesized Ag85A gene fragment containing multiple points mutations and transfected the gene fragment into the dendritic cell line (DC2.4) by CRISPR/Cas9. Subsequently, we focused on the changes of RNA sensors RIG-I, Mda-5, and the downstream adaptors MAVS, IRF3, IRF7 and IFN-β. The results indicated the significant increases in the mRNA and protein expression of RNA sensors RIG-I, Mda-5 and related adaptors MAVS, IRF3, IRF7, and IFN-β in the mutant DC 2.4 cells. The flow cytometry results demonstrated that the expression of MHC II on the surface of DC 2.4 significantly increased when compared with that in control. Therefore, it is suggested that Ag85A mutant DNA could release immunogenic message through RNA sensors and related adaptors via non protein pathway. There is at least one RNA signal transduction pathway of Ag85A DNA in DC2.4 cell. The work provides a new mode of action for nucleic acid vaccine to improve immunogenicity and meaningful data for the better understanding of the mechanisms of DNA vaccine. Copyright © 2017. Published by Elsevier B.V.
Intersecting Roles of Protein Tyrosine Kinase and Calcium Signaling During Fertilization
Kinsey, William H.
2012-01-01
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed. PMID:23201334
Sindreu, Carlos Balet; Scheiner, Zachary S; Storm, Daniel R
2007-01-04
The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation has not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are coactivated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca(2+)-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory.
Ca2+-Stimulated Adenylyl Cyclases Regulate ERK-Dependent Activation of MSK1 During Fear Conditioning
Sindreu, Carlos Balet; Scheiner, Zachary S.; Storm, Daniel R.
2007-01-01
The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation have not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are co-activated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca2+-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory. PMID:17196532
Melas, Ioannis N; Mitsos, Alexander; Messinis, Dimitris E; Weiss, Thomas S; Rodriguez, Julio-Saez; Alexopoulos, Leonidas G
2012-04-01
Construction of large and cell-specific signaling pathways is essential to understand information processing under normal and pathological conditions. On this front, gene-based approaches offer the advantage of large pathway exploration whereas phosphoproteomic approaches offer a more reliable view of pathway activities but are applicable to small pathway sizes. In this paper, we demonstrate an experimentally adaptive approach to construct large signaling pathways from phosphoproteomic data within a 3-day time frame. Our approach--taking advantage of the fast turnaround time of the xMAP technology--is carried out in four steps: (i) screen optimal pathway inducers, (ii) select the responsive ones, (iii) combine them in a combinatorial fashion to construct a phosphoproteomic dataset, and (iv) optimize a reduced generic pathway via an Integer Linear Programming formulation. As a case study, we uncover novel players and their corresponding pathways in primary human hepatocytes by interrogating the signal transduction downstream of 81 receptors of interest and constructing a detailed model for the responsive part of the network comprising 177 species (of which 14 are measured) and 365 interactions.
Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i
1997-03-07
The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.
Expanding the Substantial Interactome of NEMO Using Protein Microarrays
Fenner, Beau J.; Scannell, Michael; Prehn, Jochen H. M.
2010-01-01
Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway. PMID:20098747
[Targeting of membrane receptor tyrosine kinases: is there resistance in the HER?].
Monnier, Lucile; Milano, Gérard; Penault-Llorca, Frédérique; Merlin, Jean-Louis
2004-09-01
Human Epidermal growth factor Receptors (HER) play an important role in cellular proliferation, and differentiation. Their overexpression in tumor tissues is often associated with a poor prognosis. Consequently, HER receptors are interesting therapeutic targets for cancer treatment. Two strategies are proposed. First, monoclonal antibodies can be used to inhibit the binding of one ligand to its receptor. The second approach is based upon the designing of tyrosine kinase inhibitors capable to bind into the phosphorylation site of the receptor. Consequently, both approaches block the signal transduction downstream. Resistance to anti receptor tyrosine kinase therapy can lead to enhanced morbidity associated with high therapeutic cost. Different mechanisms can be implicated. Non specific mechanisms include alterations of the signal transduction pathways (PI3K/AKT), recruitment of alternative receptor tyrosine kinase pathways (IGFR, VEGFR) and proteasome degradation inhibition. Other mechanisms are specific to HER and rely on inhibition of the binding of monoclonal antibodies (sialomucin-MUC4), heterodimerisation of HER, truncated soluble receptors intervention and mutated variants, as demonstrated very recently with EGF receptors, or genetic polymorphism. This paper reviews these different resistance mechanisms that have been identified in preclinical and clinical situations.
Costa, Michelle N; Radhakrishnan, Krishnan; Wilson, Bridget S; Vlachos, Dionisios G; Edwards, Jeremy S
2009-07-23
The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors.
Zheng, Long; Zhang, Chao; Li, Long; Hu, Chao; Hu, Mushuang; Sidikejiang, Niyazi; Wang, Xuanchuan; Lin, Miao; Rong, Ruiming
2017-01-01
Previous studies have demonstrated the potential antifibrotic effects of baicalin in vitro, via examination of 21 compounds isolated from plants. However, its biological activity and underlying mechanisms of action in vivo remain to be elucidated. The present study aimed to evaluate the effect of baicalin on renal fibrosis in vivo, and the potential signaling pathways involved. A unilateral ureteral obstruction (UUO)-induced renal fibrosis model was established using Sprague-Dawley rats. Baicalin was administrated intraperitoneally every 2 days for 10 days. The degree of renal damage and fibrosis was investigated by histological assessment, and detection of fibronectin and collagen I mRNA expression levels. Epithelial-mesenchymal transition (EMT) markers, transforming growth factor-β1 (TGF-β1) levels and downstream phosphorylation of mothers against decapentaplegic 2/3 (Smad2/3) were examined in vivo and in an NRK-52E rat renal tubular cell line in vitro. Baicalin was demonstrated to markedly ameliorate renal fibrosis and suppress EMT, as evidenced by reduced interstitial collagen accumulation, decreased fibronectin and collagen I mRNA expression levels, upregulation of N- and E-cadherin expression levels, and downregulation of α-smooth muscle actin and vimentin expression. Furthermore, baicalin decreased TGF-β1 expression levels in serum and kidney tissue following UUO, and suppressed Smad2/3 phosphorylation in rat kidney tissue. In vitro studies identified that baicalin may inhibit the phosphorylation of Smad2/3 under the same TGF-β1 concentration. In conclusion, baicalin may protect against renal fibrosis, potentially via inhibition of TGF-β1 production and its downstream signal transduction. PMID:28260014
Walters, Jewell N.; Bickford, Justin S.; Beachy, Dawn E.; Newsom, Kimberly J.; Herlihy, John-David H.; Peck, Molly V.; Qiu, Xiaolei; Nick, Harry S.
2011-01-01
Cytosolic phospholipase A2α (cPLA2α) is the most widely studied member of the Group IV PLA2 family. The enzyme is Ca2+-dependent with specificity for phospholipid substrates containing arachidonic acid. As the pinnacle of the arachidonic acid pathway, cPLA2α has a primary role in the biosynthesis of a diverse family of eicosanoid metabolites, with potent physiological, inflammatory and pathological consequences. cPLA2α activity is regulated by pro-inflammatory stimuli through pathways involving increased intracellular Ca2+ levels, phosphorylation coupled to increased enzymatic activity and de novo gene transcription. This study addresses the signal transduction pathways for protein phosphorylation and gene induction following IL-1β stimulation in human fetal lung fibroblasts. Our results utilizing both inhibitors and kinase-deficient cells demonstrate that cPLA2α is phosphorylated within 10 min of IL-1β treatment, an event requiring p38 MAPK as well as the upstream kinase, MKK3/MKK6. Inhibition of p38 MAPK also blocks the phosphorylation of a downstream, nuclear kinase, MSK-1. Our results further demonstrate that the activities of both cPLA2α and a downstream lipoxygenase (15-LOX2) are required for IL-1β-dependent induction of cPLA2α mRNA expression. Overall, these data support an MKK3/MKK6→p38 MAPK→MSK-1→cPLA2α→15-LOX2-dependent, positive feedback loop where a protein’s enzymatic activity is required to regulate its own gene induction by a pro-inflammatory stimulus. PMID:21771656
Migliario, Mario; Sabbatini, Maurizio; Mortellaro, Carmen; Renò, Filippo
2018-05-02
Lasers devices are widely used in various medical fields (e.g. surgery, dermatology, dentistry, rehabilitative medicine, etc) for different applications, ranging from surgical ablation of tissues to biostimulation and pain relief. Laser is an electromagnetic radiation which effects on biological tissues strongly depends on a number of physical parameters. Laser wavelength, energy output, irradiation time and modality, temperature and tissue penetration properties have to be set up according to the clinical target tissue and the desired effect. A less than optimal operational settings, in fact, could result in a null or even lethal effect. According to the first law of photobiology, light absorption requires the presence of a specific photoacceptor that after excitation could induce the activation of downstream signaling pathways. Low level lasers operating in the red/near infrared portion of the light spectra are generally used for biostimulation purposes, a particular therapeutic application based on the radiant energy ability to induce non-thermal responses in living cells. Biostimulation process generally promotes cell survival and proliferation. Emerging evidences support a low level laser stimulation mediated increase in "good" ROS (reactive oxygen species), able to activate redox sensitive signal transduction pathways such as Nrf-2, NF-kB, ERK which act as key redox checkpoints. This article is protected by copyright. All rights reserved.
Shikata, Tomoyuki; Iseki, Mineo; Matsunaga, Shigeru; Higashi, Sho-ichi; Kamei, Yasuhiro; Watanabe, Masakatsu
2011-01-01
Photophysiological and pharmacological approaches were used to examine light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus. The equal-quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light-induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca(2+) influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein-tyrosine-phosphatase, protein kinase C and actin polymerization and translation. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Genetic variation in insulin-induced kinase signaling
Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G
2015-01-01
Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599
The JAK-STAT signaling pathway: input and output integration.
Murray, Peter J
2007-03-01
Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.
Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics
2009-01-01
Background The epidermal growth factor receptor (EGFR) signaling pathway plays a key role in regulation of cellular growth and development. While highly studied, it is still not fully understood how the signal is orchestrated. One of the reasons for the complexity of this pathway is the extensive network of inter-connected components involved in the signaling. In the aim of identifying critical mechanisms controlling signal transduction we have performed extensive analysis of an executable model of the EGFR pathway using the stochastic pi-calculus as a modeling language. Results Our analysis, done through simulation of various perturbations, suggests that the EGFR pathway contains regions of functional redundancy in the upstream parts; in the event of low EGF stimulus or partial system failure, this redundancy helps to maintain functional robustness. Downstream parts, like the parts controlling Ras and ERK, have fewer redundancies, and more than 50% inhibition of specific reactions in those parts greatly attenuates signal response. In addition, we suggest an abstract model that captures the main control mechanisms in the pathway. Simulation of this abstract model suggests that without redundancies in the upstream modules, signal transduction through the entire pathway could be attenuated. In terms of specific control mechanisms, we have identified positive feedback loops whose role is to prolong the active state of key components (e.g., MEK-PP, Ras-GTP), and negative feedback loops that help promote signal adaptation and stabilization. Conclusions The insights gained from simulating this executable model facilitate the formulation of specific hypotheses regarding the control mechanisms of the EGFR signaling, and further substantiate the benefit to construct abstract executable models of large complex biological networks. PMID:20028552
Receptor for Advanced Glycation End Products and Its Involvement in Inflammatory Diseases
Talib, Herni; Tie, Tung Hing; Nordin, Norshariza
2013-01-01
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions. PMID:24102034
Qin, Jian; Lin, Yulian; Norman, Ryan X; Ko, Hyuk W; Eggenschwiler, Jonathan T
2011-01-25
Primary cilia are required for proper Sonic Hedgehog (Shh) signaling in mammals. However, their role in the signal transduction process remains unclear. We have identified sister of open brain (sopb), a null allele of mouse Intraflagellar transport protein 122 (Ift122). IFT122 negatively regulates the Shh pathway in the cilium at a step downstream of the Shh ligand and the transmembrane protein Smoothened, but upstream of the Gli2 transcription factor. Ift122(sopb) mutants generate primary cilia, but they show features of defective retrograde intraflagellar transport. IFT122 controls the ciliary localization of Shh pathway regulators in different ways. Disruption of IFT122 leads to accumulation of Gli2 and Gli3 at cilia tips while blocking the ciliary localization of the antagonist TULP3. Suppressor of Fused and Smoothened localize to the cilium through an IFT122-independent mechanism. We propose that the balance between positive and negative regulators of the Shh pathway at the cilium tip controls the output of the pathway and that Shh signaling regulates this balance through intraflagellar transport.
Plant cell surface receptor-mediated signaling - a common theme amid diversity.
He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong
2018-01-29
Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.
An essential role of a FoxD gene in notochord induction in Ciona embryos.
Imai, Kaoru S; Satoh, Nori; Satou, Yutaka
2002-07-01
A key issue for understanding the early development of the chordate body plan is how the endoderm induces notochord formation. In the ascidian Ciona, nuclear accumulation of beta-catenin is the first step in the process of endoderm specification. We show that nuclear accumulation of beta-catenin directly activates the gene (Cs-FoxD) for a winged helix/forkhead transcription factor and that this gene is expressed transiently at the 16- and 32-cell stages in endodermal cells. The function of Cs-FoxD, however, is not associated with differentiation of the endoderm itself but is essential for notochord differentiation or induction. In addition, it is likely that the inductive signal that appears to act downstream of Cs-FoxD does not act over a long range. It has been suggested that FGF or Notch signal transduction pathway mediates ascidian notochord induction. Our previous study suggests that Cs-FGF4/6/9 is partially involved in the notochord induction. The present experimental results suggest that the expression and function of Cs-FGF4/6/9 and Cs-FoxD are not interdependent, and that the Notch pathway is involved in B-line notochord induction downstream of Cs-FoxD.
mAKAP – A Master Scaffold for Cardiac Remodeling
Passariello, Catherine L.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.
2014-01-01
Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or ‘signalosomes’ are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2 and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy. PMID:25551320
Santolla, Maria Francesca; Lappano, Rosamaria; De Marco, Paola; Pupo, Marco; Vivacqua, Adele; Sisci, Diego; Abonante, Sergio; Iacopetta, Domenico; Cappello, Anna Rita; Dolce, Vincenza; Maggiolini, Marcello
2012-12-21
Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many tumors. Fatty acid synthase (FASN) is a key lipogenic enzyme catalyzing the terminal steps in the de novo biogenesis of fatty acids. In cancer cells, FASN may act as a metabolic oncogene, given that it confers growth and survival advantages to these cells, whereas its inhibition effectively and selectively kills tumor cells. Hormones such as estrogens and growth factors contribute to the transcriptional regulation of FASN expression also through the activation of downstream signaling and a cross-talk among diverse transduction pathways. In this study, we demonstrate for the first time that 17β-estradiol (E2) and the selective GPER ligand G-1 regulate FASN expression and activity through the GPER-mediated signaling, which involved the EGF receptor/ERK/c-Fos/AP1 transduction pathway, as ascertained by using specific pharmacological inhibitors, performing gene-silencing experiments and ChIP assays in breast SkBr3, colorectal LoVo, hepatocarcinoma HepG2 cancer cells, and breast cancer-associated fibroblasts. In addition, the proliferative effects induced by E2 and G-1 in these cells involved FASN as the inhibitor of its activity, named cerulenin, abolished the growth response to both ligands. Our data suggest that GPER may be included among the transduction mediators involved by estrogens in regulating FASN expression and activity in cancer cells and cancer-associated fibroblasts that strongly contribute to cancer progression.
Thuwajit, Chanitra; Thuwajit, Peti; Uchida, Kazuhiko; Daorueang, Daoyot; Kaewkes, Sasithorn; Wongkham, Sopit; Miwa, Masanao
2006-06-14
To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product. NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR. Among a total of 15,000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfr alpha, jak 1, eps 8, tgf beta 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfbeta 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-beta (TGF-beta) showed statistical significance (P < 0.05). O. viverrini ES product stimulates the significant changes of gene expression in several functional categories and these mainly include transcripts related to cell proliferation. The TGF-beta and EGF signal transduction pathways are indicated as the possible pathways of O. viverrini-driven cell proliferation.
van der Fits, L; Zhang, H; Menke, F L; Deneka, M; Memelink, J
2000-11-01
Plants respond to pathogen attack by induction of various defence responses, including the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the elicitor-induced expression of the terpenoid indole alkaloid biosynthetic gene Strictosidine synthase (Str) is mediated via the plant stress hormonejasmonate. In the promoters of several defence-related genes, cis-acting elements have been identified that are important for transcriptional regulation upon stress signals. Here we show that an upstream region in the Str promoter confers responsiveness to partially purified yeast elicitor and jasmonate. Yeast one-hybrid screening with this element as a bait identified a MYB-like protein, which shows high homology to parsley box P-binding factor-1 (PcBPF-1). In vitro analyses showed that the Str promoter fragment contained a novel binding site for BPF-1-like proteins with higher binding affinity than the previously described box P. CrBPF-1 mRNA accumulated rapidly in elicitor-treated C. roseus suspension cells, whereas no induction was observed with jasmonate. Inhibitor studies indicated that CrBPF-1 plays a role in an elicitor-responsive but jasmonate-independent signal transduction pathway, acting downstream of protein phosphorylation and calcium influx.
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential mechanisms of a compound's efficacy.
Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.
2012-01-01
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes (T2D). Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates which have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: Metabolism/glucose uptake, Mitogenesis/growth, and Aging/Longevity. While IR functions in a seemingly pleotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan. PMID:23052216
Rattan, Satish; Singh, Jagmohan
2012-04-01
The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.
Singh, Jagmohan
2012-01-01
The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10−8 to 10−4 M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC20 in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC20, before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment. PMID:22241857
Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus; Zarbock, Alexander
2010-04-15
Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.
Chen, Hua-Wei; Chen, Xiu; Oh, Su-Wan; Marinissen, Maria J.; Gutkind, J. Silvio; Hou, Steven X.
2002-01-01
The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom's function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway. PMID:11825879
Abiko, Yumi; Sha, Liang; Shinkai, Yasuhiro; Unoki, Takamitsu; Luong, Nho Cong; Tsuchiya, Yukihiro; Watanabe, Yasuo; Hirose, Reiko; Akaike, Takaaki; Kumagai, Yoshito
2017-03-01
The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na 2 S 2 and Na 2 S 4 , blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts. Copyright © 2017 Elsevier Inc. All rights reserved.
Dong, Hong-Ping; Peng, Jianling; Bao, Zhilong; Meng, Xiangdong; Bonasera, Jean M; Chen, Guangyong; Beer, Steven V; Dong, Hansong
2004-11-01
Ethylene (ET) signal transduction may regulate plant growth and defense, depending on which components are recruited into the pathway in response to different stimuli. We report here that the ET pathway controls both insect resistance (IR) and plant growth enhancement (PGE) in Arabidopsis (Arabidopsis thaliana) plants responding to harpin, a protein produced by a plant pathogenic bacterium. PGE may result from spraying plant tops with harpin or by soaking seeds in harpin solution; the latter especially enhances root growth. Plants treated similarly develop resistance to the green peach aphid (Myzus persicae). The salicylic acid pathway, although activated by harpin, does not lead to PGE and IR. By contrast, PGE and IR are induced in both wild-type plants and genotypes that have defects in salicylic acid signaling. In response to harpin, levels of jasmonic acid (JA) decrease, and the COI1 gene, which is indispensable for JA signal transduction, is not expressed in wild-type plants. However, PGE and IR are stimulated in the JA-resistant mutant jar1-1. In the wild type, PGE and IR develop coincidently with increases in ET levels and the expression of several genes essential for ET signaling. The ET receptor gene ETR1 is required because both phenotypes are arrested in the etr1-1 mutant. Consistently, inhibition of ET perception nullifies the induction of both PGE and IR. The signal transducer EIN2 is required for IR, and EIN5 is required for PGE because IR and PGE are impaired correspondingly in the ein2-1 and ein5-1 mutants. Therefore, harpin activates ET signaling while conscribing EIN2 and EIN5 to confer IR and PGE, respectively.
Kan, Hideko; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku
2011-09-01
Multiple pathways from three types of multiple receptor sites to three types of metabotropic signal transduction pathways were investigated in the whole cell-clamp experiments using isolated labellar sugar receptor neurons (cells) of the adult blowfly, Phormia regina. First, the concentration-response curves of three types of sweet taste components specialized to multiple receptor sites were obtained: sucrose for the pyranose sites (P-sites), fructose for the furanose sites (F-sites), and l-valine for the alkyl sites (R-sites). Next, the effects of inhibitors such as 2', 5'-dideoxyadenosine on adenylyl cyclase in the cAMP pathway, LY 83583 on guanylyl cyclase in the cGMP pathway, and U-73122 on phospholipase C in the IP₃ pathway were examined. The results showed that all of the inhibitors affected each specific target in the second-messenger transduction pathways. The obtained results verified that the P-site corresponded to the cAMP, the F-site to the cGMP, and the R-site to the IP₃ transduction pathway, and that these three signal pathways did not have crossing points. Copyright © 2011 Elsevier Inc. All rights reserved.
Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.
Altman, Brian J
2016-01-01
Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.
Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer
Altman, Brian J.
2016-01-01
Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight. PMID:27500134
The Hedgehog Signal Transduction Network
Robbins, David J.; Fei, Dennis Liang; Riobo, Natalia A.
2013-01-01
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called “canonical” Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as “noncanonical” signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network. PMID:23074268
Waring, D A; Kenyon, C
1991-04-25
In Caenorhabditis elegans, cell-cell communication is required to form a simple pattern of sensory ray neurons and cuticular structures (alae). The C. elegans pal-1 gene initiates one developmental pathway (ray lineages) simply by blocking a cell-cell interaction that induces an alternative pathway. Here we show by mosaic analysis that pal-1+ acts by preventing specific cells from responding to inductive signals. The results indicate that although cell signals play a critical role in generating this pattern, they do not provide spatial information. Instead, signals are sent to many, if not all, of the precursor cells, and the ability to respond is spatially restricted. This patterning strategy thus differs from many well known models for pattern formation in which localized inductive signals influence a subset of cells within a field. We find that pal-1 encodes a homeodomain protein and so is likely to regulate transcription. The pal-1+ protein could block the response to cell signals either by repressing genes involved in signal transduction or by acting directly on downstream genes in a way that neutralizes the effects of the intercellular signals. Genetic experiments indicate that one candidate for such a downstream gene is the Antennapedia-like homeotic selector gene mab-5.
Fahmi, Tazin; Port, Gary C.
2017-01-01
Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens. PMID:28783096
Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.
Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro
2017-09-03
Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.
The absence of Grb2-associated binder 2 (Gab2) does not disrupt NK cell development and functions.
Zompi, Simona; Gu, Hahiua; Colucci, Francesco
2004-10-01
Scaffolding molecules bind simultaneously and link together various components of signal-transduction pathways. Grb2-associated binder 2 (Gab2) is a scaffolding protein required for FcgammaR-initiated allergic responses in mast cells and FcgammaR-mediated phagocytosis in macrophages, where it links IgE and IgG receptors to the phosphatidylinositol-3 kinase (PI-3K) pathway. The FcgammaR expressed by natural killer (NK) cells triggers antibody-dependent cellular cytotoxicity (ADCC). We show here that mouse NK cells express Gab2 and that although PI-3K was required for ADCC, this FcgammaR-mediated function was normal in Gab2-/- NK cells. Moreover, NK cell development, spontaneous cytotoxicity, and responses to and production of cytokines were not perturbed in Gab2-/- mice. Considering the striking differences between the signaling requirements of FcgammaR in macrophages and NK cells, our findings suggest that the organization of signal transduction downstream of the same FcR can be cell type-specific. Conversely, Gab family members Gab1, Gab2, and Gab3 may play specific roles in different leukocytes. As pharmacological targeting of Gab2 in mast cells is a potential strategy to treat allergy, our results suggest prudence, as NK cells may participate in IgE-mediated anaphylaxis in a Gab2-independent manner.
Ma, Yi; Zhao, Yichen; Walker, Robin K.; Berkowitz, Gerald A.
2013-01-01
Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca2+ elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca2+ signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca2+-dependent protein kinases (CPKs) decode the Ca2+ signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca2+ signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca2+-conducting channel in the Pep immune signaling pathway. PMID:24019427
Srikantha, Thyagarajan; Huang, Guanghua; Garnaas, Adam M.; Soll, David R.
2011-01-01
Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α), C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs), and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2—|)→Tpk2(Tpk1)→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1)→Ste11→Hst7→Cek2(Cek1)→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration. PMID:21829325
Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki
2015-02-13
Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib. Copyright © 2015 Elsevier Inc. All rights reserved.
Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan
2013-03-22
Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.
2013-01-01
Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865
Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.
Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele
2014-01-01
The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.
Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross
2015-02-01
The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.
Reverse Engineering a Signaling Network Using Alternative Inputs
Tanaka, Hiromasa; Yi, Tau-Mu
2009-01-01
One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612
Neuropilins are positive regulators of Hedgehog signal transduction
Hillman, R. Tyler; Feng, Brian Y.; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G.; Teruel, Mary N.; Oro, Anthony E.; Chen, James K.; Scott, Matthew P.
2011-01-01
The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878
Quantitative Biology of Exercise-Induced Signal Transduction Pathways.
Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang
2017-01-01
Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.
Analysis of cellular signal transduction from an information theoretic approach.
Uda, Shinsuke; Kuroda, Shinya
2016-03-01
Signal transduction processes the information of various cellular functions, including cell proliferation, differentiation, and death. The information for controlling cell fate is transmitted by concentrations of cellular signaling molecules. However, how much information is transmitted in signaling pathways has thus far not been investigated. Shannon's information theory paves the way to quantitatively analyze information transmission in signaling pathways. The theory has recently been applied to signal transduction, and mutual information of signal transduction has been determined to be a measure of information transmission. We review this work and provide an overview of how signal transduction transmits informational input and exerts biological output. Copyright © 2015 Elsevier Ltd. All rights reserved.
Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems
Medford, June; Prasad, Ashok
2014-01-01
Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102
Gene profiling of the red light signalling pathways in roots.
Molas, Maria Lia; Kiss, John Z; Correll, Melanie J
2006-01-01
Red light, acting through the phytochromes, controls numerous aspects of plant development. Many of the signal transduction elements downstream of the phytochromes have been identified in the aerial portions of the plant; however, very few elements in red-light signalling have been identified specifically for roots. Gene profiling studies using microarrays and quantitative Real-Time PCR were performed to characterize gene expression changes in roots of Arabidopsis seedlings exposed to 1 h of red light. Several factors acting downstream of phytochromes in red-light signalling in roots were identified. Some of the genes found to be differentially expressed in this study have already been characterized in the red-light-signalling pathway for whole plants. For example, PHYTOCHROME KINASE 1 (PKS1), LONG HYPOCOTYL 5 (HY5), EARLY FLOWERING 4 (ELF4), and GIGANTEA (GI) were all significantly up-regulated in roots of seedlings exposed to 1 h of red light. The up-regulation of SUPPRESSOR OF PHYTOCHROME A RESPONSES 1 (SPA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) genes suggests that the PHYA-mediated pathway was attenuated by red light. In addition, genes involved in lateral root and root hair formation, root plastid development, phenylpropanoid metabolism, and hormone signalling were also regulated by exposure to red light. Interestingly, members of the RPT2/NPH3 (ROOT PHOTOTROPIC 2/NON PHOTOTROPIC HYPOCOTYL 3) family, which have been shown to mediate blue-light-induced phototropism, were also differentially regulated in roots in red light. Therefore, these results suggest that red and blue light pathways interact in roots of seedlings and that many elements involved in red-light-signalling found in the aerial portions of the plant are differentially expressed in roots within 1 h of red light exposure.
Brennan, Joseph J.; Messerschmidt, Jonathan L.; Williams, Leah M.; Matthews, Bryan J.; Reynoso, Marinaliz; Gilmore, Thomas D.
2017-01-01
In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity. PMID:29109290
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity
Dorfman, Mauricio D.; Krull, Jordan E.; Scarlett, Jarrad M.; Guyenet, Stephan J.; Sajan, Mini P.; Damian, Vincent; Nguyen, Hong T.; Leitges, Michael; Morton, Gregory J.; Farese, Robert V.; Schwartz, Michael W.
2017-01-01
Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons. PMID:28073831
Role of Smad signaling in kidney disease.
Zhang, Yanhua; Wang, Songyan; Liu, Shengmao; Li, Chunguang; Wang, Ji
2015-12-01
Smads are the key intermediates of canonical transforming growth factor-beta (TGF-β) signaling. These intermediates are divided into three distinct subgroups based on their role in TGF-β family signal transduction: Receptor-regulated Smads (R-Smads) 1, 2, 3, 5 and 8, common Smad4, and inhibitory Smads6 and 7. TGF-β signaling through Smad pathway involves phosphorylation, ubiquitination, sumoylation, acetylation, and protein-protein interactions with mitogen-activated protein kinases, PI3K-Akt/PKB, and Wnt/GSK-3. Several studies have suggested that upregulation or downregulation of TGF-β/Smad signaling pathways may be a pathogenic mechanism in the progression of chronic kidney disease. Smad2 and 3 are the two major downstream R-Smads in TGF-β-mediated renal fibrosis, while Smad7 also controls renal inflammation. In this review, we characterize the role of Smads in kidney disease, describe the molecular mechanisms, and discuss the potential of Smads as a therapeutic target in chronic kidney disease.
Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka
2017-11-01
Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.
Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome.
Kattah, Michael G; Malynn, Barbara A; Ma, Averil
2017-11-10
Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1β and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Redox implications of AMPK-mediated signal transduction beyond energetic clues.
Cardaci, Simone; Filomeni, Giuseppe; Ciriolo, Maria Rosa
2012-05-01
Since the discovery of AMP-dependent protein kinase (AMPK), its fundamental role in regulating metabolic pathways and the molecular mechanism underlying the regulation of its activity by adenine nucleotides has been widely studied. AMPK is not only an energy-responsive enzyme, but it also senses redox signals. This review aims at recapitulating the recent lines of evidence that demonstrate the responsiveness of this kinase to metabolic and nitroxidative imbalance, thus providing new insights into the intimate networks of redox-based signals upstream of AMPK. In particular, we discuss its well-recognized activation downstream of mitochondrial dysfunction, debate the recent findings that AMPK is directly targeted by pro-oxidant species, and question alternative redox pathways that allow AMPK to be included into the large class of redox-sensing proteins. The possible therapeutic implications of the role of AMPK in redox-associated pathologies, such as cancer and neurodegeneration, are also discussed in light of recent advances that suggest a role for AMPK in the tuning of redox-dependent processes, such as apoptosis and autophagy.
