Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S
2007-02-16
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.
Molecular implementation of molecular shift register memories
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)
1991-01-01
An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.
Transfer of Metals in Food Chain: An Example with Copper and Lettuce
NASA Astrophysics Data System (ADS)
Vincevica-Gaile, Zane; Klavins, Maris
2012-12-01
Present study investigated the possible transfer of metals in the food chain (from soil to edible plants). The experiment was done with lettuce Lactuca sativa grown in different types of soil contaminated with copper (Cu2+) in various concentrations, with or without addition of humic substances. The highest content of copper was detected in lettuce samples grown in soils with lower levels of organic matter, thus indicating the importance of soil organics in metal transfer routes and accumulation rates in plants. It was found that copper accumulation in lettuce grown in contaminated soils can be significantly reduced by the addition of humic substances.
If You Understand Leaky Buckets, You Understand a Lot of Physics.
ERIC Educational Resources Information Center
Ruby, Lawrence
1991-01-01
Applications of this model to problems associated with basic phenomena in radioactivity, heat transfer, neutron chain reactions, RC circuits and vacuum pumping are presented. Example computations for each situation are included. (CW)
A molecular shift register based on electron transfer
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.
1988-01-01
An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.
Polymerization of ethylene through reversible addition-fragmentation chain transfer (RAFT).
Dommanget, Cédric; D'Agosto, Franck; Monteil, Vincent
2014-06-23
The present paper reports the first example of a controlled radical polymerization of ethylene using reversible addition-fragmentation chain transfer (RAFT) in the presence of xanthates (Alkyl-OC(=S)S-R) as controlling agents under relative mild conditions (70 °C, <200 bars). The specific reactivity of the produced alkyl-type propagating radicals induces a side fragmentation reaction of the stabilizing O-alkyl Z group of the controlling agents. This fragmentation, rarely observed in RAFT, was proven by NMR analyses. In addition, semicrystalline copolymers of ethylene and vinyl acetate were also prepared with a similar level of control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof
Scales, Charles W.; Huang, Faqing; McCormick, Charles L.
2010-05-18
The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor)
1991-01-01
Highly conjugated organic polymers typically have large non-resonant electronic susceptibilities, which give the molecules unusual optical properties. To enhance these properties, defects are introduced into the polymer chain. Examples include light doping of the conjugated polymer and synthesis, conjugated polymers which incorporate either electron donating or accepting groups, and conjugated polymers which contain a photoexcitable species capable of reversibly transferring its electron to an acceptor. Such defects in the chain permit enhancement of the second hyperpolarizability by at least an order of magnitude.
Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.
Rahmanudin, Aiman; Sivula, Kevin
2017-06-28
Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.
Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse
2009-07-28
The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.
How to polymerize ethylene in a highly controlled fashion?
Kempe, Rhett
2007-01-01
Very fast, reversible, polyethylene (PE) chain transfer or complex-catalysed "Aufbaureaktion" describes a "living" chain-growing process on a main-group metal or zinc atom; this process is catalysed by an organo-transition-metal or lanthanide complex. PE chains are transferred very fast between the two metal sites and chain growth takes place through ethylene insertion into the transition-metal- or lanthanide-carbon bond-coordinative chain-transfer polymerisation (CCTP). The transferred chains "rest" at the main-group or zinc centre, at which chain-termination processes like beta-H transfer/elimination are of low significance. Such protocols can be used to synthesise very narrowly distributed PE materials (M(w)/M(n)<1.1 up to a molecular weight of about 4000 g mol(-1)) with differently functionalised end groups. Higher molecular-weight polymers can be obtained with a slightly increased M(w)/M(n), since diffusion control and precipitation of the polymers influences the chain-transfer process. Recently, a few transition-metal- or lanthanide-based catalyst systems that catalyse such a highly reversible chain-growing process have been described. They are summarised and compared within this contribution.
Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.
Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier
2016-08-04
Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transfer-matrices for series-type microwave antenna circuits. [L-band radiometer
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1981-01-01
Transfer matrices are developed which permit analysis and computer evaluation of certain series type microwave antenna circuits associated with an L-Band microwave radiometer (LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several diverse instrument designs to be used for the determination of soil moisture, sea state, salinity, and temperature data. Four port matrix notation is used throughout for the evaluation of LBMR circuits with mismatched couplers and lossy transmission lines. Matrix parameters in examples are predicted on an impedance analysis and an assumption of an array aperture distribution. The notation presented is easily adapted to longer and more varied chains of matrices, and to matrices of larger dimension.
Irreversible Heavy Chain Transfer to Chondroitin*
Lauer, Mark E.; Hascall, Vincent C.; Green, Dixy E.; DeAngelis, Paul L.; Calabro, Anthony
2014-01-01
We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture. PMID:25135638
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
Grußmayer, Kristin S; Steiner, Florian; Lupton, John M; Herten, Dirk-Peter; Vogelsang, Jan
2015-12-01
Blinking of the photoluminescence (PL) emitted from individual conjugated polymer chains is one of the central observations made by single-molecule spectroscopy (SMS). Important information, for example regarding excitation energy transfer, can be extracted by evaluating dynamic quenching. However, the nature of trap states, which are responsible for PL quenching, often remains obscured. We present a detailed investigation of the photon statistics of single poly(3-hexylthiophene) (P3HT) chains obtained by SMS. The photon statistics provide a measure of the number and brightness of independently emitting areas on a single chain. These observables can be followed during blinking. A decrease in PL intensity is shown to be correlated with either 1) a decrease in the average brightness of the emitting sites; or 2) a decrease in the number of emitting regions. We attribute these phenomena to the formation of 1) shallow charge traps, which can weakly affect all emitting areas of a single chain at once; and 2) deep traps, which have a strong effect on small regions within the single chains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient quantum state transfer in an engineered chain of quantum bits
NASA Astrophysics Data System (ADS)
Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.
2016-03-01
We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.
The role of solitons in charge and energy transfer in 1D molecular chains
NASA Astrophysics Data System (ADS)
Ivić , Zoran
1998-03-01
The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.
Marinelli, Fabrizio; Sorrenti, Alessandro; Corvaglia, Valentina; Leone, Vanessa; Mancini, Giovanna
2012-11-12
In this work a combined theoretical and experimental approach was used to elucidate and describe at the molecular level the basic interactions that drive the transfer of the chiral information from chiral surfactant molecules to dye/surfactant assemblies. It was found that both hydrophobic interactions and relative concentrations strongly influence the chiroptical features of the heteroaggregates. In particular it was observed that, depending on the length of the surfactant hydrophobic chain, the chiral information is transferred to the dye by stabilizing an enantiomer either of a chiral conformer or of a chiral topological arrangement. These findings underline the role of hydrophobic interactions in the transfer of chirality and provide an example of the potential of in silico simulations for providing an accurate description of the process of chirality propagation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems
NASA Astrophysics Data System (ADS)
Antown, Fadi; Dragičević, Davor; Froyland, Gary
2018-03-01
The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.
2008-01-01
Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria. PMID:18485189
Im, Eung Jun; Bais, Anthony J; Yang, Wen; Ma, Qiangzhong; Guo, Xiuyang; Sepe, Steven M; Junghans, Richard P
2014-01-01
Transduction and expression procedures in gene therapy protocols may optimally transfer more than a single gene to correct a defect and/or transmit new functions to recipient cells or organisms. This may be accomplished by transduction with two (or more) vectors, or, more efficiently, in a single vector. Occasionally, it may be useful to coexpress homologous genes or chimeric proteins with regions of shared homology. Retroviridae include the dominant vector systems for gene transfer (e.g., gamma-retro and lentiviruses) and are capable of such multigene expression. However, these same viruses are known for efficient recombination–deletion when domains are duplicated within the viral genome. This problem can be averted by resorting to two-vector strategies (two-chain two-vector), but at a penalty to cost, convenience, and efficiency. Employing a chimeric antigen receptor system as an example, we confirm that coexpression of two genes with homologous domains in a single gamma-retroviral vector (two-chain single-vector) leads to recombination–deletion between repeated sequences, excising the equivalent of one of the chimeric antigen receptors. Here, we show that a degenerate codon substitution strategy in the two-chain single-vector format efficiently suppressed intravector deletional loss with rescue of balanced gene coexpression by minimizing sequence homology between repeated domains and preserving the final protein sequence. PMID:25419532
Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains.
Carvalho, Fernando P
2011-05-01
The determination of (210)Po and (210)Pb was performed in marine organisms from the seashore to abyssal depths, encompassing a plethora of species from the microscopic plankton to the sperm whale. Concentrations of those radionuclides ranged from low values of about 5 × 10(-1) Bq kg(-1) (wet wt.) in jellyfish, to very high values of about of 3 × 10(4) Bq kg(-1) (wet wt.) in the gut walls of sardines, with a common pattern of (210)Po > (210)Pb.These radionuclides are primarily absorbed from water and concentrated by phyto- and microzooplankton, and then are transferred to the next trophic level along marine food chains. Investigation in epipelagic, mesopelagic, bathypelagic and abyssobenthic organisms revealed that (210)Po is transferred in the marine food webs with transfer factors ranging from 0.1 to 0.7, and numerically similar to those of the energy transfer in the marine food chains. As (210)Po preferentially binds to amino acids and proteins, its transfer in food chains likely traces protein transfer and, thus, (210)Po transfer factors are similar to ecotrophic coefficients. (210)Pb is transferred less efficiently in marine food chains and this contributes to increased (210)Po:(210)Pb activity ratios in some trophic levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Subwavelength dielectric nanorod chains for energy transfer in the visible range.
Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua
2017-10-15
We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.
Matta, Chérif F; Bader, Richard F W
2003-08-15
This article presents a study of the molecular charge distributions of the genetically encoded amino acids (AA), one that builds on the previous determination of their equilibrium geometries and the demonstrated transferability of their common geometrical parameters. The properties of the charge distributions are characterized and given quantitative expression in terms of the bond and atomic properties determined within the quantum theory of atoms-in-molecules (QTAIM) that defines atoms and bonds in terms of the observable charge density. The properties so defined are demonstrated to be remarkably transferable, a reflection of the underlying transferability of the charge distributions of the main chain and other groups common to the AA. The use of the atomic properties in obtaining an understanding of the biological functions of the AA, whether free or bound in a polypeptide, is demonstrated by the excellent statistical correlations they yield with experimental physicochemical properties. A property of the AA side chains of particular importance is the charge separation index (CSI), a quantity previously defined as the sum of the magnitudes of the atomic charges and which measures the degree of separation of positive and negative charges in the side chain of interest. The CSI values provide a correlation with the measured free energies of transfer of capped side chain analogues, from the vapor phase to aqueous solution, yielding a linear regression equation with r2 = 0.94. The atomic volume is defined by the van der Waals isodensity surface and it, together with the CSI, which accounts for the electrostriction of the solvent, yield a linear regression (r2 = 0.98) with the measured partial molar volumes of the AAs. The changes in free energies of transfer from octanol to water upon interchanging 153 pairs of AAs and from cyclohexane to water upon interchanging 190 pairs of AAs, were modeled using only three calculated parameters (representing electrostatic and volume contributions) yielding linear regressions with r2 values of 0.78 and 0.89, respectively. These results are a prelude to the single-site mutation-induced changes in the stabilities of two typical proteins: ubiquitin and staphylococcal nuclease. Strong quadratic correlations (r2 approximately 0.9) were obtained between DeltaCSI upon mutation and each of the two terms DeltaDeltaH and TDeltaDeltaS taken from recent and accurate differential scanning calorimetry experiments on ubiquitin. When the two terms are summed to yield DeltaDeltaG, the quadratic terms nearly cancel, and the result is a simple linear fit between DeltaDeltaG and DeltaCSI with r2 = 0.88. As another example, the change in the stability of staphylococcal nuclease upon mutation has been fitted linearly (r2 = 0.83) to the sum of a DeltaCSI term and a term representing the change in the van der Waals volume of the side chains upon mutation. The suggested correlation of the polarity of the side chain with the second letter of the AA triplet genetic codon is given concrete expression in a classification of the side chains in terms of their CSI values and their group dipole moments. For example, all amino acids with a pyrimidine base as their second letter in mRNA possess side-chain CSI < or = 2.8 (with the exception of Cys), whereas all those with CSI > 2.8 possess an purine base. The article concludes with two proposals for measuring and predicting molecular complementarity: van der Waals complementarity expressed in terms of the van der Waals isodensity surface and Lewis complementarity expressed in terms of the local charge concentrations and depletions defined by the topology of the Laplacian of the electron density. A display of the experimentally accessible Laplacian distribution for a folded protein would offer a clear picture of the operation of the "stereochemical code" proposed as the determinant in the folding process. Copyright 2003 Wiley-Liss, Inc.
Hermes, Fatemah A; Cronan, John E
2013-10-01
The covalent attachment of lipoate to the lipoyl domains (LDs) of the central metabolism enzymes pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) is essential for their activation and thus for respiratory growth in Saccharomyces cerevisiae. A third lipoate-dependent enzyme system, the glycine cleavage system (GCV), is required for utilization of glycine as a nitrogen source. Lipoate is synthesized by extraction of its precursor, octanoyl-acyl carrier protein (ACP), from the pool of fatty acid biosynthetic intermediates. Alternatively, lipoate is salvaged from previously modified proteins or from growth medium by lipoate protein ligases (Lpls). The first Lpl to be characterized, LplA of Escherichia coli, catalyses two partial reactions: activation of the acyl chain by formation of acyl-AMP, followed by transfer of the acyl chain to lipoyl domains (LDs). There is a surprising diversity within the Lpl family of enzymes, several of which catalyse reactions other than ligation reactions. For example, the Bacillus subtilis Lpl homologue LipM is an octanoyltransferase that transfers the octanoyl moiety from octanoyl-ACP to GCV. Another B. subtilis Lpl homologue, LipL, transfers octanoate from octanoyl-GCV to other LDs in an amido-transfer reaction. Study of eukaryotic Lpls has lagged behind studies of the bacterial enzymes. We report that the Lip3 Lpl homologue of the yeast S. cerevisiae has octanoyl-CoA-protein transferase activity, and discuss implications of this activity on the physiological role of Lip3 in lipoate synthesis. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
A Transmissible Plasmid Controlling Camphor Oxidation in Pseudomonas putida
Rheinwald, J. G.; Chakrabarty, A. M.; Gunsalus, I. C.
1973-01-01
Earlier papers demonstrated an extensive genetic exchange among fluorescent Pseudomonads; this one documents for genes specifying enzymes of peripheral dissimilation an extrachromosomal array, segregation, and frequent interstrain transfer. An hypothesis is presented of a general mechanism for the formation and maintenance of metabolic diversity. The example used, the path of oxidative cleavage of the carbocyclic rings of the bicyclic monoterpene D- and L-camphor, terminates in acetate release and isobutyrate chain debranching. By transduction, two gene linkage groups are shown for the reactions before and after isobutyrate. The group for reactions before isobutyrate is plasmid borne, contransferable by conjugation, mitomycin curable, and shows a higher segregation rate from cells that are multiplasmid rather than carrying a single plasmid. The genes that code for isobutyrate and essential anaplerotic and amphibolic metabolism are chromosomal. By conjugation plasmid-borne genes are transferred at a higher frequency than are chromosomal, and are transferred in homologous crosses more frequently than between heterologous species. Most isobutyrate-positive fluorescent pseudomonad strains will accept and express the camphor plasmid. PMID:4351810
Dong, Shipeng; Xia, Tian; Yang, Yu; Lin, Sijie; Mao, Liang
2018-01-16
The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14 C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.
Relaxation-optimized transfer of spin order in Ising spin chains
NASA Astrophysics Data System (ADS)
Stefanatos, Dionisis; Glaser, Steffen J.; Khaneja, Navin
2005-12-01
In this paper, we present relaxation optimized methods for the transfer of bilinear spin correlations along Ising spin chains. These relaxation optimized methods can be used as a building block for the transfer of polarization between distant spins on a spin chain, a problem that is ubiquitous in multidimensional nuclear magnetic resonance spectroscopy of proteins. Compared to standard techniques, significant reduction in relaxation losses is achieved by these optimized methods when transverse relaxation rates are much larger than the longitudinal relaxation rates and comparable to couplings between spins. We derive an upper bound on the efficiency of the transfer of the spin order along a chain of spins in the presence of relaxation and show that this bound can be approached by the relaxation optimized pulse sequences presented in the paper.
NASA Astrophysics Data System (ADS)
Schilder, J.; Ellenbroek, M.; de Boer, A.
2017-12-01
In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.
Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lianwei; Hadt, Ryan G.; Yao, Shiyu
Developing photocatalytic systems for water splitting to generate oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this work, we report the first example of heterogeneous photocatalysts for hydrogen evolution based on in-chain cobalt-chelating conjugated polymers. Four conjugated polymers chelated with earth abundant cobalt ions were synthesized and found to evolve hydrogen photocatalytically from water. These polymers are designed to combine functions of the conjugated backbone as light-harvesting antenna and electron transfer conduit with the in-chain bipyridyl chelated transition metal centers as catalytic active sites. In addition, these polymers are soluble in organic solvents,more » enabling effective interactions with the substrates as well as detailed characterization. We also found a polymer-dependent optimal cobalt chelating concentration at which the highest photocatalytic hydrogen production (PHP) activity can be achieved.« less
NASA Astrophysics Data System (ADS)
Armante, Raymond; Scott, Noelle; Crevoisier, Cyril; Capelle, Virginie; Crepeau, Laurent; Jacquinet, Nicole; Chédin, Alain
2016-09-01
The quality of spectroscopic parameters that serve as input to forward radiative transfer models are essential to fully exploit remote sensing of Earth atmosphere. However, the process of updating spectroscopic databases in order to provide the users with a database that insures an optimal characterization of spectral properties of molecular absorption for radiative transfer modeling is challenging. The evaluation of the databases content and the underlying choices made by the managing team is thus a crucial step. Here, we introduce an original and powerful approach for evaluating spectroscopic parameters: the Spectroscopic Parameters And Radiative Transfer Evaluation (SPARTE) chain. The SPARTE chain relies on the comparison between forward radiative transfer simulations made by the 4A radiative transfer model and observations of spectra made from various observations collocated over several thousands of well-characterized atmospheric situations. Averaging the resulting 'calculated-observed spectral' residuals minimizes the random errors coming from both the radiometric noise of the instruments and the imperfect description of the atmospheric state. The SPARTE chain can be used to evaluate any spectroscopic databases, from the visible to the microwave, using any type of remote sensing observations (ground-based, airborne or space-borne). We show that the comparison of the shape of the residuals enables: (i) identifying incorrect line parameters (line position, intensity, width, pressure shift, etc.), even for molecules for which interferences between the lines have to be taken into account; (ii) proposing revised values, in cooperation with contributing teams; and (iii) validating the final updated parameters. In particular, we show that the simultaneous availability of two databases such as GEISA and HITRAN helps identifying remaining issues in each database. The SPARTE chain has been here applied to the validation of the update of GEISA-2015 in 2 spectral regions of particular interest for several currently exploited or planned Earth space missions: the thermal infrared domain and the short-wave infrared domain, for which observations from the space-borne IASI instrument and from the ground-based FTS instruments at the Parkfalls TCCON site are used respectively. Main results include: (i) the validation of the positions and intensities of line parameters, with overall significantly lower residuals for GEISA-2015 than for GEISA-2011 and (iii) the validation of the choice made on the parameters (such as pressure shift and air-broadened width) which has not been given by the provider but completed by ourselves. For example, comparisons between residuals obtained with GEISA-2015 and HITRAN-2012 have highlighted a specific issue with some HWHM values in the latter that can be clearly identified on the 'calculated-observed' residuals.
NASA Astrophysics Data System (ADS)
Çetinkaya, Onur; Demirci, Gökhan; Mergo, Paweł
2017-08-01
Investigation of molecular weight and optical properties of poly(methyl metacrylate) (PMMA) polymerized in house with different chain transfer agents was studied. Isopropyl alcohol (IPA), n-butyl mercaptan (nBMC) and pentamethyl disilane (PMDS) were used as chain transfer agents. The molecular weight (Mw) of PMMA samples were measured by Ostwald viscometer. Mw of bulk polymer samples were decreased with increase the concentration of chain transfer agents (CTA). Since reactivity of used CTAs is not same, molecular weights of samples which were produced with different type of CTA but same concentration of CTA was varied. Higher concentration of n-BMC showed higher scattering. Transmission of samples could not be correlated with different concentration of CTA. Refractive index of samples was not affected by concentration of CTA nevertheless higher molecular weight of CTA showed higher refractive index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonsalves, C.; Xue, B.; Yepes, M.
1994-03-01
A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500more » mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.« less
Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.
Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus
2016-07-15
Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of 4-Vinylbenzaldehyde
Sun, Guorong; Cheng, Chong; Wooley, Karen L.
2008-01-01
The direct reversible addition fragmentation chain transfer (RAFT) polymerization of 4-vinylbenzaldehyde (VBA) was established as a new synthetic method for the preparation of well-defined poly(vinylbenzaldehyde) (PVBA), a polymer having reactive aldehyde side chain substiuents. RAFT polymerization of VBA was investigated using S-1-dodecyl-S’-(α,α’-dimethyl-α”-acetic acid)trithiocarbonate (DDMAT) as chain transfer agent (CTA) and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator in 1,4-dioxane or 2-butanone at 70-75 °C for 7.5-22.5 h. With 45-76% of monomer conversion, the resulting PVBA had well controlled number-average molecular weight (Mn) and low polydispersity (PDI < 1.17). The living characteristic of the RAFT polymerization process was confirmed by the linearity between the Mn values of PVBA and monomer conversions. Well-defined PVBA was further used as a macromolecular chain transfer agent (macro-CTA) in RAFT polymerization of styrene (St), and a block copolymer PVBA-b-PSt with relatively low polydispersity (PDI = 1.20) was successfully synthesized. PMID:19066633
Retraction Note: Catalytic living ring-opening metathesis polymerization
NASA Astrophysics Data System (ADS)
Nagarkar, Amit A.; Kilbinger, Andreas F. M.
2018-05-01
We the authors are retracting this Article because of our failure to reproduce the molecular weight dispersities (PDI) shown in Fig. 4 using the chain-transfer agent described in the paper (CTA1). While the degenerate chain-transfer mechanism described in Fig. 3 is correct, the best molecular weight dispersities that could be reproduced with the chain-transfer agent shown in the Article are much larger (PDI > 2.0) than reported.We have since studied the kinetics of CTA1 in comparison with several other chain-transfer agents we are currently investigating and we now understand that the reactivity of CTA1 towards propagating ruthenium alkylidene complexes is very low. Very long monomer addition times would therefore have been necessary to gain control over the molecular weight distribution. Such long addition times would exceed the lifetime of the Grubbs catalyst in solution. Faster addition of the monomer has since repeatedly been shown to broaden the molecular weight dispersity.Additionally, the best chain-transfer agents we are currently investigating are orders of magnitude more reactive than CTA1 but give broader molecular weight dispersities than reported in Fig. 4. Molecular weight and dispersity control as shown in Fig. 4 is therefore an inappropriate claim for CTA1.The authors deeply regret these errors and apologize to the community.
An artificial molecular machine that builds an asymmetric catalyst
NASA Astrophysics Data System (ADS)
De Bo, Guillaume; Gall, Malcolm A. Y.; Kuschel, Sonja; De Winter, Julien; Gerbaux, Pascal; Leigh, David A.
2018-05-01
Biomolecular machines perform types of complex molecular-level tasks that artificial molecular machines can aspire to. The ribosome, for example, translates information from the polymer track it traverses (messenger RNA) to the new polymer it constructs (a polypeptide)1. The sequence and number of codons read determines the sequence and number of building blocks incorporated into the biomachine-synthesized polymer. However, neither control of sequence2,3 nor the transfer of length information from one polymer to another (which to date has only been accomplished in man-made systems through template synthesis)4 is easily achieved in the synthesis of artificial macromolecules. Rotaxane-based molecular machines5-7 have been developed that successively add amino acids8-10 (including β-amino acids10) to a growing peptide chain by the action of a macrocycle moving along a mono-dispersed oligomeric track derivatized with amino-acid phenol esters. The threaded macrocycle picks up groups that block its path and links them through successive native chemical ligation reactions11 to form a peptide sequence corresponding to the order of the building blocks on the track. Here, we show that as an alternative to translating sequence information, a rotaxane molecular machine can transfer the narrow polydispersity of a leucine-ester-derivatized polystyrene chain synthesized by atom transfer radical polymerization12 to a molecular-machine-made homo-leucine oligomer. The resulting narrow-molecular-weight oligomer folds to an α-helical secondary structure13 that acts as an asymmetric catalyst for the Juliá-Colonna epoxidation14,15 of chalcones.
Morphology-induced defects enhance lipid transfer rates
Xia, Yan; Charubin, Kamil; Marquardt, Drew; ...
2016-08-25
Molecular transfer between nanoparticles has been considered to have important implications regarding nanoparticle stability. Recently, the interparticle spontaneous lipid transfer rate constant for discoidal bicelles was found to be very different from spherical, unilamellar vesicles (ULVs). Here, we investigate the mechanism responsible for this discrepancy. Analysis of the data indicates that lipid transfer is entropically favorable, but enthalpically unfavorable with an activation energy that is independent of bicelle size and long- to short-chain lipid molar ratio. Moreover, molecular dynamics simulations reveal a lower lipid dissociation energy cost in the vicinity of interfaces (“defects”) induced by the segregation of the long-more » and short-chain lipids in bicelles; these defects are not present in ULVs. Taken together, these results suggest that the enhanced lipid transfer observed in bicelles arises from interfacial defects as a result of the hydrophobic mismatch between the long- and short-chain lipid species. In conclusion, the observed lipid transfer rate is found to be independent of nanoparticle stability.« less
Lagrangian simulation of mixing and reactions in complex geochemical systems
NASA Astrophysics Data System (ADS)
Engdahl, Nicholas B.; Benson, David A.; Bolster, Diogo
2017-04-01
Simulations of detailed geochemical systems have traditionally been restricted to Eulerian reactive transport algorithms. This note introduces a Lagrangian method for modeling multicomponent reaction systems. The approach uses standard random walk-based methods for the particle motion steps but allows the particles to interact with each other by exchanging mass of their various chemical species. The colocation density of each particle pair is used to calculate the mass transfer rate, which creates a local disequilibrium that is then relaxed back toward equilibrium using the reaction engine PhreeqcRM. The mass exchange is the only step where the particles interact and the remaining transport and reaction steps are entirely independent for each particle. Several validation examples are presented, which reproduce well-known analytical solutions. These are followed by two demonstration examples of a competitive decay chain and an acid-mine drainage system. The source code, entitled Complex Reaction on Particles (CRP), and files needed to run these examples are hosted openly on GitHub (https://github.com/nbengdahl/CRP), so as to enable interested readers to readily apply this approach with minimal modifications.
Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer
NASA Astrophysics Data System (ADS)
Vinet, Luc; Zhedanov, Alexei
2012-07-01
Analogues of Krawtchouk polynomials defined on a bi-lattice are introduced. They are shown to provide a (novel) spin chain with perfect transfer. Their characterization, as well as their connection to the quadratic Hahn algebra, is given.
Mutual Information and Information Gating in Synfire Chains
Xiao, Zhuocheng; Wang, Binxu; Sornborger, Andrew Tyler; ...
2018-02-01
Here, coherent neuronal activity is believed to underlie the transfer and processing of information in the brain. Coherent activity in the form of synchronous firing and oscillations has been measured in many brain regions and has been correlated with enhanced feature processing and other sensory and cognitive functions. In the theoretical context, synfire chains and the transfer of transient activity packets in feedforward networks have been appealed to in order to describe coherent spiking and information transfer. Recently, it has been demonstrated that the classical synfire chain architecture, with the addition of suitably timed gating currents, can support the gradedmore » transfer of mean firing rates in feedforward networks (called synfire-gated synfire chains—SGSCs). Here we study information propagation in SGSCs by examining mutual information as a function of layer number in a feedforward network. We explore the effects of gating and noise on information transfer in synfire chains and demonstrate that asymptotically, two main regions exist in parameter space where information may be propagated and its propagation is controlled by pulse-gating: a large region where binary codes may be propagated, and a smaller region near a cusp in parameter space that supports graded propagation across many layers.« less
Mutual Information and Information Gating in Synfire Chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zhuocheng; Wang, Binxu; Sornborger, Andrew Tyler
Here, coherent neuronal activity is believed to underlie the transfer and processing of information in the brain. Coherent activity in the form of synchronous firing and oscillations has been measured in many brain regions and has been correlated with enhanced feature processing and other sensory and cognitive functions. In the theoretical context, synfire chains and the transfer of transient activity packets in feedforward networks have been appealed to in order to describe coherent spiking and information transfer. Recently, it has been demonstrated that the classical synfire chain architecture, with the addition of suitably timed gating currents, can support the gradedmore » transfer of mean firing rates in feedforward networks (called synfire-gated synfire chains—SGSCs). Here we study information propagation in SGSCs by examining mutual information as a function of layer number in a feedforward network. We explore the effects of gating and noise on information transfer in synfire chains and demonstrate that asymptotically, two main regions exist in parameter space where information may be propagated and its propagation is controlled by pulse-gating: a large region where binary codes may be propagated, and a smaller region near a cusp in parameter space that supports graded propagation across many layers.« less
Long-range doublon transfer in a dimer chain induced by topology and ac fields
NASA Astrophysics Data System (ADS)
Bello, M.; Creffield, C. E.; Platero, G.