Ling, L; Kung, H J
1995-01-01
Nyk/Mer is a recently identified receptor tyrosine kinase with neural cell adhesion molecule-like structure (two immunoglobulin G-like domains and two fibronectin III-like domains) in its extracellular region and belongs to the Ufo/Axl family of receptors. The ligand for Nyk/Mer is presently unknown, as are the signal transduction pathways mediated by this receptor. We constructed and expressed a chimeric receptor (Fms-Nyk) composed of the extracellular domain of the human colony-stimulating factor 1 receptor (Fms) and the transmembrane and cytoplasmic domains of human Nyk/Mer in NIH 3T3 fibroblasts in order to investigate the mitogenic signaling and biochemical properties of Nyk/Mer. Colony-stimulating factor 1 stimulation of the Fms-Nyk chimeric receptor in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a proliferative response in the absence of other growth factors. We show that phospholipase C gamma, phosphatidylinositol 3-kinase/p70 S6 kinase, Shc, Grb2, Raf-1, and mitogen-activated protein kinase are downstream components of the Nyk/Mer signal transduction pathways. In addition, Nyk/Mer weakly activates p90rsk, while stress-activated protein kinase, Ras GTPase-activating protein (GAP), and GAP-associated p62 and p190 proteins are not activated or tyrosine phosphorylated by Nyk/Mer. An analysis comparing the Nyk/Mer signal cascade with that of the epidermal growth factor receptor indicates substrate preferences by these two receptors. Our results provide a detailed description of the Nyk/Mer signaling pathways. Given the structural similarity between the Ufo/Axl family receptors, some of the information may also be applied to other members of this receptor tyrosine kinase family. PMID:8524223
Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu
2017-10-01
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.
Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks.
Zhang, Menghuan; Li, Hong; He, Ying; Sun, Han; Xia, Li; Wang, Lishun; Sun, Bo; Ma, Liangxiao; Zhang, Guoqing; Li, Jing; Li, Yixue; Xie, Lu
2015-07-02
Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.
Single-Molecule Imaging of Cellular Signaling
NASA Astrophysics Data System (ADS)
De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas
Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.
[Signal transduction mechanisms of hormones through membrane receptors].
Yasufuku-Takano, Junko; Takano, Koji
2002-02-01
Hormones exert their effect on cells either via membrane receptors or intracellular receptors. This paper aims to review membrane receptors and the intracellular signal transduction mechanisms. Membrane receptors could be classified according to their structural characteristics and the way they initiate the intracellular signal transduction. These include 1) Seven transmembrane(or G-protein coupled) receptors--heterotrimeric G-proteins--effector, system, 2) Receptor tyrosine kinases--protein-protein interaction through SH2, SH3, and PTB domain--MAP kinase cascades and PI3-kinase pathways, 3) Cytokine receptors--JAK--STAT pathways, 4) Receptors of the TGF- beta superfamily--SMAD pathways, 5) Apoptosis-related receptors--caspase pathways, and 6) ligand-gated ion channels. There are growing knowledge of cross-talks between these pathways. It is being recognized that steroid hormones have distinct membrane receptors, which mediate rapid, nongenomic effect.
The Battle between Rotavirus and Its Host for Control of the Interferon Signaling Pathway
Arnold, Michelle M.; Sen, Adrish; Greenberg, Harry B.; Patton, John T.
2013-01-01
Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ∼450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses. PMID:23359266
Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis
Qian, Feng; Tang, Feng-Ru
2016-01-01
Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis. PMID:27030135
Signaling Architectures that Transmit Unidirectional Information Despite Retroactivity.
Shah, Rushina; Del Vecchio, Domitilla
2017-08-08
A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion. A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the fundamental question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general procedure based on mathematical analysis that provides an answer to this question. Using this procedure, we analyze the ability of a variety of signaling architectures to transmit one-way (from upstream to downstream) signals, as key biological parameters are tuned. We find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show a stringent design tradeoff that hampers their ability to overcome retroactivity. Interestingly, cascades of these architectures, which are highly represented in nature, can overcome this tradeoff and thus enable unidirectional transmission. By contrast, phosphotransfer systems, and single and double phosphorylation cycles that transmit signals from a substrate, are unable to mitigate retroactivity effects, even when cascaded, and hence are not well suited for unidirectional information transmission. These results are largely independent of the specific reaction-rate constant values, and depend on the topology of the architectures. Our results therefore identify signaling architectures that, allowing unidirectional transmission of signals, embody modular processes that conserve their input/output behavior across multiple contexts. These findings can be used to decompose natural signal transduction networks into modules, and at the same time, they establish a library of devices that can be used in synthetic biology to facilitate modular circuit design. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Colored Petri net modeling and simulation of signal transduction pathways.
Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon
2006-03-01
Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.
Yarkoni, Orr; Donlon, Lynn; Frankel, Daniel
2012-12-01
Manipulation of signal transduction pathways presents a viable mechanism to interface cells with electronics. In this work, we present a two-step signal transduction pathway involving cellular and electronic transduction elements. In order to circumvent many of the conventional difficulties encountered when harnessing chemical signalling for the purpose of electronics communication, gaseous nitric oxide (NO) was selected as the signalling molecule. By genetic engineering of the nitric oxide synthase protein eNOS and insertion of light-oxygen-voltage (LOV) domains, we have created a photoactive version of the protein. The novel chimeric eNOS was found to be capable of producing NO in response to excitation by visible light. By coupling these mutant cells to a surface modified platinum electrode, it was possible to convert an optical signal into a chemical one, followed by subsequent conversion of the chemical signal into an electrical output.
Winding through the WNT pathway during cellular development and demise.
Li, F; Chong, Z Z; Maiese, K
2006-01-01
In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.
Chin, Kimberley; DeFalco, Thomas A; Moeder, Wolfgang; Yoshioka, Keiko
2013-10-01
Arabidopsis (Arabidopsis thaliana) cyclic nucleotide-gated ion channels (CNGCs) form a large family consisting of 20 members and have been implicated in Ca(2+) signaling related to various physiological processes, such as pathogen defense, development, and thermotolerance. The null mutant of AtCNGC2, defense, no death (dnd1), exhibits autoimmune phenotypes, while it is impaired in mounting the hypersensitive response, which is a hallmark of effector-triggered (i.e. RESISTANCE-gene mediated) resistance. It has been suggested that AtCNGC2 is involved in defense responses and likely other aspects of physiology through its role as a Ca(2+)-conducting channel. However, the downstream signaling components and its relation with AtCNGC4, which is the closest paralog of AtCNGC2, remain elusive. Despite the fact that cngc4 mutants display almost identical phenotypes to those seen in cngc2 mutants, not much is known about their relationship. Here, we report the identification and characterization of the Arabidopsis mutant repressor of defense no death1 (rdd1), obtained from a suppressor screen of a transfer DNA insertion knockout mutant of AtCNGC2 in order to identify downstream components of dnd1-mediated signal transduction. rdd1 suppressed the majority of dnd1-mediated phenotypes except Ca(2+) hypersensitivity. In addition, rdd1 also suppressed the dnd1-mediated late-flowering phenotype that was discovered in this study. Our genetic analysis conducted to elucidate the relationship between AtCNGC2 and AtCNGC4 indicates that RDD1 is also involved in AtCNGC4-mediated signal transduction. Lastly, bimolecular fluorescence complementation analysis suggests that AtCNGC2 and AtCNGC4 are likely part of the same channel complex.
Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan
2015-01-01
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805
Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B
2017-06-02
Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in pulmonary microvascular endothelial cells.
Signal transduction networks in rheumatoid arthritis
Hammaker, D; Sweeney, S; Firestein, G
2003-01-01
Signal transduction pathways regulate cellular responses to stress and play a critical role in inflammation. The complexity and specificity of signalling mechanisms represent major hurdles for developing effective, safe therapeutic interventions that target specific molecules. One approach is to dissect the pathways methodically to determine their hierarchy in various cell types and diseases. This approach contributed to the identification and prioritisation of specific kinases that regulate NF-κB and the mitogen activated protein (MAP) kinase cascade as especially attractive targets. Although significant issues remain with regard to the discovery of truly selective kinase inhibitors, the risks that accompany inhibition of fundamental signal transduction mechanisms can potentially be decreased by careful dissection of the pathways and rational target selection. PMID:14532158
Poser, Steven W.; Park, Deric M.; Androutsellis-Theotokis, Andreas
2013-01-01
Stem cells, by definition, are able to both self-renew (give rise to more cells of their own kind) and demonstrate multipotential (the ability to differentiate into multiple cell types). To accommodate this unique dual ability, stem cells interpret signal transduction pathways in specialized ways. Notable examples include canonical and non-canonical branches of the Notch signaling pathway, with each controlling different downstream targets (e.g., Hes1 vs. Hes3) and promoting either differentiation or self-renewal. Similarly, stem cells utilize STAT3 signaling uniquely. Most mature cells studied thus far rely on tyrosine phosphorylation (STAT3-Tyr) to promote survival and growth; in contrast, STAT3-Tyr induces the differentiation of neural stem cells (NSCs). NSCs use an alternative phosphorylation site, STAT3-Ser, to regulate survival and growth, a site that is largely redundant for this function in most other cell types. STAT3-Ser regulates Hes3, and together they form a convergence point for several signals, including Notch, Tie2, and insulin receptor activation. Disregulation and manipulation of the STAT3-Ser/Hes3 signaling pathway is important in both tumorigenesis and regenerative medicine, and worthy of extensive study. PMID:24101906
Ruel, L; Stambolic, V; Ali, A; Manoukian, A S; Woodgett, J R
1999-07-30
The protein-serine kinase Shaggy(Zeste-white3) (Sgg(Zw3)) is the Drosophila homolog of mammalian glycogen synthase kinase-3 and has been genetically implicated in signal transduction pathways necessary for the establishment of patterning. Sgg(Zw3) is a putative component of the Wingless (Wg) pathway, and epistasis analyses suggest that Sgg(Zw3) function is repressed by Wg signaling. Here, we have investigated the biochemical consequences of Wg signaling with respect to the Sgg(Zw3) protein kinase in two types of Drosophila cell lines and in embryos. Our results demonstrate that Sgg(Zw3) activity is inhibited following exposure of cells to Wg protein and by expression of downstream components of Wg signaling, Drosophila frizzled 2 and dishevelled. Wg-dependent inactivation of Sgg(Zw3) is accompanied by serine phosphorylation. We also show that the level of Sgg(Zw3) activity regulates the stability of Armadillo protein and modulates the level of phosphorylation of D-Axin and Armadillo. Together, these results provide direct biochemical evidence in support of the genetic model of Wg signaling and provide a model for dissecting the molecular interactions between the signaling proteins.
Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou
2016-01-01
Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852
Stempin, Cinthia C; Chi, Liying; Giraldo-Vela, Juan P; High, Anthony A; Häcker, Hans; Redecke, Vanessa
2011-10-28
B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.
Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes.
Elsori, Deena H; Yakubenko, Valentin P; Roome, Talat; Thiagarajan, Praveena S; Bhattacharjee, Ashish; Yadav, Satya P; Cathcart, Martha K
2011-09-01
Zymosan, a mimic of fungal pathogens, and its opsonized form (ZOP) are potent stimulators of monocyte NADPH oxidase, resulting in the production of O(2)(.-), which is critical for host defense against fungal and bacterial pathogens and efficient immune responses; however, uncontrolled O(2)(.-) production may contribute to chronic inflammation and tissue injury. Our laboratory has focused on characterizing the signal transduction pathways that regulate NADPH oxidase activity in primary human monocytes. In this study, we examined the involvement of various pattern recognition receptors and found that Dectin-1 is the primary receptor for zymosan stimulation of O(2)(.-) via NADPH oxidase in human monocytes, whereas Dectin-1 and CR3 mediate the activation by ZOP. Further studies identified Syk and Src as important signaling components downstream of Dectin-1 and additionally identified PKCδ as a novel downstream signaling component for zymosan-induced O(2)(.-) as well as phagocytosis. Our results show that Syk and Src association with Dectin-1 is dependent on PKCδ activity and expression and demonstrate direct binding between Dectin-1 and PKCδ. Finally, our data show that PKCδ and Syk but not Src are required for Dectin-1-mediated phagocytosis. Taken together, our data identify Dectin-1 as the major PRR for zymosan in primary human monocytes and identify PKCδ as a novel downstream signaling kinase for Dectin-1-mediated regulation of monocyte NADPH oxidase and zymosan phagocytosis.
Riesgo-Escovar, J; Raha, D; Carlson, J R
1995-01-01
A central problem in sensory system biology is the identification of the signal transduction pathways used in different sensory modalities. Genetic analysis of transduction mutants provides a means of studying in vivo the contributions of different pathways. This report shows that odorant response in one olfactory organ of Drosophila melanogaster depends on the norpA phospholipase C (EC 3.1.4.3) gene, providing evidence for use of the inositol 1,4,5-trisphosphate (IP3) signal transduction pathway. Since the norpA gene is also essential to phototransduction, this work demonstrates overlap in the genetic and molecular underpinnings of vision and olfaction. Genetic and molecular data also indicate that some olfactory information flows through a pathway which does not depend on norpA. Images Fig. 1 Fig. 5 PMID:7708738
Malek, Reem; Wang, Hailun; Taparra, Kekoa; Tran, Phuoc T.
2017-01-01
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into three groups: (1) extracellular inducers of EMT; (2) the transcription factors that orchestrate the EMT transcriptome; and, (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT such as the signal transduction pathways TGFβ, EFGR and Axl-Gas6. We emphasize in more detail pathways that are we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only one EMT related process will be unsuccessful or only transiently successful. We suggest with greater understanding of epithelial plasticity regulation such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes. PMID:28214899
Application of Petri net based analysis techniques to signal transduction pathways.
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-11-02
Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.
Application of Petri net based analysis techniques to signal transduction pathways
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-01-01
Background Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. Methods We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. Results We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. Conclusion The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules. PMID:17081284
Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy
Pak, Ekaterina; Segal, Rosalind A.
2016-01-01
Summary The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly-regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights on regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies. PMID:27554855
Xtalk: a path-based approach for identifying crosstalk between signaling pathways
Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.
2016-01-01
Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040
Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.
Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang
2015-11-01
The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Foster, Clay A; West, Ann H
2017-01-01
Two-component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus-dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well-characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation-induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155-176. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Parada, Carolina; Li, Jingyuan; Iwata, Junichi; Suzuki, Akiko
2013-01-01
Transforming growth factor β (TGF-β) signaling plays crucial functions in the regulation of craniofacial development, including palatogenesis. Here, we have identified connective tissue growth factor (Ctgf) as a downstream target of the TGF-β signaling pathway in palatogenesis. The pattern of Ctgf expression in wild-type embryos suggests that it may be involved in key processes during palate development. We found that Ctgf expression is downregulated in both Wnt1-Cre; Tgfbr2fl/fl and Osr2-Cre; Smad4fl/fl palates. In Tgfbr2 mutant embryos, downregulation of Ctgf expression is associated with p38 mitogen-activated protein kinase (MAPK) overactivation, whereas loss of function of Smad4 itself leads to downregulation of Ctgf expression. We also found that CTGF regulates its own expression via TGF-β signaling. Osr2-Cre; Smad4fl/fl mice exhibit a defect in cell proliferation similar to that of Tgfbr2 mutant mice, as well as cleft palate. We detected no alteration in bone morphogenetic protein (BMP) downstream targets in Smad4 mutant palates, suggesting that the reduction in cell proliferation is due to defective transduction of TGF-β signaling via decreased Ctgf expression. Significantly, an exogenous source of CTGF was able to rescue the cell proliferation defect in both Tgfbr2 and Smad4 mutant palates. Collectively, our data suggest that CTGF regulates proliferation as a mediator of the canonical pathway of TGF-β signaling during palatogenesis. PMID:23816882
THE RGM/DRAGON FAMILY OF BMP CO-RECEPTORS
Corradini, Elena; Babitt, Jodie L.; Lin, Herbert Y.
2013-01-01
The BMP signaling pathway controls a number of cell processes during development and in adult tissues. At the cellular level, ligands of the BMP family act by binding a hetero-tetrameric signaling complex, composed of two type I and two type II receptors. BMP ligands make use of a limited number of receptors, which in turn activate a common signal transduction cascade at the intracellular level. A complex regulatory network is required in order to activate the signaling cascade at proper times and locations, and to generate specific downstream effects in the appropriate cellular context. One such regulatory mechanism is the repulsive guidance molecule (RGM) family of BMP co-receptors. This article reviews the current knowledge regarding the structure, regulation, and function of RGMs, focusing on known and potential roles of RGMs in physiology and pathophysiology. PMID:19897400
Jacobsen, S E; Binkowski, K A; Olszewski, N E
1996-01-01
Gibberellins (GAs) are a major class of plant hormones that control many developmental processes, including seed development and germination, flower and fruit development, and flowering time. Genetic studies with Arabidopsis thaliana have identified two genes involved in GA perception or signal transduction. A semidominant mutation at the GIBBERELLIN INSENSITIVE (GAI) locus results in plants resembling GA-deficient mutants but exhibiting reduced sensitivity to GA. Recessive mutations at the SPINDLY (SPY) locus cause a phenotype that is consistent with constitutive activation of GA signal transduction. Here we show that a strong allele of spy is completely epistatic to gai, indicating that SPY acts downstream of GAI. We have cloned the SPY gene and shown that it encodes a new type of signal transduction protein, which contains a tetratricopeptide repeat region, likely serving as a protein interaction domain, and a novel C-terminal region. Mutations in both domains increase GA signal transduction. The presence of a similar gene in Caenorhabditis elegans suggests that SPY represents a class of signal transduction proteins that is present throughout the eukaryotes. Images Fig. 1 Fig. 2 Fig. 3 PMID:8799194
Role of the Integrin-Linked Kinase, ILK, in Mammary Carcinogensis
2000-08-01
have been implicated in environmental stress clonei 6-10 responses in yeasts, plants and mammals, as well as regulating abscisic acid signal transduction...phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl Acad. Sci. USA, 95, 975-980. Strovel,E.T., Wu,D. and Sussman,D.J...contain a 450bp open reading frame, coding for 149 amino acids and a poly A tail 245bp downstream of the stop codon, although no polyadenylation site
Genetic Circuits that Govern Bisexual and Unisexual Reproduction in Cryptococcus neoformans
Feretzaki, Marianna; Heitman, Joseph
2013-01-01
Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle. Nutrient-limiting conditions and pheromones induce a dimorphic transition from unicellular yeast to multicellular hyphae and the production of infectious spores. Sexual reproduction involves cells of either opposite (bisexual) or one (unisexual) mating type. Bisexual and unisexual reproduction are governed by shared components of the conserved pheromone-sensing Cpk1 MAPK signal transduction cascade and by Mat2, the major transcriptional regulator of the pathway. However, the downstream targets of the pathway are largely unknown, and homology-based approaches have failed to yield downstream transcriptional regulators or other targets. In this study, we applied insertional mutagenesis via Agrobacterium tumefaciens transkingdom DNA delivery to identify mutants with unisexual reproduction defects. In addition to elements known to be involved in sexual development (Crg1, Ste7, Mat2, and Znf2), three key regulators of sexual development were identified by our screen: Znf3, Spo11, and Ubc5. Spo11 and Ubc5 promote sporulation during both bisexual and unisexual reproduction. Genetic and phenotypic analyses provide further evidence implicating both genes in the regulation of meiosis. Phenotypic analysis of sexual development showed that Znf3 is required for hyphal development during unisexual reproduction and also plays a central role during bisexual reproduction. Znf3 promotes cell fusion and pheromone production through a pathway parallel to and independent of the pheromone signaling cascade. Surprisingly, Znf3 participates in transposon silencing during unisexual reproduction and may serve as a link between RNAi silencing and sexual development. Our studies illustrate the power of unbiased genetic screens to reveal both novel and conserved circuits that operate sexual reproduction. PMID:23966871
Li, Ting; Liu, Nannan
2017-12-01
This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus , focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages.
Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans.
Feretzaki, Marianna; Heitman, Joseph
2013-01-01
Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle. Nutrient-limiting conditions and pheromones induce a dimorphic transition from unicellular yeast to multicellular hyphae and the production of infectious spores. Sexual reproduction involves cells of either opposite (bisexual) or one (unisexual) mating type. Bisexual and unisexual reproduction are governed by shared components of the conserved pheromone-sensing Cpk1 MAPK signal transduction cascade and by Mat2, the major transcriptional regulator of the pathway. However, the downstream targets of the pathway are largely unknown, and homology-based approaches have failed to yield downstream transcriptional regulators or other targets. In this study, we applied insertional mutagenesis via Agrobacterium tumefaciens transkingdom DNA delivery to identify mutants with unisexual reproduction defects. In addition to elements known to be involved in sexual development (Crg1, Ste7, Mat2, and Znf2), three key regulators of sexual development were identified by our screen: Znf3, Spo11, and Ubc5. Spo11 and Ubc5 promote sporulation during both bisexual and unisexual reproduction. Genetic and phenotypic analyses provide further evidence implicating both genes in the regulation of meiosis. Phenotypic analysis of sexual development showed that Znf3 is required for hyphal development during unisexual reproduction and also plays a central role during bisexual reproduction. Znf3 promotes cell fusion and pheromone production through a pathway parallel to and independent of the pheromone signaling cascade. Surprisingly, Znf3 participates in transposon silencing during unisexual reproduction and may serve as a link between RNAi silencing and sexual development. Our studies illustrate the power of unbiased genetic screens to reveal both novel and conserved circuits that operate sexual reproduction.
Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S
2017-12-01
The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.
Petit, Valérie; Nussbaumer, Ute; Dossenbach, Caroline; Affolter, Markus
2004-01-01
Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response. PMID:15082772
Petit, Valérie; Nussbaumer, Ute; Dossenbach, Caroline; Affolter, Markus
2004-05-01
Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response.
Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains
2014-01-01
Background Ras is a membrane-associated small G-protein that funnels growth and differentiation signals into downstream signal transduction pathways by cycling between an inactive, GDP-bound and an active, GTP-bound state. Aberrant Ras activity as a result of oncogenic mutations causes de novo cell transformation and promotes tumor growth and progression. Results Here, we describe a novel strategy to block deregulated Ras activity by means of oligomerized cognate protein modules derived from the Ras-binding domain of c-Raf (RBD), which we named MSOR for multivalent scavengers of oncogenic Ras. The introduction of well-characterized mutations into RBD was used to adjust the affinity and hence the blocking potency of MSOR towards activated Ras. MSOR inhibited several oncogenic Ras-stimulated processes including downstream activation of Erk1/2, induction of matrix-degrading enzymes, cell motility and invasiveness in a graded fashion depending on the oligomerization grade and the nature of the individual RBD-modules. The amenability to accurate experimental regulation was further improved by engineering an inducible MSOR-expression system to render the reversal of oncogenic Ras effects controllable. Conclusion MSOR represent a new tool for the experimental and possibly therapeutic selective blockade of oncogenic Ras signals. PMID:24383791
NASA Technical Reports Server (NTRS)
Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.
2010-01-01
Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.
Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria
2015-01-01
Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401
Function of ABA in Stomatal Defense against Biotic and Drought Stresses
Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul
2015-01-01
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766
Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C
2016-08-22
Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. Copyright © 2016 Elsevier Inc. All rights reserved.
A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas
Deel, Michael D.; Li, Jenny J.; Crose, Lisa E. S.; Linardic, Corinne M.
2015-01-01
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas. PMID:26389076
A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas.
Deel, Michael D; Li, Jenny J; Crose, Lisa E S; Linardic, Corinne M
2015-01-01
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas.
Rager, Julia E.; Yosim, Andrew; Fry, Rebecca C.
2014-01-01
There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans. PMID:25479081
The emerging roles of β-arrestins in fibrotic diseases
Gu, Yuan-jing; Sun, Wu-yi; Zhang, Sen; Wu, Jing-jing; Wei, Wei
2015-01-01
β-Arrestins and β-arrestin2 are important adaptor proteins and signal transduction proteins that are mainly involved in the desensitization and internalization of G-protein-coupled receptors. Fibrosis is characterized by accumulation of excess extracellular matrix (ECM) molecules caused by chronic tissue injury. If highly progressive, the fibrotic process leads to organ malfunction and, eventually, death. The incurable lung fibrosis, renal fibrosis and liver fibrosis are among the most common fibrotic diseases. Recent studies show that β-arrestins can activate signaling cascades independent of G-protein activation and scaffold many intracellular signaling networks by diverse types of signaling pathways, including the Hedgehog, Wnt, Notch and transforming growth factor-β pathways, as well as downstream kinases such as MAPK and PI3K. These signaling pathways are involved in the pathological process of fibrosis and fibrotic diseases. This β-arrestin-mediated regulation not only affects cell growth and apoptosis, but also the deposition of ECM, activation of inflammatory response and development of fibrotic diseases. In this review, we survey the involvement of β-arrestins in various signaling pathways and highlight different aspects of their regulation of fibrosis. We also discuss the important roles of β-arrestins in the process of fibrotic diseases by regulating the inflammation and deposit of ECM. It is becoming more evident that targeting β-arrestins may offer therapeutic potential for the treatment of fibrotic diseases. PMID:26388156
Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN
Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric
2015-01-01
The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574
Redox-regulated growth factor survival signaling.
Woolley, John F; Corcoran, Aoife; Groeger, Gillian; Landry, William D; Cotter, Thomas G
2013-11-20
Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.
Li, Shengnan; Wang, Wenyi; Gao, Jinlan; Yin, Kangquan; Wang, Rui; Wang, Chengcheng; Mundy, John
2016-01-01
Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction. PMID:27811015
[MAP kinases--molecular transistors in animals and plants].
Petersen, Morten; Brodersen, Peter; Mundy, John
2002-06-10
The survival of multicellular organisms depends on the ability of their cells to communicate with each other and to respond to environmental changes. A goal of modern biology is to uncover the processes by which these cellular signals are transduced. Recent studies have shown that MAP-kinases (MAPKs) are important constituents of such signal transduction pathways. MAPKs function as modules in phosphorelay cascades to activate or repress the activity of downstream target proteins. For example, recent research with knockout mice has shown that mammalian MAPKs are involved in the control of neuronal apoptosis and the activation of immune responses. These mammalian MAPKs exert their control by both promoting and inhibiting specific processes. Surprisingly, plants also use MAPKs to control their immune responses, and plant MAPKs also seem to play dual roles as positive and negative regulators. Such mechanistic similarities provide the basis for fruitful conceptual exchange between molecular research on animals and plants.
How a mycoparasite employs g-protein signaling: using the example of trichoderma.
Omann, Markus; Zeilinger, Susanne
2010-01-01
Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and antifungal metabolites leading to the host's death. Host-derived signals are suggested to be recognized by receptors located on the mycoparasite's cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling machinery such as Gα subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures.
The protein kinase Pelle mediates feedback regulation in the Drosophila Toll signaling pathway.
Towb, P; Bergmann, A; Wasserman, S A
2001-12-01
Dorsoventral polarity in the Drosophila embryo is established through a signal transduction cascade triggered in ventral and ventrolateral regions. Activation of a transmembrane receptor, Toll, leads to localized recruitment of the adaptor protein Tube and protein kinase Pelle. Signaling through these components directs degradation of the IkappaB-like inhibitor Cactus and nuclear translocation of the Rel protein Dorsal. Here we show through confocal immunofluorescence microscopy that Pelle functions to downregulate the signal-dependent relocalization of Tube. Inactivation of the Pelle kinase domain, or elimination of the Tube-Pelle interaction, dramatically increases Tube recruitment to the ventral plasma membrane in regions of active signaling. We also characterize a large collection of pelle alleles, identifying the molecular lesions in these alleles and their effects on Pelle autophosphorylation, Tube phosphorylation and Tube relocalization. Our results point to a mechanism operating to modulate the domain or duration of signaling downstream from Tube and Pelle.
DAMPs as mediators of sterile inflammation in aging-related pathologies.
Feldman, Noa; Rotter-Maskowitz, Aviva; Okun, Eitan
2015-11-01
Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.
How a Mycoparasite Employs G-Protein Signaling: Using the Example of Trichoderma
Omann, Markus; Zeilinger, Susanne
2010-01-01
Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and antifungal metabolites leading to the host's death. Host-derived signals are suggested to be recognized by receptors located on the mycoparasite's cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling machinery such as Gα subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures. PMID:21637351
Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases
Schwartz, Daniella M.; Bonelli, Michael; Gadina, Massimo; O’Shea, John J.
2015-01-01
Cytokines are major drivers of autoimmunity, and biologic agents targeting cytokines have revolutionized the treatment of immune-mediated diseases. Despite the effectiveness of these drugs, they do not induce complete remission in all patients, prompting the development of alternative strategies—including targeting of intracellular signal transduction pathways downstream of cytokines. Many cytokines that bind type I and type II cytokine receptors are critical regulators of immune-mediated diseases and employ the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway to exert their effect. Pharmacological inhibition of JAKs block the actions of type I/II cytokines, and within the past 3 years therapeutic JAK inhibitors, or Jakinibs, have become available to rheumatologists. Jakinibs have proven effective for the treatment of rheumatoid arthritis and other inflammatory diseases. Adverse effects of these agents are largely related to their mode of action and include infections and hyperlipidemia. Jakinibs are currently being investigated for a number of new indications, and second-generation selective Jakinibs are being developed and tested. Targeting STATs could be a future avenue for the treatment of rheumatic diseases, although substantial challenges remain. Nonetheless, the ability to therapeutically target intracellular signalling pathways has already created a new paradigm for the treatment of rheumatologic disease. PMID:26633291
The tangled web of non-canonical Wnt signalling in neural migration.
Clark, Charlotte E J; Nourse, C Cathrin; Cooper, Helen M
2012-01-01
In all multicellular animals, successful embryogenesis is dependent on the ability of cells to detect the status of the local environment and respond appropriately. The nature of the extracellular environment is communicated to the intracellular compartment by ligand/receptor interactions at the cell surface. The Wnt canonical and non-canonical signalling pathways are found in the most primitive metazoans, and they play an essential role in the most fundamental developmental processes in all multicellular organisms. Vertebrates have expanded the number of Wnts and Frizzled receptors and have additionally evolved novel Wnt receptor families (Ryk, Ror). The multiplicity of potential interactions between Wnts, their receptors and downstream effectors has exponentially increased the complexity of the signal transduction network. Signalling through each of the Wnt pathways, as well as crosstalk between them, plays a critical role in the establishment of the complex architecture of the vertebrate central nervous system. In this review, we explore the signalling networks triggered by non-canonical Wnt/receptor interactions, focussing on the emerging roles of the non-conventional Wnt receptors Ryk and Ror. We describe the role of these pathways in neural tube formation and axon guidance where Wnt signalling controls tissue polarity, coordinated cell migration and axon guidance via remodelling of the cytoskeleton. Copyright © 2012 S. Karger AG, Basel.