2016-03-01
The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.
Botek, Edith; Giribet, Claudia; Ruiz de Azúa, Martín; Martín Negri, Ricardo; Bernik, Delia
2008-07-31
The IPPP-CLOPPA-INDO/S method is introduced to investigate the static molecular polarizability in macromolecules. As an example of application, the polarizability of phospholipidic compounds, with and without the presence of water molecules has been estimated. The IPPP technique was employed to calculate the polarizability of the polar head and the hydrocarbon chains separately to analyze the feasibility of evaluating the total polarizability of the molecule by addition of these two projected results. INDO/S dipole moments of different fragments of the complex molecule were obtained by means of localized molecular orbitals in order to evaluate the charge transfer in the system.
Toogood, Helen S; van Thiel, Adam; Scrutton, Nigel S; Leys, David
2005-08-26
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less
Yang, Peng; Pageni, Parasmani; Kabir, Mohammad Pabel; Zhu, Tianyu; Tang, Chuanbing
2017-01-01
We report the synthesis of cationic cobaltocenium and neutral ferrocene containing homopolymers mediated by photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization with a photocatalyst fac-[Ir(ppy)3]. The homopolymers were further used as macromolecular chain transfer agents to synthesize diblock copolymers via chain extension. Controlled/“living” feature of photoinduced RAFT polymerization was confirmed by kinetic studies even without prior deoxygenation. A light switch between ON and OFF provided a spatiotemporal control of polymerization. PMID:29276651
Dynamics of exciton transfer in coupled polymer chains.
Zhang, Y L; Liu, X J; Sun, Z; An, Z
2013-05-07
The dynamics of singlet and triplet exciton transfer in coupled polymer chains are investigated within the Su-Schrieffer-Heeger+Pariser-Parr-Pople model including both electron-phonon (e-p) coupling and electron-electron (e-e) interactions, using a multi-configurational time-dependent Hartree-Fock dynamic method. In order to explain the processes involved, the effects of on-site and long-range e-e interactions on the locality of the singlet and triplet excitons are first investigated on an isolated chain. It is found that the locality of the singlet exciton decreases, while the locality of the triplet exciton increases with an increase in the on-site e-e interactions. On the other hand, an increase in the long-range e-e interaction results in a more localized singlet exciton and triplet exciton. In coupled polymer chains, we then quantitatively show the yields of singlet and triplet exciton transfer products under the same interchain coupling. It is found that the yield of singlet interchain excitons is much higher than that of triplet interchain excitons, that is to say, singlet exciton transfer is significantly easier than that for triplet excitons. This results from the fact that the singlet exciton is more delocalized than the triplet exciton. In addition, hopping of electrons with opposite spins between the coupled chains can facilitate the transfer of singlet excitons. The results are of great significance for understanding the photoelectric conversion process and developing high-power organic optoelectronic applications.
Smit, Judith J; Monteferrario, Davide; Noordermeer, Sylvie M; van Dijk, Willem J; van der Reijden, Bert A; Sixma, Titia K
2012-01-01
Activation of the NF-κB pathway requires the formation of Met1-linked ‘linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed ‘Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains. PMID:22863777
Aluas, Mihaela; Filip, Claudiu
2005-05-01
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.
Optimal dephasing for ballistic energy transfer in disordered linear chains
NASA Astrophysics Data System (ADS)
Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev
2017-11-01
We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω , under the action of static disorder W and dephasing γ . The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W2/Ω . In the ballistic regime, the optimal dephasing decreases as 1 /N or 1 /√{N } , respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder Wcr, which strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short chains.
McDonald, Sarah K; Fleming, Karen G
2016-06-29
Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.
Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates
Xia, Yan; Li, Ming; Charubin, Kamil; ...
2015-11-05
In this paper, we report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C 14, DMPC) in discoidal “bicelles” (0.156 h –1) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10 –3 h –1). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C 14 DMPC to di-C 16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differentialmore » scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. Finally, the present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F.
2015-12-21
We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantummore » tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.« less
A new type of localized fast moving electronic excitations in molecular chains
NASA Astrophysics Data System (ADS)
Korshunova, A. N.; Lakhno, V. D.
2014-06-01
It is shown that in a Holstein molecular chain placed in a strong longitudinal electric field some new types of excitations can arise. These excitations can transfer a charge over large distance (more than 1000 nucleotide pairs) along the chain retaining approximately their shapes. Excitations are formed only when a strong electric field either exists or quickly arises under especially preassigned conditions. These excitations transfer a charge even in the case when Holstein polarons are practically immobile. The results obtained are applied to synthetic homogeneous PolyG/PolyC DNA duplexes. They can also be provide the basis for explanation of famous H.W. Fink and C. Schönenberger experiment on long-range charge transfer in DNA.
Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M
2014-04-21
Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.
Spontaneous charged lipid transfer between lipid vesicles.
Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul
2017-10-03
An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.
Ferritin light-chain subunits: key elements for the electron transfer across the protein cage.
Carmona, Unai; Li, Le; Zhang, Lianbing; Knez, Mato
2014-12-18
The first specific functionality of the light-chain (L-chain) subunit of the universal iron storage protein ferritin was identified. The electrons released during iron-oxidation were transported across the ferritin cage specifically through the L-chains and the inverted electron transport through the L-chains also accelerated the demineralization of ferritin.
Quantum communication beyond the localization length in disordered spin chains.
Allcock, Jonathan; Linden, Noah
2009-03-20
We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.
Graded, Dynamically Routable Information Processing with Synfire-Gated Synfire Chains.
Wang, Zhuo; Sornborger, Andrew T; Tao, Louis
2016-06-01
Coherent neural spiking and local field potentials are believed to be signatures of the binding and transfer of information in the brain. Coherent activity has now been measured experimentally in many regions of mammalian cortex. Recently experimental evidence has been presented suggesting that neural information is encoded and transferred in packets, i.e., in stereotypical, correlated spiking patterns of neural activity. Due to their relevance to coherent spiking, synfire chains are one of the main theoretical constructs that have been appealed to in order to describe coherent spiking and information transfer phenomena. However, for some time, it has been known that synchronous activity in feedforward networks asymptotically either approaches an attractor with fixed waveform and amplitude, or fails to propagate. This has limited the classical synfire chain's ability to explain graded neuronal responses. Recently, we have shown that pulse-gated synfire chains are capable of propagating graded information coded in mean population current or firing rate amplitudes. In particular, we showed that it is possible to use one synfire chain to provide gating pulses and a second, pulse-gated synfire chain to propagate graded information. We called these circuits synfire-gated synfire chains (SGSCs). Here, we present SGSCs in which graded information can rapidly cascade through a neural circuit, and show a correspondence between this type of transfer and a mean-field model in which gating pulses overlap in time. We show that SGSCs are robust in the presence of variability in population size, pulse timing and synaptic strength. Finally, we demonstrate the computational capabilities of SGSC-based information coding by implementing a self-contained, spike-based, modular neural circuit that is triggered by streaming input, processes the input, then makes a decision based on the processed information and shuts itself down.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain.
Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T
2016-10-10
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization
NASA Astrophysics Data System (ADS)
Yan, Mengguo; Cochran, Eric
2014-03-01
In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.
Developing Transferable Skills: Some Examples from Geomorphology Teaching.
ERIC Educational Resources Information Center
Mottershead, Derek; Suggitt, Steve
1996-01-01
Demonstrates how the development of transferable skills can be promoted as a matter of policy in undergraduate geography programs and implemented throughout individual classes. Defines transferable skills as skills of a widely applicable nature independent of the disciplinary context. Presents two examples of transferable skill development in…
Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.
Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C
2013-12-01
Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.
Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M
2013-01-01
The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.
Warfe, Danielle M.; Jardine, Timothy D.; Pettit, Neil E.; Hamilton, Stephen K.; Pusey, Bradley J.; Bunn, Stuart E.; Davies, Peter M.; Douglas, Michael M.
2013-01-01
The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641
NASA Astrophysics Data System (ADS)
Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.
2017-06-01
The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.
Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi
2013-12-10
Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.
Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro
2011-07-21
In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.
Factorized three-body S-matrix restrained by the Yang–Baxter equation and quantum entanglements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Li-Wei, E-mail: NKyulw@gmail.com; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn; Ge, Mo-Lin, E-mail: geml@nankai.edu.cn
2014-09-15
This paper investigates the physical effects of the Yang–Baxter equation (YBE) to quantum entanglements through the 3-body S-matrix in entangling parameter space. The explicit form of 3-body S-matrix Ř{sub 123}(θ,φ) based on the 2-body S-matrices is given due to the factorization condition of YBE. The corresponding chain Hamiltonian has been obtained and diagonalized, also the Berry phase for 3-body system is given. It turns out that by choosing different spectral parameters the Ř(θ,φ)-matrix gives GHZ and W states respectively. The extended 1-D Kitaev toy model has been derived. Examples of the role of the model in entanglement transfer are discussed.more » - Highlights: • We give the relation between 3-body S-matrix and 3-qubit entanglement. • The relation between 3-qubit and 2-qubit entanglements is investigated via YBE. • 1D Kitaev toy model is derived by the Type-II solution of YBE. • The condition of YBE kills the “Zero boundary mode” in our chain model.« less
Process-Oriented Worked Examples: Improving Transfer Performance through Enhanced Understanding
ERIC Educational Resources Information Center
van Gog, Tamara; Paas, Fred; van Merrienboer, Jeroen J. G.
2004-01-01
The research on worked examples has shown that for novices, studying worked examples is often a more effective and efficient way of learning than solving conventional problems. This theoretical paper argues that adding process-oriented information to worked examples can further enhance transfer performance, especially for complex cognitive skills…
Röttig, Annika
2013-01-01
SUMMARY Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue. PMID:23699259
Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N
2018-04-17
Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.
Transport of triplet excitons along continuous 100 nm polyfluorene chains
Xi, Liang; Bird, Matthew; Mauro, Gina; ...
2014-12-03
Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a result, a second set of polyfluorenes with 2-butyloctyl side chains was found to have a much lower completeness of end capping.« less
Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing
2014-01-01
A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.
2008-01-01
The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082
Burmester, Mike; Munilla, Jorge; Ortiz, Andrés; Caballero-Gil, Pino
2017-07-04
The National Strategy for Global Supply Chain Security published in 2012 by the White House identifies two primary goals for strengthening global supply chains: first, to promote the efficient and secure movement of goods, and second to foster a resilient supply chain. The Internet of Things (IoT), and in particular Radio Frequency Identification (RFID) technology, can be used to realize these goals. For product identification, tracking and real-time awareness, RFID tags are attached to goods. As tagged goods move along the supply chain from the suppliers to the manufacturers, and then on to the retailers until eventually they reach the customers, two major security challenges can be identified: (I) to protect the shipment of goods that are controlled by potentially untrusted carriers; and (II) to secure the transfer of ownership at each stage of the chain. For the former, grouping proofs in which the tags of the scanned goods generate a proof of "simulatenous" presence can be employed, while for the latter, ownership transfer protocols (OTP) are used. This paper describes enhanced security solutions for both challenges. We first extend earlier work on grouping proofs and group codes to capture resilient group scanning with untrusted readers; then, we describe a modified version of a recently published OTP based on channels with positive secrecy capacity adapted to be implemented on common RFID systems in the supply chain. The proposed solutions take into account the limitations of low cost tags employed in the supply chain, which are only required to generate pseudorandom numbers and compute one-way hash functions.
Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko
2008-04-03
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.
Pilot Emergency Tutoring System for F-4 Aircraft Fuel System Malfunction Using Means-Ends Analysis
1990-06-01
pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for looked_at(INDICATOR) type set...cb internal wing transfer is pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for...at, external transfer is off, internal wing transfer is stop trans, refuel probe is extended, cb internal wing transfer is pulled ,and wing
Chaining direct memory access data transfer operations for compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.
2010-09-28
Methods, systems, and products are disclosed for chaining DMA data transfer operations for compute nodes in a parallel computer that include: receiving, by an origin DMA engine on an origin node in an origin injection FIFO buffer for the origin DMA engine, a RGET data descriptor specifying a DMA transfer operation data descriptor on the origin node and a second RGET data descriptor on the origin node, the second RGET data descriptor specifying a target RGET data descriptor on the target node, the target RGET data descriptor specifying an additional DMA transfer operation data descriptor on the origin node; creating, by the origin DMA engine, an RGET packet in dependence upon the RGET data descriptor, the RGET packet containing the DMA transfer operation data descriptor and the second RGET data descriptor; and transferring, by the origin DMA engine to a target DMA engine on the target node, the RGET packet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Liang; Bird, Matthew; Mauro, Gina
Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a result, a second set of polyfluorenes with 2-butyloctyl side chains was found to have a much lower completeness of end capping.« less
What is Climate Leadership: Examples and Lessons Learned in Supply Chain Management Webinar
Organizations that have developed comprehensive greenhouse gas inventories and aggressive emissions reduction goals discuss their strategies for managing greenhouse gases in their organizational supply chains and use of EPA Supply Chain resources.
Quantum communication through an unmodulated spin chain.
Bose, Sougato
2003-11-14
We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short distance quantum communications. The state to be transmitted is placed on one spin of the chain and received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can be directly transmitted with better than classical fidelity across the full length of chains of up to 80 spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances.
Space benefits: The secondary application of aerospace technology in other sectors of the economy
NASA Technical Reports Server (NTRS)
1976-01-01
A 'Benefit Briefing Notebook' was prepared for the NASA Technology Utilization Office to provide accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The contents are divided into three sections: (1) transfer overview, (2) benefit cases, and (3) indexes. The transfer overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented. The benefits section is subdivided into nineteen subject areas. Each subsection presents one or more key issues of current interest, with discrete transfer cases related to each key issue. Additional transfer examples relevant to each subject area are then presented. Pertinent transfer data are given at the end of each example.
Study on the photo-induced oxygen reordering in YBa2Cu3O6+x
NASA Astrophysics Data System (ADS)
Milić, M. M.; Lazarov, N. Dj.; Cucić, D. A.
2012-05-01
Effect of the long term illumination of the YBa2Cu3O6+x with visible light or ultraviolet irradiation on its superconducting properties was studied in the frame of a simple theoretical model, which assumes that photodoping triggers rearrangement of oxygen monomers in the chain layers thus causing the enhancement of the average chain length, lav. Since, according to the model of charge transfer mechanism, long CuO chains are better electronic hole donors than the short ones, increase of the average chain length induces additional holes transfer from chain layers to the superconducting CuO2 planes which in turn leads to the increase of the superconducting transition temperature Tc. By the use of the expression for the chain length probability distribution and numerically calculated values for the average chain length in the non-excited system, we were able to estimate the doping p (number of holes per one Cu atom in the superconducting CuO2 planes) and Tc enhancement due to photo-induced oxygen reordering. The theoretical results are compared with available experimental data.
Center for Corporate Climate Leadership Success Stories: Case Studies in Supply Chain Engagement
The case studies on this page provide successful examples of companies engaging with their supply chains to reduce their greenhouse gas emissions, understand their shifting supply chain risks, and take advantage of market opportunities.
NASA Astrophysics Data System (ADS)
Zhao, Runchen; Ientilucci, Emmett J.
2017-05-01
Hyperspectral remote sensing systems provide spectral data composed of hundreds of narrow spectral bands. Spectral remote sensing systems can be used to identify targets, for example, without physical interaction. Often it is of interested to characterize the spectral variability of targets or objects. The purpose of this paper is to identify and characterize the LWIR spectral variability of targets based on an improved earth observing statistical performance model, known as the Forecasting and Analysis of Spectroradiometric System Performance (FASSP) model. FASSP contains three basic modules including a scene model, sensor model and a processing model. Instead of using mean surface reflectance only as input to the model, FASSP transfers user defined statistical characteristics of a scene through the image chain (i.e., from source to sensor). The radiative transfer model, MODTRAN, is used to simulate the radiative transfer based on user defined atmospheric parameters. To retrieve class emissivity and temperature statistics, or temperature / emissivity separation (TES), a LWIR atmospheric compensation method is necessary. The FASSP model has a method to transform statistics in the visible (ie., ELM) but currently does not have LWIR TES algorithm in place. This paper addresses the implementation of such a TES algorithm and its associated transformation of statistics.
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha
2016-10-01
Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.
State-transfer simulation in integrated waveguide circuits
NASA Astrophysics Data System (ADS)
Latmiral, L.; Di Franco, C.; Mennea, P. L.; Kim, M. S.
2015-08-01
Spin-chain models have been widely studied in terms of quantum information processes, for instance for the faithful transmission of quantum states. Here, we investigate the limitations of mapping this process to an equivalent one through a bosonic chain. In particular, we keep in mind experimental implementations, which the progress in integrated waveguide circuits could make possible in the very near future. We consider the feasibility of exploiting the higher dimensionality of the Hilbert space of the chain elements for the transmission of a larger amount of information, and the effects of unwanted excitations during the process. Finally, we exploit the information-flux method to provide bounds to the transfer fidelity.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Shaalan, Naser; Laftah, Nawres; El-Hiti, Gamal A; Alotaibi, Mohammad Hayal; Muslih, Raad; Ahmed, Dina S; Yousif, Emad
2018-04-15
Five Schiff bases containing a thiadiazole moiety have been used as poly(vinyl chloride) photostabilizers at low concentrations. The efficiency of Schiff bases as photostabilizers was investigated using various techniques, for example, the changes in poly(vinyl chloride) infrared spectra, molecular weight, chain scission quantum yield, and surface morphology were monitored upon irradiation with an ultraviolet light. Evidently, all the additives used inhibited poly(vinyl chloride) photodegradation at a significant level. The most efficient Schiff base exhibited a high level of aromaticity and contained a hydroxyl group. It seems possible that such photostabilization could be due to the direct absorption of ultraviolet radiation by the additives. In addition, Schiff bases could act as radical scavengers and proton transfer facilitators to stabilize the polymeric materials.
Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L
2010-05-07
Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenhove, Hildegarde
The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)
End-Functionalized Palladium SCS Pincer Polymers via Controlled Radical Polymerizations.
Lye, Diane S; Cohen, Aaron E; Wong, Madeleine Z; Weck, Marcus
2017-07-01
A direct and facile route toward semitelechelic polymers, end-functionalized with palladated sulfur-carbon-sulfur pincer (Pd II -pincer) complexes is reported that avoids any post-polymerization step. Key to our methodology is the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization with functionalized chain-transfer agents. This strategy yields Pd end-group-functionalized materials with monomodal molar mass dispersities (Đ) of 1.18-1.44. The RAFT polymerization is investigated using a Pd II -pincer chain-transfer agent for three classes of monomers: styrene, tert-butyl acrylate, and N-isopropylacrylamide. The ensuing Pd II -pincer end-functionalized polymers are analyzed using 1 H NMR spectroscopy, gel-permeation chromatography, and elemental analysis. The RAFT polymerization methodology provides a direct pathway for the fabrication of Pd II -pincer functionalized polymers with complete end-group functionalization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chang, Limin; Li, Ying; Chu, Jia; Qi, Jingyao; Li, Xin
2010-11-08
In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds. Copyright © 2010 Elsevier B.V. All rights reserved.
Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng
2013-10-01
To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.
Ortiz, Andrés
2017-01-01
The National Strategy for Global Supply Chain Security published in 2012 by the White House identifies two primary goals for strengthening global supply chains: first, to promote the efficient and secure movement of goods, and second to foster a resilient supply chain. The Internet of Things (IoT), and in particular Radio Frequency Identification (RFID) technology, can be used to realize these goals. For product identification, tracking and real-time awareness, RFID tags are attached to goods. As tagged goods move along the supply chain from the suppliers to the manufacturers, and then on to the retailers until eventually they reach the customers, two major security challenges can be identified: (I) to protect the shipment of goods that are controlled by potentially untrusted carriers; and (II) to secure the transfer of ownership at each stage of the chain. For the former, grouping proofs in which the tags of the scanned goods generate a proof of “simulatenous” presence can be employed, while for the latter, ownership transfer protocols (OTP) are used. This paper describes enhanced security solutions for both challenges. We first extend earlier work on grouping proofs and group codes to capture resilient group scanning with untrusted readers; then, we describe a modified version of a recently published OTP based on channels with positive secrecy capacity adapted to be implemented on common RFID systems in the supply chain. The proposed solutions take into account the limitations of low cost tags employed in the supply chain, which are only required to generate pseudorandom numbers and compute one-way hash functions. PMID:28677637
Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I
2017-06-16
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
[Validation of cold chain during distribution of parenteral nutrition].
Tuan, Federico; Perone, Virginia; Verdini, Rocio; Pell, Maria Betina; Traverso, Maria Luz
2015-09-01
this study aims to demonstrate the suitability of the process used to condition the extemporaneous mixtures of parenteral nutrition for distribution, considering the objective of preserving the cold chain during transport until it reaches the patient, necessary to ensure stability, effectiveness and safety of these mixtures. concurrent validation, design and implementation of a protocol for evaluating the process of packaging and distribution of MNPE developed by a pharmaceutical laboratory. Running tests, according to predefined acceptance criteria. It is performed twice, in summer and on routes that require longer transfer time. Evaluation of conservation of temperature by monitoring the internal temperature values of each type of packaging, recorded by data loggers calibrated equipment. the different tests meet the established criteria. The collected data ensure the maintenance of the cold chain for longer than the transfer time to the most distant points. this study establishes the suitability of the processes to maintaining the cold chain for transfer from the laboratory to the patient pharmacist. Whereas the breaking of cold chain can cause changes of compatibility and stability of parenteral nutrition and failures nutritional support, this study contributes to patient safety, one of the relevant dimensions of quality of care the health. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Effects of fullerene coalescence on the thermal conductivity of carbon nanopeapods
NASA Astrophysics Data System (ADS)
Li, Jiaqian; Shen, Haijun
2018-05-01
The heat conduction and its dependence on fullerene coalescence in carbon nanopeapods (CNPs) have been investigated by equilibrium molecular dynamics simulations. The effects of fullerene coalescence on the thermal conductivity of CNPs were discussed under different temperatures. It is shown that the thermal conductivity of the CNPs decreases with the coalescence of encapsulated fullerene molecules. The thermal transmission mechanism of the effect of fullerene coalescence was analysed by the mass transfer contribution, the relative contributions of phonon oscillation frequencies to total heat current and the phonon vibrational density of states (VDOS). The mass transfer in CNPs is mainly attributed to the motion of encapsulated fullerene molecule and it gets more restricted with the coalescence of the fullerene. It shows that the low-frequency phonon modes below 20 THz contribute mostly to thermal conductivity in CNPs. The analysis of VDOS demonstrates that the dominating contribution to heat transfer is from the inner fullerene chain. With the coalescence of fullerene, the interfacial heat transfer between the CNT and fullerene chain is strengthened; however, the heat conduction of the fullerene chain decreases more rapidly at the same time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.A.; Sheard, J.W.; Swanson, S.
1994-12-31
This report examines baseline concentrations and transfer of the uranium decay products polonium-210 and lead-210 in the lichen-caribou-wolf food chain at two locations in the Northwest Territories, Baker Lake and Snowdrift. At each location, concentrations of the two radionuclides were determined in the lichen species Cetraria nivalis and Cladina mitis, and several tissues from caribou and wolves. Baseline concentrations and transfer coefficients within the food chain were compared between the two locations. Lichen samples were also collected from Kasba Lake, a third hunting ground used by northern Saskatchewan hunters. The lichen species chosen were common forage for caribou. Both themore » predominant lichen species at each location and rumen contents were used to estimate the winter diet of caribou in the calculation of transfer coefficients. The results are relevant to environmental monitoring in areas of potential future uranium mining development and the transfer coefficients determined in the study may be used to estimate radionuclide concentrations and radiation doses in future environmental assessments.« less
26 CFR 1.1015-4 - Transfers in part a gift and in part a sale.
Code of Federal Regulations, 2014 CFR
2014-04-01
... property, or (ii) The transferor's adjusted basis for the property at the time of the transfer, and (2) The... greater than the fair market value of the property at the time of such transfer. For determination of gain... examples: Example 1. If A transfers property to his son for $30,000, and such property at the time of the...
Theoretical study of chain transfer to solvent reactions of alkyl acrylates.
Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud
2014-07-24
This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.
NASA Technical Reports Server (NTRS)
1976-01-01
Resource information on the transfer of aerospace technology to other sectors of the U.S. economy is presented. The contents of this notebook are divided into three sections: (1) benefit cases, (2) transfer overview, and (3) indexes. Transfer examples relevant to each subject area are presented. Pertinent transfer data are given. The Transfer Overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented.
Winners and losers in the complex web of global supply chains.
Glendon, Lee
2013-01-01
This paper discusses how supply chain, risk and business continuity professionals can collaboratively address the consequences of increasing supply chain complexity in order to deliver both resilient and sustainable supply chains. The paper identifies the key drivers of complexity supported by recent case examples, including the equine DNA scandal and the Rana Plaza tragedy in Bangladesh.
Thermoresponsive AuNPs Stabilized by Pillararene-Containing Polymers.
Liao, Xiaojuan; Guo, Lei; Chang, Junxia; Liu, Sha; Xie, Meiran; Chen, Guosong
2015-08-01
Pillararene-containing thermoresponsive polymers are synthesized via reversible addition-fragmentation chain transfer polymerization using pillararene derivatives as the effective chain transfer agents for the first time. These polymers can self-assemble into micelles and form vesicles after guest molecules are added. Furthermore, such functional polymers can be further applied to prepare hybrid gold nanoparticles, which integrate the thermoresponsivity of polymers and molecular recognition of pillararenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Blomberg, Margareta R. A.; Siegbahn, Per E. M.
2010-10-01
The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.
Chain-Thermal Explosions and the Transition from Deflagration Combustion to Detonation
NASA Astrophysics Data System (ADS)
Prokopenko, V. M.; Azatyan, V. V.
2018-01-01
The transition from combustion to a chain-thermal explosion, a necessary step in the transition from deflagration combustion into detonation, is studied using the example of hydrogen oxidation. Differences between the kinetic modes of ignition and a chain-thermal explosion are discussed.
The Kinetic Chain Revisited: New Concepts on Throwing Mechanics and Injury.
Chu, Samuel K; Jayabalan, Prakash; Kibler, W Ben; Press, Joel
2016-03-01
The overhead throwing motion is a complex activity that is achieved through activation of the kinetic chain. The kinetic chain refers to the linkage of multiple segments of the body that allows for transfer of forces and motion. The lower extremities and core provide a base of support, generating energy that is transferred eventually through the throwing arm and hand, resulting in release of the ball. The kinetic chain requires optimal anatomy, physiology, and mechanics and is involved in all 6 phases of overhead throwing: windup, stride, arm cocking, acceleration, deceleration, and follow-through. Breaks or deficits in the kinetic chain can lead to injury or decreased performance. Through an understanding of the mechanics and pathomechanics seen in each phase of throwing, the clinician can better evaluate and screen for potential kinetic chain deficits in the overhead throwing athlete. The purpose of this article is to review the biomechanics of the overhead throwing motion, the role of the kinetic chain in throwing, and the clinical evaluation and management of abnormal throwing mechanics and related injuries. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2011-05-01
Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from
Pan, Huaizhong; Yang, Jiyuan; Kopecková, Pavla; Kopecek, Jindrich
2011-01-10
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.
Simulating the Generalized Gibbs Ensemble (GGE): A Hilbert space Monte Carlo approach
NASA Astrophysics Data System (ADS)
Alba, Vincenzo
By combining classical Monte Carlo and Bethe ansatz techniques we devise a numerical method to construct the Truncated Generalized Gibbs Ensemble (TGGE) for the spin-1/2 isotropic Heisenberg (XXX) chain. The key idea is to sample the Hilbert space of the model with the appropriate GGE probability measure. The method can be extended to other integrable systems, such as the Lieb-Liniger model. We benchmark the approach focusing on GGE expectation values of several local observables. As finite-size effects decay exponentially with system size, moderately large chains are sufficient to extract thermodynamic quantities. The Monte Carlo results are in agreement with both the Thermodynamic Bethe Ansatz (TBA) and the Quantum Transfer Matrix approach (QTM). Remarkably, it is possible to extract in a simple way the steady-state Bethe-Gaudin-Takahashi (BGT) roots distributions, which encode complete information about the GGE expectation values in the thermodynamic limit. Finally, it is straightforward to simulate extensions of the GGE, in which, besides the local integral of motion (local charges), one includes arbitrary functions of the BGT roots. As an example, we include in the GGE the first non-trivial quasi-local integral of motion.
Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes
NASA Astrophysics Data System (ADS)
Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy
2018-02-01
The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.