Espinosa, Leon; Baronian, Grégory; Molle, Virginie; Mauriello, Emilia M. F.; Brochier-Armanet, Céline; Mignot, Tâm
2015-01-01
Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways. PMID:26291327
De Franceschi, Lucia; Biondani, Andrea; Carta, Franco; Turrini, Franco; Laudanna, Carlo; Deana, Renzo; Brunati, Anna Maria; Turretta, Loris; Iolascon, Achille; Perrotta, Silverio; Elson, Ari; Bulato, Cristina; Brugnara, Carlo
2010-01-01
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. We report here that red blood cells (RBCs) from mice lacking PTPε (Ptpre−/−) exhibit abnormal morphology and increased Ca2+-activated-K+ channel activity, which was partially blocked by the Src-Family-Kinases (SFKs) inhibitor PP1. In Ptpre−/− mouse RBCs, the activity of Fyn and Yes, two SFKs, were increased, suggesting a functional relationship between SFKs, PTPε and Ca2+-activated-K+-channel. The absence of PTPε markedly affected the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating a perturbation of RBCs signal transduction pathways. Using signaling network computational analysis of the Tyr-phosphoproteomic data, we identified 7 topological clusters. We studied cluster 1, containing Syk-Tyr-kinase: Syk-kinase activity was higher in wild-type than in Ptpre−/− RBCs, validating the network computational analysis and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology. PMID:18924107
Delta-Tocotrienol: Radiation Protection and Effects on Signal Transduction Pathways
2011-06-15
Delta- Tocotrienol : Radiation Protection and Effects on Signal Transduction Pathways Venkataraman Srinivasan, PhD Mang Xiao, MD Principal...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Delta- Tocotrienol : Radiation Protection And Effects On...Mechanisms? 17 Survival of γ-irradiated mouse bone marrow and primary human hematopoietic CD34+ cells was significantly enhanced by Delta- tocotrienol (DT3
CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo
Passier, Robert; Zeng, Hong; Frey, Norbert; Naya, Francisco J.; Nicol, Rebekka L.; McKinsey, Timothy A.; Overbeek, Paul; Richardson, James A.; Grant, Stephen R.; Olson, Eric N.
2000-01-01
Hypertrophic growth is an adaptive response of the heart to diverse pathological stimuli and is characterized by cardiomyocyte enlargement, sarcomere assembly, and activation of a fetal program of cardiac gene expression. A variety of Ca2+-dependent signal transduction pathways have been implicated in cardiac hypertrophy, but whether these pathways are independent or interdependent and whether there is specificity among them are unclear. Previously, we showed that activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin or its target transcription factor NFAT3 was sufficient to evoke myocardial hypertrophy in vivo. Here, we show that activated Ca2+/calmodulin-dependent protein kinases-I and -IV (CaMKI and CaMKIV) also induce hypertrophic responses in cardiomyocytes in vitro and that CaMKIV overexpressing mice develop cardiac hypertrophy with increased left ventricular end-diastolic diameter and decreased fractional shortening. Crossing this transgenic line with mice expressing a constitutively activated form of NFAT3 revealed synergy between these signaling pathways. We further show that CaMKIV activates the transcription factor MEF2 through a posttranslational mechanism in the hypertrophic heart in vivo. Activated calcineurin is a less efficient activator of MEF2-dependent transcription, suggesting that the calcineurin/NFAT and CaMK/MEF2 pathways act in parallel. These findings identify MEF2 as a downstream target for CaMK signaling in the hypertrophic heart and suggest that the CaMK and calcineurin pathways preferentially target different transcription factors to induce cardiac hypertrophy. PMID:10811847
Schutzman, Jennifer L.; Borland, Christina Z.; Newman, John C.; Robinson, Matthew K.; Kokel, Michelle; Stern, Michael J.
2001-01-01
EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15. PMID:11689700
Fang, Rongjun; Zou, Ailan; Zhao, Hua; Wu, Fengyao; Zhu, Yu; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Pang, Yanjun; Yang, Rongwu; Wang, Xiaoming; Qi, Jinliang; Lu, Guihua; Yang, Yonghua
2016-05-26
The phytohormone ethylene (ET) is a key signaling molecule for inducing the biosynthesis of shikonin and its derivatives, which are secondary metabolites in Lithospermum erythrorhizon. Although ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like proteins (EILs) are crucial transcription factors in ET signal transduction pathway, the possible function of EIN3/EIL1 in shikonin biosynthesis remains unknown. In this study, by targeting LeEIL-1 (L. erythrorhizon EIN3-like protein gene 1) at the expression level, we revealed the positive regulatory effect of LeEIL-1 on shikonin formation. The mRNA level of LeEIL-1 was significantly up-regulated and down-regulated in the LeEIL-1-overexpressing hairy root lines and LeEIL-1-RNAi hairy root lines, respectively. Specifically, LeEIL-1 overexpression resulted in increased transcript levels of the downstream gene of ET signal transduction pathway (LeERF-1) and a subset of genes for shikonin formation, excretion and/or transportation (LePAL, LeC4H-2, Le4CL-1, HMGR, LePGT-1, LeDI-2, and LePS-2), which was consistent with the enhanced shikonin contents in the LeEIL-1-overexpressing hairy root lines. Conversely, LeEIL-1-RNAi dramatically repressed the expression of the above genes and significantly reduced shikonin production. The results revealed that LeEIL-1 is a positive regulator of the biosynthesis of shikonin and its derivatives in L. erythrorhizon hairy roots. Our findings gave new insights into the molecular regulatory mechanism of ET in shikonin biosynthesis. LeEIL-1 could be a crucial target gene for the genetic engineering of shikonin biosynthesis.
Gutch, Michael J.; Flint, Andrew J.; Keller, James; Tonks, Nicholas K.; Hengartner, Michael O.
1998-01-01
Src homology-2 (SH2) domain-containing protein tyrosine phosphatases (SHPs) have been identified as either positive or negative regulators of signaling events downstream of receptor protein tyrosine kinases (R-PTKs). We describe here our characterization of ptp-2, a Caenorhabditis elegans gene that encodes a 668-amino-acid SHP. We isolated a recessive ptp-2 loss-of-function allele, op194, that lacks the conserved protein tyrosine phosphatase catalytic domain by screening for transposon-mediated deletion mutations. Homozygous ptp-2(op194) hermaphrodites exhibit a completely penetrant zygotic semisterile/maternal effect lethal phenotype, characterized by the presence of abnormally large oocytes in the zygotic semisterile animals. These phenotypes indicate that PTP-2 activity is essential for proper oogenesis. Gain-of-function let-60 ras alleles rescued the defects associated with ptp-2(op194), suggesting that LET-60 Ras acts downstream of, or in parallel to, PTP-2 during oogenesis. Although ptp-2 function is not required for normal vulval development, ptp-2(op194) altered significantly the vulval phenotypes caused by mutations in several genes of the inductive signaling pathway. The penetrance of the multivulva phenotype caused by loss-of-function mutations in lin-15, and gain-of-function mutations in let-23 or let-60 ras, was reduced by ptp-2(op194). Moreover, ptp-2(op194) increased the penetrance of the vulvaless phenotype conferred by a weak loss-of-function sem-5 allele. Taken together, our genetic data positions PTP-2 activity downstream of LET-23 in the vulval induction signaling pathway. Although PTP-2 functions to transmit a requisite signal during oogenesis, PTP-2 function during C. elegans vulval cell differentiation appears to be directed at regulating the overall strength of the inductive signal, which may contribute to the quantitative differences in signaling required for the proper specification of the 1°, 2°, and 3° vulval cell fates. PMID:9472025
Chinnici, Jennifer L.; Fu, Ci; Caccamise, Lauren M.; Arnold, Jason W.; Free, Stephen J.
2014-01-01
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development. PMID:25333968
Chinnici, Jennifer L; Fu, Ci; Caccamise, Lauren M; Arnold, Jason W; Free, Stephen J
2014-01-01
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Signaling through G protein coupled receptors.
Tuteja, Narendra
2009-10-01
Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.
Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua
2017-01-01
Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1’ α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents. PMID:28732057
Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua; Chen, Hao
2017-07-01
Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1' α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents.
Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A
2005-12-01
In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.
Sun, Jian-Hui; Huo, Hai-Ru; Li, Xiao-Qin; Li, Hong-Mei; Qin, De-Huai; Wu, Chun
2018-04-01
Huanshao capsule is widely used in irregular menstruation and has achieved a good effect. Huanshao capsule can promote gonad development in mice, significantly improve the ovarian index in mice, increase estrogen level and reduce FSH level in rats, inhibit the pain response induced by oxytocin and estrogen, inhibit writhing reaction induced by acetic acid pain in mice. Due to the complexity of traditional Chinese medical formula, the pharmacological mechanism of the treatment on the irregular menstruation of the Huanshao capsule is unclear. In this study, the internet-based computation platform (www.tcmip.cn)was used to explore the molecular mechanism of Huanshao capsule on the menstrual. The aim of this study was to find the molecular mechanism of Huanshao capsule in treating menstrual. In the study of the molecular mechanism of Huanshao capsule in the treatment of menstrual by using the internet-based computation platform, Huanshao capsule maybe treat the menstrual by the pathway of endocrine system, GnRH signal transduction pathway, estrogen signal transduction pathway, oxytocin signaling pathway, thyroid hormone signaling pathway, VEGF signaling pathway, FCεRI signaling pathway and purine metabolism and nucleotide metabolism. The early pharmacological study confirmed Huanshao capsule could increase the serum estradiol level and decrease follicle stimulating hormone level and the traditional Chinese medicine pharmacology coincide with the prediction result of internet-based computation platform which roles as the pathway of GnRH signaling pathway and estrogen signal transduction pathway. Other pathway needs further experimental verification. Copyright© by the Chinese Pharmaceutical Association.
Sass, Hjalte C R; Borup, Rehannah; Alanin, Mikkel; Nielsen, Finn Cilius; Cayé-Thomasen, Per
2017-01-01
The objective of this study was to determine global gene expression in relation to Vestibular schwannomas (VS) growth rate and to identify signal transduction pathways and functional molecular networks associated with growth. Repeated magnetic resonance imaging (MRI) prior to surgery determined tumor growth rate. Following tissue sampling during surgery, mRNA was extracted from 16 sporadic VS. Double stranded cDNA was synthesized from the mRNA and used as template for in vitro transcription reaction to synthesize biotin-labeled antisense cRNA, which was hybridized to Affymetrix HG-U133A arrays and analyzed by dChip software. Differential gene expression was defined as a 1.5-fold difference between fast and slow growing tumors (><0.5 ccm/year), employing a p-value <0.01. Deregulated transcripts were matched against established gene ontology. Ingenuity Pathway Analysis was used for identification of signal transduction pathways and functional molecular networks associated with tumor growth. In total 109 genes were deregulated in relation to tumor growth rate. Genes associated with apoptosis, growth and cell proliferation were deregulated. Gene ontology included regulation of the cell cycle, cell differentiation and proliferation, among other functions. Fourteen pathways were associated with tumor growth. Five functional molecular networks were generated. This first study on global gene expression in relation to vestibular schwannoma growth rate identified several genes, signal transduction pathways and functional networks associated with tumor progression. Specific genes involved in apoptosis, cell growth and proliferation were deregulated in fast growing tumors. Fourteen pathways were associated with tumor growth. Generated functional networks underlined the importance of the PI3K family, among others.
Matus, David Q; Magie, Craig R; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H
2008-01-15
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.
Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.
2008-01-01
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria. PMID:18068698
The merged basins of signal transduction pathways in spatiotemporal cell biology.
Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning
2014-03-01
Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science. © 2013 Wiley Periodicals, Inc.
Xu, Bingfang; Abdel-Fattah, Rana; Yang, Ling; Crenshaw, Sallie A.; Black, Michael B.; Hinton, Barry T.
2011-01-01
The initial segment of the epididymis is vital for male fertility; therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from the epididymis results in a wave of apoptosis in the initial segment. In this study, a combination of protein array and microarray analyses was used to examine the early changes in downstream signal transduction pathways following loss of lumicrine factors. We discovered the following cascade of events leading to the loss of protection and eventual apoptosis: in the first 6 h after loss of lumicrine factors, down-regulation of the ERK pathway components was observed at the mRNA expression and protein activity levels. Microarray analysis revealed that mRNA levels of several key components of the ERK pathway, Dusp6, Dusp5, and Etv5, decreased sharply, while the analysis from the protein array revealed a decline in the activities of MAP2K1/2 and MAPK1. Immunostaining of phospho-MAPK3/1 indicated that down-regulation of the ERK pathway was specific to the epithelial cells of the initial segment. Subsequently, after 12 h of loss of lumicrine factors, levels of mRNA expression of STAT and NFKB pathway components increased, mRNA levels of several genes encoding cell cycle inhibitors increased, and levels of protein expression of several proapoptotic phosphatases increased. Finally, after 18 h of loss of protection from lumicrine factors, apoptosis was observed. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating the ERK pathway, repressing STAT and NFKB pathways, and thereby preventing apoptosis. PMID:21311037
Kim, Jong Hyun; Wang, Aibing; Conti, Mary Anne; Adelstein, Robert S.
2012-01-01
Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. PMID:22718763
Olfactory transduction pathways in the Senegalese sole Solea senegalensis.
Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M
2013-09-01
This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.
Modeling evolution of crosstalk in noisy signal transduction networks
NASA Astrophysics Data System (ADS)
Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-02-01
Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.
Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.
2009-01-01
Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279
Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression.
Salinas-Mondragon, Raul E; Kajla, Jyoti D; Perera, Imara Y; Brown, Christopher S; Sederoff, Heike Winter
2010-12-01
Plants sense light and gravity to orient their direction of growth. One common component in the early events of both phototropic and gravitropic signal transduction is activation of phospholipase C (PLC), which leads to an increase in inositol 1,4,5-triphosphate (InsP(3)) levels. The InsP(3) signal is terminated by hydrolysis of InsP(3) through inositolpolyphosphate-5-phosphatases (InsP 5-ptases). Arabidopsis plants expressing a heterologous InsP 5-ptase have low basal InsP(3) levels and exhibit reduced gravitropic and phototropic bending. Downstream effects of InsP(3)-mediated signalling are not understood. We used comparative transcript profiling to characterize gene expression changes in gravity- or light-stimulated Arabidopsis root apices that were manipulated in their InsP(3) metabolism either through inhibition of PLC activity or expression of InsP 5-ptase. We identified InsP(3)-dependent and InsP(3)-independent co-regulated gene sets in response to gravity or light stimulation. Inhibition of PLC activity in wild-type plants caused similar changes in transcript abundance in response to gravitropic and phototropic stimulation as in the transgenic lines. Therefore, we conclude that changes in gene expression in response to gravitropic and phototropic stimulation are mediated by two signal transduction pathways that vary in their dependence on changes in InsP(3). © 2010 Blackwell Publishing Ltd.
Warenius, H. M.; Jones, M.; Jones, M. D.; Browning, P. G.; Seabra, L. A.; Thompson, C. C.
1998-01-01
We have previously reported a correlation between high endogenous expression of the protein product of the RAF-1 proto-oncogene, intrinsic cellular radiosensitivity and rapid exit from a G2/M delay induced by 2 Gy of gamma-irradiation. Raf1 is a positive serine/threonine kinase signal transduction factor that relays signals from the cell membrane to the MAP kinase system further downstream and is believed to be involved in an ionizing radiation signal transduction pathway modulating the G1/S checkpoint. We therefore extended our flow cytometric studies to investigate relationships between radiosensitivity, endogenous expression of the Raf1 protein and perturbation of cell cycle checkpoints, leading to alterations in the G1, S and G2/M populations after 2 Gy of gamma-irradiation. Differences in intrinsic radiosensitivity after modulation of the G1/S checkpoint have generally been understood to involve p53 function up to the present time. A role for dominant oncogenes in control of G1/S transit in radiation-treated cells has not been identified previously. Here, we show in 12 human in vitro cancer cell lines that late G1 accumulation after 2 Gy of radiation is related to both Raf1 expression (r = 0.91, P = 0.0001) and the radiosensitivity parameter SF2 (r = -0.71, P = 0.009). PMID:9579826
Load-induced modulation of signal transduction networks.
Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla
2011-10-11
Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.
Kopakkala-Tani, M; Elo, M A; Sironen, R K; Helminen, H J; Lammi, M J
2004-06-01
High continuous hydrostatic pressure has been shown to affect many cellular functions within the pressurised cells, for instance, accumulation of heat shock protein 70 occurs during pressurisation. Various signal transduction pathways are likely to mediate these changes, however, at the present time our knowledge of the pathways involved is rather limited. The aim of this study was to investigate whether some of the well known transduction pathways are activated by the exposure of human chondrosarcoma cells to 15-30 MPa hydrostatic pressure. The results showed an increased presence of the active, phosphorylated forms of extracellular signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K) in cells exposed to 15 and 30 MPa continuous hydrostatic pressure, while 0.5 Hz cyclic loading had weaker effects. Inhibition of ERK-pathway with UO126 did not prevent the accumulation of heat shock protein 70. No activation of c-Jun N-terminal protein kinase (JNK) or p38 could be noticed in pressurised cells. In conclusion, we could identify at least two different signal transduction pathways that are activated under high continuous hydrostatic pressure. Accumulation of heat shock protein 70 was independent of ERK-activation.
Wnt signal transduction pathways: modules, development and evolution.
Nayak, Losiana; Bhattacharyya, Nitai P; De, Rajat K
2016-08-01
Wnt signal transduction pathway (Wnt STP) is a crucial intracellular pathway mainly due to its participation in important biological processes, functions, and diseases, i.e., embryonic development, stem-cell management, and human cancers among others. This is why Wnt STP is one of the highest researched signal transduction pathways. Study and analysis of its origin, expansion and gradual development to the present state as found in humans is one aspect of Wnt research. The pattern of development and evolution of the Wnt STP among various species is not clear till date. A phylogenetic tree created from Wnt STPs of multiple species may address this issue. In this respect, we construct a phylogenetic tree from modules of Wnt STPs of diverse species. We term it as the 'Module Tree'. A module is nothing but a self-sufficient minimally-dependent subset of the original Wnt STP. Authenticity of the module tree is tested by comparing it with the two reference trees. The module tree performs better than an alternative phylogenetic tree constructed from pathway topology of Wnt STPs. Moreover, an evolutionary emergence pattern of the Wnt gene family is created and the module tree is tallied with it to showcase the significant resemblances.
Demuyser, Liesbeth; Van Genechten, Wouter; Mizuno, Hideaki; Colombo, Sonia; Van Dijck, Patrick
2018-05-29
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment. © 2018 John Wiley & Sons Ltd.
bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing
Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki
2010-01-01
Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927
Pastor-Soler, Nuria; Beaulieu, Valerie; Litvin, Tatiana N; Da Silva, Nicolas; Chen, Yanqiu; Brown, Dennis; Buck, Jochen; Levin, Lonny R; Breton, Sylvie
2003-12-05
Modulation of environmental pH is critical for the function of many biological systems. However, the molecular identity of the pH sensor and its interaction with downstream effector proteins remain poorly understood. Using the male reproductive tract as a model system in which luminal acidification is critical for sperm maturation and storage, we now report a novel pathway for pH regulation linking the bicarbonate activated soluble adenylyl cyclase (sAC) to the vacuolar H+ATPase (V-ATPase). Clear cells of the epididymis and vas deferens contain abundant V-ATPase in their apical pole and are responsible for acidifying the lumen. Proton secretion is regulated via active recycling of V-ATPase. Here we demonstrate that this recycling is regulated by luminal pH and bicarbonate. sAC is highly expressed in clear cells, and apical membrane accumulation of V-ATPase is triggered by a sAC-dependent rise in cAMP in response to alkaline luminal pH. As sAC is expressed in other acid/base transporting epithelia, including kidney and choroid plexus, this cAMP-dependent signal transduction pathway may be a widespread mechanism that allows cells to sense and modulate extracellular pH.
Computational identification of signalling pathways in Plasmodium falciparum.
Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel
2011-06-01
Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design against merozoites invasion. And we have a host of other predicted pathways, some of which have been used in this work to predict the functionality of some proteins. Copyright © 2010 Elsevier B.V. All rights reserved.
Phosphoglycerolipids are master players in plant hormone signal transduction.
Janda, Martin; Planchais, Severine; Djafi, Nabila; Martinec, Jan; Burketova, Lenka; Valentova, Olga; Zachowski, Alain; Ruelland, Eric
2013-06-01
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Wan, Gui-Jun; Wang, Wen-Jing; Xu, Jing-Jing; Yang, Quan-Feng; Dai, Ming-Jiang; Zhang, Feng-Jiao; Sword, Gregory A; Pan, Wei-Dong; Chen, Fa-Jun
2015-01-01
Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.
The ethylene signal transduction pathway in Arabidopsis
NASA Technical Reports Server (NTRS)
Kieber, J. J.; Evans, M. L. (Principal Investigator)
1997-01-01
The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.
Wang, Wei Bu; Liang, Yu; Zhang, Jing; Wu, Yi Dong; Du, Jian Jun; Li, Qi Ming; Zhu, Jian Zhuo; Su, Ji Guo
2018-06-22
Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.
The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis.
Barth, Julia M I; Hafen, Ernst; Köhler, Katja
2012-12-05
The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC), but not in the germline cells (GCs). However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline) and signal receiving cell (FC), thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.
Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis
2016-02-01
ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulatormore » (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRR mon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCEBphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.« less
JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.
Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W
2012-01-01
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
Dopamine negatively modulates the NCA ion channels in C. elegans
Topalidou, Irini; Pereira, Laura
2017-01-01
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels. PMID:28968387
Dopamine negatively modulates the NCA ion channels in C. elegans.
Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael
2017-10-01
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Veach, Darren; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R; DeMatteo, Ronald P; Besmer, Peter
2017-10-03
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic Kit V558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant Kit V558Δ/+ mice, double-mutant Kit V558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in Kit V558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing Kit V558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant Kit V558Δ;T669I/+ tumors.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q.; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R.; DeMatteo, Ronald P.; Besmer, Peter
2017-01-01
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha–restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors. PMID:28923937
Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang
2015-01-01
Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507
Chen, Hongyu; Liu, Rui Hai
2018-04-04
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Huang, Weishan; Morales, J. Luis; Gozivoda, Victor P.; August, Avery
2015-01-01
Background Mast cells are indispensible for LPS-induced septic hypothermia, in which TNF-α plays an essential role to initiate septic responses. ITK and BTK regulate mast cell responses to allergen, but their roles in mast cell responses in LPS-induced sepsis are unclear. Objectives We sought to investigate the roles of ITK and BTK in mast cell responses during LPS-induced septic inflammation. Methods Mice (genetically modified or BMMC-reconstituted Sash) were given LPS to induce septic hypothermia, in the presence or absence of indicated inhibitors. Flow cytometry was used to determine LPS-induced cell influx and TNF-α production in peritoneal cells. Microarray was used for genome-wide gene expression analysis on BMMCs. Quantitative PCR and multiplex were used to determine transcribed and secreted pro-inflammatory cytokines. Microscopy and western blotting were used to determine activation of signal transduction pathways. Results The absence of ITK and BTK leads to exacerbation of LPS-induced septic hypothermia and neutrophil influx. Itk−/−Btk−/− mast cells exhibit hyperactive preformed and LPS-induced TNF-α production, and lead to more severe LPS-induced septic hypothermia when reconstituted into mast cell deficient Sash mice. LPS-induced NF-κB, Akt and p38 activation is enhanced in Itk−/−Btk−/− mast cells, and blockage of PI3K, Akt or p38 downstream MNK1 activation significantly suppresses TNF-α hyper-production and attenuates septic hypothermia. Conclusions ITK and BTK regulate thermal homeostasis during septic response through mast cell function in mice. They share regulatory function downstream of TLR4/LPS in mast cells, through regulating the activation of canonical NF-κB, PI3K/Akt and p38 signaling pathways. PMID:26581914
MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization.
el Azzouzi, Hamid; Leptidis, Stefanos; Bourajjaj, Meriem; van Bilsen, Marc; da Costa Martins, Paula A; De Windt, Leon J
2012-01-01
The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.
Intrinsic noise analysis and stochastic simulation on transforming growth factor beta signal pathway
NASA Astrophysics Data System (ADS)
Wang, Lu; Ouyang, Qi
2010-10-01
A typical biological cell lives in a small volume at room temperature; the noise effect on the cell signal transduction pathway may play an important role in its dynamics. Here, using the transforming growth factor-β signal transduction pathway as an example, we report our stochastic simulations of the dynamics of the pathway and introduce a linear noise approximation method to calculate the transient intrinsic noise of pathway components. We compare the numerical solutions of the linear noise approximation with the statistic results of chemical Langevin equations, and find that they are quantitatively in agreement with the other. When transforming growth factor-β dose decreases to a low level, the time evolution of noise fluctuation of nuclear Smad2—Smad4 complex indicates the abnormal enhancement in the transient signal activation process.
Carrasco-Navarro, Ulises; Vera-Estrella, Rosario; Barkla, Bronwyn J; Zúñiga-León, Eduardo; Reyes-Vivas, Horacio; Fernández, Francisco J; Fierro, Francisco
2016-10-06
The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC-MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed.
VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca2+ signaling
Favia, Annarita; Desideri, Marianna; Gambara, Guido; D’Alessio, Alessio; Ruas, Margarida; Esposito, Bianca; Del Bufalo, Donatella; Parrington, John; Ziparo, Elio; Palombi, Fioretta; Galione, Antony; Filippini, Antonio
2014-01-01
Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca2+ signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca2+ mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, resulting in Ca2+ release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2−/− mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca2+ release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca2+ release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2−/− mice, but was unaffected in Tpcn1−/− animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca2+ signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies. PMID:25331892
Gao, Hua-De; Thanasekaran, Pounraj; Chiang, Chao-Wei; Hong, Jia-Lin; Liu, Yen-Chun; Chang, Yu-Hsu; Lee, Hsien-Ming
2015-07-28
Photoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution. In addition, this system allows NIR to selectively activate the caged enzyme immobilized on the nanoparticle surface without activating other caged proteins in the cytosol. This NIR-responsive enzyme-nanoparticle system provides an innovative approach to remote-control proteins and enzymes, which can be used by researchers who need to avoid direct UV irradiation or use UV as a secondary channel to turn on a bioeffector.
Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso
2013-01-01
Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210
The Cryptococcus neoformans Capsule: a Sword and a Shield
O'Meara, Teresa R.
2012-01-01
Summary: The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell. PMID:22763631
Khavinson, V Kh; Rybakina, E G; Malinin, V V; Pivanovich, I Yu; Shanin, S N; Korneva, E A
2002-05-01
Immunomodulating effects of synthetic peptides Vilon (Lys-Glu), Epithalon (Ala-Glu-Asp-Gly), and Cortagen (Ala-Glu-Asp-Pro) and possible involvement of the sphingomyelin signal transduction pathway in their effects in mouse thymocytes were studied. Vilon produced the most potent comitogenic effect on thymocyte proliferation and modulated comitogenic activity of interleukin-1b. Epithalon was less potent, while Cortagen produced no such effects. Vilon produced a more pronounced stimulatory effect on sphingomyelinase activity in mouse thymocyte membranes compared to Epithalon and Cortagen.
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
[Effects of calcitonin on osteoclast].
Suzuki, H; Takahashi, N
2001-09-01
Osteoclasts are cells that resorb bone, and calcitonin potently inhibits this bone resorptive activity. While calcitonin does not affect primary osteoclastic differentiation, it does manifest an inhibitory effect on the bone resorptive activity of osteoclasts. It is believed that calcitonin, acting upon calcitonin receptors and through PKA and PKC signal transduction pathways, destroys cytoskeleton components such as podosomes. The "escape phenomenon" seen with osteoclasts is a known issue occurring with the use of calcitonin, and is also believed to arise due to calcitonin receptors and the PKA and PKC signal transduction pathways.
Liu, X; Yang, Y; Zhao, M; Bode, L; Zhang, L; Pan, J; Lv, L; Zhan, Y; Liu, S; Zhang, L; Wang, X; Huang, R; Zhou, J; Xie, P
2014-05-30
Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK-RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK-RSK complex of the Raf/MEK/ERK signaling cascade, and disturbs host cell proliferation possibly through impaired nuclear translocation of pERK, a finding which warrants further research. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa.
Pepper, Ian J; Van Sciver, Robert E; Tang, Amy H
2017-08-07
The RAS signaling pathway is a pivotal developmental pathway that controls many fundamental biological processes including cell proliferation, differentiation, movement and apoptosis. Drosophila Seven-IN-Absentia (SINA) is a ubiquitin E3 ligase that is the most downstream signaling "gatekeeper" whose biological activity is essential for proper RAS signal transduction. Vertebrate SINA homologs (SIAHs) share a high degree of amino acid identity with that of Drosophila SINA. SINA/SIAH is the most conserved signaling component in the canonical EGFR/RAS/RAF/MAPK signal transduction pathway. Vertebrate SIAH1, 2, and 3 are the three orthologs to invertebrate SINA protein. SINA and SIAH1 orthologs are found in all major taxa of metazoans. These proteins have four conserved functional domains, known as RING (Really Interesting New Gene), SZF (SIAH-type zinc finger), SBS (substrate binding site) and DIMER (Dimerization). In addition to the siah1 gene, most vertebrates encode two additional siah genes (siah2 and siah3) in their genomes. Vertebrate SIAH2 has a highly divergent and extended N-terminal sequence, while its RING, SZF, SBS and DIMER domains maintain high amino acid identity/similarity to that of SIAH1. But unlike vertebrate SIAH1 and SIAH2, SIAH3 lacks a functional RING domain, suggesting that SIAH3 may be an inactive E3 ligase. The SIAH3 subtree exhibits a high degree of amino acid divergence when compared to the SIAH1 and SIAH2 subtrees. We find that SIAH1 and SIAH2 are expressed in all human epithelial cell lines examined thus far, while SIAH3 is only expressed in a limited subset of cancer cell lines. Through phylogenetic analyses of metazoan SINA and SIAH E3 ligases, we identified many invariant and divergent amino acid residues, as well as the evolutionarily conserved functional motifs in this medically relevant gene family. Our phylomedicinal study of this unique metazoan SINA/SIAH protein family has provided invaluable evolution-based support towards future effort to design logical, potent, and durable anti-SIAH-based anticancer strategies against oncogenic K-RAS-driven metastatic human cancers. Thus, this method of evolutionary study should be of interest in cancer biology.
Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric
2015-01-01
Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846
Hsiao, Ya-Chuan; Yang, Tsung-Lin
2017-01-01
The lacrimal gland is an important organ responsible for regulating tear synthesis and secretion. The major work of lacrimal gland (LG) is to lubricate the ocular surface and maintain the health of eyes. Functional deterioration of the lacrimal gland happens because of aging, diseases, or therapeutic complications, but without effective treatments till now. The LG originates from the epithelium of ocular surface and develops by branching morphogenesis. To regenerate functional LGs, it is required to explore the way of recapitulating and facilitating the organ to establish the intricate and ramified structure. In this study, we proposed an approach using chitosan biomaterials to create a biomimetic environment beneficial to the branching structure formation of developing LG. The morphogenetic effect of chitosan was specific and optimized to promote LG branching. With chitosan, increase in temporal expression and local concentration of endogenous HGF-related molecules creates an environment around the emerging tip of LG epithelia. By efficiently enhancing downstream signaling of HGF pathways, the cellular activities and behaviors were activated to contribute to LG branching morphogenesis. The morphogenetic effect of chitosan was abolished by either ligand or receptor deprivation, or inhibition of downstream signaling transduction. Our results elucidated the underlying mechanism accounting for chitosan morphogenetic effects on LG, and also proposed promising approaches with chitosan to assist tissue structure formation of the LG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mammoto, Akiko; Huang, Sui; Moore, Kimberly; Oh, Philmo; Ingber, Donald E
2004-06-18
Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.
Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse
Comrie, William A.; Burkhardt, Janis K.
2016-01-01
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation. PMID:27014258
Subverting Toll-Like Receptor Signaling by Bacterial Pathogens
McGuire, Victoria A.; Arthur, J. Simon C.
2015-01-01
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936
Achondroplasia: pathogenesis and implications for future treatment.
Laederich, Melanie B; Horton, William A
2010-08-01
Although the genetic defect underlying achondroplasia has been known for over a decade, no effective therapies to stimulate bone growth have emerged. Here we review the recent literature and summarize the molecular mechanisms underlying disease pathology and examine their potential as therapeutic targets. Currently used preclinical models are discussed in the context of recent advances with a special focus on C-type natriuretic peptide. Research on the mutation in Fibroblast Growth Factor Receptor 3 (FGFR3) that causes achondroplasia suggests that disease results from increased signal transduction from the mutant receptor. Thus, current therapeutic strategies have focused on reducing signals emanating from FGFR3. First-generation therapies directly targeting FGFR3, such as kinase inhibitors and neutralizing antibodies, designed for targeting FGFR3 in cancer, are still in the preclinical phase and have yet to translate into the management of achondroplasia. Counteracting signal transduction pathways downstream of FGFR3 holds promise with the discovery that administration of C-type natriuretic peptide to achondroplastic mice ameliorates their clinical phenotype. However, more research into long-term effectiveness and safety of this strategy is needed. Direct targeting of therapeutic agents to growth plate cartilage may enhance efficacy and minimize side effects of these and future therapies. Current research into the pathogenesis of achondroplasia has expanded our understanding of the mechanisms of FGFR3-induced disease and has increased the number of approaches that we may use to potentially correct it. Further research is needed to validate these approaches in preclinical models of achondroplasia.
Omega-3 fatty acids and dementia
Cole, Greg M.; Ma, Qiu-Lan; Frautschy, Sally A.
2014-01-01
More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants. PMID:19523795
Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.
Seti, Hila; Leikin-Frenkel, Alicia; Werner, Haim
2009-07-01
The insulin-like growth factor (IGF) system plays a critical role in normal growth and development as well as in malignant states. Most of the biological activities of the IGFs are mediated by the IGF-IR, which is over-expressed in most tumours and cancer cell lines. Fatty acids have critical roles in both systemic physiological processes (e.g. metabolism) and cellular events (e.g. proliferation, apoptosis, signal transduction, and gene expression). Alpha-linolenic acid (ALA) and linoleic acid (LA) are essential fatty acids of the omega-3 and omega-6 families, respectively. The aim of this study was to investigate the potential interactions between fatty acids and the IGF signal transduction pathways, and to evaluate the impact of this interplay on colon cancer cells survival and proliferation. Results of Western blot analyses revealed that ALA and LA enhanced the ligand-induced IGF-IR phosphorylation and, in addition, increased receptor phosphorylation in an IGF-I independent manner. Furthermore, fatty acid treatment led to phosphorylation of downstream signalling molecules, including Akt and Erk. In addition, FACS analysis and apoptosis measurements indicated that ALA and LA have a potential mitogenic effect on HCT116 cells, as reflected by the number of cells in S phase and by a reduction of PARP cleavage, implying a reduction in apoptotic activity. In summary, our results provide evidence that omega-3 and omega-6 fatty acids modulate IGF-I action in colon cancer cells.
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.
Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E
2010-02-16
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals
Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.
2010-01-01
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764
Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics.
Wang, Xiaoli; Xu, Chenxi; Cai, Xiaofeng; Wang, Quanhua; Dai, Shaojun
2017-10-20
Heat stress is a major abiotic stress posing a serious threat to plants. Heat-responsive mechanisms in plants are complicated and fine-tuned. Heat signaling transduction and photosynthesis are highly sensitive. Therefore, a thorough understanding of the molecular mechanism in heat stressed-signaling transduction and photosynthesis is necessary to protect crop yield. Current high-throughput proteomics investigations provide more useful information for underlying heat-responsive signaling pathways and photosynthesis modulation in plants. Several signaling components, such as guanosine triphosphate (GTP)-binding protein, nucleoside diphosphate kinase, annexin, and brassinosteroid-insensitive I-kinase domain interacting protein 114, were proposed to be important in heat signaling transduction. Moreover, diverse protein patterns of photosynthetic proteins imply that the modulations of stomatal CO₂ exchange, photosystem II, Calvin cycle, ATP synthesis, and chlorophyll biosynthesis are crucial for plant heat tolerance.
Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway
Catoira, Romy; Galera, Christine; de Billy, Francoise; Penmetsa, R. Varma; Journet, Etienne-Pascal; Maillet, Fabienne; Rosenberg, Charles; Cook, Douglas; Gough, Clare; Dénarié, Jean
2000-01-01
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor–activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization. PMID:11006338
Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.
Conzelmann, Holger; Gilles, Ernst-Dieter
2008-01-01
Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.
Abscisic Acid and abiotic stress signaling.
Tuteja, Narendra
2007-05-01
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.
Abscisic Acid and Abiotic Stress Signaling
2007-01-01
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis. PMID:19516981
Algal ancestor of land plants was preadapted for symbiosis.
Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel
2015-10-27
Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.
Wang, Feifei; Chen, Xiaoqing; Zhang, Xiaoqing; Ma, Lan
2008-08-01
Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.
Cardarelli, Silvia; Giorgi, Mauro; Naro, Fabio; Malatesta, Francesco; Biagioni, Stefano; Saliola, Michele
2017-09-22
Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K m , V max and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.
Lal, Ashish; Thomas, Marshall P; Altschuler, Gabriel; Navarro, Francisco; O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy
2011-11-01
A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.
Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie
2016-12-20
Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better understand the molecular mechanisms of JAK/STAT signaling pathway in antifungal immune response in silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua
2017-06-01
Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.
Yan, Maocai; Li, Guanqun; An, Jing
2017-06-01
The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.
Zhang, Chunmei; Zhao, Ninghui; Chen, Yao; Zhang, Donghua; Yan, Jinyuan; Zou, Wei; Zhang, Keqin; Huang, Xiaowei
2016-11-04
The nematode Caenorhabditis elegans exhibits behavioral responses to a wide range of odorants associated with food and pathogens. A previous study described a Trojan Horse-like strategy of pathogenesis whereby the bacterium Bacillus nematocida B16 emits the volatile organic compound 2-heptanone to trap C. elegans for successful infection. Here, we further explored the receptor for 2-heptanone as well as the pathway involved in signal transduction in C. elegans Our experiments showed that 2-heptanone sensing depended on the function of AWC neurons and a GPCR encoded by str-2 Consistent with the above observation, the HEK293 cells expressing STR-2 on their surfaces showed a transient elevation in intracellular Ca 2+ levels after 2-heptanone applications. After combining the assays of RNA interference and gene mutants, we also identified the Gα subunits and their downstream components in the olfactory signal cascade that are necessary for responding to 2-heptanone, including Gα subunits of egl-30 and gpa-3, phospholipase C of plc-1and egl-8, and the calcium channel of cmk-1 and cal-1. Our work demonstrates for the first time that an integrated signaling pathway for 2-heptanone response in C. elegans involves recognition by GPCR STR-2, activation by Gα subunits of egl-30/gpa-3 and transfer to the PLC pathway, indicating that a potentially novel olfactory pathway exists in AWC neurons. Meanwhile, since 2-heptanone, a metabolite from the pathogenic bacterium B. nematocida B16, can be sensed by C. elegans and thus strongly attract its host, our current work also suggested coevolution between the pathogenic microorganism and the chemosensory system in C. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Signalling crosstalk in plants: emerging issues.
Taylor, Jane E; McAinsh, Martin R
2004-01-01
The Oxford English Dictionary defines crosstalk as 'unwanted transfer of signals between communication channels'. How does this definition relate to the way in which we view the organization and function of signalling pathways? Recent advances in the field of plant signalling have challenged the traditional view of a signalling transduction cascade as isolated linear pathways. Instead the picture emerging of the mechanisms by which plants transduce environmental signals is of the interaction between transduction chains. The manner in which these interactions occur (and indeed whether the transfer of these signals is 'unwanted' or beneficial) is currently the topic of intense research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumi, Daigo, E-mail: sdaigo@ph.bunri-u.ac.j; Shinkai, Yasuhiro; Kumagai, Yoshito
2010-05-01
Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APLmore » patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.« less
Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function
Smith, Gina A.; Fearnley, Gareth W.; Abdul-Zani, Izma; Wheatcroft, Stephen B.; Tomlinson, Darren C.; Harrison, Michael A.
2017-01-01
ABSTRACT Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. PMID:28798148
Cytosensor Microphysiometer: technology and recent applications.
Hafner, F
2000-06-01
The Cytosensor Microphysiometer system detects functional responses from living cells in minutes and offers novel information on cell signalling that is often unobtainable with other assay methods. The principle of the system is based on the measurement of small changes in extracellular acidification, using a light addressable potentiometric sensor (LAPS). Energy metabolism in living cells is tightly coupled to cellular ATP usage, so that any event which perturbs cellular ATP levels--such as receptor activation and initiation of signal transduction--will result in a change in acid excretion. As the extrusion of protons is a very general parameter involved in the activation of nearly all kinds of membrane-bound receptors, receptors can be investigated without prior knowledge of the corresponding signalling pathway. However, by blocking certain signalling pathways inside the cell by means of signal transduction probes, specificity can be brought into the system and the corresponding receptor pathways can easily be elucidated. The aim is to give an overview about Cytosensor Microphysiometer technology and to demonstrate, with the help of some recent applications, the capability of the system to measure acidification rates from a wide variety of cell- and receptor-types coupled to different signal transduction pathways. This feature makes the cytosensor system an ideal tool for acting as a single assay system and circumventing the need for multiple assays.
ERIC Educational Resources Information Center
Srougi, Melissa C.; Carson, Susan
2013-01-01
Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…
Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian
2005-03-01
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.
New insights into the organization of plasma membrane and its role in signal transduction.
Suzuki, Kenichi G N
2015-01-01
Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Calcium Signals: The Lead Currency of Plant Information Processing
Kudla, Jörg; Batistič, Oliver; Hashimoto, Kenji
2010-01-01
Ca2+ signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca2+ signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca2+ elevations. Cellular Ca2+ signals are decoded and transmitted by a toolkit of Ca2+ binding proteins that relay this information into downstream responses. Major transduction routes of Ca2+ signaling involve Ca2+-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca2+-regulated transcription factors and Ca2+-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca2+ signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca2+ signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca2+ currency into defined changes in protein–protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored. PMID:20354197
TRPM1: the endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells.
Morgans, Catherine W; Brown, Ronald Lane; Duvoisin, Robert M
2010-07-01
For almost 30 years the ion channel that initiates the ON visual pathway in vertebrate vision has remained elusive. Recent findings now indicate that the pathway, which begins with unbinding of glutamate from the metabotropic glutamate receptor 6 (mGluR6), ends with the opening of the transient receptor potential (TRP)M1 cation channel. As a component of the mGluR6 signal transduction pathway, mutations in TRPM1 would be expected to cause congenital stationary night blindness (CSNB), and several such mutations have already been identified in CSNB families. Furthermore, expression of TRPM1 in both the retina and skin raises the possibility that a genetic link exists between certain types of visual and skin disorders.
Iqbal, Waqas; Alkarim, Saleh; AlHejin, Ahmed; Mukhtar, Hasan; Saini, Kulvinder S
2016-11-15
Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.
Ezak , Meredith J.; Hong , Elizabeth; Chaparro-Garcia , Angela; Ferkey , Denise M.
2010-01-01
Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974
Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine
Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng
2012-01-01
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296
Pule, Gift D.; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S.; Wonkam, Ambroise
2016-01-01
Aims To report on molecular mechanisms of foetal haemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of Sickle Cell Disease (SCD). Study Design Systematic review. Results Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways, that modulate γ-globin expression (cAMP/cGMP; Giα/JNK/Jun; methylation and microRNA). Three main molecular pathways have been reported: 1) Epigenetic modifications, transcriptional events and signalling pathways involved in HU-mediated response, 2) Signalling pathways involving HU-mediated response and 3) Post-transcriptional pathways (regulation by microRNAs). Conclusions The complete picture of HU-mediated mechanisms of HbF production in SCD remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome. PMID:26327494
Pule, Gift D; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S; Wonkam, Ambroise
2015-10-01
To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. Systematic review. Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.
Signal transduction by the Wnt family of ligands.
Dale, T C
1998-01-01
The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach. PMID:9425102
Interactions between gravitropism and phototropism in plants
NASA Technical Reports Server (NTRS)
Correll, Melanie J.; Kiss, John Z.
2002-01-01
To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.
Interactions between gravitropism and phototropism in plants.
Correll, Melanie J; Kiss, John Z
2002-06-01
To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.
Unraveling the response of plant cells to cytotoxic saponins
Balestrazzi, Alma; Macovei, Anca; Tava, Aldo; Avato, Pinarosa; Raimondi, Elena
2011-01-01
A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soil-borne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Necrosis Factor (TNF)α, the interleukin (IL)-6 and the Nuclear Transcription FactorκB (NFκB), has been highlighted in animal cells. By contrast, information concerning the response of plant cells to saponins and the related signal transduction pathways is almost missing. To date, there are only a few common features which link plant and animal cells in their response to saponins, such as the early burst in ROS and NO production and the induction of metallothioneins (MTs), small cysteine-rich, metal-binding proteins. This aspect is discussed in the present paper in view of the recent hypothesis that MTs and NO are part of a novel signal transduction pathway participating in the cell response to oxidative stress. PMID:21673512
Sun, Xiaodian; Jin, Li; Xiong, Momiao
2008-01-01
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286
The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase
Cross, Janet V; Foss, Frank W; Rady, Joshua M; Macdonald, Timothy L; Templeton, Dennis J
2007-01-01
Background Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. Methods The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. Results ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. Conclusion These results demonstrate that MEKK1 is directly modified and inhibited by ITCs, and that this correlates with inhibition of downstream activation of SAPK. These results support the conclusion that ITCs may carry out many of their actions by directly targeting important cell regulatory proteins. PMID:17894894
Platelet-derived growth factor receptor-α promotes lymphatic metastases in papillary thyroid cancer.
Zhang, Jingdong; Wang, Peng; Dykstra, Mark; Gelebart, Pascale; Williams, David; Ingham, Robert; Adewuyi, Esther Ekpe; Lai, Raymond; McMullen, Todd
2012-10-01
Lymph node metastases are common in papillary thyroid cancer (PTC) and can be resistant to surgical extirpation or radioiodine ablation. We examined the role of platelet-derived growth factor receptor (PDGFR) in mediating lymph node metastases in PTC. Clinical specimens of PTC (n = 137) were surveyed in a tissue array and by western blots to examine the relationship between expression of the α and β subunits of PDGFR and lymph node metastases. PDGFR-α was found at high levels in primary tumours with known lymphatic metastases but not in those tumours lacking nodal involvement (p < 0.0001). However, PDGFR-β expression was not linked to metastatic disease (p = 0.78) as it was found in virtually all PTC specimens. A matching analysis in fresh PTC specimens (n = 13) confirmed that PDGFR-α expression was strongly linked to metastatic spread (p = 0.0047). PDGFR-α and -β were not found in normal thyroid tissue (p < 0.0001). PTC cell lines selectively expressing PDGFR-α or -β were assessed for invasive potential and activation of downstream signal transduction pathways. PTC cell lines expressing PDGFR-α responded to PDGF-BB stimulation with increased invasive potential and this process can be blocked by the tyrosine kinase receptor inhibitor sunitinib (p < 0.009). Cell lines with only PDGFR-β, or no PDGFR, did not show significant changes in invasive potential. Activation of PDGFR-α led to downstream up-regulation of both the MAPK/ERK and PI3K/Akt pathways and disruption of either pathway is sufficient to block PDGFR-mediated increases in invasive potential. Thus, PDGFR-α is associated with lymph node metastases in papillary thyroid carcinoma and PDGFR-α promotes increased invasive potential in PTC cell lines. PDGFR-α is a strong candidate for a diagnostic biomarker to identify patients at risk of nodal metastases. Our results also strengthen the rationale for selection of tyrosine kinase receptor inhibitors that target PDGFR in the treatment of progressive, metastatic PTC. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Impact of constitutional copy number variants on biological pathway evolution.
Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca
2013-01-23
Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.
Impact of constitutional copy number variants on biological pathway evolution
2013-01-01
Background Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. Results We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. Conclusions The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations. PMID:23342974
Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei
2017-05-01
The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan
2017-09-01
Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin α v β 3 for nonpeptide hormones. Interaction between hormones and integrin α v β 3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin α v β 3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin α v β 3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.
Ras plasma membrane signalling platforms
2005-01-01
The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863
Wagner, R Doug; Johnson, Shemedia J
2012-06-20
Vaginal epithelial cells have receptors, signal transduction mechanisms, and cytokine secretion capabilities to recruit host defenses against Candida albicans infections. This research evaluates how probiotic lactobacilli affect the defensive epithelial response. This study used quantitative reverse transcription-polymerase chain reaction assay (qRT-PCR), flow cytometry, and a multiplex immunoassay to observe changes in the regulation of gene expression related to cytokine responses in the VK2 (E6/E7) vaginal epithelial cell line treated with 17β-estradiol, exposed to probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14® and challenged with C. albicans. Data were statistically evaluated by repeated measures analysis of variance and paired t-tests where appropriate. C. albicans induced mRNA expression of genes related to inflammatory cytokine responses associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal transduction pathways. 17β-estradiol suppressed expression of interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha (TNFα) mRNA. Probiotic lactobacilli suppressed C. albicans-induced nuclear factor-kappa B inhibitor kinase kinase alpha (Iκκα), Toll-like receptor-2 (TLR2), TLR6, IL-8, and TNFα, also suggesting inhibition of NF-κB signaling. The lactobacilli induced expression of IL-1α, and IL-1β mRNA, which was not inhibited by curcumin, suggesting that they induce an alternate inflammatory signal transduction pathway to NF-κB, such as the mitogen activated protein kinase and activator protein-1 (MAPK/AP-1) signal transduction pathway. Curcumin inhibited IL-13 secretion, suggesting that expression of this cytokine is mainly regulated by NF-κB signaling in VK2 cells. The results suggest that C. albicans infection induces pro-inflammatory responses in vaginal epithelial cells, and estrogen and lactobacilli suppress expression of NF-κB-related inflammatory genes. Probiotic lactobacilli may induce IL-1α and IL-1β expression by an alternate signal transduction pathway, such as MAPK/AP-1. Activation of alternate signaling mechanisms by lactobacilli to modify epithelial cell cytokine production may be a mechanism for probiotic modulation of morbidity in vulvovaginal candidiasis.
NASA Technical Reports Server (NTRS)
Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.
2003-01-01
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.
USDA-ARS?s Scientific Manuscript database
Given the vast number of microorganisms in the environment, surprisingly, only a few are lethal or cause morbidity to host organisms. Pseudomonas spp are a diverse genus of Gram-negative bacteria commonly found in soil, water, or in association with plants and animals. Pseudomonas fluorescens has be...
IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis.
Baregamian, Naira; Song, Jun; Jeschke, Marc G; Evers, B Mark; Chung, Dai H
2006-11-01
Reactive oxygen species (ROS) are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. We have recently found that activation of multiple cellular signaling transduction pathways occurs during ROS-induced intestinal cell apoptosis; the phosphatidylinositol 3-kinase (PI3-K) pathway plays an anti-apoptotic role during this process. Insulin-like growth factor (IGF)-1 activates PI3-K pathway to promote cell survival; however, the effects of IGF-1 treatment during gut injury are not clearly defined. The purpose of this study was to determine whether IGF-1 protects intestinal cells from ROS-induced apoptosis. Rat intestinal epithelial (RIE)-1 cells were treated with either IGF-1 (100 nm), hydrogen peroxide (H2O2; 500 microm), or combination. Western blotting was performed to assess phosphorylation of Akt, a downstream effector of PI3-K. Cell Death Detection ELISA, DCHF, and JC-1 assays were performed to demonstrate protective effects of IGF-1. Wortmannin, an inhibitor of PI3-K, was used to show PI3-K-dependent mechanism of action for IGF-1. H2O2 treatment resulted in increased intestinal epithelial cell apoptosis with intracellular ROS generation and mitochondrial membrane depolarization; IGF-1 pre-treatment attenuated this response without affecting ROS production. H2O2-induced phosphorylation of Akt was further increased with IGF-1 treatment; wortmannin abolished these effects in RIE-1 cells. PI3-K pathway is activated during ROS-induced intestinal epithelial cell injury; IGF-1 exerted an anti-apoptotic effect during this response by PI3-K activation. A better understanding of the exact role of IGF-1-mediated activation of PI3-K may allow us to facilitate the development of novel therapy against NEC.
Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael
2011-01-01
Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161
Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael
2011-08-01
Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.
Amsler, K; Kuwada, S K
1999-01-01
Signal transduction from receptors is mediated by the interaction of activated receptors with proximate downstream signaling proteins. In polarized epithelial cells, the membrane is divided into subdomains: the apical and basolateral membranes. Membrane receptors may be present in one or both subdomains. Using a combination of immunoprecipitation and Western blot analyses, we tested the hypothesis that a tyrosine kinase growth factor receptor, epidermal growth factor receptor (EGFR), interacts with distinct signaling proteins when present at the apical vs. basolateral membrane of a polarized renal epithelial cell. We report here that tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) was induced only when basolateral EGFR was activated. In contrast, tyrosine phosphorylation of several other signaling proteins was increased by activation of receptor at either surface. All signaling proteins were distributed diffusely throughout the cytoplasm; however, PLC-gamma protein also displayed a concentration at lateral cell borders. These results demonstrate that in polarized epithelial cells the array of signaling pathways initiated by activation of a membrane receptor is defined, at least in part, by the membrane location of the receptor.
The effects of cocaine on HIV transcription.
Tyagi, Mudit; Weber, Jaime; Bukrinsky, Michael; Simon, Gary L
2016-06-01
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, K.; Caron, M.G.; Lefkowitz, R.J.
1990-10-05
To facilitate functional and mechanistic studies of receptor-G protein interactions by expression of the human {beta}{sub 2}-adrenergic receptor (h{beta}-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h{beta}-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h{beta}-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h{beta}-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by {beta}-adrenergic receptor agonists was achieved in cells coexpressing h{beta}-AR andmore » a mammalian G protein (G{sub s}) {alpha} subunit - demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors.« less
Identification of a new Mpl-interacting protein, Atp5d.
Liu, Hongyan; Zhao, Zhenhu; Zhong, Yuxu; Shan, Yajun; Sun, Xiaohong; Mao, Bingzhi; Cong, Yuwen
2014-06-01
Thrombopoietin (TPO) can regulate hematopoiesis and megakaryopoiesis via activation of its receptor, c-Mpl, and multiple downstream signal transduction pathways. Using the cytoplasmic domain of Mpl as bait, we performed yeast two-hybrid screening, and found that the protein Atp5d might associate with Mpl. Atp5d is known as the δ subunit of mitochondrial ATP synthase, but little is known about the function of dissociative Atp5d. The interaction between Mpl and Atp5d was confirmed by the yeast two-hybrid system, mammalian two-hybrid assay, pull-down experiment, and co-immunoprecipitation study in vivo and in vitro. An additional immunofluorescence assay showed that the two proteins can colocalize along the plasma membrane in the cytoplasm. Using the yeast two-hybrid system, we tested a series of cytoplasmic truncated mutations for their ability to bind Atp5d and found an association between Atp5d and the Aa98-113 domain of Mpl. The dissociation of Atp5d from Mpl after TPO stimulation suggests that Atp5d may be a new component of TPO signaling.
NASA Astrophysics Data System (ADS)
House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.
2015-06-01
Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.
WRKY transcription factors in plant responses to stresses.
Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua
2017-02-01
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.
[Recent Advances of Researches on Expression, Function and Regulation of CD22].
Wu, Xiao-Jing; Shao, Zong-Hong
2015-04-01
CD22 is a type I transmembrane protein expressed on most mature B lymphocyte, and plays a significant role in signal transduction pathways. CD22 acts as a co-receptor of the B-cell receptor (BCR) that inhibits the BCR signaling by antigen-receptor interaction. The phosphorylation of CD22 can be triggered by cross-linking of CD22 with the BCR through antigen, then predominantly triggers the dephosphorylation and inactivation of downstream proteins and inhibit the BCR signaling. Autoimmune disease could be caused by the abnormal expression or dysfunction of CD22 which interrupts BCR signaling and then influences the quantity and function of B cells. The further study of the function and regulation of CD22 would help us understanding the pathogenesis of autoimmune disease and setting theoretical basis for its targeting treatment. In this article, the structure and expression of CD22, the ligands of CD22, the regulation of BCR and transmenbrane signaling, the effect of CD22 on B cells, and CD22 and autoimmune diseases were reviewed.
Ceserani, Teresa; Trofka, Anna; Gandotra, Neeru; Nelson, Timothy
2009-03-01
VH1/BRL2 is a receptor-like kinase of the BRI1 family with a role in vascular development. In developing Arabidopsis leaves it is expressed first in ground cells and then becomes restricted to provascular and procambial cells as venation forms. We isolated proteins interacting with the activated (phosphorylated) cytoplasmic domain of VH1/BRL2, and found that most belong to three processes: proteasome activity, vesicle traffic and intracellular signal transduction. Two adaptor proteins are included that we named VIT [VH1-interacting tetratricopeptide repeat (TPR)-containing protein] and VIK (VH1-interacting kinase), which are co-expressed in the same cells as VH1/BRL2 at two distinct time points in vein differentiation. Mutation of either adaptor or of VH1 results in vein pattern defects and in alterations in response to auxin and brassinosteroids. We propose that these two adaptors facilitate the diversification and amplification of a ligand signal perceived by VH1/BRL2 in multiple downstream pathways affecting venation.
Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi
2013-01-01
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732
Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi
Fortwendel, Jarrod R.
2013-01-01
Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence. PMID:24855584
Laprairie, Robert B.; Bagher, Amina M.; Kelly, Melanie E. M.; Dupré, Denis J.; Denovan-Wright, Eileen M.
2014-01-01
Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) on arrestin2-, Gαi/o-, Gβγ-, Gαs-, and Gαq-mediated intracellular signaling in the mouse STHdhQ7/Q7 cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gαi/o and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gαq-dependent pathways. CP55,940 and CBD both signaled through Gαs. CP55,940, but not CBD, activated downstream Gαs pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias. PMID:25037227
Subhra Das, Sankha; James, Mithun; Paul, Sandip
2017-01-01
Abstract The various pathophysiological processes occurring in living systems are known to be orchestrated by delicate interplays and cross-talks between different genes and their regulators. Among the various regulators of genes, there is a class of small non-coding RNA molecules known as microRNAs. Although, the relative simplicity of miRNAs and their ability to modulate cellular processes make them attractive therapeutic candidates, their presence in large numbers make it challenging for experimental researchers to interpret the intricacies of the molecular processes they regulate. Most of the existing bioinformatic tools fail to address these challenges. Here, we present a new web resource ‘miRnalyze’ that has been specifically designed to directly identify the putative regulation of cell signaling pathways by miRNAs. The tool integrates miRNA-target predictions with signaling cascade members by utilizing TargetScanHuman 7.1 miRNA-target prediction tool and the KEGG pathway database, and thus provides researchers with in-depth insights into modulation of signal transduction pathways by miRNAs. miRnalyze is capable of identifying common miRNAs targeting more than one gene in the same signaling pathway—a feature that further increases the probability of modulating the pathway and downstream reactions when using miRNA modulators. Additionally, miRnalyze can sort miRNAs according to the seed-match types and TargetScan Context ++ score, thus providing a hierarchical list of most valuable miRNAs. Furthermore, in order to provide users with comprehensive information regarding miRNAs, genes and pathways, miRnalyze also links to expression data of miRNAs (miRmine) and genes (TiGER) and proteome abundance (PaxDb) data. To validate the capability of the tool, we have documented the correlation of miRnalyze’s prediction with experimental confirmation studies. Database URL: http://www.mirnalyze.in PMID:28365733
Interplay between sugar and hormone signaling pathways modulate floral signal transduction
Matsoukas, Ianis G.
2014-01-01
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research. PMID:25165468
Interplay between sugar and hormone signaling pathways modulate floral signal transduction.
Matsoukas, Ianis G
2014-01-01
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.
Effective Delivery of Endogenous Antioxidants Ameliorates Diabetic Nephropathy
Park, Yongsoo; Kim, Hyunok; Park, Leejin; Min, Dongsoo; Park, Jinseu; Choi, Sooyoung; Park, Moon Hyang
2015-01-01
Background Diabetic nephropathy (DN) is thought to be partially due to the injury of renal cells and the renal micro-environment by free radicals. Free radial scavenging agents that inhibit free radical damage may well prevent the development of underlying conditions such as mesangial expansion (by inhibiting extracellular matrix expression) in these patients. Methods Using techniques for intra-cellular delivery of peptides, we made metallothionein (MT) and superoxide dismutase (SOD), potent endogenous antioxidants, readily transducible into cell membrane and tested their protective effect against the development of DN in OLETF rats. Herein, we study antioxidant peptides for their ability to prevent oxidative damage to primary rat mesangial cells (MCs), which are important constituents of renal glomeruli. Results Intraperitoneal administration of these antioxidants resulted in delivery to the kidney and decreased ROS and the expression of downstream signals in renal cells and postponed the usual progression to DN. In in vitro experiments, MT and SOD were efficiently transferred to MCs, and the increased removal of ROS by MT and SOD was proportional to the degree of scavenging enzymes delivered. MT and SOD decreased three major oxidative injuries (hyperglycemia, AGE and ROS exposure) and also injuries directly mediated by angiotensin II in MCs while changing downstream signal transduction. Conclusions The protective effects of MT and SOD for the progression of DN in experimental animals may be associated with the scavenging of ROS by MT and SOD and correlated changes in signal transduction downstream. Concomitant administration of these antioxidant peptides may prove to be a new approach for the prevention and therapy of DN. PMID:26114547
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-09-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.
Lianto, Priscilia; Han, Shiwen; Li, Xinrui; Ogutu, Fredrick Onyango; Zhang, Yani; Fan, Zhuoyan; Che, Huilian
2018-01-18
The present pharmacotherapy for eosinophilic esophagitis (EoE) fundamentally depend on inhaled corticosteroids. Despite the fact that oral intake of topical steroids can be successful in restricting EoE-related inflammation, there are concerns with respect to the long term utilization of steroids, especially in kids. In the current research, we assess the effect of quail egg, which is reportedly a known serine protease inhibitor, on symptomatology and immune responses in a peanut-sensitized mouse model of food allergy induced EoE. Daily oral treatment with quail egg attenuated mice symptomatology and immune response. Treatment with quail egg inhibited antigen-prompted increments in mouse tryptase and eosinophil cationic protein (ECP) in serum and eosinophil in inflamed tissues like oesophagus, lung, and digestive system. Quail egg treatment resulted in decreased antibody specific IgE and IgG1 and a variety of inflammatory genes that were abnormally expressed in EoE. Other effects included increased IL-10, decreased PAR-2 activation and NF-kB p65 in inflamed tissues. Our results suggest that quail egg treatment may have therapeutic potential in attenuating the symptoms of food allergy induced EoE like disease through regulating PAR-2 downstream pathway by blocking the activation of the transcription factor NF-kB p65 activity.