Research on Coordination of Fresh Produce Supply Chain in Big Market Sales Environment
Su, Juning; Liu, Chenguang
2014-01-01
In this paper, we propose two decision models for decentralized and centralized fresh produce supply chains with stochastic supply and demand and controllable transportation time. The optimal order quantity and the optimal transportation time in these two supply chain systems are derived. To improve profits in a decentralized supply chain, based on analyzing the risk taken by each participant in the supply chain, we design a set of contracts which can coordinate this type of fresh produce supply chain with stochastic supply and stochastic demand, and controllable transportation time as well. We also obtain a value range of contract parameters that can increase profits of all participants in the decentralized supply chain. The expected profits of the decentralized setting and the centralized setting are compared with respect to given numerical examples. Furthermore, the sensitivity analyses of the deterioration rate factor and the freshness factor are performed. The results of numerical examples show that the transportation time is shorter, the order quantity is smaller, the total profit of whole supply chain is less, and the possibility of cooperation between supplier and retailer is higher for the fresh produce which is more perishable and its quality decays more quickly. PMID:24764770
Research on coordination of fresh produce supply chain in big market sales environment.
Su, Juning; Wu, Jiebing; Liu, Chenguang
2014-01-01
In this paper, we propose two decision models for decentralized and centralized fresh produce supply chains with stochastic supply and demand and controllable transportation time. The optimal order quantity and the optimal transportation time in these two supply chain systems are derived. To improve profits in a decentralized supply chain, based on analyzing the risk taken by each participant in the supply chain, we design a set of contracts which can coordinate this type of fresh produce supply chain with stochastic supply and stochastic demand, and controllable transportation time as well. We also obtain a value range of contract parameters that can increase profits of all participants in the decentralized supply chain. The expected profits of the decentralized setting and the centralized setting are compared with respect to given numerical examples. Furthermore, the sensitivity analyses of the deterioration rate factor and the freshness factor are performed. The results of numerical examples show that the transportation time is shorter, the order quantity is smaller, the total profit of whole supply chain is less, and the possibility of cooperation between supplier and retailer is higher for the fresh produce which is more perishable and its quality decays more quickly.
Charge transfer in model peptides: obtaining Marcus parameters from molecular simulation.
Heck, Alexander; Woiczikowski, P Benjamin; Kubař, Tomáš; Giese, Bernd; Elstner, Marcus; Steinbrecher, Thomas B
2012-02-23
Charge transfer within and between biomolecules remains a highly active field of biophysics. Due to the complexities of real systems, model compounds are a useful alternative to study the mechanistic fundamentals of charge transfer. In recent years, such model experiments have been underpinned by molecular simulation methods as well. In this work, we study electron hole transfer in helical model peptides by means of molecular dynamics simulations. A theoretical framework to extract Marcus parameters of charge transfer from simulations is presented. We find that the peptides form stable helical structures with sequence dependent small deviations from ideal PPII helices. We identify direct exposure of charged side chains to solvent as a cause of high reorganization energies, significantly larger than typical for electron transfer in proteins. This, together with small direct couplings, makes long-range superexchange electron transport in this system very slow. In good agreement with experiment, direct transfer between the terminal amino acid side chains can be dicounted in favor of a two-step hopping process if appropriate bridging groups exist. © 2012 American Chemical Society
Protonic transport through solitons in hydrogen-bonded systems
NASA Astrophysics Data System (ADS)
Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.
2011-09-01
We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.
Hydrogen bonding between phosphate and amino acid side chains
NASA Astrophysics Data System (ADS)
Carmona, P.; Rodriguez, M. L.
1986-03-01
Hydrogen bonds between polar groups of amino acid side chains (histidine, lysine, glutamic acid) and phosphate ions have been studied by infrared spectroscopy. Proton transfer from amino acid groups to phosphate occur mainly in case that tribasic and dibasic phosphate ions take part in hydrogen bonds. Conformational changes and continuum are strongly related to the degree of proton transfer and hydration. It is pointed out that the aforementioned properties should be of great significance for nucleation and growth of prostatic and renal stones.
Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C
2014-11-12
The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.
49 CFR Appendix C to Part 219 - Post-Accident Testing Specimen Collection
Code of Federal Regulations, 2012 CFR
2012-10-01
... the transfer of the blood tubes on the second line of STEP 5 (the chain of custody block). E. Collect... (the chain of custody block). F. Seal the Individual Employee Kit a. The blood and urine specimens have... railroad representatives handling the box shall document chain of custody of the shipping box and shall...
49 CFR Appendix C to Part 219 - Post-Accident Testing Specimen Collection
Code of Federal Regulations, 2013 CFR
2013-10-01
... the transfer of the blood tubes on the second line of STEP 5 (the chain of custody block). E. Collect... (the chain of custody block). F. Seal the Individual Employee Kit a. The blood and urine specimens have... railroad representatives handling the box shall document chain of custody of the shipping box and shall...
49 CFR Appendix C to Part 219 - Post-Accident Testing Specimen Collection
Code of Federal Regulations, 2014 CFR
2014-10-01
... the transfer of the blood tubes on the second line of STEP 5 (the chain of custody block). E. Collect... (the chain of custody block). F. Seal the Individual Employee Kit a. The blood and urine specimens have... railroad representatives handling the box shall document chain of custody of the shipping box and shall...
Subbaiah, P V; Liu, M
1996-05-31
Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.
Control and reduction of peak temperature in self-curing resins.
Schiavetti, R; DE Vico, G; Casucci, A; Covello, F; Ottria, L; Sannino, G; Barlattani, A
2009-07-01
INTRODUCTION.: The aim of this experimental study was to reduce the exothermic reaction during curing of the resins to cold. The significant exotherm generated by the reaction of polymerization of the resin curing involves many clinical complications including the high risk of necrosis against tooth. MATERIAL AND METHODS.: They were used four different types of self curing resins all based on methyl methacrylate, Jet Kit, Major Dentin, Dura Lay, Temporary Cold. The reaction of polymerization of the resins was done in Teflon pans and was monitored by a thermocouple which recorded the highest level reached by each temperature resin with and without additive. The polymerization reaction took place for each resin in the presence of an essential oil, the terpinolene, which acted as a "chain transfer" and different temperatures were recorded. RESULTS.: Resins Dura Lay and Jet kit showed a reduction of very high temperature in the presence of terpinolene, with a statistically significant difference compared to the same reaction without terpinolene Major resin dentin in the presence of the additive has reduced by 8.4°C peak temperature. Resin Temporary Cold has showed benefits with respect to peak temperature, but the reaction was much more 'consistent presence of the additive. DISCUSSION.: The system through which the chain transfer acts to lower the temperature of the reaction is that of chain transfer. Namely that interfere with the reaction of the polymer chains, by transferring these acrylic radicals are no longer active, ie, no longer able to bind to other monomer units, thus avoiding the excessive growth of macromolecules which are those that determine the temperature rise. This leads to the formation of more polymer chains with lower molecular weight.
Thomaz, Joseph E; Lawler, Christian M; Fayer, Michael D
2017-05-04
Proton transfer in the nanoscopic water channels of polyelectrolyte fuel cell membranes was studied using a photoacid, 8-hydroxypyrene-1,3,6-trisulfonic acid sodium salt (HPTS), in the channels. The local environment of the probe was determined using 8-methoxypyrene-1,3,6-trisulfonic acid sodium salt (MPTS), which is not a photoacid. Three fully hydrated membranes, Nafion (DuPont) and two 3M membranes, were studied to determine the impact of different pendant chains and equivalent weights on proton transfer. Fluorescence anisotropy and excited state population decay data that characterize the local environment of the fluorescent probes and proton transfer dynamics were measured. The MPTS lifetime and anisotropy results show that most of the fluorescent probes have a bulk-like water environment with a relatively small fraction interacting with the channel wall. Measurements of the HPTS protonated and deprotonated fluorescent bands' population decays provided information on the proton transport dynamics. The decay of the protonated band from ∼0.5 ns to tens of nanoseconds is in part determined by dissociation and recombination with the HPTS, providing information on the ability of protons to move in the channels. The dissociation and recombination is manifested as a power law component in the protonated band fluorescence decay. The results show that equivalent weight differences between two 3M membranes resulted in a small difference in proton transfer. However, differences in pendant chain structure did significantly influence the proton transfer ability, with the 3M membranes displaying more facile transfer than Nafion.
Using Games to Teach Markov Chains
ERIC Educational Resources Information Center
Johnson, Roger W.
2003-01-01
Games are promoted as examples for classroom discussion of stationary Markov chains. In a game context Markov chain terminology and results are made concrete, interesting, and entertaining. Game length for several-player games such as "Hi Ho! Cherry-O" and "Chutes and Ladders" is investigated and new, simple formulas are given. Slight…
File Transfers from Peregrine to the Mass Storage System - Gyrfalcon |
login node or data-transfer queue node. Below is an example to access data-tranfer queue Interactively number of container files using the tar command. For example, $ cd /scratch/
NASA Astrophysics Data System (ADS)
Vaia, Ruggero
2018-04-01
Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain of arbitrary length can be induced by suitably modifying two masses and their spring's elastic constant at both extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can continue back and forth again for several times before dispersion cleared the effect. The underlying coherence mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing. This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevilacqua, V.L.; Thomson, D.S.; Prestegard, J.H.
1990-06-12
Spin simulation and selective deuteration have been used to aid in the interpretation of 1D transferred nuclear Overhauser effect (TRNOE) NMR experiments on ricin B-chain/ligand systems. Application of these methods has revealed a change in the conformation of deuterated methyl beta-lactoside upon binding to the ricin B-chain which results in a slight change in glycosidic torsional angels which appear to dominate in the solution conformation. The combination of simulation and experiment also shows an important sensitivity of TRNOE magnitudes to dissociation rate constants and available spin-diffusion pathways for the ricin B-chain/ligand systems under study. The sensitivity to dissociation rates allowsmore » determination of rate constants for methyl beta-lactoside and methyl beta-galactoside of 50 and 300 s-1, respectively.« less
State of research: environmental pathways and food chain transfer.
Vaughan, B E
1984-01-01
Data on the chemistry of biologically active components of petroleum, synthetic fuel oils, certain metal elements and pesticides provide valuable generic information needed for predicting the long-term fate of buried waste constituents and their likelihood of entering food chains. Components of such complex mixtures partition between solid and solution phases, influencing their mobility, volatility and susceptibility to microbial transformation. Estimating health hazards from indirect exposures to organic chemicals involves an ecosystem's approach to understanding the unique behavior of complex mixtures. Metabolism by microbial organisms fundamentally alters these complex mixtures as they move through food chains. Pathway modeling of organic chemicals must consider the nature and magnitude of food chain transfers to predict biological risk where metabolites may become more toxic than the parent compound. To obtain predictions, major areas are identified where data acquisition is essential to extend our radiological modeling experience to the field of organic chemical contamination. PMID:6428875
Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua
2013-12-14
Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.
Hatefi, Arash; Karjoo, Zahra; Nomani, Alireza
2017-09-11
The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.
On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions
NASA Astrophysics Data System (ADS)
Hagendorf, Christian; Liénardy, Jean
2018-03-01
The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L = 2n + 1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan
2008-12-01
A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.
We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less
He, Peng; He, Lin
2009-07-13
We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.
Characterizing Plasmonic Excitations of Quasi-2D Chains
NASA Astrophysics Data System (ADS)
Townsend, Emily; Bryant, Garnett
A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.
Saini, Sangeeta; Bagchi, Biman
2010-07-21
Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended 'particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Förster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.
Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille
2016-01-01
Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm2), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology. PMID:27340940
Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille
2016-06-08
Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.
Lambert, Ann Marie; Gagnon, Lise; Fontaine, Francine S
2014-01-01
A literature review about transference in the treatment of dissociative identity disorder (DID) is presented. Common transference reactions resulting from serious traumas are explored, considering that those kind of trauma are higly present in the pathways of DID patients. Post traumatic transference aspects specific to DID are also presented. In addition, common transference patterns and dissociative aspects of transference in the treatment of DID are explained. Transference is also discussed in relationship to the possible impact of disorganized attachment, which is a main component in the development of DID. The clinical implications of this proposition will be discussed and supported by a case example.
NASA Astrophysics Data System (ADS)
Drukker, Karen; Hammes-Schiffer, Sharon
1997-07-01
This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.
Pahnke, Kai; Brandt, Josef; Gryn'ova, Ganna; Lindner, Peter; Schweins, Ralf; Schmidt, Friedrich Georg
2015-01-01
We report the investigation of fundamental entropic chain effects that enable the tuning of modular ligation chemistry – for example dynamic Diels–Alder (DA) reactions in materials applications – not only classically via the chemistry of the applied reaction sites, but also via the physical and steric properties of the molecules that are being joined. Having a substantial impact on the reaction equilibrium of the reversible ligation chemistry, these effects are important when transferring reactions from small molecule studies to larger or other entropically very dissimilar systems. The effects on the DA equilibrium and thus the temperature dependent degree of debonding (%debond) of different cyclopentadienyl (di-)functional poly(meth-)acrylate backbones (poly(methyl methacrylate), poly(iso-butyl methacrylate), poly(tert-butyl methacrylate), poly(iso-butyl acrylate), poly(n-butyl acrylate), poly(tert-butyl acrylate), poly(methyl acrylate) and poly(isobornyl acrylate)), linked via a difunctional cyanodithioester (CDTE) were examined via high temperature (HT) NMR spectroscopy as well as temperature dependent (TD) SEC measurements. A significant impact of not only chain mass and length with a difference in the degree of debonding of up to 30% for different lengths of macromonomers of the same polymer type but – remarkably – as well the chain stiffness with a difference in bonding degrees of nearly 20% for isomeric poly(butyl acrylates) is found. The results were predicted, reproduced and interpreted via quantum chemical calculations, leading to a better understanding of the underlying entropic principles. PMID:29560194
New chalcones bearing a long-chain alkylphenol from the rhizomes of Alpinia galanga.
Yang, Wan-Qiu; Gao, Yuan; Li, Ming; Miao, De-Ren; Wang, Fei
2015-01-01
Three novel chalcones bearing a long-chain alkylphenol, galanganones A-C (1-3), were isolated from the rhizomes of Alpinia galanga. Their structures were elucidated by extensive spectroscopic analysis including 2D NMR experiments. Compounds 1-3 represent the first examples of long-chain alkylphenol-coupled chalcone.
Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains
NASA Astrophysics Data System (ADS)
Adler, V. E.
2018-04-01
We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
Flexibility evaluation of multiechelon supply chains.
Almeida, João Flávio de Freitas; Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda
2018-01-01
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.
Flexibility evaluation of multiechelon supply chains
Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda
2018-01-01
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution. PMID:29584755
Task-Technology Fit Assessment of an Expertise Transfer System
2009-03-01
Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Resource Management...Transfer Forum (ETF) developed by the Oklahoma State University for the Defense Ammunition Center’s quality assurance personnel. The preliminary findings...Technology-to-Performance Chain (TPC) ....................................................................13 Expertise Transfer Forum (ETF
Zhao, Jiong-Peng; Yang, Qian; Liu, Zhong-Yi; Zhao, Ran; Hu, Bo-Wen; Du, Miao; Chang, Ze; Bu, Xian-He
2012-07-04
A magnetic isolated chain-based substituted cobalt-formate framework was obtained with isonicotine as a spacer. In the chain, canted antiferromagnetic interactions exist in between the Co(II) ions, and slow magnetic relaxation is detected at low temperature. For the block effects of the isonicotine ligands, the complex could be considered as a peculiar example of a weak ferromagnetic single-chain-magnet.
Single-Chain Folding of Synthetic Polymers: A Critical Update.
Altintas, Ozcan; Barner-Kowollik, Christopher
2015-11-23
The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-06
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.
Diffusion, decolonializing, and participatory action research.
Woodward, William R; Hetley, Richard S
2007-03-01
Miki Takasuna describes knowledge transfer between elite communities of scientists, a process by which ideas become structurally transformed in the host culture. By contrast, a process that we have termed knowledge transfer by deelitization occurs when (a) participatory action researchers work with a community to identify a problem involving oppression or exploitation. Then (b) community members suggest solutions and acquire the tools of analysis and action to pursue social actions. (c) Disadvantaged persons thereby become more aware of their own abilities and resources, and persons with special expertise become more effective. (d) Rather than detachment and value neutrality, this joint process involves advocacy and structural transformation. In the examples of participatory action research documented here, Third World social scientists collaborated with indigenous populations to solve problems of literacy, community-building, land ownership, and political voice. Western social scientists, inspired by these non-Western scientists, then joined in promoting PAR both in the Third World and in Europe and the Americas, e.g., adapting it for solving problems of people with disabilities or disenfranchised women. Emancipatory goals such as these may even help North American psychologists to break free of some methodological chains and to bring about social and political change.
Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija
2013-11-07
A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.
Yang, Huilin; Peng, Yuande; Tian, Jianxiang; Wang, Juan; Hu, Jilin; Song, Qisheng; Wang, Zhi
2017-04-01
Since the birth of transgenic crops expressing Bacillus thuringiensis (Bt) toxin for pest control, the public debate regarding ecological and environmental risks as well as benefits of Bt crops has continued unabated. The impact of Bt crops, especially on non-target invertebrates, has received particular attention. In this review, we summarize and analyze evidences for non-target effects of Bt rice on spiders, major predators in rice fields. Bt rice has been genetically modified to express the Bt protein, which has been shown to be transferred and accumulate in spiders as part of their food chain. Moreover, the Bt protein exhibits unintended effects on the physiology of spiders and spreads to higher trophic levels. Spiders possess unique physiological and ecological characteristics, revealing traits of surrogate species, and are thus considered to be excellent non-target arthropod model systems for study of Bt protein impacts. Due to the complexities of Bt protein transfer and accumulation mechanisms, as well as the apparent lack of information about resulting physiological, biochemical, and ecological effects on spiders, we raise questions and provide recommendations for promising further research.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product type...
Montpetit-Tourangeau, Katherine; Dyer, Joseph-Omer; Hudon, Anne; Windsor, Monica; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara
2017-12-01
Health profession learners can foster clinical reasoning by studying worked examples presenting fully worked out solutions to a clinical problem. It is possible to improve the learning effect of these worked examples by combining them with other learning activities based on concept maps. This study investigated which combinaison of activities, worked examples study with concept map completion or worked examples study with concept map study, fosters more meaningful learning of intervention knowledge in physiotherapy students. Moreover, this study compared the learning effects of these learning activity combinations between novice and advanced learners. Sixty-one second-year physiotherapy students participated in the study which included a pre-test phase, a 130-min guided-learning phase and a four-week self-study phase. During the guided and self-study learning sessions, participants had to study three written worked examples presenting the clinical reasoning for selecting electrotherapeutic currents to treat patients with motor deficits. After each example, participants engaged in either concept map completion or concept map study depending on which learning condition they were randomly allocated to. Students participated in an immediate post-test at the end of the guided-learning phase and a delayed post-test at the end of the self-study phase. Post-tests assessed the understanding of principles governing the domain of knowledge to be learned (conceptual knowledge) and the ability to solve new problems that have similar (i.e., near transfer) or different (i.e., far transfer) solution rationales as problems previously studied in the examples. Learners engaged in concept map completion outperformed those engaged in concept map study on near transfer (p = .010) and far transfer (p < .001) performance. There was a significant interaction effect of learners' prior ability and learning condition on conceptual knowledge but not on near and far transfer performance. Worked examples study combined with concept map completion led to greater transfer performance than worked examples study combined with concept map study for both novice and advanced learners. Concept map completion might give learners better insight into what they have and have not yet learned, allowing them to focus on those aspects during subsequent example study.
A traffic signal for heterodimeric amino acid transporters to transfer from the ER to the Golgi.
Ganapathy, Vadivel
2009-01-15
Heterodimeric amino acid transporters represent a unique class of transport systems that consist of a light chain that serves as the 'transporter proper' and a heavy chain that is necessary for targeting the complex to the plasma membrane. The currently prevailing paradigm assigns no role for the light chains in the cellular processing of these transporters. In this issue of the Biochemical Journal, Sakamoto et al. provide evidence contrary to this paradigm. Their studies with the rBAT -b(0,+)AT (related to b(0,+) amino acid transporter-b(0,+)-type amino acid transporter) heterodimeric amino acid transporter show that the C-terminus of the light chain b(0,+)AT contains a sequence motif that serves as the traffic signal for the transfer of the heterodimeric complex from the endoplasmic reticulum to the Golgi. This is a novel function for the light chain in addition to its already established role as the subunit responsible for the transport activity. These new findings also seem to be applicable to other heterodimeric amino acid transporters as well.
Atomic scale real-space mapping of holes in YBa2Cu3O(6+δ).
Gauquelin, N; Hawthorn, D G; Sawatzky, G A; Liang, R X; Bonn, D A; Hardy, W N; Botton, G A
2014-07-15
The high-temperature superconductor YBa2Cu3O(6+δ) consists of two main structural units--a bilayer of CuO2 planes that are central to superconductivity and a CuO(2+δ) chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.
Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.
2016-01-01
A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728
Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A
2010-04-01
The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.
Number-theoretic nature of communication in quantum spin systems.
Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie
2012-08-03
The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.
Liu, Jian; McLuckey, Scott A.
2012-01-01
The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749
Methanol Cannon Demonstrations Revisited.
ERIC Educational Resources Information Center
Dolson, David A.; And Others
1995-01-01
Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)
Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin
2017-04-01
Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.
Han, Hongling; Xia, Yu; McLuckey, Scott A.
2008-01-01
A series of c- and z•-type product ions formed via gas-phase electron transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z• species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-and z-type ions. Most of the fragmentation pathways of z• species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z• species are different from the small losses observed from the charge-reduced peptide molecular species in electron transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues. PMID:17608403
Recent Direct Reaction Experimental Studies with Radioactive Tin Beams
Jones, K. L.; Ahn, S.; Allmond, J. M.; ...
2015-01-01
Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less
Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu
2009-01-01
Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192
Derboven, Pieter; Van Steenberge, Paul H M; Vandenbergh, Joke; Reyniers, Marie-Francoise; Junkers, Thomas; D'hooge, Dagmar R; Marin, Guy B
2015-12-01
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry...
Protein Electrophoresis/Immunofixation Electrophoresis
... underlying disease. Follow-up tests may include, for example, albumin , immunoelectrophoresis, serum free light chains , quantitative immunoglobuins , ... the disease and the effectiveness of treatment. Some examples of when an electrophoresis test may be ordered ...
Spin-state transfer in laterally coupled quantum-dot chains with disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl
2010-08-15
Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less
Coelho Graça, Didia; Hartmer, Ralf; Jabs, Wolfgang; Beris, Photis; Clerici, Lorella; Stoermer, Carsten; Samii, Kaveh; Hochstrasser, Denis; Tsybin, Yury O; Scherl, Alexander; Lescuyer, Pierre
2015-04-01
Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants. To reach this goal, a top-down electron transfer dissociation mass spectrometry method was developed for hemoglobin β chain analysis. A diagnostic product ion list was established with a color code strategy allowing to quickly and specifically localize a mutation in the hemoglobin β chain sequence. The method was applied to the analysis of rare hemoglobin β chain variants and an (A)γ-β fusion protein. The results showed that the developed data analysis process allows fast and reliable interpretation of top-down electron transfer dissociation mass spectra by nonexpert users in the clinical area.
Wang, Chuanfei; Wang, Xiaoping; Yuan, Xiaohua; Ren, Jiao; Gong, Ping
2015-06-01
Limited studies on bioaccumulation of persistent organic pollutants (POPs) along terrestrial food chains were conducted. The food chain air-grass-yak (butter) in the pasture region of Namco in the central Tibetan Plateau (TP) was chosen for study. The air, grass and butter POPs in the TP were at the lower end of the concentrations generally found around the globe. HCB was the main pollutant in air and butter. Besides HCB, β-HCH and p,p'-DDE were the other major compounds in butter. Along the food chain, DDTs and high molecular weight PCB-138, 153 and 180 had higher Biological Concentration Factor values. The air-butter transfer factors of POPs were derived and demonstrated the practical advantage in predicting the atmospheric OCPs and PCBs to the TP. This study sheds light on the transfer and accumulation of POPs along the terrestrial food chain of the TP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, W H; Kang, E T; Neoh, K G
2005-01-04
Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.
Carrier transfer in vertically stacked quantum ring-quantum dot chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazur, Yu. I., E-mail: ymazur@uark.edu; Dorogan, V. G.; Benamara, M.
2015-04-21
The interplay between structural properties and charge transfer in self-assembled quantum ring (QR) chains grown by molecular beam epitaxy on top of an InGaAs/GaAs quantum dot (QD) superlattice template is analyzed and characterized. The QDs and QRs are vertically stacked and laterally coupled as well as aligned within each layer due to the strain field distributions that governs the ordering. The strong interdot coupling influences the carrier transfer both along as well as between chains in the ring layer and dot template structures. A qualitative contrast between different dynamic models has been developed. By combining temperature and excitation intensity effects,more » the tuning of the photoluminescence gain for either the QR or the QD mode is attained. The information obtained here about relaxation parameters, energy scheme, interlayer and interdot coupling resulting in creation of 1D structures is very important for the usage of such specific QR–QD systems for applied purposes such as lasing, detection, and energy-harvesting technology of future solar panels.« less
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
RFID in the healthcare supply chain: usage and application.
Kumar, Sameer; Swanson, Eric; Tran, Thuy
2009-01-01
The purposes of this study are to first, determine the most efficient and cost effective portions of the healthcare supply chain in which radio frequency identification devices (RFID) can be implemented. Second, provide specific examples of RFID implementation and show how these business applications will add to the effectiveness of the healthcare supply chain. And third, to describe the current state of RFID technology and to give practical information for managers in the healthcare sector to make sound decisions about the possible implementation of RFID technology within their organizations. Healthcare industry literature was reviewed and examples of specific instances of RFID implementation were examined using an integrated simulation model developed with Excel, @Risk and Visio software tools. Analysis showed that the cost of implementing current RFID technology is too expensive for broad and sweeping implementation within the healthcare sector at this time. However, several example applications have been identified in which this technology can be effectively leveraged in a cost-effective way. This study shows that RFID technology has come a long way in the recent past and has potential to improve healthcare sector productivity and efficiency. Implementation by large companies such as Wal-mart has helped to make the technology become much more economical in its per unit cost as well as its supporting equipment and training costs. The originality of this study lies in the idea that few practical and pragmatic approaches have been taken within the academic field of study for the implementation of RFID into the healthcare supply chain. Much of the research has focused on specific companies or portions of the supply chain and not the entire supply chain. Also, many of the papers have discussed the future of the supply chain that is heavily dependent on advances in RFID technology. A few viable applications of how RFID technology can be implemented in the healthcare supply chain are presented and how the current state of technology limits the broad use and implementation of this technology in the healthcare industry.
A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics
NASA Astrophysics Data System (ADS)
Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.
2015-12-01
This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.
Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge.
Cao, Huiluo; Dong, Chunming; Bougouffa, Salim; Li, Jiangtao; Zhang, Weipeng; Shao, Zongze; Bajic, Vladimir B; Qian, Pei-Yuan
2016-03-08
In the dark ocean, the SAR324 group of Delta-proteobacteria has been associated with a chemolithotrophic lifestyle. However, their electron transport chain for energy generation and information system has not yet been well characterized. In the present study, four SAR324 draft genomes were extracted from metagenomes sampled from hydrothermal plumes in the South Mid-Atlantic Ridge. We describe novel electron transport chain components in the SAR324 group, particularly the alternative complex III, which is involved in energy generation. Moreover, we propose that the C-type cytochrome, for example the C553, may play a novel role in electron transfer, adding to our knowledge regarding the energy generation process in the SAR324 cluster. The central carbon metabolism in the described SAR324 genomes exhibits several new features other than methanotrophy e.g. aromatic compound degradation. This suggests that methane oxidation may not be the main central carbon metabolism component in SAR324 cluster bacteria. The reductive acetyl-CoA pathway may potentially be essential in carbon fixation due to the absence of components from the Calvin-Benson cycle. Our study provides insight into the role of recombination events in shaping the genome of the SAR324 group based on a larger number of repeat regions observed, which has been overlooked thus far.
Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge
Cao, Huiluo; Dong, Chunming; Bougouffa, Salim; Li, Jiangtao; Zhang, Weipeng; Shao, Zongze; Bajic, Vladimir B.; Qian, Pei-Yuan
2016-01-01
In the dark ocean, the SAR324 group of Delta-proteobacteria has been associated with a chemolithotrophic lifestyle. However, their electron transport chain for energy generation and information system has not yet been well characterized. In the present study, four SAR324 draft genomes were extracted from metagenomes sampled from hydrothermal plumes in the South Mid-Atlantic Ridge. We describe novel electron transport chain components in the SAR324 group, particularly the alternative complex III, which is involved in energy generation. Moreover, we propose that the C-type cytochrome, for example the C553, may play a novel role in electron transfer, adding to our knowledge regarding the energy generation process in the SAR324 cluster. The central carbon metabolism in the described SAR324 genomes exhibits several new features other than methanotrophy e.g. aromatic compound degradation. This suggests that methane oxidation may not be the main central carbon metabolism component in SAR324 cluster bacteria. The reductive acetyl-CoA pathway may potentially be essential in carbon fixation due to the absence of components from the Calvin-Benson cycle. Our study provides insight into the role of recombination events in shaping the genome of the SAR324 group based on a larger number of repeat regions observed, which has been overlooked thus far. PMID:26953077
Charge-transfer dynamics in one-dimensional C 60 chains
NASA Astrophysics Data System (ADS)
Pérez-Dieste, V.; Tamai, A.; Greber, T.; Chiuzbaˇian, S. G.; Patthey, L.