PEDF attenuates insulin-dependent molecular pathways of glucose homeostasis in skeletal myocytes.
Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R
2016-02-15
Pigment epithelium-derived factor (PEDF) is an anti-angiogenic serpin associated with insulin resistance in metabolic disorders such as diabetes, metabolic syndrome, obesity and polycystic ovarian syndrome. While the mechanism of PEDF induced-insulin resistance of metabolic disorders has been attributed to its inflammatory and lipolytic effects, little evidence exists to support a direct role of PEDF in mediating insulin resistance. Here, we seminally provide evidence that PEDF can inhibit insulin signal transduction governing glucose homeostasis from the receptor to the effector phosphorylation through Akt/PKB-dependent and -independent pathways in mouse and human skeletal muscle cell lines. PEDF attenuates the insulin-dependent molecular axes of glucose metabolism. Exposure of skeletal myocytes to PEDF attenuates insulin-dependent insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate 1, and dual loop phosphorylation-activation of Akt. PEDF significantly inhibits the downstream effector - glycogen synthase kinase (and thereby the glycogenic axis of insulin signalling). PEDF turned off both the molecular switches of GLUT4 translocation: IRS-Akt/PKB-AS160 mediated and IR-pCbl-dependent GLUT4 translocation (the molecular axis of glucose uptake). These findings implicate a direct effect of PEDF on multiple insulin-dependent molecular mechanisms of glucose homeostasis in skeletal muscle cells, thereby enabling it to contribute to peripheral insulin resistance at the cellular level. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors
Bucci, Cecilia; Alifano, Pietro; Cogli, Laura
2014-01-01
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways. PMID:25295627
Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo
2011-01-01
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257
Desai, Shraddha R.; Pillai, Prajit P.; Patel, Rekha S.; McCray, Andrea N.; Win-Piazza, Hla Y.; Acevedo-Duncan, Mildred E.
2012-01-01
The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G1–S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway. PMID:22021906
Desai, Shraddha R; Pillai, Prajit P; Patel, Rekha S; McCray, Andrea N; Win-Piazza, Hla Y; Acevedo-Duncan, Mildred E
2012-01-01
The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G(1)-S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway.
Intracellular Electric Field and pH Optimize Protein Localization and Movement
Cunningham, Jessica; Estrella, Veronica; Lloyd, Mark; Gillies, Robert; Frieden, B. Roy; Gatenby, Robert
2012-01-01
Mammalian cell function requires timely and accurate transmission of information from the cell membrane (CM) to the nucleus (N). These pathways have been intensively investigated and many critical components and interactions have been identified. However, the physical forces that control movement of these proteins have received scant attention. Thus, transduction pathways are typically presented schematically with little regard to spatial constraints that might affect the underlying dynamics necessary for protein-protein interactions and molecular movement from the CM to the N. We propose messenger protein localization and movements are highly regulated and governed by Coulomb interactions between: 1. A recently discovered, radially directed E-field from the NM into the CM and 2. Net protein charge determined by its isoelectric point, phosphorylation state, and the cytosolic pH. These interactions, which are widely applied in elecrophoresis, provide a previously unknown mechanism for localization of messenger proteins within the cytoplasm as well as rapid shuttling between the CM and N. Here we show these dynamics optimize the speed, accuracy and efficiency of transduction pathways even allowing measurement of the location and timing of ligand binding at the CM –previously unknown components of intracellular information flow that are, nevertheless, likely necessary for detecting spatial gradients and temporal fluctuations in ligand concentrations within the environment. The model has been applied to the RAF-MEK-ERK pathway and scaffolding protein KSR1 using computer simulations and in-vitro experiments. The computer simulations predicted distinct distributions of phosphorylated and unphosphorylated components of this transduction pathway which were experimentally confirmed in normal breast epithelial cells (HMEC). PMID:22623963
2013-01-01
Background Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund’s Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Methods Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. Results CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1/2 and COX-2, and over-production of PGE2 induced by CFA, were suppressed by TENS administration. Conclusions TENS may be an effective therapy in controlling inflammatory pain induced by CFA. Its analgesic effect may be associated with the inhibition of activation of the spinal ERK1/2-COX-2 pathway. PMID:23768044
Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao
2013-06-15
Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund's Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1/2 and COX-2, and over-production of PGE2 induced by CFA, were suppressed by TENS administration. TENS may be an effective therapy in controlling inflammatory pain induced by CFA. Its analgesic effect may be associated with the inhibition of activation of the spinal ERK1/2-COX-2 pathway.
The Evolution of Two-Component Signal Transduction Systems
Capra, Emily J.; Laub, Michael T.
2014-01-01
To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333
Tu, Chun; Ahmad, Gulzar; Mohapatra, Bhopal; Bhattacharyya, Sohinee; Ortega-Cava, Cesar F; Chung, Byung Min; Wagner, Kay-Uwe; Raja, Srikumar M; Naramura, Mayumi; Band, Vimla
2011-01-01
ESCRT pathway proteins play a key role in sorting ubiquitinated membrane receptors towards lysosomes providing an important mechanism for attenuating cell surface receptor signaling. However, recent studies point to a positive role of ESCRT proteins in signal transduction in multiple species studied under physiological and pathological conditions. ESCRT components such as Tsg101 and Hrs are overexpressed in human cancers and Tsg101 depletion is detrimental for cell proliferation, survival and transformed phenotype of tumor cells. However, the mechanisms underlying the positive contributions of ESCRT pathway to surface receptor signaling have remained unclear. In a recent study, we showed that Tsg101 and Vps4 are essential for translocation of active Src from endosomes to focal adhesion and invadopodia, thereby revealing a role of ESCRT pathway in promoting Src-mediated migration and invasion. We discuss the implications of these and other recent studies which together suggest a role for the ESCRT pathway in recycling of endocytic cargo proteins, aside from its role in lysosomal targeting, potentially explaining the positive roles of ESCRT proteins in signal transduction. PMID:21866262
Signal Transduction Inhibitor Therapy for Lymphoma
Witzig, Thomas E.; Gupta, Mamta
2013-01-01
Current research in lymphoma is focused on two areas of lymphoma biology—the signal transduction pathways used to maintain the growth of malignant lymphocytes and the role of the tumor microenvironment in lymphoma growth and survival. This review focuses on three signaling pathways: the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway, the B-cell receptor/spleen tyrosine kinase (BCR/Syk) pathway, and the protein kinase C-beta (PKC-β) pathway, known to be important to lymphoma cells. The mTOR inhibitors temsirolimus and everolimus have demonstrated antitumor activity in all types of lymphoma, the Syk inhibitor fostamatinib has activity in diffuse large B-cell lymphoma and chronic lymphocytic leukemia, and the PKC-β inhibitor enzastaurin is being used as consolidation therapy after remission in diffuse large B-cell lymphoma. This review discusses the biology behind the development of each new agent and the results of initial clinical trials. The goal is to provide the hematologist/oncologist background information on these new agents and understand their current and potential role in the management of patients. PMID:21239804
Signal Transduction Pathways of TNAP: Molecular Network Analyses.
Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp
2015-01-01
Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.
Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.
2013-01-01
Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212
Cooper, N G F; Laabich, A; Fan, W; Wang, X
2008-01-01
The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.
Role of Akt signaling in resistance to DNA-targeted therapy
Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J
2016-01-01
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878
Lavorgna, Alfonso; Harhaj, Edward William
2014-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis. PMID:25341660
Nitric oxide and gene regulation in plants.
Grün, S; Lindermayr, C; Sell, S; Durner, J
2006-01-01
There is increasing evidence that nitric oxide (NO), which was first identified as a unique diffusible molecular messenger in animals, plays an important role in diverse physiological processes in plants. Recent progress that has deepened our understanding of NO signalling functions in plants, with special emphasis on defence signalling, is discussed here. Several studies, based on plants with altered NO-levels, have recently provided genetic evidence for the importance of NO in gene induction. For a general overview of which gene expression levels are altered by NO, two studies, involving large-scale transcriptional analyses of Arabidopsis thaliana using custom-made or commercial DNA-microarrays, were performed. Furthermore, a comprehensive transcript profiling by cDNA-amplification fragment length polymorphism (AFLP) revealed a number of Arabidopsis thaliana genes that are involved in signal transduction, disease resistance and stress response, photosynthesis, cellular transport, and basic metabolism. In addition, NO affects the expression of numerous genes in other plant species such as tobacco or soybean. The NO-dependent intracellular signalling pathway(s) that lead to the activation or suppression of these genes have not yet been defined. Several lines of evidence point to an interrelationship between NO and salicylic acid (SA) in plant defence. Recent evidence suggests that NO also plays a role in the wounding/jasmonic acid (JA) signalling pathway. NO donors affect both wounding-induced H2O2 synthesis and wounding- or JA-induced expression of defence genes. One of the major challenges ahead is to determine how the correct specific response is evoked, despite shared use of the NO signal and, in some cases, its downstream second messengers.
Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C
2005-12-01
To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P < 0.05). From the results of casein zymography and ELISA, SB203580 and U0126 significantly reduced the P. endodontalis stimulated t-PA production respectively (P < 0.05). However, LY294002 lacked the ability to change the P. endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.
Acclimatization to long-term hypoxia: gene expression in ovine carotid arteries
Goyal, Ravi
2014-01-01
Exposure to acute high-altitude hypoxia is associated with an increase in cerebral blood flow (CBF) as a consequence of low arterial O2 tension. However, in response to high altitude acclimatization, CBF returns to levels similar to those at sea level, and tissue blood flow is maintained by an increase in angiogenesis. Of consequence, dysregulation of the acclimatization responses and CBF can result in acute mountain sickness, acute cerebral and/or pulmonary edema. To elucidate the signal transduction pathways involved in successful acclimatization to high altitude, in ovine carotid arteries, we tested the hypothesis that high altitude-associated long-term hypoxia results in changes in gene expression of critical signaling pathways. We acclimatized nonpregnant adult sheep to 3,801 m altitude for ∼110 days and conducted oligonucleotide microarray experiments on carotid arteries. Of a total of 116 regulated genes, 58 genes were significantly upregulated and 58 genes were significantly downregulated (each >2-fold, P < 0.05). Major upregulated genes included suprabasin and myelin basic protein, whereas downregulated genes included BAG2. Several of these genes are known to activate the ERK canonical signal transduction pathway and the process of angiogenesis. We conclude that among other changes, the altered signal transduction molecules involved in high-altitude acclimatization are associated ERK activation and angiogenesis. PMID:25052263
NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster
Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal
2011-01-01
Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987
Repulsive Guidance Molecules (RGMs) and Neogenin in Bone Morphogenetic Protein (BMP) signaling
Tian, Chenxi; Liu, Jun
2015-01-01
Summary Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type I and type II serine/threonine kinase receptors and intracellular Smad proteins. The BMP pathway regulates multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type I trans-membrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction. PMID:23740870
Gravitational Effects on Signal Transduction
NASA Technical Reports Server (NTRS)
Sytkowski, Arthur J.
1999-01-01
An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.
Bahia, Diana; Oliveira, Luciana Márcia; Lima, Fabio Mitsuo; Oliveira, Priscila; Silveira, José Franco da; Mortara, Renato Arruda; Ruiz, Jerônimo Conceição
2009-12-18
Phosphatidylinositol (PI) kinases are at the heart of one of the major pathways of intracellular signal transduction. Herein, we present the first report on a survey made by similarity searches against the five human pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum genomes available to date for phosphatidylinositol- and related-kinases (TryPIKs). In addition to generating a panel called "The TryPIKinome", we propose a model of signaling pathways for these TryPIKs. The involvement of TryPIKs in fundamental pathways, such as intracellular signal transduction and host invasion processes, makes the study of TryPIKs an important area for further inquiry. New subtype-specific inhibitors are expected to work on individual members of the PIK family and, therefore, can presumably neutralize trypanosomatid invasion processes.
Zheng, Weiwei; Peng, Tao; He, Wei; Zhang, Hongyu
2012-01-01
Background Tephritid fruit flies in the genus Bactrocera are of major economic significance in agriculture causing considerable loss to the fruit and vegetable industry. Currently, there is no ideal control program. Molecular means is an effective method for pest control at present, but genomic or transcriptomic data for members of this genus remains limited. To facilitate molecular research into reproduction and development mechanisms, and finally effective control on these pests, an extensive transcriptome for the oriental fruit fly Bactrocera dorsalis was produced using the Roche 454-FLX platform. Results We obtained over 350 million bases of cDNA derived from the whole body of B. dorsalis at different developmental stages. In a single run, 747,206 sequencing reads with a mean read length of 382 bp were obtained. These reads were assembled into 28,782 contigs and 169,966 singletons. The mean contig size was 750 bp and many nearly full-length transcripts were assembled. Additionally, we identified a great number of genes that are involved in reproduction and development as well as genes that represent nearly all major conserved metazoan signal transduction pathways, such as insulin signal transduction. Furthermore, transcriptome changes during development were analyzed. A total of 2,977 differentially expressed genes (DEGs) were detected between larvae and pupae libraries, while there were 1,621 DEGs between adults and larvae, and 2,002 between adults and pupae. These DEGs were functionally annotated with KEGG pathway annotation and 9 genes were validated by qRT-PCR. Conclusion Our data represent the extensive sequence resources available for B. dorsalis and provide for the first time access to the genetic architecture of reproduction and development as well as major signal transduction pathways in the Tephritid fruit fly pests, allowing us to elucidate the molecular mechanisms underlying courtship, ovipositing, development and detailed analyses of the signal transduction pathways. PMID:22570719
Zhou, Pi-Qi; Fan, Heng; Hu, Hui; Tang, Qing; Liu, Xing-xing; Zhang, Li-juan; Zhong, Min; Shou, Zhe-xing
2014-12-01
This study was aimed to investigate the role of the delta-opioid receptor (DOR)-β-arrestin1-Bcl-2 signal transduction pathway in the pathogenesis of ulcerative colitis (UC) and the intervention effects of oxymatrine on UC. Forty Sprague-Dawley rats were divided into normal group, model group, oxymatrine-treated group and mesalazine-treated group (n=10 each) at random. The rat UC model was established by intra-colonic injection of trinitrobenzene sulfonic acid in the model group and two treatment groups. The rats in oxymatrine-treated group were subjected to intramuscular injection of oxymatrine [63 mg/(kg·day)] for 15 days, and those in mesalazine-treated group given mesalazine solution [0.5 g/(kg·day)] by gastric lavage for the same days. Animals in normal group and model group were administered 3 mL water by gastric lavage for 15 days. On the 16th day, after fasting for 24 h, the rats were sacrificed for the removal of colon tissues. The expression levels of DOR, β-arrestin1 and Bcl-2 were determined in colon tissues by immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR), respectively. It was found that the expression levels of DOR, β-arrestin1 and Bcl-2 protein and mRNA were significantly increased in the model group as compared with the other groups (P<0.05). They were conspicuously decreased in both mesalazine-treated and oxymatrine-treated groups in contrast to the model group (P<0.05). No statistically significant difference was noted in these indices between mesalazine- and oxymatrinetreated groups (P>0.05). This study indicated that the DOR-β-arrestin1-Bcl-2 signal transduction pathway may participate in the pathogenesis of UC. Moreover, oxymatrine can attenuate the development of UC by regulating the DOR-β-arrestin1-Bcl-2 signal transduction pathway.
Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway.
Follansbee, Taylor L; Gjelsvik, Kayla J; Brann, Courtney L; McParland, Aidan L; Longhurst, Colin A; Galko, Michael J; Ganter, Geoffrey K
2017-08-30
Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans. SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs. Copyright © 2017 the authors 0270-6474/17/378524-10$15.00/0.
Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway
Follansbee, Taylor L.; Gjelsvik, Kayla J.; Brann, Courtney L.; McParland, Aidan L.
2017-01-01
Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans. SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs. PMID:28855331
Genetic analysis of gravity signal transduction in roots
NASA Astrophysics Data System (ADS)
Masson, Patrick; Strohm, Allison; Baldwin, Katherine
To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate gravitropism, we sought genetic enhancers of arg1 as a way to identify new gravity signal transducers. Two of these modifiers, named mar1 and mar2, were found to affect genes that encode two subunits of the plastidic outer-membrane protein import complex, TOC75 and TOC132, respectively. mar2 did not affect the ultrastructure of amyloplasts in the statocytes nor did it alter their ability to sediment in response to gravistimulation, suggesting a role for the outer membrane of the amyloplasts in gravity signal transduction (reviewed in Stanga et al., 2009, Plant Signal Behavior 4(10): 1-9). The contribution of TOC132 in gravity signal transduction is being investigated by analyzing the regions of this protein that are needed for the pathway, and investigating the contribution of a putative TOC132-interacting protein in gravity signal transduction. We have also isolated additional putative enhancers of arg1-2 in the hope of identifying new plastid-associated gravity signal transducers, and have initiated a screen for genetic enhancers of mar2 to seek new transducers in the ARG1 branch of the pathway.
Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation
2012-07-01
Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological
USDA-ARS?s Scientific Manuscript database
Mechanical wounding of 2-week old maize (Zea mays L.) leaves, one of the first steps in both pathogen infection and herbivore attack, stimulates metabolism and activates signal transduction pathways dedicated to defense and recovery. The signaling pathways include reversible protein phosphorylation...
Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239
Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.
Lin, Hung-Yun; Yang, Sheng-Huei; Tang, Heng-Yuan; Cheng, Guei-Yun; Davis, Paul J; Grasso, Patricia
2014-07-01
The effects of leptin-related synthetic peptides [d-Leu-4]-OB3 and OB3 on energy balance and glucose homeostasis in ob/ob and db/db mice have been confirmed. The molecular basis of these effects, however, remains unclear. In the present study, we examined the ability of these peptides to activate signal transduction pathways known to be involved in transduction of the leptin signal. In a specific and concentration-dependent manner, [d-Leu-4]-OB3 induced phosphorylation of ERK1/2, PI-3K, Ser-727 STAT3, and Tyr-705 of STAT3. OB3 also induced activation of STAT3 via phosphorylation of ERK1/2, STAT3 Ser-727, STAT3 Tyr-705 and PI-3K p85, but to a lesser degree. Using PD98059 and LY294002, specific inhibitors of MEK and PI-3K, respectively, we were able to identify the signal transduction pathways involved in peptide-induced STAT3 activation. [d-Leu-4]-OB3 induced serine phosphorylation of STAT3 primarily through activation of ERK1/2. Tyrosine phosphorylation of STAT3, however, was induced primarily through activation of PI-3K. Our data suggest that in db/db mice, [d-Leu-4]-OB3 binding to short isoforms of the leptin receptor induces intracellular signaling cascades which do not require OB-Rb activation. These signals may ultimately result in peptide effects on transcriptional and translational events associated with energy balance and glycemic regulation. In summary, we have shown for the first time that, similar to leptin, bioactive leptin-related synthetic peptide analogs activate STAT3 via phosphorylation of serine and tyrosine residues by multiple signal transduction pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Targeting signal transduction in pancreatic cancer treatment.
Yeh, Jen Jen; Der, Channing J
2007-05-01
Pancreatic cancer is a lethal disease with a 5-year survival rate of 4%. The only opportunity for improved survival continues to be complete surgical resection for those with localized disease. Although chemotherapeutic options are limited for the few patients with resectable disease, this problem is even more magnified in the majority (85%) of patients with unresectable or metastastic disease. Therefore, there is an urgent need for improved therapeutic options. The recent success of inhibitors of signal transduction for the treatment of other cancers supports the need to identify and validate aberrant signaling pathways important for pancreatic tumor growth. This review focuses on the validation of specific signaling networks and the present status of inhibitors of these pathways as therapeutic approaches for pancreatic cancer treatment.
Fragale, Alessandra; Tartaglia, Marco; Wu, Jie; Gelb, Bruce D
2004-03-01
Noonan syndrome is a developmental disorder with dysmorphic facies, short stature, cardiac defects, and skeletal anomalies, which can be caused by missense PTPN11 mutations. PTPN11 encodes Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2 or SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factor, hormone, and cytokine receptors. We compared the functional effects of three Noonan syndrome-causative PTPN11 mutations on SHP2's phosphatase activity, interaction with a binding partner, and signal transduction. All SHP2 mutants had significantly increased basal phosphatase activity compared to wild type, but that activity varied significantly between mutants and was further increased after epidermal growth factor stimulation. Cells expressing SHP2 mutants had prolonged extracellular signal-regulated kinase 2 activation, which was ligand-dependent. Binding of SHP2 mutants to Grb2-associated binder-1 was increased and sustained, and tyrosine phosphorylation of both proteins was prolonged. Coexpression of Grb2-associated binder-1-FF, which lacks SHP2 binding motifs, blocked the epidermal growth factor-mediated increase in SHP2's phosphatase activity and resulted in a dramatic reduction of extracellular signal-regulated kinase 2 activation. Taken together, these results document that Noonan syndrome-associated PTPN11 mutations increase SHP2's basal phosphatase activity, with greater activation when residues directly involved in binding at the interface between the N-terminal Src homology 2 and protein tyrosine phosphatase domains are altered. The SHP2 mutants prolonged signal flux through the RAS/mitogen-activated protein kinase (ERK2/MAPK1) pathway in a ligand-dependent manner that required docking through Grb2-associated binder-1 (GAB1), leading to increased cell proliferation. Copyright 2004 Wiley-Liss, Inc.
Perl, Alexander E.; Kasner, Margaret T.; Shank, Doris; Luger, Selina M.; Carroll, Martin
2011-01-01
Purpose Integration of signal transduction inhibitors into chemotherapy regimens generally has generally not led to anticipated increases in response and survival. However, it remains unclear whether this is because of inadequate or inconsistent inhibition of target or other complex biology. The mammalian target of rapamycin (mTOR) signaling pathway is frequently activated in acute myelogenous leukemia (AML) and we previously demonstrated the safety of combining the mTOR inhibitor, sirolimus, with mitoxantrone, etoposide, and cytarabine (MEC) chemotherapy. However, we did not reliably determine the extent of mTOR inhibition on that study. Here we sought to develop an assay that allowed us to serially quantify mTOR kinase’s activation state during therapy. Experimental design To provide evidence of mTOR kinase activation and inhibition, we applied a validated whole blood fixation/permeabilization technique for flow cytometry in order to serially monitor S6 ribosomal protein (S6) phosphorylation in immunophenotypically-identified AML blasts. Results With this approach, we demonstrate activation of mTOR signaling in 8/10 subjects’ samples (80%) and conclusively show inhibition of mTOR in the majority of subjects’ tumor cell during therapy. Of note, S6 phosphorylation in AML blasts is heterogeneous and, in some cases, intrinsically resistant to rapamycin at clinically achieved concentrations. Conclusions The methodology described is rapid and reproducible. We demonstrate the feasibility of real-time, direct pharmacodynamic monitoring by flow cytometry during clinical trials combining intensive chemotherapy and signal transduction inhibitors. This approach greatly clarifies pharmacokinetic/pharmacodynamic relationships and has broad application to pre-clinical and clinical testing of drugs whose direct or downstream effects disrupt PI3K/AKT/mTOR signaling. PMID:22167413
Dinh, Son Truong; Baldwin, Ian T.; Galis, Ivan
2013-01-01
Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores. PMID:23784463
Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B
2015-04-01
Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase (MAPK) family members to primate torpor were compared in six organs of control (aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases (ERKs), c-jun NH2-terminal kinases (JNKs), MAPK kinase (MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27 (HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor. Copyright © 2015. Production and hosting by Elsevier Ltd.
Ireland, David R; Abraham, Wickliffe C
2002-07-01
Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP(3))-activated Ca(2+) stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP(3)-independent transduction pathway.
Mukherjee, A; Koli, S; Reddy, K V R
2015-09-01
Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of target genes post-transcriptionally. © 2015 American Society of Andrology and European Academy of Andrology.
Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag
2003-01-01
The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness. PMID:12686619
Bhalla, Manmeet; Law, Daria; Dowd, Georgina C.
2017-01-01
ABSTRACT The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor. PMID:28461391
Information content and cross-talk in biological signal transduction: An information theory study
NASA Astrophysics Data System (ADS)
Prasad, Ashok; Lyons, Samanthe
2014-03-01
Biological cells respond to chemical cues provided by extra-cellular chemical signals, but many of these chemical signals and the pathways they activate interfere and overlap with one another. How well cells can distinguish between interfering extra-cellular signals is thus an important question in cellular signal transduction. Here we use information theory with stochastic simulations of networks to address the question of what happens to total information content when signals interfere. We find that both total information transmitted by the biological pathway, as well as its theoretical capacity to discriminate between overlapping signals, are relatively insensitive to cross-talk between the extracellular signals, until significantly high levels of cross-talk have been reached. This robustness of information content against cross-talk requires that the average amplitude of the signals are large. We predict that smaller systems, as exemplified by simple phosphorylation relays (two-component systems) in bacteria, should be significantly much less robust against cross-talk. Our results suggest that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content, while smaller bacterial systems cannot.
Activation of ATM by DNA Damaging Agents
2004-09-01
risk for breast cancer . Since many anti-tumor chemotherapeutics used in breast cancer treatment have the capacity to induce DNA DSBs, I have...of a subset of downstream effectors of ATM in two human breast cancer cell lines. Studies are now underway to identify proteins that interact with ATM...implications for the treatment of breast cancer patients harboring mutations in ATM. 14. SUBJECT TERMS 15. NUMBER OF PAGES signal transduction, DNA damage and
Combined radiation and p53 gene therapy of malignant glioma cells.
Badie, B; Goh, C S; Klaver, J; Herweijer, H; Boothman, D A
1999-01-01
More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We conclude that responses to p53 gene therapy are variable among gliomas and most likely depend upon both cellular p53 status and as yet ill-defined downstream pathways involving activation of cell cycle regulatory and apoptotic genes.
Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.
Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina
2016-01-01
It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.
Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling
2018-01-21
The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.
USDA-ARS?s Scientific Manuscript database
Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...
Control of neuronal excitability by Group I metabotropic glutamate receptors.
Correa, Ana Maria Bernal; Guimarães, Jennifer Diniz Soares; Dos Santos E Alhadas, Everton; Kushmerick, Christopher
2017-10-01
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu 1 and mGlu 5 . Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gα q , which can activate PLCβ, leading initially to the formation of IP 3 and diacylglycerol. IP 3 can release Ca 2+ from cellular stores resulting in activation of Ca 2+ -dependent ion channels. Intracellular Ca 2+ , together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
Bai, Y; Zhang, Q; Yang, Z; Meng, Z; Zhao, Q
2017-10-01
It is reported that methanol is generally used as an industrial solvent, antifreeze, windshield washer fluid, cooking fuel and perfume. Methanol ingestion can lead to severe metabolic disturbances, blindness, or even death. So far, few studies about its negative effects on cardiovascular system have been reported. The purpose of this study was to determine the vasoactive effect of methanol and roles of ion channels and signal transduction pathways on isolated rat aorta. The results suggested that the mechanism of methanol-induced vasorelaxation at low concentrations (<500 mM) was mediated by ATP-sensitive K + (K ATP ) and L-type Ca 2+ channels, but the mechanism at high concentrations (>600 mM) was related to K ATP , voltage-dependent K + , big-conductance Ca 2+ -activated K + , L-type Ca 2+ channels as well as prostacyclin, protein kinase C, β-adrenoceptors pathways. In addition, methanol induced a dose-dependent inhibition of vasoconstrictions caused by calcium chloride, potassium chloride, or norepinephrine. Further work is needed to investigate the relative contribution of each channel and pathway in methanol-induced vasoactive effect.
2013-01-01
Background To investigate the effects of treatment with Multi component Chinese Medicine Jinzhida (JZD) on behavioral deficits in diabetes-associated cognitive decline (DACD) rats and verify our hypothesis that JZD treatment improves cognitive function by suppressing the endoplasmic reticulum stress (ERS) and improving insulin signaling transduction in the rats’ hippocampus. Methods A rat model of type 2 diabetes mellitus (T2DM) was established using high fat diet and streptozotocin (30 mg/kg, ip). Insulin sensitivity was evaluated by the oral glucose tolerance test and the insulin tolerance test. After 7 weeks, the T2DM rats were treated with JZD. The step-down test and Morris water maze were used to evaluate behavior in T2DM rats after 5 weeks of treatment with JZD. Levels of phosphorylated proteins involved in the ERS and in insulin signaling transduction pathways were assessed by Western blot for T2DM rats’ hippocampus. Results Compared to healthy control rats, T2DM rats initially showed insulin resistance and had declines in acquisition and retrieval processes in the step-down test and in spatial memory in the Morris water maze after 12 weeks. Performance on both the step-down test and Morris water maze tasks improved after JZD treatment. In T2DM rats, the ERS was activated, and then inhibited the insulin signal transduction pathways through the Jun NH2-terminal kinases (JNK) mediated. JZD treatment suppressed the ERS, increased insulin signal transduction, and improved insulin resistance in the rats’ hippocampus. Conclusions Treatment with JZD improved cognitive function in the T2DM rat model. The possible mechanism for DACD was related with ERS inducing the insulin signal transduction dysfunction in T2DM rats’ hippocampus. The JZD could reduce ERS and improve insulin signal transduction and insulin resistance in T2DM rats’ hippocampus and as a result improved the cognitive function. PMID:23829668
NASA Astrophysics Data System (ADS)
Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.
Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.
Mochizuki, Nobuyoshi; Brusslan, Judy A.; Larkin, Robert; Nagatani, Akira; Chory, Joanne
2001-01-01
A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway. PMID:11172074
Acclimatization to long-term hypoxia: gene expression in ovine carotid arteries.
Goyal, Ravi; Longo, Lawrence D
2014-10-01
Exposure to acute high-altitude hypoxia is associated with an increase in cerebral blood flow (CBF) as a consequence of low arterial O2 tension. However, in response to high altitude acclimatization, CBF returns to levels similar to those at sea level, and tissue blood flow is maintained by an increase in angiogenesis. Of consequence, dysregulation of the acclimatization responses and CBF can result in acute mountain sickness, acute cerebral and/or pulmonary edema. To elucidate the signal transduction pathways involved in successful acclimatization to high altitude, in ovine carotid arteries, we tested the hypothesis that high altitude-associated long-term hypoxia results in changes in gene expression of critical signaling pathways. We acclimatized nonpregnant adult sheep to 3,801 m altitude for ∼110 days and conducted oligonucleotide microarray experiments on carotid arteries. Of a total of 116 regulated genes, 58 genes were significantly upregulated and 58 genes were significantly downregulated (each >2-fold, P < 0.05). Major upregulated genes included suprabasin and myelin basic protein, whereas downregulated genes included BAG2. Several of these genes are known to activate the ERK canonical signal transduction pathway and the process of angiogenesis. We conclude that among other changes, the altered signal transduction molecules involved in high-altitude acclimatization are associated ERK activation and angiogenesis. Copyright © 2014 the American Physiological Society.
Regulation of Sodium Transport in the Inner Ear
Kim, Sung Huhn; Marcus, Daniel C.