2008-06-01
Charge transfer in highly-ordered C 60 chains grown on a Cu(5 5 3) vicinal surface is studied by means of resonant photoemission. Tuning the light polarization, autoionization of the highest occupied molecular orbital (HOMO) was expected to detect anisotropy in this one-dimensional system. For one monolayer C 60 we found no signature of autoionization. This indicates that for an electron which is excited from the C 1s level of C 60 to the lowest unoccupied molecular orbital (LUMO), hybridization leads to delocalization on the femtosecond time-scale and no influence of the light polarization is observed.
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
NASA Astrophysics Data System (ADS)
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
Sornborger, Andrew T.; Wang, Zhuo; Tao, Louis
2015-01-01
Neural oscillations can enhance feature recognition [1], modulate interactions between neurons [2], and improve learning and memory [3]. Numerical studies have shown that coherent spiking can give rise to windows in time during which information transfer can be enhanced in neuronal networks [4–6]. Unanswered questions are: 1) What is the transfer mechanism? And 2) how well can a transfer be executed? Here, we present a pulse-based mechanism by which a graded current amplitude may be exactly propagated from one neuronal population to another. The mechanism relies on the downstream gating of mean synaptic current amplitude from one population of neurons to another via a pulse. Because transfer is pulse-based, information may be dynamically routed through a neural circuit with fixed connectivity. We demonstrate the transfer mechanism in a realistic network of spiking neurons and show that it is robust to noise in the form of pulse timing inaccuracies, random synaptic strengths and finite size effects. We also show that the mechanism is structurally robust in that it may be implemented using biologically realistic pulses. The transfer mechanism may be used as a building block for fast, complex information processing in neural circuits. We show that the mechanism naturally leads to a framework wherein neural information coding and processing can be considered as a product of linear maps under the active control of a pulse generator. Distinct control and processing components combine to form the basis for the binding, propagation, and processing of dynamically routed information within neural pathways. Using our framework, we construct example neural circuits to 1) maintain a short-term memory, 2) compute time-windowed Fourier transforms, and 3) perform spatial rotations. We postulate that such circuits, with automatic and stereotyped control and processing of information, are the neural correlates of Crick and Koch’s zombie modes. PMID:26227067
Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J
2016-02-26
Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Enlarged symmetry algebras of spin chains, loop models, and S-matrices
NASA Astrophysics Data System (ADS)
Read, N.; Saleur, H.
2007-08-01
The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site ( m⩾2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation m¯. We find that these spin chains, even with arbitrary coefficients of these interactions, have a symmetry algebra A much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0,1,…,L, for the 2 L-site chain such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A(2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A(2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j and j take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra A into a ribbon Hopf algebra, and we show that this is "Morita equivalent" to the quantum group U(sl) for m=q+q. The open-chain results are extended to the cases |m|<2 for which the algebras are no longer semisimple; these possess continuum limits that are critical (conformal) field theories, or massive perturbations thereof. Such models, for open and closed boundary conditions, arise in connection with disordered fermions, percolation, and polymers (self-avoiding walks), and certain non-linear sigma models, all in two dimensions. A product operation is defined in a related way for the Temperley-Lieb representations also, and the fusion rules for this are related to those for A or U(sl) representations; this is useful for the continuum limits also, as we discuss in a companion paper.
This collection of case studies illustrates how supply chain management practices can be improved by determining the financial impact of business activities that have an impact on a company’s environmental performance.
Innovations for Grid Security from Trusted Computing
NASA Astrophysics Data System (ADS)
Mao, Wenbo
Bruno Crispo: But why do you need to chain the certificates, I don’t understand. Usually I look for, for example, storage, and then I go find somewhere that can provide the storage I need, but why do I need a chain?
Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint
Wang, Songyi; Tao, Fengming; Shi, Yuhe
2018-01-01
In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639
Leave Her out of It: Person-Presentation of Strategies is Harmful for Transfer.
Riggs, Anne E; Alibali, Martha W; Kalish, Charles W
2015-11-01
A common practice in textbooks is to introduce concepts or strategies in association with specific people. This practice aligns with research suggesting that using "real-world" contexts in textbooks increases students' motivation and engagement. However, other research suggests this practice may interfere with transfer by distracting students or leading them to tie new knowledge too closely to the original learning context. The current study investigates the effects on learning and transfer of connecting mathematics strategies to specific people. A total of 180 college students were presented with an example of a problem-solving strategy that was either linked with a specific person (e.g., "Juan's strategy") or presented without a person. Students who saw the example without a person were more likely to correctly transfer the novel strategy to new problems than students who saw the example presented with a person. These findings are the first evidence that using people to present new strategies is harmful for learning and transfer. Copyright © 2015 Cognitive Science Society, Inc.
A laboratory experiment was conducted to investigate the transfer of organic contaminants from an environmentally contaminated marine sediment through a simple marine food chain. The infaunal polychaete, Nereis virens, was exposed to contaminated sediment collected from the Passa...
76 FR 71878 - Corporate Reorganizations; Allocation of Basis in “All Cash D” Reorganizations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
..., Deputy Commissioner for Services and Enforcement. Emily S. McMahon, Acting Assistant Secretary of the... corporations in two different ownership chains that have the same ultimate indirect shareholder(s... share's basis, which would otherwise be zero following its deemed transfer through the chains of...
The Mendeleev Crater chain: A description and discussion of origin
NASA Technical Reports Server (NTRS)
Eppler, D.; Heiken, G.
1974-01-01
A 113-kilometer-long crater chain on the floor of Mendeleev Crater is the best morphological example of several similar chains on the lunar far side. Age relationships relative to Mendeleev Crater indicate that it is a younger feature that may have developed over a fault parallel to the lunar grid system. The dumbbell shape of the chain may be related to a differential stress along a fault crossing the floor that resulted in varying resistance to magma invasion.
NASA Astrophysics Data System (ADS)
Behroozi, F.
2018-04-01
When a chain hangs loosely from its end points, it takes the familiar form known as the catenary. Power lines, clothes lines, and chain links are familiar examples of the catenary in everyday life. Nevertheless, the subject is conspicuously absent from current introductory physics and calculus courses. Even in upper-level physics and math courses, the catenary equation is usually introduced as an example of hyperbolic functions or discussed as an application of the calculus of variations. We present a new derivation of the catenary equation that is suitable for introductory physics and mathematics courses.
Excitation energy transfer in the photosystem I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Andrew N
2012-09-25
Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less
Dissipative Quantum Control of a Spin Chain
NASA Astrophysics Data System (ADS)
Morigi, Giovanna; Eschner, Jürgen; Cormick, Cecilia; Lin, Yiheng; Leibfried, Dietrich; Wineland, David J.
2015-11-01
A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms.
Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg
2016-03-01
Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A
2016-10-24
The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic engineering with T cell receptors.
Zhang, Ling; Morgan, Richard A
2012-06-01
In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.
Helmig, Sarah; Gothelf, Kurt Vesterager
2017-10-23
Signal transfer is central to the controlled exchange of information in biology and advanced technologies. Therefore, the development of reliable, long-range signal transfer systems for artificial nanoscale assemblies is of great scientific interest. We have designed such a system for the signal transfer between two connected DNA nanostructures, using the hybridization chain reaction (HCR). Two sets of metastable DNA hairpins, one of which is immobilized at specific points along tracks on DNA origami structures, are polymerized to form a continuous DNA duplex, which is visible using atomic force microscopy (AFM). Upon addition of a designed initiator, the initiation signal is efficiently transferred more than 200 nm from a specific location on one origami structure to an end point on another origami structure. The system shows no significant loss of signal when crossing from one nanostructure to another and, therefore, has the potential to be applied to larger multi-component DNA assemblies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamical ion transfer between coupled Coulomb crystals in a double-well potential.
Klumpp, Andrea; Zampetaki, Alexandra; Schmelcher, Peter
2017-09-01
We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the structural disorder caused by the quench of the barrier height.
Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2017-12-01
As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.
Howard, Leah; Weng, Yiming; Xie, Dong
2014-06-01
The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Dong, Xiangbai; Zhang, Du; Liu, Jie; Liu, Hualiang; Tian, Lihong; Jiang, Ling
2015-01-01
Plastidial disproportionating enzyme1 (DPE1), an α-1,4-d-glucanotransferase, has been thought to be involved in storage starch synthesis in cereal crops. However, the precise function of DPE1 remains to be established. We present here the functional identification of DPE1 in storage starch synthesis in rice (Oryza sativa) by endosperm-specific gene overexpression and suppression. DPE1 overexpression decreased amylose content and resulted in small and tightly packed starch granules, whereas DPE1 suppression increased amylose content and formed heterogeneous-sized, spherical, and loosely packed starch granules. Chains with degree of polymerization (DP) of 6 to 10 and 23 to 38 were increased, while chains with DP of 11 to 22 were decreased in amylopectin from DPE1-overexpressing seeds. By contrast, chains with DP of 6 to 8 and 16 to 36 were decreased, while chains with DP of 9 to 15 were increased in amylopectin from DPE1-suppressed seeds. Changes in DPE1 gene expression also resulted in modifications in the thermal and pasting features of endosperm starch granules. In vitro analyses revealed that recombinant DPE1 can break down amylose into maltooligosaccharides in the presence of Glc, while it can transfer maltooligosyl groups from maltooligosaccharide to amylopectin or transfer maltooligosyl groups within and among amylopectin molecules in the absence of Glc. Moreover, a metabolic flow of maltooligosyl groups from amylose to amylopectin was clearly identifiable when comparing DPE1-overexpressing lines with DPE1-suppressed lines. These findings demonstrate that DPE1 participates substantially in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. PMID:26471894
Transfer-Matrix Method for Solving the Spin 1/2 Antiferromagnetic Heisenberg Chain
NASA Astrophysics Data System (ADS)
Garcia-Bach, M. A.; Klein, D. J.; Valenti, R.
Following the discovery of high Tc superconductivity in the copper oxides, there has been a great deal of interest in the RVB wave function proposed by Anderson [1]. As a warm-up exercise we have considered a valence-bond wave function for the one dimensional spin-1/2 Heisenberg chain. The main virtue of our work is to propose a new variational singlet wavefunction which is almost analytically tractable by a transfer-matrix technique. We have obtained the ground state energy for finite as well as infinite chains, in good agreement with exact results. Correlation functions, excited states, and the effects of other interactions (e.g., spin-Peierls) are also accessible within this scheme [2]. Since the ground state of the chain is known to be a singlet (Lieb & Mattis [3]), we write the appropriate wave function as a superposition of valence-bond singlets, |ψ > =∑ limits k C k | k>, where |k> is a spin configuration obtained by pairing all spins into singlet pairs, in a way which is common in valence-bond calculations of large molecules. As in that case, each configuration, |k>, can be represented by a Rümer diagram, with directed bonds connecting each pair of spins on the chain. The ck's are variational co-efficients, the form of which is determined as follows: Each singlet configuration (Rümer diagram) is divided into "zones", a "zone" corresponding to the region between two consecutive sites. Each zone is indexed by its distance from the end of the chain and by the number of bonds crossing it. Our procedure assigns a variational parameter, xij, to the jth zone, when crossed by i bonds. The resulting wavefunction for an N-site chain is written as |ψ > =∑ limits k ∏ M limits { i =1} ∏ { N -1}limits { j =1} X ij{ m ij (k)} | k> where mij(k) equals 1 when zone j is crossed by i bonds and zero otherwise. To make the calculation tractable we reduce the number of variational parameters by disallowing configurations with bonds connecting any two sites separated by more than 2M lattice points. (For simplicity, we have limited ourselves to M=3, but the scheme can be used for any M). With the simple ansatz, matrix elements can be calculated by a transfer-matrix method. To understand the transfer-matrix method note that since only local zone parameters appear in the description of each state |k>, matrix elements and overlaps, < k| bar S q bar S{ q +1} |k'> and
ERIC Educational Resources Information Center
Monroe, Charles; Newman, John
2005-01-01
This simple example demonstrates the physical significance of similarity solutions and the utility of dimensional and asymptotic analysis of partial differential equations. A procedure to determine the existence of similarity solutions is proposed and subsequently applied to transient constant-flux heat transfer. Short-time expressions follow from…
ERIC Educational Resources Information Center
Civil Rights Project / Proyecto Derechos Civiles, 2012
2012-01-01
This study followed all freshman community college students in California who had demonstrated the intent to transfer from 1996, 1997, and 1998. Outcomes were assessed for each of the three entering cohorts after six years (2002-2004) and students were linked with their high schools of origin and the 4-year colleges to which they transferred. The…
Sensitivity Equation Derivation for Transient Heat Transfer Problems
NASA Technical Reports Server (NTRS)
Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson
2004-01-01
The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.
Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D
2014-04-17
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute-solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance.
... Transfer Surgery Find a hand surgeon near you. Videos Figures Figure 2: Example of Tendon Transfer surgery ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...
Sugimoto, Toshikazu; Habuchi, Satoshi; Ogino, Kenji; Vacha, Martin
2009-09-10
We study conformation-dependent photophysical properties of polythiophene (PT) by molecular dynamics simulations and by ensemble and single-molecule optical experiments. We use a graft copolymer consisting of a polythiophene backbone and long polystyrene branches and compare its properties with those obtained on the same polythiophene derivative without the side chains. Coarse-grain molecular dynamics simulations show that in a poor solvent, the PT without the side chains (PT-R) forms a globulelike conformation in which distances between any two conjugated segments on the chain are within the Forster radius for efficient energy transfer. In the PT with the polystyrene branches (PT-PS), the polymer main PT chain retains an extended coillike conformation, even in a poor solvent, and the calculated distances between conjugated segments favor energy transfer only between a few neighboring chromophores. The theoretical predictions are confirmed by measurements of fluorescence anisotropy and fluorescence blinking of the polymers' single chains. High anisotropy ratios and two-state blinking in PT-R are due to localization of the exciton on a single conjugated segment. These signatures of exciton localization are absent in single chains of PT-PS. Electric-field-induced quenching measured as a function of concentration of PT dispersed in an inert matrix showed that in well-isolated chains of PT-PS, the exciton dissociation is an intrachain process and that aggregation of the PT-R chains causes an increase in quenching due to the onset of interchain interactions. Measurements of the field-induced quenching on single chains indicate that in PT-R, the exciton dissociation is a slower process that takes place only after the exciton is localized on one conjugated segment.