2011-01-01
Na+ concentrations in endolymph must be controlled to maintain hair cell function since the transduction channels of hair cells are cation-permeable, but not K+-selective. Flooding or fluctuations of the hair cell cytosol with Na+ would be expected to lead to cellular dysfunction, hearing loss and vertigo. This review briefly describes cellular mechanisms known to be responsible for Na+homeostasis in each compartment of the inner ear, including the cochlea, saccule, semicircular canals and endolymphatic sac. The influx of Na+into endolymph of each of the organs is likely via passive diffusion, but these pathways have not yet been identified or characterized. Na+ absorption is controlled by gate -keeper channels in the apical (endolymphatic) membrane of the transporting cells. Highly Na+-selective epithelial sodium channels (ENaC) control absorption by Reissner’s membrane, saccular extramacular epithelium, semicircular canal duct epithelium and endolymphatic sac. ENaC activity is controlled by a number of signal pathways, but most notably by genomic regulation of channel numbers in the membrane via glucocorticoid signaling. Nonselective cation channels in the apical membrane of outer sulcus epithelial cells and vestibular transitional cells mediate Na+ and parasensory K+ absorption. The K+-mediated transduction current in hair cells is also accompanied by a Na+ flux since the transduction channels are nonselective cation channels. Cation absorption by all of these cells is regulated by extracellular ATP via apical nonselective cation channels (P2X receptors). The heterogeneous population of epithelial cells in the endolymphatic sac is thought to have multiple absorptive pathways for Na+ with regulatory pathways that include glucocorticoids and purinergic agonists. PMID:21620939
Wang, Rui-Heng; Yuan, Xin-Yu; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi
2016-01-01
Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.
Ohno, Kinji; Ohkawara, Bisei; Ito, Mikako
2017-10-01
Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
NetPath: a public resource of curated signal transduction pathways
2010-01-01
We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches. PMID:20067622
Kumagai, Yoshito; Abiko, Yumi
2017-01-17
Included among the many environmental electrophiles are aromatic hydrocarbon quinones formed during combustion of gasoline, crotonaldehyde in tobacco smoke, methylmercury accumulated in fish, cadmium contaminated in rice, and acrylamide in baked foods. These electrophiles can modify nucleophilic functions such as cysteine residues in proteins forming adducts and in the process activate cellular redox signal transduction pathways such as kinases and transcription factors. However, higher concentrations of electrophiles disrupt such signaling by nonselective covalent modification of cellular proteins. Persulfide/polysulfides produced by various enzymes appear to capture environmental electrophiles because of the formation of their sulfur adducts without electrophilicity. We therefore speculate that persulfide/polysulfides are candidates for the regulation of redox signal transduction pathways (e.g., cell survival, cell proliferation, and adaptive response) and toxicity during exposure to environmental electrophiles.
Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian
2017-01-01
The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis.
PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization
Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting
2016-01-01
PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the “verge of apoptosis”. When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways. PMID:26716897
Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu
2012-10-01
We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man
The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuatormore » (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.« less
In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways
Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel
2013-01-01
It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101
Ames, Jacquelyn J.; Contois, Liangru; Caron, Jennifer M.; Tweedie, Eric; Yang, Xuehui; Friesel, Robert; Vary, Calvin; Brooks, Peter C.
2016-01-01
Extracellular matrix (ECM) remodeling regulates angiogenesis. However, the precise mechanisms by which structural changes in ECM proteins contribute to angiogenesis are not fully understood. Integrins are molecules with the ability to detect compositional and structural changes within the ECM and integrate this information into a network of signaling circuits that coordinate context-dependent cell behavior. The role of integrin αvβ3 in angiogenesis is complex, as evidence exists for both positive and negative functions. The precise downstream signaling events initiated by αvβ3 may depend on the molecular characteristics of its ligands. Here, we identified an RGD-containing cryptic collagen epitope that is generated in vivo. Surprisingly, rather than inhibiting αvβ3 signaling, this collagen epitope promoted αvβ3 activation and stimulated angiogenesis and inflammation. An antibody directed to this RGDKGE epitope but not other RGD collagen epitopes inhibited angiogenesis and inflammation in vivo. The selective ability of this RGD epitope to promote angiogenesis and inflammation depends in part on its flanking KGE motif. Interestingly, a subset of macrophages may represent a physiologically relevant source of this collagen epitope. Here, we define an endothelial cell mechano-signaling pathway in which a cryptic collagen epitope activates αvβ3 leading to an Src and p38 MAPK-dependent cascade that leads to nuclear accumulation of Yes-associated protein (YAP) and stimulation of endothelial cell growth. Collectively, our findings not only provide evidence for a novel mechano-signaling pathway, but also define a possible therapeutic strategy to control αvβ3 signaling by targeting a pro-angiogenic and inflammatory ligand of αvβ3 rather than the receptor itself. PMID:26668310
Inflammation activates the interferon signaling pathways in taste bud cells.
Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan
2007-10-03
Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.
Yue, Xun; Li, Xing Guo; Gao, Xin-Qi; Zhao, Xiang Yu; Dong, Yu Xiu; Zhou, Chao
2016-09-02
Phytohormone synergies and signaling interdependency are important topics in plant developmental biology. Physiological and genetic experimental evidence for phytohormone crosstalk has been accumulating and a genome-scale enzyme correlation model representing the Arabidopsis metabolic pathway has been published. However, an integrated molecular characterization of phytohormone crosstalk is still not available. A novel modeling methodology and advanced computational approaches were used to construct an enzyme-based Arabidopsis phytohormone crosstalk network (EAPCN) at the biosynthesis level. The EAPCN provided the structural connectivity architecture of phytohormone biosynthesis pathways and revealed a surprising result; that enzymes localized at the highly connected nodes formed a consecutive metabolic route. Furthermore, our analysis revealed that the transcription factors (TFs) that regulate enzyme-encoding genes in the consecutive metabolic route formed structures, which we describe as circular control units operating at the transcriptional level. Furthermore, the downstream TFs in phytohormone signal transduction pathways were found to be involved in the circular control units that included the TFs regulating enzyme-encoding genes. In addition, multiple functional enzymes in the EAPCN were found to be involved in ion and pH homeostasis, environmental signal perception, cellular redox homeostasis, and circadian clocks. Last, publicly available transcriptional profiles and a protein expression map of the Arabidopsis root apical meristem were used as a case study to validate the proposed framework. Our results revealed multiple scales of coupled mechanisms in that hormonal crosstalk networks that play a central role in coordinating internal developmental processes with environmental signals, and give a broader view of Arabidopsis phytohormone crosstalk. We also uncovered potential key regulators that can be further analyzed in future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun
Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDTmore » dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.« less
Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
2002-05-28
Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1-1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1-1 mutation. The los1-1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1-1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1-1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes.
A Prize-Collecting Steiner Tree Approach for Transduction Network Inference
NASA Astrophysics Data System (ADS)
Bailly-Bechet, Marc; Braunstein, Alfredo; Zecchina, Riccardo
Into the cell, information from the environment is mainly propagated via signaling pathways which form a transduction network. Here we propose a new algorithm to infer transduction networks from heterogeneous data, using both the protein interaction network and expression datasets. We formulate the inference problem as an optimization task, and develop a message-passing, probabilistic and distributed formalism to solve it. We apply our algorithm to the pheromone response in the baker’s yeast S. cerevisiae. We are able to find the backbone of the known structure of the MAPK cascade of pheromone response, validating our algorithm. More importantly, we make biological predictions about some proteins whose role could be at the interface between pheromone response and other cellular functions.
Goggins, Sean; Marsh, Barrie J; Lubben, Anneke T; Frost, Christopher G
2015-08-01
Signal transduction and signal amplification are both important mechanisms used within biological signalling pathways. Inspired by this process, we have developed a signal amplification methodology that utilises the selectivity and high activity of enzymes in combination with the robustness and generality of an organometallic catalyst, achieving a hybrid biological and synthetic catalyst cascade. A proligand enzyme substrate was designed to selectively self-immolate in the presence of the enzyme to release a ligand that can bind to a metal pre-catalyst and accelerate the rate of a transfer hydrogenation reaction. Enzyme-triggered catalytic signal amplification was then applied to a range of catalyst substrates demonstrating that signal amplification and signal transduction can both be achieved through this methodology.
Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.; James, Ho C. S.; Rydström, Anna; Ngassam, Viviane N.; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N.; Svanborg, Catharina
2015-01-01
A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ‘’protein-centric” view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ‘’receptor independent” transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death. PMID:26561036
Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina
2015-11-12
A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.
Sarkar, Debabrata
2008-01-01
Tuberization is one of the multiple outputs of a single-input phytochrome B sensory system, involving several regulatory genes. Phytochrome B- and GA-mediated photoperiodic perception occurs in the leaf, and then the RNA acts as a systemic signal in the long-distance signaling pathway to initiate tuberization in the subapical region of an underground stolon. There is good evidence that flowering and tuberizing signals might be similar. Is there a cross-talk with an oxidative burst-mediated redox signaling pathway during tuberization? Is the lipoxygenase cascade involved in the formation of the perimedullary tissue in a growing tuber? Do aquaporins regulate cell division, expansion and elongation during stolon growth and tuber induction in potato? Is the adaptive diversity for tuberization under varying photoperiods a micro-evolutionary indicator of differential transduction of cell-to-cell signal molecules under spatial and temporal expression of regulatory genes encoding transcriptional activators? Taking these views into consideration, the review presents an interim synthesis of a signaling network regulating in planta tuberization in potato.
Structural basis and functions of abscisic acid receptors PYLs
Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.
2015-01-01
Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428
Mechanical dynamics in live cells and fluorescence-based force/tension sensors
Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun
2016-01-01
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335
Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J
2012-12-15
The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.
Gujar, Amit D; Le, Son; Mao, Diane D; Dadey, David Y A; Turski, Alice; Sasaki, Yo; Aum, Diane; Luo, Jingqin; Dahiya, Sonika; Yuan, Liya; Rich, Keith M; Milbrandt, Jeffrey; Hallahan, Dennis E; Yano, Hiroko; Tran, David D; Kim, Albert H
2016-12-20
Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD + ). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD + synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD + -dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD + metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.
Boyle, Kristy; Robb, Lorraine
2008-01-01
Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. SOCS (suppressor of cytokine signalling) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRα) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling. PMID:17408753
Boyle, Kristy; Robb, Lorraine
2008-01-01
Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. Suppressor of cytokine signalling (SOCS) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRalpha) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling.
Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D.; Laschke, Matthias W.
2015-01-01
Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors. PMID:26154255
Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D; Laschke, Matthias W
2015-01-01
Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors.
NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.
Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio
2016-08-23
The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Lin, Kuan-Ho; Kuo, Wei-Wen; Shibu, Marthandam Asokan; Day, Cecilia-Hsuan; Hsieh, You-Liang; Chung, Li-Chin; Chen, Ray-Jade; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang
2017-04-24
Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2), for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs). In addition, protein phosphatase such as protein phosphatase 1 (PP1) and calcineurin (PP2B) are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO)-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.
A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem
ERIC Educational Resources Information Center
Singh, Abhay; Jayaraman, Arul; Hahn, Juergen
2007-01-01
Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…
Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F
2000-01-01
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.
A large contribution of a cyclic AMP-independent pathway to turtle olfactory transduction
1994-01-01
Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant cGMP analogue, db-cGMP elicited a small response and the response to 0.1 mM citralva was unaffected by db-cGMP. It was concluded that cAMP- independent (probably IP3-independent) pathway greatly contributes to the turtle olfactory transduction. PMID:7523576
Smith, Heidi K.; Luo, Linjiao; O’Halloran, Damien; Guo, Dagang; Huang, Xin-Yun; Samuel, Aravinthan D. T.; Hobert, Oliver
2013-01-01
Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion channel subunits, encoded by the tax-2 and tax-4 genes, are essential for ASE-mediated gustatory behavior. We describe here specific mechanistic features of cGMP-mediated signal transduction in the ASE neurons. First, we assess the specificity of the sensory functions of individual rGC proteins. We have previously shown that multiple rGC proteins are expressed in a left/right asymmetric manner in the functionally lateralized ASE neurons and are required to sense distinct salt cues. Through domain swap experiments among three different rGC proteins, we show here that the specificity of individual rGC proteins lies in their extracellular domains and not in their intracellular, signal-transducing domains. Furthermore, we find that rGC proteins are also sufficient to confer salt sensory responses to other neurons. Both findings support the hypothesis that rGC proteins are salt receptor proteins. Second, we identify a novel, likely downstream effector of the rGC proteins in gustatory signal transduction, a previously uncharacterized cyclic nucleotide-gated (CNG) ion channel, encoded by the che-6 locus. che-6 mutants show defects in gustatory sensory transduction that are similar to defects observed in animals lacking the tax-2 and tax-4 CNG channels. In contrast, thermosensory signal transduction, which also requires tax-2 and tax-4, does not require che-6, but requires another CNG, cng-3. We propose that CHE-6 may form together with two other CNG subunits, TAX-2 and TAX-4, a gustatory neuron-specific heteromeric CNG channel complex. PMID:23695300
Signal transduction in T lymphocytes in microgravity
NASA Technical Reports Server (NTRS)
Cogoli, A.
1997-01-01
More than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.
Visual Cortex Plasticity: A Complex Interplay of Genetic and Environmental Influences
Maya-Vetencourt, José Fernando; Origlia, Nicola
2012-01-01
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. PMID:22852098
Regulation of Transient Receptor Potential channels by the phospholipase C pathway
Rohacs, Tibor
2013-01-01
Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca2+ permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologues in other organisms, a surprisingly large number of mammalian TRP channels were cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of the PLC pathway, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by the PLC pathway, with special focus on TRPC-s, which can be considered as effectors of the PLC pathway, and the heat and capsaicin sensitive TRPV1, which is modulated by the PLC pathway in a complex manner. PMID:23916247
Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F.; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E.; Huang, Cher X.; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D.; Stokes, Matthew P.; Silva, Jeffrey C.; Bell, George W.; MacArthur, Daniel G.; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F.
2015-01-01
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells. PMID:26438848
Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E; Huang, Cher X; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D; Stokes, Matthew P; Silva, Jeffrey C; Bell, George W; MacArthur, Daniel G; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F
2015-10-20
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.
Keebaugh, Alaine C.; Thomas, James W.
2010-01-01
Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes. PMID:20106906
Keebaugh, Alaine C; Thomas, James W
2010-06-01
Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes.
Uchida, Takayuki; Sakashita, Yoshihiro; Kitahata, Kanako; Yamashita, Yui; Tomida, Chisato; Kimori, Yuki; Komatsu, Akio; Hirasaka, Katsuya; Ohno, Ayako; Nakao, Reiko; Higashitani, Atsushi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Kobayashi, Takeshi; Okumura, Yuushi; Choi, Inho; Oarada, Motoko; Mills, Edward M; Teshima-Kondo, Shigetada; Takeda, Shin'ichi; Tanaka, Eiji; Tanaka, Keiji; Sokabe, Masahiro; Nikawa, Takeshi
2018-06-01
Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798-4811, 2009). However, the pathological role of ROS production associated with unloading-mediated muscle atrophy still remains unknown. Here, we showed that the ROS-mediated signal transduction caused by microgravity or its simulation contributes to Cbl-b expression. In L6 myotubes, the assessment of redox status revealed that oxidized glutathione was increased under microgravity conditions, and simulated microgravity caused a burst of ROS, implicating ROS as a critical upstream mediator linking to downstream atrophic signaling. ROS generation activated the ERK1/2 early-growth response protein (Egr)1/2-Cbl-b signaling pathway, an established contributing pathway to muscle volume loss. Interestingly, antioxidant treatments such as N-acetylcysteine and TEMPOL, but not catalase, blocked the clinorotation-mediated activation of ERK1/2. The increased ROS induced transcriptional activity of Egr1 and/or Egr2 to stimulate Cbl-b expression through the ERK1/2 pathway in L6 myoblasts, since treatment with Egr1/2 siRNA and an ERK1/2 inhibitor significantly suppressed clinorotation-induced Cbl-b and Egr expression, respectively. Promoter and gel mobility shift assays revealed that Cbl-b was upregulated via an Egr consensus oxidative responsive element at -110 to -60 bp of the Cbl-b promoter. Together, this indicates that under microgravity conditions, elevated ROS may be a crucial mechanotransducer in skeletal muscle cells, regulating muscle mass through Cbl-b expression activated by the ERK-Egr signaling pathway.
Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina
2013-11-01
The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John's wort extract. © 2013 International Society for Neurochemistry.
Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi
2007-06-01
We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these consequences in light of how the network topology and signaling characteristics of altered (mutant) cell lines are shaped differently in relationship to native cell lines.
Global regulation by the seven-component Pi signaling system.
Hsieh, Yi-Ju; Wanner, Barry L
2010-04-01
This review concerns how Escherichia coli detects environmental inorganic orthophosphate (P(i)) to regulate genes of the phosphate (Pho) regulon by the PhoR/PhoB two-component system (TCS). P(i) control by the PhoR/PhoB TCS is a paradigm of a bacterial signal transduction pathway in which occupancy of a cell surface receptor(s) controls gene expression in the cytoplasm. The P(i) signaling pathway requires seven proteins, all of which probably interact in a membrane-associated signaling complex. Our latest studies show that P(i) signaling involves three distinct processes, which appear to correspond to different states of the sensory histidine kinase PhoR: an inhibition state, an activation state, and a deactivation state. We describe a revised model for P(i) signal transduction of the E. coli Pho regulon. Copyright 2010 Elsevier Ltd. All rights reserved.
Regulation of autophagy by amino acids and MTOR-dependent signal transduction.
Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice
2015-10-01
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema
2005-10-01
Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.
Zhang, Lei; Han, Changsong; Ye, Fei; He, Yan; Jin, Yinji; Wang, Tianzhen; Wu, Yiqi; Jiang, Yang; Zhang, Fengmin; Jin, Xiaoming
2017-01-01
Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN). However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN) was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs) show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1) from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients. PMID:28208683
Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery
2011-01-01
Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430
Agadjanov, M I; Vartanian, G S; Tadevosyan, Yu V; Batikyan, T B; Agadjanova, E M
2004-02-01
We studied the effects of selective delta-opiate receptor agonists and antagonists on the phosphoinositide pathway in lymphocytes from healthy donors and patients with diabetes mellitus. The test compounds probably play a role in changes in the sensitivity to pharmacological substances binding to delta-opiate receptors during diabetes mellitus.
Challenges in horizontal model integration.
Kolczyk, Katrin; Conradi, Carsten
2016-03-11
Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling effort and increase the acceptance of the combined model in the field. Obtaining a combined model can be challenging, especially if the submodels are large and/or come from different working groups (as is generally the case, when models stored in established repositories are used). To support this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model. The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling pathways (EGF and NGF) from the BioModels Database.
Parascandolo, Alessia; Laukkanen, Mikko O
2018-04-05
Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34 + cell differentiation in thyroid, colon, lung, breast, and hematological cancers. Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies. Antioxid. Redox Signal. 00, 000-000.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-01-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884
Sawada, Yusuke; Konno, Ayumu; Nagaoka, Jun; Hirai, Hirokazu
2016-06-13
Neuron-specific enolase (NSE) is a glycolytic isoenzyme found in mature neurons and cells of neuronal origin. Injecting adeno-associated virus serotype 9 (AAV9) vectors carrying the NSE promoter into the cerebellar cortex is likely to cause the specific transduction of neuronal cells, such as Purkinje cells (PCs) and interneurons, but not Bergmann glia (BG). However, we found BG-predominant transduction without PC transduction along a traumatic needle tract for viral injection. The enhancement of neuroinflammation by the co-application of lipopolysaccharide (LPS) with AAV9 significantly expanded the BG-predominant area concurrently with the potentiated microglial activation. The BG-predominant transduction was gradually replaced by the PC-predominant transduction as the neuroinflammation dissipated. Experiments using glioma cell cultures revealed significant activation of the NSE promoter due to glucose deprivation, suggesting that intracellularly stored glycogen is metabolized through the glycolytic pathway for energy. Activation of the glycolytic enzyme promoter in BG concurrently with inactivation in PC may have pathophysiological significance for the production of lactate in activated BG and the utilization of lactate, which is provided by the BG-PC lactate shuttle, as a primary energy resource in injured PCs.
Yin, Shen; Zamorano, Rocio; Conn, P Jeffrey; Niswender, Colleen M
2013-03-01
Metabotropic glutamate receptors (mGlus) are a group of Family C Seven Transmembrane Spanning Receptors (7TMRs) that play important roles in modulating signaling transduction, particularly within the central nervous system. mGlu(4) belongs to a subfamily of mGlus that is predominantly coupled to G(i/o) G proteins. We now report that the ubiquitous autacoid and neuromodulator, histamine, induces substantial glutamate-activated calcium mobilization in mGlu(4)-expressing cells, an effect which is observed in the absence of co-expressed chimeric G proteins. This strong induction of calcium signaling downstream of glutamate activation of mGlu(4) depends upon the presence of H(1) histamine receptors. Interestingly, the potentiating effect of histamine activation does not extend to other mGlu(4)-mediated signaling events downstream of G(i/o) G proteins, such as cAMP inhibition, suggesting that the presence of G(q) coupled receptors such as H(1) may bias normal mGlu(4)-mediated G(i/o) signaling events. When the activity induced by small molecule positive allosteric modulators of mGlu(4) is assessed, the potentiated signaling of mGlu(4) is further biased by histamine toward calcium-dependent pathways. These results suggest that G(i/o)-coupled mGlus may induce substantial, and potentially unexpected, calcium-mediated signaling events if stimulation occurs concomitantly with activation of G(q) receptors. Additionally, our results suggest that signaling induced by small molecule positive allosteric modulators may be substantially biased when G(q) receptors are co-activated. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gack, Michaela U.; Kirchhofer, Axel; Shin, Young C.; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U.
2008-01-01
The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5′-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K63-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T55I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K172R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36–80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-β production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway. PMID:18948594
Gack, Michaela U; Kirchhofer, Axel; Shin, Young C; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U
2008-10-28
The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5'-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K(63)-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T(55)I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K(172)R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36-80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-beta production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.
Budka, Josh; Fujioka, Shozo; Johal, Gurmukh
2016-01-01
A small number of phytohormones dictate the pattern of plant form affecting fitness via reproductive architecture and the plant’s ability to forage for light, water, and nutrients. Individual phytohormone contributions to plant architecture have been studied extensively, often following a single component of plant architecture, such as plant height or branching. Both brassinosteroid (BR) and gibberellin (GA) affect plant height, branching, and sexual organ development in maize (Zea mays). We identified the molecular basis of the nana plant2 (na2) phenotype as a loss-of-function mutation in one of the two maize paralogs of the Arabidopsis (Arabidopsis thaliana) BR biosynthetic gene DWARF1 (DWF1). These mutants accumulate the DWF1 substrate 24-methylenecholesterol and exhibit decreased levels of downstream BR metabolites. We utilized this mutant and known GA biosynthetic mutants to investigate the genetic interactions between BR and GA. Double mutants exhibited additivity for some phenotypes and epistasis for others with no unifying pattern, indicating that BR and GA interact to affect development but in a context-dependent manner. Similar results were observed in double mutant analyses using additional BR and GA biosynthetic mutant loci. Thus, the BR and GA interactions were neither locus nor allele specific. Exogenous application of GA3 to na2 and d5, a GA biosynthetic mutant, also resulted in a diverse pattern of growth responses, including BR-dependent GA responses. These findings demonstrate that BR and GA do not interact via a single inclusive pathway in maize but rather suggest that differential signal transduction and downstream responses are affected dependent upon the developmental context. PMID:27288361
Signal transduction molecules in gliomas of all grades.
Ermoian, Ralph P; Kaprealian, Tania; Lamborn, Kathleen R; Yang, Xiaodong; Jelluma, Nannette; Arvold, Nils D; Zeidman, Ruth; Berger, Mitchel S; Stokoe, David; Haas-Kogan, Daphne A
2009-01-01
To interrogate grade II, III, and IV gliomas and characterize the critical effectors within the PI3-kinase pathway upstream and downstream of mTOR. Experimental design Tissues from 87 patients who were treated at UCSF between 1990 and 2004 were analyzed. Twenty-eight grade II, 17 grade III glioma, 26 grade IV gliomas, and 16 non-tumor brain specimens were analyzed. Protein levels were assessed by immunoblots; RNA levels were determined by polymerase chain reaction amplification. To address the multiple comparisons, first an overall analysis was done comparing the four groups using Spearman's Correlation Coefficient. Only if this analysis was statistically significant were individual pairwise comparisons done. Multiple comparison analyses revealed a significant correlation with grade for all variables examined, except phosphorylated-S6. Expression of phosphorylated-4E-BP1, phosphorylated-PKB/Akt, PTEN, TSC1, and TSC2 correlated with grade (P < 0.01 for all). We extended our analyses to ask whether decreases in TSC proteins levels were due to changes in mRNA levels, or due to changes in post-transcriptional alterations. We found significantly lower levels of TSC1 and TSC2 mRNA in GBMs than in grade II gliomas or non-tumor brain (P < 0.01). Expression levels of critical signaling molecules upstream and downstream of mTOR differ between non-tumor brain and gliomas of any grade. The single variable whose expression did not differ between non-tumor brain and gliomas was phosphorylated-S6, suggesting that other protein kinases, in addition to mTOR, contribute significantly to S6 phosphorylation. mTOR provides a rational therapeutic target in gliomas of all grades, and clinical benefit may emerge as mTOR inhibitors are combined with additional agents.
New Modeling Approaches to Investigate Cell Signaling in Radiation Response
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.
2011-01-01
Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine and paracrine cell communication and signal transduction.
Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R
2014-09-15
Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Engelberg, David; Perlman, Riki; Levitzki, Alexander
2014-12-01
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039. Copyright © 2014 Elsevier Inc. All rights reserved.
Influence of Unweighting on Insulin Signal Transduction in Muscle
NASA Technical Reports Server (NTRS)
Tischler, Marc E.
2002-01-01
Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.
Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara
2016-02-15
Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Signal transduction mechanisms in plants: an overview
NASA Technical Reports Server (NTRS)
Clark, G. B.; Thompson, G. Jr; Roux, S. J.
2001-01-01
This article provides an overview on recent advances in some of the basic signalling mechanisms that participate in a wide variety of stimulus-response pathways. The mechanisms include calcium-based signalling, G-protein-mediated-signalling and signalling involving inositol phospholipids, with discussion on the role of protein kinases and phosphatases interspersed. As a further defining feature, the article highlights recent exciting findings on three extracellular components that have not been given coverage in previous reviews of signal transduction in plants, extracellular calmodulin, extracellular ATP, and integrin-like receptors, all of which affect plant growth and development.
Huminiecki, Lukasz; Goldovsky, Leon; Freilich, Shiri; Moustakas, Aristidis; Ouzounis, Christos; Heldin, Carl-Henrik
2009-02-03
The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-beta (TGF-beta) pathway -- one of the fundamental and versatile metazoan signal transduction engines. After an investigation of 33 genomes, we show that the emergence of the TGF-beta pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-beta pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-beta pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Our results challenge the view of well-conserved developmental pathways. The TGF-beta signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.
Binary agonist surface patterns prime platelets for downstream adhesion in flowing whole blood.
Eichinger, Colin D; Hlady, Vladimir
2017-04-28
As platelets encounter damaged vessels or biomaterials, they interact with a complex milieu of surface-bound agonists, from exposed subendothelium to adsorbed plasma proteins. It has been shown that an upstream, surface-immobilized agonist is capable of priming platelets for enhanced adhesion downstream. In this study, binary agonists were integrated into the upstream position of flow cells and the platelet priming response was measured by downstream adhesion in flowing whole blood. A nonadditive response was observed in which platelets transiently exposed to two agonists exhibited greater activation and downstream adhesion than that from the sum of either agonist alone. Antibody blocking of one of the two upstream agonists eliminated nonadditive activation and downstream adhesion. Crosstalk between platelet activation pathways likely led to a synergistic effect which created an enhanced activation response in the platelet population. The existence of synergy between platelet priming pathways is a concept that has broad implications for the field of biomaterials hemocompatibility and platelet activity testing.
El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir
2017-08-30
The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.
Zhu, Jianzhong; Smith, Kevin; Hsieh, Paishiun N.; Mburu, Yvonne K.; Chattopadhyay, Saurabh; Sen, Ganes C.; Sarkar, Saumendra N.
2010-01-01
Toll-like Receptor 3 (TLR3) is one of the major innate immune sensors of double stranded RNA (dsRNA). The signal transduction pathway activated by TLR3, upon binding to dsRNA, leads to the activation of two major transcription factors: NF-κB and IRF3. In an effort to identify specific chemical modulators of TLR3-IRF3 signal transduction pathway we developed a cell-based read out system. Using the interferon stimulated gene 56 (ISG56) promoter driven firefly luciferase gene stably integrated in a TLR3 expressing HEK293 cell line, we were able to generate a cell line where treatment with dsRNA resulted in a dose dependent induction of luciferase activity. A screen of two pharmacologically active compound libraries using this system, identified a number of TLR3-IRF3 signaling pathway modulators. Among them we focused on a subset of inhibitors and characterized their mode of action. Several antipsychotic drugs, such as Sertraline, Trifluoperazine and Fluphenazine were found to be direct inhibitors of the innate immune signaling pathway. These inhibitors also showed the ability to inhibit ISG56 induction mediated by TLR4 and TLR7/8 pathways. Interestingly, they did not show significant effect on TLR3, TLR7 and TLR8 mediated NF-κB activation. Detailed analysis of the signaling pathway indicated that these drugs may be exerting their inhibitory effects on IRF3 via PI3K signaling pathway. The data presented here provides mechanistic explanation of possible anti-inflammatory roles of some antipsychotic drugs. PMID:20382888
Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
2002-01-01
Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1–1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1–1 mutation. The los1–1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1–1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1–1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes. PMID:12032361
Signal transduction networks and the biology of plant cells.
Chrispeels, M J; Holuigue, L; Latorre, R; Luan, S; Orellana, A; Peña-Cortes, H; Raikhel, N V; Ronald, P C; Trewavas, A
1999-01-01
The development of plant transformation in the mid-1980s and of many new tools for cell biology, molecular genetics, and biochemistry has resulted in enormous progress in plant biology in the past decade. With the completion of the genome sequence of Arabidopsis thaliana just around the corner, we can expect even faster progress in the next decade. The interface between cell biology and signal transduction is emerging as a new and important field of research. In the past we thought of cell biology strictly in terms of organelles and their biogenesis and function, and researchers focused on questions such as, how do proteins enter chloroplasts? or, what is the structure of the macromolecules of the cell wall and how are these molecules secreted? Signal transduction dealt primarily with the perception of light (photomorphogenesis) or hormones and with the effect such signals have on enhancing the activity of specific genes. Now we see that the fields of cell biology and signal transduction are merging because signals pass between organelles and a single signal transduction pathway usually involves multiple organelles or cellular structures. Here are some examples to illustrate this new paradigm. How does abscisic acid (ABA) regulate stomatal closure? This pathway involves not only ABA receptors whose location is not yet known, but cation and anion channels in the plasma membrane, changes in the cytoskeleton, movement of water through water channels in the tonoplast and the plasma membrane, proteins with a farnesyl tail that can be located either in the cytosol or attached to a membrane, and probably unidentified ion channels in the tonoplast. In addition there are highly localized calcium oscillations in the cytoplasm resulting from the release of calcium stored in various compartments. The activities of all these cellular structures need to be coordinated during ABA-induced stomatal closure. For another example of the interplay between the proteins of signal transduction pathways and cytoplasmic structures, consider how plants mount defense responses against pathogens. Elicitors produced by pathogens bind to receptors on the plant plasma membrane or in the cytosol and eventually activate a large number of genes. This results in the coordination of activities at the plasma membrane (production of reactive oxygen species), in the cytoskeleton, localized calcium oscillations, and the modulation of protein kinases and protein phosphatases whose locations remain to be determined. The movement of transcription factors into the nucleus to activate the defense genes requires their release from cytosolic anchors and passage through the nuclear pore complexes of the nuclear envelope. This review does not cover all the recent progress in plant signal transduction and cell biology; it is confined to the topics that were discussed at a recent (November 1998) workshop held in Santiago at which lecturers from Chile, the USA and the UK presented recent results from their laboratories.