Influence of Protein Scaffold on Side-Chain Transfer Free Energies.
Marx, Dagen C; Fleming, Karen G
2017-08-08
The process by which membrane proteins fold involves the burial of side chains into lipid bilayers. Both structure and function of membrane proteins depend on the magnitudes of side-chain transfer free energies (ΔΔG sc o ). In the absence of other interactions, ΔΔG sc o is an independent property describing the energetics of an isolated side chain in the bilayer. However, in reality, side chains are attached to the peptide backbone and surrounded by other side chains in the protein scaffold in biology, which may alter the apparent ΔΔG sc o . Previously we reported a whole protein water-to-bilayer hydrophobicity scale using the transmembrane β-barrel Escherichia coli OmpLA as a scaffold protein. To investigate how a different protein scaffold can modulate these energies, we measured ΔΔG sc o for all 20 amino acids using the transmembrane β-barrel E. coli PagP as a scaffold protein. This study represents, to our knowledge, the first instance of ΔΔG sc o measured in the same experimental conditions in two structurally and sequentially distinct protein scaffolds. Although the two hydrophobicity scales are strongly linearly correlated, we find that there are apparent scaffold induced changes in ΔΔG sc o for more than half of the side chains, most of which are polar residues. We propose that the protein scaffold affects the ΔΔG sc o of side chains that are buried in unfavorable environments by dictating the mechanisms by which the side chain can reach a more favorable environment and thus modulating the magnitude of ΔΔG sc o . Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ICAT and the NASA technology transfer process
NASA Technical Reports Server (NTRS)
Rifkin, Noah; Tencate, Hans; Watkins, Alison
1993-01-01
This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.
26 CFR 1.860A-0 - Outline of REMIC provisions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... rules. (i) Transfers of certain residual interests. (ii) Transfers to foreign holders. (iii) Residual... cooperatives. [Reserved] (c) Transfers of noneconomic residual interests. (1) In general. (2) Noneconomic.... (9) Examples. (10) Effective dates. (d) Transfers to foreign persons. § 1.860E-2Tax on transfers of...
Example-based learning: effects of model expertise in relation to student expertise.
Boekhout, Paul; van Gog, Tamara; van de Wiel, Margje W J; Gerards-Last, Dorien; Geraets, Jacques
2010-12-01
Worked examples are very effective for novice learners. They typically present a written-out ideal (didactical) solution for learners to study. This study used worked examples of patient history taking in physiotherapy that presented a non-didactical solution (i.e., based on actual performance). The effects of model expertise (i.e., worked example based on advanced, third-year student model or expert physiotherapist model) in relation to students' expertise (i.e., first- or second-year) were investigated. One hundred and thirty-four physiotherapy students (61 first-year and 73 second-year). Design was 2 × 2 factorial with factors 'Student Expertise' (first-year vs. second-year) and 'Model Expertise' (expert vs. advanced student). Within expertise levels, students were randomly assigned to the Expert Example or the Advanced Student Example condition. All students studied two examples (content depending on their assigned condition) and then completed a retention and test task. They rated their invested mental effort after each example and test task. Second-year students invested less mental effort in studying the examples, and in performing the retention and transfer tasks than first-year students. They also performed better on the retention test, but not on the transfer test. In contrast to our hypothesis, there was no interaction between student expertise and model expertise: all students who had studied the Expert examples performed better on the transfer test than students who had studied Advanced Student Examples. This study suggests that when worked examples are based on actual performance, rather than an ideal procedure, expert models are to be preferred over advanced student models.
Manual for Transference Work Scale; a micro-analytical tool for therapy process analyses.
Ulberg, Randi; Amlo, Svein; Høglend, Per
2014-11-18
The present paper is a manual for the Transference Work Scale (TWS). The inter-rater agreement on the 26 TWS items was good to excellent and previously published. TWS is a therapy process rating scale focusing on Transference Work (TW) (i.e. analysis of the patient-therapist relationship). TW is considered a core active ingredient in dynamic psychotherapy. Adequate process scales are needed to identify and analyze in-session effects of therapist techniques in psychodynamic psychotherapy and empirically establish their links to outcome. TWS was constructed to identify and categorize relational (transference) interventions, and explore the in-session impact of analysis of the patient-therapist relationship (transference work). TWS has sub scales that rate timing, content, and valence of the transference interventions, as well as response from the patient. Descriptions and elaborations of the items in TWS are provided. Clinical examples of transference work from the First Experimental Study of Transference Interpretations (FEST) are included and followed by examples of how to rate transcripts from therapy sessions with TWS. The present manual describes in detail the rating procedure when using Transference Work Scale. Ratings are illustrated with clinical examples from FEST. TWS might be a potentially useful tool to explore the interaction of timing, category, and valence of transference work in predicting in-session patient response as well as treatment outcome. TWS might prove especially suitable for intensive case studies combining quantitative and narrative data. First Experimental Study of Transference-interpretations (FEST307/95). ClinicalTrials.gov Identifier: NCT00423462. URL: http://clinicaltrials.gov/ct2/show/NCT00423462?term=FEST&rank=2.
NASA Astrophysics Data System (ADS)
Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli
2016-05-01
After the earthquake and tsunami on 11 March 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past 5 years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms, and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain biological uptake model of radionuclides (BURN) has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit-feeding invertebrates, demersal fishes fed by benthic invertebrates, and bottom omnivorous predators for the benthic food chain; crustaceans, mollusks, and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the north-western Pacific for the period of 1945-2010, and then for the period of 2011-2020 to assess the radiological consequences of 137Cs released due to the FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011-2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit-feeding invertebrates (0.45 yr-1) is close to the observed decrease constant in sediments (0.44 yr-1). These results strongly indicate that the gradual decrease of activity in demersal fish (decrease constant is 0.46 yr-1) is caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit-feeding invertebrates. The estimated model transfer coefficient from bulk sediment to demersal fish in the model for 2012-2020 (0.13) is larger than that to the deposit-feeding invertebrates (0.07). In addition, the transfer of 137Cs through food webs for the period of 1945-2020 has been modelled for the Baltic Sea contaminated due to global fallout and from the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Unlike the open coastal system where the FDNPP is located, the dynamics of radionuclide transfer in the Baltic Sea reach a quasi-steady state due to the slow rate in water mass exchange in this semi-enclosed basin. Obtained results indicate a substantial contribution of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential application of a generic model in different regions of the world's oceans.
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
Murakami, Masashi; Ohte, Nobuhito; Suzuki, Takahiro; Ishii, Nobuyoshi; Igarashi, Yoshiaki; Tanoi, Keitaro
2014-01-01
Radionuclides, including 137Cs, were released from the disabled Fukushima Daiichi Nuclear Power Plant and had been deposited broadly over forested areas of north-eastern Honshu Island, Japan. In the forest, 137Cs was highly concentrated on leaf litters deposited in autumn 2010, before the accident. Monitoring of the distribution of 137Cs among functional groups clearly showed the role of the detrital food chain as the primary channel of 137Cs transfer to consumer organisms. Although many studies have reported the bioaccumulation (or dilution) of radioactive materials through trophic interactions, the present results highlight the importance of examining multiple possible pathways (e.g., grazing vs. detrital chains) in the proliferation of 137Cs through food webs. These results provide important insight into the future distribution and transfer of 137Cs within forest ecosystems. PMID:24398571
Xue, Wentao; Wang, Jie; Wen, Ming; Chen, Gaojian; Zhang, Weidong
2017-03-01
The successful chain-growth copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel-permeation chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition, the electron transfer mediated "click-radical" concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well-defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Jianbing; Li, Decai; Liang, Hui; Lu, Jiang
2017-08-01
Photo-crosslinkable and amine-containing block copolymer nanoparticles are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly of a multifunctional core-forming monomer, 2-((3-(4-(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2-hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon-carbon double bonds upon UV irradiation, the as-prepared block copolymer nanoparticles are readily stabilized by photo-crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako
2013-01-01
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149
Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako
2013-01-10
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.
Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics
NASA Astrophysics Data System (ADS)
Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene
2017-01-01
Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.
Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain
NASA Astrophysics Data System (ADS)
Wang, Luxia; May, Volkhard
2017-08-01
The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.
Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien
2013-10-14
Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.
Localization of Ubiquinone-8 in the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae*
Casutt, Marco S.; Nedielkov, Ruslan; Wendelspiess, Severin; Vossler, Sara; Gerken, Uwe; Murai, Masatoshi; Miyoshi, Hideto; Möller, Heiko M.; Steuber, Julia
2011-01-01
Na+ is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) as the first complex in its respiratory chain. The Na+-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na+ translocation by the Na+-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na+-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na+-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA. PMID:21885438
Tsusaki, Keiji; Watanabe, Hikaru; Yamamoto, Takuo; Nishimoto, Tomoyuki; Chaen, Hiroto; Fukuda, Shigeharu
2012-01-01
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.
Sustainable value creation through new industrial supply chains in apparel and fashion
NASA Astrophysics Data System (ADS)
Pal, R.; Sandberg, E.
2017-10-01
This paper explores the inter-organizational value creation, in apparel supply chain context, through circularity and digitalization for sustainability, by gathering evidences from vivid research experiences. It can be highlighted that inter-organizational value creation in both circular- and digital- apparel supply chains largely builds upon a variety of collaborative initiatives, and among a range of included members. Knowledge co-evolvement and business co-development, end-to-end integration and information transfer, and open networks are crucial to such collaborations - making development of new supply chain structures a meta-capability of apparel firms in the changing industrial landscape.
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
Xu, Yingqi; Plechanovová, Anna; Simpson, Peter; Marchant, Jan; Leidecker, Orsolya; Kraatz, Sebastian; Hay, Ronald T.; Matthews, Steve J.
2014-01-01
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer. PMID:24969970
Automatic spin-chain learning to explore the quantum speed limit
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Ming; Cui, Zi-Wei; Wang, Xin; Yung, Man-Hong
2018-05-01
One of the ambitious goals of artificial intelligence is to build a machine that outperforms human intelligence, even if limited knowledge and data are provided. Reinforcement learning (RL) provides one such possibility to reach this goal. In this work, we consider a specific task from quantum physics, i.e., quantum state transfer in a one-dimensional spin chain. The mission for the machine is to find transfer schemes with the fastest speeds while maintaining high transfer fidelities. The first scenario we consider is when the Hamiltonian is time independent. We update the coupling strength by minimizing a loss function dependent on both the fidelity and the speed. Compared with a scheme proven to be at the quantum speed limit for the perfect state transfer, the scheme provided by RL is faster while maintaining the infidelity below 5 ×10-4 . In the second scenario where a time-dependent external field is introduced, we convert the state transfer process into a Markov decision process that can be understood by the machine. We solve it with the deep Q-learning algorithm. After training, the machine successfully finds transfer schemes with high fidelities and speeds, which are faster than previously known ones. These results show that reinforcement learning can be a powerful tool for quantum control problems.
Distribution Free Approach for Coordination of a Supply Chain with Consumer Return
NASA Astrophysics Data System (ADS)
Hu, Jinsong; Xu, Yuanji
Consumer return is considered in a coordination of a supply chain consisting of one manufacturer and one retailer. A distribution free approach is employed to deal with a centralized decision model and a decentralized model which are constructed under the situation with only knowing the demand function's mean and variance, respectively. A markdown money contract is designed to coordinate the supply chain, and it is also proved that the contract can make the supply chain perfectly coordinated. Several numerical examples are given at the end of this paper.
Sampling rare fluctuations of discrete-time Markov chains
NASA Astrophysics Data System (ADS)
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Sampling rare fluctuations of discrete-time Markov chains.
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
Effects of Example Variability and Prior Knowledge in How Students Learn to Solve Equations
ERIC Educational Resources Information Center
Guo, Jian-Peng; Yang, Ling-Yan; Ding, Yi
2014-01-01
Researchers have consistently demonstrated that multiple examples are better than one example in facilitating learning because the comparison evoked by multiple examples supports learning and transfer. However, research outcomes are unclear regarding the effects of example variability and prior knowledge on learning from comparing multiple…
Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M
2016-06-23
Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.
Triplet Transport to and Trapping by Acceptor End Groups on Conjugated Polyfluorene Chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreearunothai, P.; Miller, J.; Estrada, A.
2011-08-31
Triplet excited states created in polyfluorene (pF) molecules having average lengths up to 170 repeat units were transported to and captured by trap groups at the ends in less {approx}40 ns. Almost all of the triplets attached to the chains reached the trap groups, ruling out the presence of substantial numbers of defects that prevent transport. The transport yields a diffusion coefficient D of at least 3 x 10{sup -4} cm{sup 2} s{sup -1}, which is 30 times typical molecular diffusion and close to a value for triplet transport reported by Keller (J. Am. Chem. Soc.2011, 133, 11289-11298). The tripletmore » states were created in solution by pulse radiolysis; time resolution was limited by the rate of attachment of triplets to the pF chains. Naphthylimide (NI) or anthraquinone (AQ) groups attached to the ends of the chains acted as traps for the triplets, although AQ would not have been expected to serve as a trap on the basis of triplet energies of the separate molecules. The depths of the NI and AQ triplet traps were determined by intermolecular triplet transfer equilibria and temperature dependence. The trap depths are shallow, just a few times thermal energy for both, so a small fraction of the triplets reside in the pF chains in equilibrium with the end-trapped triplets. Trapping by AQ appears to arise from charge transfer interactions between the pF chains and the electron-accepting AQ groups. Absorption bands of the end-trapped triplet states are similar in peak wavelength (760 nm) and shape to the 760 nm bands of triplets in the pF chains but have reduced intensities. When an electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), is added to the solution, it reacts with the end-trapped triplets to remove the 760 nm bands and to make the trapping irreversible. New bands created upon reaction with TMPD may be due to charge transfer states.« less
An information hidden model holding cover distributions
NASA Astrophysics Data System (ADS)
Fu, Min; Cai, Chao; Dai, Zuxu
2018-03-01
The goal of steganography is to embed secret data into a cover so no one apart from the sender and intended recipients can find the secret data. Usually, the way the cover changing was decided by a hidden function. There were no existing model could be used to find an optimal function which can greatly reduce the distortion the cover suffered. This paper considers the cover carrying secret message as a random Markov chain, taking the advantages of