Hao, Tong; Zeng, Zheng; Wang, Bin; Zhang, Yichen; Liu, Yichen; Geng, Xuyun; Sun, Jinsheng
2014-03-27
The protein-protein interaction network (PIN) is an effective information tool for understanding the complex biological processes inside the cell and solving many biological problems such as signaling pathway identification and prediction of protein functions. Eriocheir sinensis is a highly-commercial aquaculture species with an unclear proteome background which hinders the construction and development of PIN for E. sinensis. However, in recent years, the development of next-generation deep-sequencing techniques makes it possible to get high throughput data of E. sinensis tanscriptome and subsequently obtain a systematic overview of the protein-protein interaction system. In this work we sequenced the transcriptional RNA of eyestalk, Y-organ and hepatopancreas in E. sinensis and generated a PIN of E. sinensis which included 3,223 proteins and 35,787 interactions. Each protein-protein interaction in the network was scored according to the homology and genetic relationship. The signaling sub-network, representing the signal transduction pathways in E. sinensis, was extracted from the global network, which depicted a global view of the signaling systems in E. sinensis. Seven basic signal transduction pathways were identified in E. sinensis. By investigating the evolution paths of the seven pathways, we found that these pathways got mature in different evolutionary stages. Moreover, the functions of unclassified proteins and unigenes in the PIN of E. sinensis were predicted. Specifically, the functions of 549 unclassified proteins related to 864 unclassified unigenes were assigned, which respectively covered 76% and 73% of all the unclassified proteins and unigenes in the network. The PIN generated in this work is the first large-scale PIN of aquatic crustacean, thereby providing a paradigmatic blueprint of the aquatic crustacean interactome. Signaling sub-network extracted from the global PIN depicts the interaction of different signaling proteins and the evolutionary paths of the identified signal transduction pathways. Furthermore, the function assignment of unclassified proteins based on the PIN offers a new reference in protein function exploration. More importantly, the construction of the E. sinensis PIN provides necessary experience for the exploration of PINs in other aquatic crustacean species.
Dufour, Julie; Pommier, Aurélien; Alves, Georges; De Boussac, Hugues; Lours-Calet, Corinne; Volle, David H.; Lobaccaro, Jean-Marc A.; Baron, Silvère
2013-01-01
Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer. PMID:23554947
Gallo, Marco; Riddle, Donald L
2009-02-01
Daumone is one of the three purified and artificially synthesized components of the Caenorhabditis elegans dauer pheromone. It affects the major signal transduction pathways known to discriminate between developmental arrest at the dauer stage and growth to the adult [the transforming growth factor beta (TGF-beta) and daf-2/IGF1R pathways], just as natural pheromone extracts do. Transcription of daf-7/TGF-beta is reduced in pre-dauer larvae, and nuclear localization of the DAF-16/FOXO transcription factor is increased in embryos and L1 larvae exposed to synthetic daumone. However, daumone does not require the cilia in the amphidial neurons to produce these effects nor does it require the Galpha protein GPA-3 to induce dauer entry, although GPA-3 is required for dauer induction by natural dauer pheromone extracts. Synthetic daumone has physiological effects that have not been observed with natural pheromone. It is toxic at the concentrations required for bioassay and is lethal to mutants with defective cuticles. The molecular and physiological effects of daumone and natural dauer pheromone are only partially overlapping.
Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M
1997-09-01
Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.
Celik, Hulya; Aydin, Tuba; Solak, Kubra; Khalid, Sumbul; Farooqi, Ammad A
2018-06-01
Curcumin, a bioactive and pharmacologically efficient component isolated from Curcuma longa has attracted considerable attention because of its ability to modulate diverse cellular and physiological pathways. WNT, TGF/SMAD, NOTCH, and SHH are fundamentally different signaling cascades, but their choreographed activation is strongly associated with cancer development and progression. In this review we have attempted to set spotlight on regulation of different cell signaling pathways by curcumin in different cancers. We partition this multi-component review into in-depth biological understanding of various signal transduction cascades and how curcumin targets intracellular signal transducers of deregulated pathways to inhibit cancer development and progression. Rapidly broadening landscape of both established and candidate oncogenic driver mutations identified in different cancers is a major stumbling block in the standardization of drugs having significant clinical outcome. Intra and inter-tumor heterogeneity had leveraged the complexity of therapeutic challenges to another level. Multi-pronged approach and molecularly guided treatments will be helpful in improving the clinical outcome. © 2018 Wiley Periodicals, Inc.
Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.; ...
2015-11-12
A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ‘’protein-centric” view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. Wemore » identify a ‘’receptor independent” transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. In conclusion, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.« less
Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.
Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo
2010-05-01
Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.
Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies
García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael
2015-01-01
To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512
Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi
2015-06-01
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.
Qu, Lin; Lemon, Stanley M
2010-11-01
Hepatitis A and hepatitis C viruses (HAV and HCV) are both positive-strand ribonucleic acid (RNA) viruses with hepatotropic lifestyles. Despite several important differences, they share many biological and molecular features and similar genome replication schemes. Despite this, HAV infections are usually effectively controlled by the host with elimination of the virus, whereas HCV most often is able to establish lifelong persistent infection. The mechanisms underlying this difference are unknown. The cellular helicases RIG-I and MDA5, and Toll-like receptor 3, are pattern recognition receptors that sense virus-derived RNAs within hepatocytes in the liver. Activation of these receptors leads to their interaction with specific adaptor proteins, mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively, which engage downstream kinases to activate two crucial transcription factors, nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). This results in the induction of interferons (IFNs) and IFN-stimulated genes that ultimately establish an antiviral state. These signaling pathways are central to host antiviral defense and thus frequent targets for viral interference. Both HAV and HCV express proteases that target signal transduction through these pathways and that block the induction of IFNs upon sensing of viral RNA by these receptors. An understanding of the differences and similarities in the early innate immune responses to these infections is likely to provide important insights into the mechanism underlying the long-term persistence of HCV. © Thieme Medical Publishers.
Nitrate-Regulated Glutaredoxins Control Arabidopsis Primary Root Growth1[OPEN
Walters, Laura A.; Cooper, Andrew M.; Olvera, Jocelyn G.; Rosas, Miguel A.; Rasmusson, Allan G.
2016-01-01
Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabidopsis (Arabidopsis thaliana) plants. Seven genes encoding class III glutaredoxins were found to be strongly and specifically induced by nitrate. RNA silencing of four of these glutaredoxin genes (AtGRXS3/4/5/8) resulted in plants with increased primary root length (approximately 25% longer than the wild type) and decreased sensitivity to nitrate-mediated inhibition of primary root growth. Increased primary root growth is also a well-characterized phenotype of many cytokinin-deficient plant lines. We determined that nitrate induction of glutaredoxin gene expression was dependent upon cytokinin signaling and that cytokinins could activate glutaredoxin gene expression independent of plant nitrate status. In addition, crosses between “long-root” cytokinin-deficient plants and “long-root” glutaredoxin-silenced plants generated hybrids that displayed no further increase in primary root length (i.e. epistasis). Collectively, these findings suggest that AtGRXS3/4/5/8 operate downstream of cytokinins in a signal transduction pathway that negatively regulates plant primary root growth in response to nitrate. This pathway could allow Arabidopsis to actively discriminate between different nitrogen sources in the soil, with the preferred nitrogen source, nitrate, acting to suppress primary root growth (vertical dimension) in concert with its well-characterized stimulatory effect on lateral root growth (horizontal dimension). PMID:26662603
The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-05-27
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.
The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-01-01
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153
Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H. Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian
2017-01-01
The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis. PMID:28141831
Development and application of PI3K assays for novel drug discovery.
Yanamandra, Mahesh; Mitra, Sayan; Giri, Archana
2015-02-01
Phosphoinositide 3-kinases (PI3Ks) constitute one of the most important signaling pathways, playing a vital role in cellular differentiation and proliferation with a key function in cellular receptor triggered signal transduction downstream of tyrosine kinase receptors and/or G-protein coupled receptors. PI3K promotes cell survival proliferation, protein synthesis and glucose metabolism by generating secondary messengers phospholipid phosphatidyl 3,4,5-triphosphate and signaling via AKT/mTOR regulation. Deregulation of PI3K pathways have been observed in cancer, diabetes, neurological and inflammatory diseases and is an attractive target for pharmaceutical industries. In this review, the authors explain different PI3K assay methodologies. Furthermore, the authors summarize the techno-scientific principles and their utility in profiling novel chemical entities against PI3Ks. Specifically, the authors compare different PI3K assay formats explaining their mode of detection as well as their advantages and limitations for drug discovery efforts. Developing lipid (PI3K) kinase assays involves significant effort and a rational understanding is needed due to the intrinsic lipidic nature of phospholipid phosphatidyl 4,5-biphosphate, which is used as an in vitro substrate for assays with PI3K isoforms. The assay of choice should be versatile, homogenous and definitely adaptable for high-throughput screening campaigns. Additionally, these assays are expected to dissect the mechanism of action of novel compounds (inhibitor characterization) against PI3K. Existing methods provide the versatility to medicinal chemists such that they can choose one or more assay platform to progress their compounds while profiling and/or inhibitor characterization.
Zheng, Kai; Xiang, Yangfei; Wang, Xiao; Wang, Qiaoli; Zhong, Meigong; Wang, Shaoxiang; Wang, Xiaoyan; Fan, Jianglin; Kitazato, Kaio; Wang, Yifei
2014-01-01
ABSTRACT Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. PMID:24425731
Grzelinski, Marius; Steinberg, Florian; Martens, Tobias; Czubayko, Frank; Lamszus, Katrin; Aigner, Achim
2009-01-01
In adults, glioblastomas are the most lethal and most frequent malignant brain tumors, and the poor prognosis despite aggressive treatment indicates the need to establish novel targets for molecular intervention. The secreted growth factor pleiotrophin (PTN, HB-GAM, HBNF, OSF-1) shows mitogenic, chemotactic, and transforming activity. Whereas PTN expression is tightly regulated during embryogenesis and is very limited in normal adult tissues, a marked PTN up-regulation is seen in tumors including glioblastomas. Likewise, the PTN receptor anaplastic lymphoma kinase (ALK) has been shown previously to be upregulated and functionally relevant in glioblastoma. In this study, we explore the antitumorigenic effects of the simultaneous ribozyme-mediated knockdown of both receptor and ligand. Various glioblastoma cell lines are analyzed for PTN and ALK expression. Beyond the individual efficacies of several specific ribozymes against PTN or ALK, respectively, antiproliferative and proapoptotic effects of a single gene targeting approach are strongly enhanced on double knockdown of both genes in vitro. More importantly, this results in the abolishment of tumor growth in an in vivo subcutaneous tumor xenograft model. Finally, the analysis of various downstream signaling pathways by antibody arrays reveals a distinct pattern of changes in the activation of signal transduction molecules on PTN/ALK double knockdown. Beyond the already known ones, it identifies additional pathways relevant for PTN/ALK signaling. We conclude that double targeting of PTN and ALK leads to enhanced antitumorigenic effects over single knockdown approaches, which offers novel therapeutic options owing to increased efficacy also after prolonged knockdown. PMID:19177199
Rodríguez-Moya, Javier; Argandoña, Montserrat; Reina-Bueno, Mercedes; Nieto, Joaquín J; Iglesias-Guerra, Fernando; Jebbar, Mohamed; Vargas, Carmen
2010-10-13
Osmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine. In a previous work, we showed that ectoines can be also accumulated upon transport from the external medium, and that they can be used as carbon sources at optimal, but not at low salinity. This was related to an insufficient ectoine(s) transport under these conditions. A C. salexigens Tn1732-induced mutant (CHR95) showed a delayed growth with glucose at low and optimal salinities, could not grow at high salinity, and was able to use ectoines as carbon sources at low salinity. CHR95 was affected in the transport and/or metabolism of glucose, and showed a deregulated ectoine uptake at any salinity, but it was not affected in ectoine metabolism. Transposon insertion in CHR95 caused deletion of three genes, Csal0865-Csal0867: acs, encoding an acetyl-CoA synthase, mntR, encoding a transcriptional regulator of the DtxR/MntR family, and eupR, encoding a putative two-component response regulator with a LuxR_C-like DNA-binding helix-turn-helix domain. A single mntR mutant was sensitive to manganese, suggesting that mntR encodes a manganese-dependent transcriptional regulator. Deletion of eupR led to salt-sensitivity and enabled the mutant strain to use ectoines as carbon source at low salinity. Domain analysis included EupR as a member of the NarL/FixJ family of two component response regulators. Finally, the protein encoded by Csal869, located three genes downstream of eupR was suggested to be the cognate histidine kinase of EupR. This protein was predicted to be a hybrid histidine kinase with one transmembrane and one cytoplasmic sensor domain. This work represents the first example of the involvement of a two-component response regulator in the osmoadaptation of a true halophilic bacterium. Our results pave the way to the elucidation of the signal transduction pathway involved in the control of ectoine transport in C. salexigens.
Hayashi, Shinichi; Ochi, Haruki; Ogino, Hajime; Kawasumi, Aiko; Kamei, Yasuhiro; Tamura, Koji; Yokoyama, Hitoshi
2014-12-01
The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate epimorphic regeneration as well as for organ size control in appendage regeneration. In regenerative medicine, these findings should contribute to the development of three-dimensional organs with the correct size for a patient's body. Copyright © 2014 Elsevier Inc. All rights reserved.
Kuo, Chueh-Ling; Oyler, George; Shoemaker, Charles B
2010-01-01
Botulinum neurotoxin (BoNT) heavy chain (Hc) facilitates receptor-mediated endocytosis into neuronal cells and transport of the light chain (Lc) protease to the cytosol where neurotransmission is inhibited as a result of SNARE protein cleavage. Here we show that the role of BoNT Hc in cell intoxication can be replaced by commercial lipid-based and polycationic polymer DNA transfection reagents. BoNT "transduction" by these reagents permits efficient intoxication of neuronal cells as well as some non-neuronal cell lines normally refractory to BoNT. Surprisingly, the reagents facilitate delivery of recombinant BoNT Lc protease to the cytosol of both neuronal and non-neuronal cells in the absence of BoNT Hc, and with sensitivities approaching that of BoNT holotoxin. Transduction of BoNT, as with natural intoxication, is inhibited by bafilomycin A1, methylamine and ammonium chloride indicating that both pathways require endosome acidification. DNA transfection reagents facilitate intoxication by holotoxins, or isolated Lc proteases, of all three BoNT serotypes tested (A, B, E). These results suggest that lipid and cationic polymer transfection reagents facilitate cytosolic delivery of BoNT holotoxins and isolated Lc proteases by an endosomal uptake pathway.
Pupo, Marco; Pisano, Assunta; Lappano, Rosamaria; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Abonante, Sergio; Rosano, Camillo; Maggiolini, Marcello
2012-08-01
Bisphenol A (BPA) is the principal constituent of baby bottles, reusable water bottles, metal cans, and plastic food containers. BPA exerts estrogen-like activity by interacting with the classical estrogen receptors (ERα and ERβ) and through the G protein-coupled receptor (GPR30/GPER). In this regard, recent studies have shown that GPER was involved in the proliferative effects induced by BPA in both normal and tumor cells. We studied the transduction signaling pathways through which BPA influences cell proliferation and migration in human breast cancer cells and cancer-associated fibroblasts (CAFs). We used as a model system SKBR3 breast cancer cells and CAFs that lack the classical ERs. Specific pharmacological inhibitors and gene-silencing procedures were used to show that BPA induces the expression of the GPER target genes c-FOS, EGR-1, and CTGF through the GPER/EGFR/ERK transduction pathway in SKBR3 breast cancer cells and CAFs. Moreover, we observed that GPER is required for growth effects and migration stimulated by BPA in both cell types. Results indicate that GPER is involved in the biological action elicited by BPA in breast cancer cells and CAFs. Hence, GPER-mediated signaling should be included among the transduction mechanisms through which BPA may stimulate cancer progression.
Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola
2011-09-27
Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.
Zaobidna, Ewa A; Żółtowska, Krystyna; Łopieńska-Biernat, Elżbieta
2017-12-20
The ectoparasitic mite Varroa destructor has emerged as the major pest of honeybees. Despite extensive research efforts, the pathogenesis of varroosis has not been fully explained. Earlier studies suggested that V. destructor infestation leads to the suppression of the host's immune system. The aim of this study was to analyze the immune responses of 14 genes in the Toll signal transduction pathways, including effector genes of antimicrobial peptides (AMPs), in developing Apis mellifera workers and drones infested with V. destructor. Four developmental stages (L5 larvae, prepupae, and 2 pupal stages) and newly emerged imagines were analyzed. In workers, the most significant changes were observed in L5 larvae in the initial stages of infestation. A significant increase in the relative expression of 10 of the 14 analyzed genes, including defensin-1 and defensin-2, was observed in infested bees relative to non-infested individuals. The immune response in drones developed at a slower rate. The expression of genes regulating cytoplasmic signal transduction increased in prepupae, whereas the expression of defensin-1 and defensin-2 effector genes increased in P3 pupae with red eyes. The expression of many immunity-related genes was silenced in successive life stages and in imagines, and it was more profound in workers than in drones. The results indicate that V. destructor significantly influences immune responses regulated by the Toll signal transduction pathway in bees. In infested bees, the observed changes in Toll pathway genes varied between life stages and the sexes.
Couture, Camille; Desjardins, Pascale; Zaniolo, Karine; Germain, Lucie; Guérin, Sylvain L
2018-06-01
The cornea is a transparent organ, highly specialized and unique that is continually subjected to abrasive forces and occasional mechanical or chemical trauma because of its anatomical localization. Upon injury, the extracellular matrix (ECM) rapidly changes to promote wound healing through integrin-dependent activation of specific signal transduction mediators whose contribution is to favor faster closure of the wound by altering the adhesive and migratory properties of the cells surrounding the damaged area. In this study, we exploited the human tissue-engineered cornea (hTECs) as a model to study the signal transduction pathways that participate to corneal wound healing. By exploiting both gene profiling and activated kinases arrays, we could demonstrate the occurrence of important alterations in the level of expression and activation of a few mediators from the PI3K/Akt and CREB pathways in response to the ECM remodeling taking place during wound healing of damaged hTECs. Pharmacological inhibition of CREB with C646 considerably accelerated wound closure compared to controls. This process was considerably accelerated further when both C646 and SC79, an Akt agonist, were added together to wounded hTECs. Therefore, our study demonstrate that proper corneal wound healing requires the activation of Akt together with the inhibition of CREB and that wound healing in vitro can be altered by the use of pharmacological inhibitors (such as C646) or agonists (such as SC79) of these mediators. Corneal wounds account for a large proportion of all visual disabilities in North America. To our knowledge, this is the first time that a tissue-engineered human cornea (hTEC) entirely produced using normal untransformed human cells is used as a biomaterial to study the signal transduction pathways that are critical to corneal wound healing. Through the use of this biomaterial, we demonstrated that human corneal epithelial cells engaged in wound healing reduce phosphorylation of the signal transduction mediator CREB while, in the mean time, they increase that of AKT. By increasing the activation of AKT together with a decrease in CREB activation, we could considerably reduce wound closure time in our punch-damaged hTECs. Considering the increasing interest given to the reconstruction of different types of tissues, we believe these results will have a strong impact on the field of tissue-engineering and biomaterials. Altering the activation status of the Akt and CREB proteins might prove to be a therapeutically interesting avenue and may also find applications in wound healing of other tissues beside the cornea, such as the skin. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Network motifs – recurring circuitry components in biological systems
Environmental perturbations, elicited by chemicals, dietary supplements, and drugs, can alter the dynamics of the molecular circuits and networks operating in cells, leading to multiple disease endpoints. Multi-component signal transduction pathways and gene regulatory circuits u...
Shakeel, Samina N.; Wang, Xiaomin; Binder, Brad M.; Schaller, G. Eric
2013-01-01
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction. PMID:23543258
Restoring functional neurofibromin by protein transduction.
Mellert, K; Lechner, S; Lüdeke, M; Lamla, M; Möller, P; Kemkemer, R; Scheffzek, K; Kaufmann, D
2018-04-18
In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.
Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime
NASA Astrophysics Data System (ADS)
Caré, Bertrand R.; Soula, Hédi A.
2013-01-01
Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.
Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue
Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.
2015-01-01
Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256
Wenzler, D; Reinhardt, M; Fukshansky, L
2001-08-21
Two light-induced growth reactions in a unicellular cylindrical sporangiophore of Phycomyces blakesleeanus-vertical growth acceleration under symmetrical irradiation (photomecism) and directional growth under unilateral irradiation (phototropism)-share common input light perception as well as common output growth mechanism but have strongly divergent dynamics and other distinctive features. This divergence culminates in the phototropic paradoxes the main of which states that photomecism shows total adaptation, while phototropism does not adapt. The basis for this contradiction is that the phototropic transduction chain, unlike that of photomecism, faces a spatially non-uniform stimulus and processes a series of spatial patterns (light and absorption profiles, adaptation profile, etc.). The only way to resolve the paradoxes and correlate features of both responses within a single transduction chain is to assume non-local signal transduction, e.g. a cross-talk between different azimuthal locations within the cylindrical cell. On the other hand, to establish the presence of an appropriate cross-talk is equivalent of gaining insight into the topology of the transduction chain. This series of two papers contains a review reconsidering the entire field from this viewpoint (Paper 1) and a mathematical model of pattern transduction which unifies features of phototropism and resolves the paradoxes (Paper 2). At the same time, this is the first "proof of concept" for the "activity/pooling (a/p) networks"-a specific mathematical apparatus designed to analyse systemic properties and control in metabolic pathways. Copyright 2001 Academic Press.
Reay, Daniel P; Yang, Michele; Watchko, Jon F; Daood, Molly; O'Day, Terrence L; Rehman, Khaleel K; Guttridge, Denis C; Robbins, Paul D; Clemens, Paula R
2011-09-01
The activation of nuclear factor κB (NF-κB) contributes to muscle degeneration that results from dystrophin deficiency in human Duchenne muscular dystrophy (DMD) and in the mdx mouse. In dystrophic muscle, NF-κB participates in inflammation and failure of muscle regeneration. Peptides containing the NF-κB Essential Modulator (NEMO) binding domain (NBD) disrupt the IκB kinase complex, thus blocking NF-κB activation. The NBD peptide, which is linked to a protein transduction domain to achieve in vivo peptide delivery to muscle tissue, was systemically delivered to mdx mice for 4 or 7 weeks to study NF-κB activation, histological changes in hind limb and diaphragm muscle and ex vivo function of diaphragm muscle. Decreased NF-κB activation, decreased necrosis and increased regeneration were observed in hind limb and diaphragm muscle in mdx mice treated systemically with NBD peptide, as compared to control mdx mice. NBD peptide treatment resulted in improved generation of specific force and greater resistance to lengthening activations in diaphragm muscle ex vivo. Together these data support the potential of NBD peptides for the treatment of DMD by modulating dystrophic pathways in muscle that are downstream of dystrophin deficiency. Published by Elsevier Inc.
Bardoxolone methyl prevents obesity and hypothalamic dysfunction.
Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng
2016-08-25
High-fat (HF) diet-induced obesity is associated with hypothalamic leptin resistance and low grade chronic inflammation, which largely impairs the neuroregulation of negative energy balance. Neuroregulation of negative energy balance is largely controlled by the mediobasal and paraventricular nuclei regions of the hypothalamus via leptin signal transduction. Recently, a derivative of oleanolic acid, bardoxolone methyl (BM), has been shown to have anti-inflammatory effects. We tested the hypothesis that BM would prevent HF diet-induced obesity, hypothalamic leptin resistance, and inflammation in mice fed a HF diet. Oral administration of BM via drinking water (10 mg/kg daily) for 21 weeks significantly prevented an increase in body weight, energy intake, hyperleptinemia, and peripheral fat accumulation in mice fed a HF diet. Furthermore, BM treatment prevented HF diet-induced decreases in the anorexigenic effects of peripheral leptin administration. In the mediobasal and paraventricular nuclei regions of the hypothalamus, BM administration prevented HF diet-induced impairments of the downstream protein kinase b (Akt) pathway of hypothalamic leptin signalling. BM treatment also prevented an increase in inflammatory cytokines, tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in these two hypothalamic regions. These results identify a potential novel neuropharmacological application for BM in preventing HF diet-induced obesity, hypothalamic leptin resistance, and inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin
Yoo, J-Y; Wang, X W; Rishi, A K; Lessor, T; Xia, X-M; Gustafson, T A; Hamburger, A W
2000-01-01
The processes by which ErbB-3, an inactive tyrosine kinase, exerts its biological effects are poorly understood. Using the yeast two-hybrid system, we have isolated an ErbB-3 binding protein (Ebp1) that interacts with the juxtamembrane domain of ErbB-3. This protein is identical to that predicted to be encoded for by the human PA2G4 gene. Ebp1 is the human homologue of a previously identified cell cycle-regulated mouse protein p38-2G4. Two transcripts of ebp1 mRNA (1.7 and 2.2 kb) were detected in several normal human organs. The interaction of Ebp1 with ErbB-3 was examined in vitro and in vivo. The first 15 amino acids of the juxtamembrane domain of ErbB-3 were essential for Ebp1 binding in vitro. Treatment of AU565 cells with the ErbB-3 ligand heregulin resulted in dissociation of Ebp1 from ErbB-3. Ebp1 translocated from the cytoplasm into the nucleus following heregulin stimulation. These findings suggest that Ebp1 may be a downstream member of an ErbB-3-regulated signal transduction pathway. © 2000 Cancer Research Campaign PMID:10682683
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chen-Si; School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; He, Pei-Juin
2010-06-25
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cellsmore » and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLC{beta}2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLC{beta}2/Ca2+ signal transduction in endothelial cells.« less
Nitric oxide: a multitasked signaling gas in plants.
Domingos, Patricia; Prado, Ana Margarida; Wong, Aloysius; Gehring, Christoph; Feijo, Jose A
2015-04-01
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Wu, R C-C; Cho, W-L
2014-10-01
Protein kinases are known to be involved in a number of signal transduction cascades. Both the stress-activated Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) p38 pathways have been shown to correlate with the insect immune response to microbial infection. MAP kinase kinase 4 (MEK4) is an upstream kinase of JNK and p38 kinase. The cDNA of AaMEK4 was cloned and characterized. AaMEK4 was activated by microbial lysates of Gram-positive, Gram-negative bacteria and yeast. The conserved lysine (K112 ) and the putative phosphorylation sites (S238 and T242 ) were shown to be important for kinase activity by site-directed mutagenesis. A common MAPK docking site (MAPK_dsA) was found and in addition, a new nearby docking site, MAPK_dsB, was identified in the N-terminal noncatalytic domain of AaMEK4. MAPK_dsB was shown to be a unique element in the MEK4 family. In this study, both MAPK_dsA and _dsB were demonstrated to be important to AaMEK4 enzymatic activity for the downstream protein kinase, Aap38. © 2014 The Royal Entomological Society.
Transcriptome analysis of nitric oxide-responsive genes in upland cotton (Gossypium hirsutum).
Huang, Juan; Wei, Hengling; Li, Libei; Yu, Shuxun
2018-01-01
Nitric oxide (NO) is an important signaling molecule with diverse physiological functions in plants. It is therefore important to characterize the downstream genes and signal transduction networks modulated by NO. Here, we identified 1,932 differentially expressed genes (DEGs) responding to NO in upland cotton using high throughput tag sequencing. The results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 25 DEGs showed good consistency. Gene Ontology (GO) and KEGG pathway were analyzed to gain a better understanding of these DEGs. We identified 157 DEGs belonging to 36 transcription factor (TF) families and 72 DEGs related to eight plant hormones, among which several TF families and hormones were involved in stress responses. Hydrogen peroxide and malondialdehyde (MDA) contents were increased, as well related genes after treatment with sodium nitroprusside (SNP) (an NO donor), suggesting a role for NO in the plant stress response. Finally, we compared of the current and previous data indicating a massive number of NO-responsive genes at the large-scale transcriptome level. This study evaluated the landscape of NO-responsive genes in cotton and identified the involvement of NO in the stress response. Some of the identified DEGs represent good candidates for further functional analysis in cotton.
Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding.
Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Plückthun, Andreas; Wagner, Gerhard; Hagn, Franz
2016-06-28
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein-coupled receptor (GPCR) activation. Agonist-receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape.
Functional IRF3 deficiency in a patient with herpes simplex encephalitis.
Andersen, Line Lykke; Mørk, Nanna; Reinert, Line S; Kofod-Olsen, Emil; Narita, Ryo; Jørgensen, Sofie E; Skipper, Kristian A; Höning, Klara; Gad, Hans Henrik; Østergaard, Lars; Ørntoft, Torben F; Hornung, Veit; Paludan, Søren R; Mikkelsen, Jacob Giehm; Fujita, Takashi; Christiansen, Mette; Hartmann, Rune; Mogensen, Trine H
2015-08-24
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans. © 2015 Andersen et al.
Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.
2012-01-01
An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470
TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.
Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian
2013-12-15
TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.
N-(4-methoxyphenyl) caffeamide-induced melanogenesis inhibition mechanisms.
Kuo, Yueh-Hsiung; Chen, Chien-Chia; Wu, Po-Yuan; Wu, Chin-Sheng; Sung, Ping-Jyun; Lin, Chien-Yih; Chiang, Hsiu-Mei
2017-01-23
The derivative of caffeamide exhibits antioxidant and antityrosinase activity. The activity and mechanism of N-(4-methoxyphenyl) caffeamide (K36E) on melanogenesis was investigated. B16F0 cells were treated with various concentrations of K36E; the melanin contents and related signal transduction were studied. Western blotting assay was applied to determine the protein expression, and spectrophotometry was performed to identify the tyrosinase activity and melanin content. Our results indicated that K36E reduced α-melanocyte-stimulating hormone (α-MSH)-induced melanin content and tyrosinase activity in B16F0 cells. In addition, K36E inhibited the expression of phospho-cyclic adenosine monophosphate (cAMP)-response element-binding protein, microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1). K36E activated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK3β), leading to the inhibition of MITF transcription activity. K36E attenuated α-MSH induced cAMP pathways, contributing to hypopigmentation. K36E regulated melanin synthesis through reducing the expression of downstream proteins including p-CREB, p-AKT, p-GSK3β, tyrosinase, and TRP-1, and activated the transcription factor, MITF. K36E may have the potential to be developed as a skin whitening agent.
Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding
Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Wagner, Gerhard; Hagn, Franz
2016-01-01
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein–coupled receptor (GPCR) activation. Agonist–receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape. PMID:27298341
Maharaj, Natalya P; Wies, Effi; Stoll, Andrej; Gack, Michaela U
2012-02-01
Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K₆₃-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S₈ or T₁₇₀ suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S₈ and T₁₇₀ phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S₈ or T₁₇₀ potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S₈ and T₁₇₀ phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S₈/T₁₇₀ phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions.
Maharaj, Natalya P.; Wies, Effi; Stoll, Andrej
2012-01-01
Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K63-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S8 or T170 suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S8 and T170 phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S8 or T170 potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S8 and T170 phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S8/T170 phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions. PMID:22114345
Strigolactone and karrikin signal perception: receptors, enzymes, or both?
Janssen, Bart J.; Snowden, Kimberley C.
2012-01-01
The signaling molecules strigolactone (SL) and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves, and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2) and closely related α/β hydrolase fold proteins (DAD2 and KAI2). The crystal structure of DAD2 has been solved revealing an α/β hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyze hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2, and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF (Skp-Cullin-F-box) complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The α/β hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that DAD2 and KAI2 represent an intermediate stage where some catalytic activity is retained at the same time as a receptor role has evolved. PMID:23293648
Strigolactone and karrikin signal perception: receptors, enzymes, or both?
Janssen, Bart J; Snowden, Kimberley C
2012-01-01
The signaling molecules strigolactone (SL) and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves, and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2) and closely related α/β hydrolase fold proteins (DAD2 and KAI2). The crystal structure of DAD2 has been solved revealing an α/β hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyze hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2, and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF (Skp-Cullin-F-box) complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The α/β hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that DAD2 and KAI2 represent an intermediate stage where some catalytic activity is retained at the same time as a receptor role has evolved.
Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation
NASA Astrophysics Data System (ADS)
Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko
2015-07-01
In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time after irradiation.
The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation.
Carvalho, Teresa Gil; Morahan, Belinda; John von Freyend, Simona; Boeuf, Philippe; Grau, Georges; Garcia-Bustos, Jose; Doerig, Christian
2016-07-01
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borziak, Kirill; Jouline, Igor B
2007-01-01
Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similaritymore » to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.« less
Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea
2017-01-01
ABSTRACT All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria. Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. PMID:29208747
Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi
2012-06-22
Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.
Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi
2012-01-01
Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to SN2 alkylating agents. We show that after treatment of cells with the SN2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by SN2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage. PMID:22544757
Li, Chaozheng; Chen, Yixiao; Weng, Shaoping; Li, Sedong; Zuo, Hongliang; Yu, Xiaoqiang; Li, Haoyang; He, Jianguo; Xu, Xiaopeng
2014-02-01
The toll-like receptor (TLR)/NF-κB signaling pathways play critical roles in the innate immune system. The intracellular signal transduction of most TLR pathways in invertebrate cells is triggered by formation of a heterotrimeric complex composed of MyD88, Tube and Pelle. In this study, we identified a Litopenaeus vannamei Pelle (LvPelle) and an isoform of L. vannamei Tube (LvTube) designated as LvTube-1. The interactions among LvPelle, LvTube/LvTube-1 and LvMyD88/LvMyD88-1 were elucidated and their functions during pathogen infections were investigated. Knockdowns of LvPelle and LvTube/LvTube-1 using RNAi strategy led to higher mortalities of shrimps during Vibrio parahemolyticus infection, and could reduce the genome copy number of white spot syndrome virus (WSSV) in the infected muscle tissue but did not affect the mortality caused by WSSV infection. The effects of LvPelle and LvTube/LvTube-1 on promoters containing NF-κB binding motifs were analyzed by dual-luciferase reporter assays and the results demonstrated that LvTube-1 could activate the NF-κB activity to significantly higher level than LvTube did. Moreover, tissue distributions of LvTube and LvTube-1 mRNAs and their expression profiles during pathogen and immune stimulant challenges were different, indicating that they could play different roles in immune responses. This is the first report of Tube isoforms in invertebrates. Together with our previous study on LvMyD88 isoforms, our results suggest that various isoforms of adaptor components may be involved in various regulatory patterns of signal transduction in invertebrate TLR/NF-κB pathway and this could be a strategy adopted by invertebrates to modulate immune responses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fan, Heng; Liu, Xing-xing; Zhang, Li-juan; Hu, Hui; Tang, Qing; Duan, Xue-yun; Zhong, Min; Shou, Zhe-xing
2014-05-28
Qingre Zaoshi Liangxue Fang (QRZSLXF) is a Chinese medicinal herb recipe that is commonly prescribed for the treatment of ulcerative colitis. It includes 5 quality assured herbs: Sophora flavescens Aiton., Baphicacanthus cusia (Nees) Bremek., Bletilla striata Rchb.f., Glycyrrhiza uralensis Fisch. and Coptis chinensis Franch. The main phytochemical ingredient of QRZSLXF includes ammothamnine, sophocarpidine, liquiritin, berberine and indirubin. QRZSLXF has been clinically proven for use in the treatment of ulcerative colitis for over twenty years. In the past ten years, research has confirmed the therapeutic effect of QRZSLXF in ulcerative colitis and partially revealed its mechanism of action. Here, we further reveal the therapeutic mechanism of QRZSLXF in ulcerative colitis. To investigate the role of the DOR-β-arrestin1-Bcl-2 signal transduction pathway in ulcerative colitis and to determine the effects of QRZSLXF on this signal transduction pathway. Eighty-four Sprague-Dawley rats were randomly divided into six groups: normal control group, model group, mesalazine group, and QRZSLXF high-dose, medium-dose group and low-dose groups (n=14). Experimental colitis was induced by trinitrobenzenesulfonic acid (TNBS) in each group, except the normal control group. After modeling, bloody stool, mental state and diarrhea were observed and recorded. Two rats were randomly selected from the model groups adfnd sacrificed on day 3 to observe pathological changes in the colon tissue by microscopy. The rats in the QRZSLXF-treated groups received intramuscular injections of different concentrations of QRZSLXF for 15 days. The rats in the mesalazine group were treated with mesalazine solution (0.5 g/kg/day) by gastric lavage for 15 days. The rats in the normal control group and the model group were treated with 3 mL water by gastric lavage for 15 days. On the 16th day, after fasting for 24 h, the remaining rats were sacrificed and their colon tissues were used to detect the mRNA and protein expressions of DOR, β-arrestin1 and Bcl-2 by Real-time PCR and immunohistochemistry, respectively. Histological changes in the colon tissues were also examined. The expressions of DOR, β-arrestin1 and Bcl-2 were significantly different among the four groups. The expressions of DOR, β-arrestin1 and Bcl-2 protein and mRNA were significantly increased in the model group compared with the other groups (P<0.05). In contrast to the model group, the expressions of DOR, β-arrestin1 and Bcl-2 were significantly decreased in the mesalazine group and the groups that received different doses of QRZSLXF (P<0.05), and there were no statistically significant differences among the mesalazine and QRZSLXF-treated groups (P>0.05). This study indicates that the DOR-beta-arrestin1-Bcl-2 signal transduction pathway may participate in the pathologic course of ulcerative colitis. Moreover, QRZSLXF could attenuate ulcerative colitis by regulating the DOR-β-arrestin1-Bcl-2 signal transduction pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lok, James B
2016-12-01
Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO 2 , and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans , and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans , four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new chemotherapeutic strategies. Signaling between parasites and their hosts' immune systems also occurs and serves to modulate these responses to allow chronic infection and down regulate acute inflammatory responses. Knowledge of the precise nature of this signaling may form the basis of immunological interventions to protect against parasitism or related lesions and to alleviate inflammatory diseases of various etiologies.
Tyrosine Phosphorylation in Brassinosteroid Signaling
USDA-ARS?s Scientific Manuscript database
Brassinosteroids (BRs) regulate plant growth and development through a complex signal transduction pathway involving BRASSINOSTEROID INSENSITIVE 1 (BRI1), which is the BR receptor, and its co-receptor BRI1-ASSOCIATED KINASE 1 (BAK1). Both proteins are classified as Ser/Thr protein kinases. Recently,...
Zhang, Xue; Ren, Ang; Li, Meng-Jiao; Cao, Peng-Fei; Chen, Tian-Xi; Zhang, Guang; Shi, Liang; Jiang, Ai-Liang
2016-01-01
ABSTRACT Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum. Our data showed that HS induced a significant increase in cytosolic Ca2+ concentration. Further evidence showed that Ca2+ might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca2+ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. IMPORTANCE Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum. Further evidence showed that Ca2+ might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca2+ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research offers a new way to understand the mechanism underlying the physiological and metabolic responses to other environmental factors in G. lucidum. This research may also provide the basis for heat shock signal transduction studies of other fungi. PMID:27129961
Zhang, Xue; Ren, Ang; Li, Meng-Jiao; Cao, Peng-Fei; Chen, Tian-Xi; Zhang, Guang; Shi, Liang; Jiang, Ai-Liang; Zhao, Ming-Wen
2016-07-15
Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum Our data showed that HS induced a significant increase in cytosolic Ca(2+) concentration. Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research offers a new way to understand the mechanism underlying the physiological and metabolic responses to other environmental factors in G. lucidum This research may also provide the basis for heat shock signal transduction studies of other fungi. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Genetical approach to gravitropism
NASA Astrophysics Data System (ADS)
Boonsirichai, K.; Chen, R.; Guan, C.; Rosen, E.; Young, L.; Masson, P.
Gravitropism guides the growth of plant organs at a defined angle from the gravity vector. Accordingly, most roots grow downward, undergoing positive gravitropism. Gravity perception by roots appears to involve the sedimentation of amyloplasts within the columella cells of the cap. Amyloplast sedimentation triggers a signal transduction pathway that promotes the development of an auxin gradient across the root tip. This gradient is then transmitted to the elongation zones where it promotes a differential cellular elongation, partly responsible for the development of a root-tip curvature. To better understand the mechanisms involved in gravity signal transduction, we have identified and characterized several Arabidopsis thaliana mutants that show specific defects in root gravitropism. Several of these genes were characterized. ARG1 functions in gravity signal transduction, and encodes a dnaJ-like protein whose structure suggests an interaction with the cytoskeleton. Two other genes encode similar proteins (ARL1 and ARL2) in Arabidopsis. One of them (ARL2) also appears to function in gravity signal transduction. Because loss-of-function mutations in ARG1 result in partial alterations of gravitropism, we were able to identify and characterize two genetic enhancers of arg1-2: mar1-1 and mar2-1. These enhancers increased the gravitropism defect of arg1-2 roots and hypocotyls, and changed its orientation. Hence, MAR1 and MAR2 also appear to function in gravity signal transduction. AGR1, on the other hand, encodes a transmembrane component of the auxin efflux carrier complex involved in polar auxin transport through the elongation zones of Arabidopsis root tips. It belongs to a large gene family, several members of which are expressed in the root cap. Upon gravistimulation, the AGR3 protein appears to quickly relocate within the columella cells, accumulating in membranes at the new physical bottom. Hence, the gravity signal transduction pathway that includes the ARG1, ARL2, MAR1 and MAR2 gene products, appears to control the cellular distribution of auxin efflux carriers in the columella cells of the root cap, thereby controlling the polarity of lateral auxin transport in response to gravistimulation. Work is in progress to identify new proteins that interact genetically or physically with ARG1, ARL2 or AGR1, and characterize their involvement in gravitropism.
Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain
Olson, Keith M.; Lei, Wei; Keresztes, Attila; LaVigne, Justin; Streicher, John M.
2017-01-01
Opioid drugs like morphine and fentanyl are the gold standard for treating moderate to severe acute and chronic pain. However, opioid drug use can be limited by serious side effects, including constipation, tolerance, respiratory suppression, and addiction. For more than 100 years, we have tried to develop opioids that decrease or eliminate these liabilities, with little success. Recent advances in understanding opioid receptor signal transduction have suggested new possibilities to activate the opioid receptors to cause analgesia, while reducing or eliminating unwanted side effects. These new approaches include designing functionally selective ligands, which activate desired signaling cascades while avoiding signaling cascades that are thought to provoke side effects. It may also be possible to directly modulate downstream signaling through the use of selective activators and inhibitors. Separate from downstream signal transduction, it has also been found that when the opioid system is stimulated, various negative feedback systems are upregulated to compensate, which can drive side effects. This has led to the development of multi-functional molecules that simultaneously activate the opioid receptor while blocking various negative feedback receptor systems including cholecystokinin and neurokinin-1. Other novel approaches include targeting heterodimers of the opioid and other receptor systems which may drive side effects, and making endogenous opioid peptides druggable, which may also reduce opioid mediated side effects. Taken together, these advances in our molecular understanding provide a path forward to break the barrier in producing an opioid with reduced or eliminated side effects, especially addiction, which may provide relief for millions of patients. PMID:28356897
Zuo, Jinhua; Wang, Yunxiang; Zhu, Benzhong; Luo, Yunbo; Wang, Qing; Gao, Lipu
2018-01-01
DNA methylation is an essential feature of epigenetic regulation and plays a role in various physiological and biochemical processes at CG, CHG, and CHH sites in plants. LeERF1 is an ethylene response factor (ERF) found in tomatoes which plays an important role in ethylene signal transduction. To explore the characteristics of DNA methylation in the ethylene pathway, sense-/antisense-LeERF1 transgenic tomato fruit were chosen for deep sequencing and bioinformatics parsing. The methylation type with the greatest distribution was CG, (71.60–72.80%) and CHH was found least frequently (10.70–12.50%). The level of DNA methylation was different among different tomato genomic regions. The differentially methylated regions (DMRs) and the differentially expressed genes (DEGs) were conjointly analyzed and 3030 different expressed genes were found, of which several are involved in ethylene synthesis and signaling transduction (such as ACS, ACO, MADS-Box, ERFs, and F-box). Furthermore, the relationships between DNA methylation and microRNAs (miRNAs) were also deciphered, providing basic information for the further study of DNA methylation and small RNAs involved in the ethylene pathway. PMID:29883429
RO 90-7501 Enhances TLR3 and RLR Agonist Induced Antiviral Response
Guo, Fang; Mead, Jennifer; Aliya, Nishat; Wang, Lijuan; Cuconati, Andrea; Wei, Lai; Li, Kui; Block, Timothy M.; Guo, Ju-Tao; Chang, Jinhong
2012-01-01
Recognition of virus infection by innate pattern recognition receptors (PRRs), including membrane-associated toll-like receptors (TLR) and cytoplasmic RIG-I-like receptors (RLR), activates cascades of signal transduction pathways leading to production of type I interferons (IFN) and proinflammatory cytokines that orchestrate the elimination of the viruses. Although it has been demonstrated that PRR-mediated innate immunity plays an essential role in defending virus from infection, it also occasionally results in overwhelming production of proinflammatory cytokines that cause severe inflammation, blood vessel leakage and tissue damage. In our efforts to identify small molecules that selectively enhance PRR-mediated antiviral, but not the detrimental inflammatory response, we discovered a compound, RO 90–7501 (‘2’-(4-Aminophenyl)-[2,5′-bi-1H-benzimidazol]-5-amine), that significantly promoted both TLR3 and RLR ligand-induced IFN-β gene expression and antiviral response, most likely via selective activation of p38 mitogen-activated protein kinase (MAPK) pathway. Our results thus imply that pharmacological modulation of PRR signal transduction pathways in favor of the induction of a beneficial antiviral response can be a novel therapeutic strategy. PMID:23056170
Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise
NASA Astrophysics Data System (ADS)
Hinczewski, Michael; Thirumalai, D.
2014-10-01
Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.
Živanović, Branka D; Shabala, Lana I; Elzenga, Theo J M; Shabala, Sergey N
2015-10-01
Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.
Choudhary, Pooja; Loewen, Michele C
2016-01-01
Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities. © Crown copyright 2015.
Wang, Feifei; Wang, Jinhui; An, Jinghong; Yuan, Guoming; Hao, Xiaolei; Zhang, Yi
2018-03-01
Depressive disorder is a mental health disorder caused by the dysfunction of nerve regeneration, neuroendocrine and neurobiochemistry, which frequently results in cognitive impairments and disorder. Evidence has shown that resveratrol offers benefits for the treatment of depressive disorder. In the present study, the therapeutic effects of resveratrol were investigated and the potential mechanisms mediated by resveratrol were analyzed in hippocampal neuron cells. The anti‑oxidative stress and anti‑inflammatory properties of resveratrol were also examined in vitro and in vivo. The results revealed that resveratrol administration inhibited the inflammation in hippocampal neuron cells induced by ouabain. Oxidative stress in the hippocampal neuron cells was ameliorated by resveratrol treatment in vitro and in vivo. In addition, the apoptosis of hippocampal neuron cells was inhibited by the upregulation of anti‑apoptotic genes, including P53, B‑cell lymphoma‑2 (Bcl‑2) and Bcl‑2‑associated death promoter, and the downregulation of the cleaved caspase‑3 and caspase‑9. The analysis of the mechanism revealed that that resveratrol treatment suppressed the apoptosis of hippocampal neuron cells through the NETRIN1‑mediated extracellular signal‑regulated kinase/cAMP signal transduction pathway. The results of the in vivo assay showed that resveratrol treatment led to improvements in cognitive competence, learning memory ability and anxiety in a mouse model of depressive disorder induced by ouabain. In conclusion, these results indicated that resveratrol treatment had protective effects against oxidative stress and neuroinflammatory pathogenesis through the NETRIN1‑mediated extracellular signal‑regulated kinase/cAMP signal transduction pathway, suggesting that resveratrol treatment may be a potential antidepressant agent for the treatment of depressive disorder.
Xue, Qiuhong; Chen, Jia; Gong, Shusheng; Xie, Jing; He, Jian; Chen, Xiaolin
2009-12-01
To investigate the mechanism of intense noise-induced cochlea cells death in guinea pig, and the effect of JNK signal transduction pathway in the procedure of cochlea cells apoptosis by intense noise-induced. Thirty-two guinea pigs were randomly divided into 4 groups. The guinea pigs in the experiment groups were exposed to 4 kHz narrow band noise at 120 dB SPL for 4 h. After the noise expose for 1, 4, 14 days of the experiment guinea pigs, ABR of the guinea pigs on experiment and control groups were tested before put them to death. Four guinea pig's cochleas of every group were taken to paraffin section, and the rest was extracted the total cochlear's protein. Apoptosis was tested by terminal deoxynucleotidyl Transferase (TdT)-mediated deoxyuridine triphosphate (d-UTP) nick and labeling method (TUNEL). The phosphorylation of JNK and c-Jun were tested by immunohistochemistry and western blot methods. Tunel-Positive cells in the Corti's, SGC and SV of experiment groups, and there have significant differences compared with the control group (P<0.01) and Tunel-Positive cells are most in 1 d experiment group. The positive cells of P-JNK and P-c-Jun could be detected in guinea pig's cochleas after noise exposed, but no positive cells were found in the control. Protein levels of P-JNK and P-c-Jun were risen up and activated quickly after noise exposed, and achieved peak in 1 d, 4 d and then fallen-offs, but still maintained higher levels within 14 d. Intense noise causes cochlea cell lesion by inducing apoptosis to result in and JNK signal transduction pathway plays an important role in the procedure of apoptosis.
Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue
2014-05-01
To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P < 0.05 or P < 0.01). However, the AC activity, cAMP and PKA quantity of rat hippocampus and prefrontal cortex in the fluoxetine group and the Mongolian pharmaceutical Betel shisanwei ingredients pill group indecreased significantly than those of model group (P < 0.01 or P < 0.05). Especially for the high dose group of Mongolian pharmaceutical Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.
Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele
2007-06-01
Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here, we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in haematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.
Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele
2007-01-01
Accumulating evidence suggests that cancer can be envisioned as a “signaling disease”, in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to “targeted” agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects. PMID:17482503
Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio
2003-01-01
The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960
Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future
van de Stolpe, Anja; den Toonder, Jaap M. J.
2014-01-01
Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics. PMID:24879438
Tóth, József T; Gulyás, Gergő; Tóth, Dániel J; Balla, András; Hammond, Gerald R V; Hunyady, László; Balla, Tamás; Várnai, Péter
2016-03-01
Deciphering many roles played by inositol lipids in signal transduction and membrane function demands experimental approaches that can detect their dynamic accumulation with subcellular accuracy and exquisite sensitivity. The former criterion is met by imaging of fluorescence biosensors in living cells, whereas the latter is facilitated by biochemical measurements from populations. Here, we introduce BRET-based biosensors able to detect rapid changes in inositol lipids in cell populations with both high sensitivity and subcellular resolution in a single, convenient assay. We demonstrate robust and sensitive measurements of PtdIns4P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics, as well as changes in cytoplasmic Ins(1,4,5)P3 levels. Measurements were made during either experimental activation of lipid degradation, or PI 3-kinase and phospholipase C mediated signal transduction. Our results reveal a previously unappreciated synthesis of PtdIns4P that accompanies moderate activation of phospholipase C signaling downstream of both EGF and muscarinic M3 receptor activation. This signaling-induced PtdIns4P synthesis relies on protein kinase C, and implicates a feedback mechanism in the control of inositol lipid metabolism during signal transduction. Copyright © 2015 Elsevier B.V. All rights reserved.
Desikan, Radhika
2016-01-01
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482
Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...
Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine
2016-11-09
Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.
Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine
2016-01-01
Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420
GPER1 is regulated by insulin in cancer cells and cancer-associated fibroblasts.
De Marco, Paola; Romeo, Enrica; Vivacqua, Adele; Malaguarnera, Roberta; Abonante, Sergio; Romeo, Francesco; Pezzi, Vincenzo; Belfiore, Antonino; Maggiolini, Marcello
2014-10-01
Elevated insulin levels have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes characterized by a poor prognosis. Insulin stimulates the proliferation, migration, and invasiveness of cancer cells through diverse transduction pathways, including estrogen signaling. As G protein estrogen receptor 1 (GPER1) mediates rapid cell responses to estrogens, we evaluated the potential of insulin to regulate GPER1 expression and function in leiomyosarcoma cancer cells (SKUT-1) and breast cancer-associated fibroblasts (CAFs), which were used as a model system. We found that insulin transactivates the GPER1 promoter sequence and increases the mRNA and protein expression of GPER1 through the activation of the PRKCD/MAPK1/c-Fos/AP1 transduction pathway, as ascertained by means of specific pharmacological inhibitors and gene-silencing experiments. Moreover, cell migration triggered by insulin occurred through GPER1 and its main target gene CTGF, whereas the insulin-induced expression of GPER1 boosted cell-cycle progression and the glucose uptake stimulated by estrogens. Notably, a positive correlation between insulin serum levels and GPER1 expression was found in cancer fibroblasts obtained from breast cancer patients. Altogether, our data indicate that GPER1 may be included among the complex network of transduction signaling triggered by insulin that drives cells toward cancer progression. © 2014 Society for Endocrinology.
Dependence of Cisplatin-Induced Cell Death In Vitro and In Vivo on Cyclin-Dependent Kinase 2
Price, Peter M.; Yu, Fang; Kaldis, Philipp; Aleem, Eiman; Nowak, Grażyna; Safirstein, Robert L.; Megyesi, Judit
2006-01-01
Cisplatin is one of the most effective chemotherapeutics, but its usefulness is limited by its toxicity to normal tissues, including cells of the kidney proximal tubule. The purpose of these studies was to determine the mechanism of cisplatin cytotoxicity. It was shown in vivo that cisplatin administration induces upregulation of the gene for the p21 cyclin-dependent kinase (cdk) inhibitor in kidney cells. This protein is a positive effector on the fate of cisplatin-exposed renal tubule cells in vivo and in vitro; adenoviral transduction of p21 completely protected proximal tubule cells from cisplatin toxicity. Herein is reported that cdk2 inhibitory drugs protect kidney cells in vivo and in vitro, that transduction of kidney cells in vitro with dominant-negative cdk2 also protected, and that cdk2 knockout cells were resistant to cisplatin. The cdk2 knockout cells regained cisplatin sensitivity after transduction with wild-type cdk2. It is concluded that cisplatin cytotoxicity depends on cdk2 activation and that the mechanism of p21 protection is by direct inhibition of cdk2. This demonstrated the involvement of a protein that previously was associated with cell-cycle progression with pathways of apoptosis. It also was demonstrated that this pathway of cisplatin-induced cell death can be interceded in vivo to prevent nephrotoxicity. PMID:16914540
Van Aelst, Britt; Devloo, Rosalie; Zachée, Pierre; t'Kindt, Ruben; Sandra, Koen; Vandekerckhove, Philippe; Compernolle, Veerle; Feys, Hendrik B.
2016-01-01
Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC50), 8.4 ± 1.1 versus 4.3 ± 1.1 μm) and glycoprotein VI (EC50, 1.61 ± 0.85 versus 0.26 ± 0.21 μg/ml) but not PAR4 (EC50, 50 ± 1 versus 58 ± 1 μm) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases. PMID:27687726
ROS-dependent signal transduction
Reczek, Colleen R; Chandel, Navdeep S
2014-01-01
Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438
Supreme EnLIGHTenment: Damage Recognition and Signaling in the Mammalian UV Response
Herrlich, Peter; Karin, Michael; Weiss, Carsten
2009-01-01
Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. Following UV exposure cells mount an elaborate response – called the UV response, which mimics physiological signaling responses except that it targets multiple pathways thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research it is still not fully clear how UV radiation is sensed and converted into the „language of cells“ - signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response. PMID:18280234
Chen, Yuefeng; Wei, Tao; Yan, Lei; Lawrence, Frank; Qian, Hui-Rong; Burkholder, Timothy P; Starling, James J; Yingling, Jonathan M; Shou, Jianyong
2008-01-01
Background Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics. Results We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay. Conclusion We established a comprehensive gene functional association network to model in vitro angiogenesis regulation. The present study provided a proof-of-concept pilot of applying network perturbation analysis to drug phenotypic activity assessment. PMID:18518970
Wang, Yue; Han, Zhihua; Fan, Yuqi; Zhang, Junfeng; Chen, Kan; Gao, Lin; Zeng, Huasu; Cao, Jiatian; Wang, Changqian
2017-01-01
MicroRNA-9 (miR-9) is involved in inflammatory reaction in atherosclerosis; however, its function and regulatory mechanisms remain unclear. We aimed to uncover the exact roles of miR-9 and downstream signaling pathways using in vitro human atherosclerosis models. We used oxidized low-density lipoprotein (oxLDL)-stimulated human THP-1 derived macrophages, oxLDL-stimulated human primary peripheral blood monocytes and lipopolysaccharides (LPS) or Alum-stimulated human THP-1 derived macrophages as in vitro atherosclerosis inflammation models. Transient transfection of over-expression vectors, small interference RNAs (siRNAs) or antisense oligonucleotides was used to regulate intracellular protein or miR-9 levels. Cell responses and signal transduction were detected by multiple assays including Western blotting, enzyme-linked immunosorbent assay (ELISA) and luciferase reporter assay. MiR-9 inhibited while anti-miR-9 antisense oligonucleotides induced interleukin-1 beta (IL-1β) and NLRP3 inflammasome activation in all in vitro models. Janus kinase 1 (JAK1) and matrix metalloproteinase 13 (MMP-13) were identified as the target genes of miR-9. In oxLDL-stimulated human THP-1 derived macrophages, knockdown of JAK1 by siRNA blocked the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and mimicked the effects of miR-9. In the same model, JAK1 knockdown blocked the phosphorylation of NF-κB p65 in the nuclei and the phosphorylation of NF-κB IκBα in the cytoplasm. Our study demonstrated that miR-9 could inhibit activation of the NLRP3 inflammasome and attenuate atherosclerosis-related inflammation, likely through the JAK1/STAT1 signaling pathway. Therefore, miR-9 may serve as a potential therapeutic target for atherosclerosis. © 2017 The Author(s)Published by S. Karger AG, Basel.
MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.
Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M
2006-10-19
Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (P<0.0001). MRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (P<0.0001). However, no difference was observed in the expression of Arp2, Arp3 or other WASPs. A neutralizing anti-MRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (P<0.0001), and reversed the morphological effects of MRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.
Decoding the phosphorylation code in Hedgehog signal transduction
Chen, Yongbin; Jiang, Jin
2013-01-01
Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms. PMID:23337587
Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H; Brodkin, Edward S; Siegel, Steve J; Marsh, Eric D; Blendy, Julie A; Zhou, Zhaolan
2012-12-26
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.
Tanabe, Kenji
2016-04-27
Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Stephanie; Munz, Barbara, E-mail: barbara.munz@charite.de
2010-01-01
Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury andmore » might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.« less
Estrogen and the aging brain: an elixir for the weary cortical network.
Dumitriu, Dani; Rapp, Peter R; McEwen, Bruce S; Morrison, John H
2010-08-01
The surprising discovery in 1990 that estrogen modulates hippocampal structural plasticity launched a whole new field of scientific inquiry. Over the past two decades, estrogen-induced spinogenesis has been described in several brain areas involved in cognition in a number of species, in both sexes and on multiple time scales. Exploration into the interaction between estrogen and aging has illuminated some of the hormone's neuroprotective effects, most notably on age-related cognitive decline in nonhuman primates. Although there is still much to be learned about the mechanisms by which estrogen exerts its actions, key components of the signal transduction pathways are beginning to be elucidated and nongenomic actions via membrane bound estrogen receptors are of particular interest. Future studies are focused on identifying the most clinically relevant hormone treatment, as well as the potential identification of new therapeutics that can prevent or reverse age-related cognitive impairment by intercepting specific signal transduction pathways initiated by estrogen.
Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces.
Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man
2009-08-28
Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21(cip1) and p27(kip1) and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.
Srougi, Melissa C; Carson, Susan
2013-01-01
Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and implemented a new laboratory-intensive course that teaches students the theory and techniques used to study cell signaling pathways. Students learn these methodologies as they conduct a hypothesis-driven research project where they elucidate the mechanism of breast cancer cell death caused by a cancer chemotherapeutic agent. While each lab experiment can be conducted independently, the findings build upon one another to form the beginnings of a signaling pathway. In the lecture component of the course, students investigate different signaling pathways and the methods employed to study them. In addition, students actively participate in journal article discussions where they assess the primary scientific literature. We evaluated the course over two semesters and found that in both semesters learning outcomes were met by both undergraduate and graduate students. The evaluation of the course was based on a number of instructor assessments of student work, including lab reports, experimental results, journal article discussions, and a final cumulative exam. Furthermore, students' self-assessments revealed gains in perceived confidence in both conceptual knowledge and technical skills Copyright © 2013 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Amanda N; Siuti, Piro; Bible, Amber
2011-01-01
To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain.more » Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.« less
Perrin, A J; Gunda, M; Yu, B; Yen, K; Ito, S; Forster, S; Tissenbaum, H A; Derry, W B
2013-01-01
The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway.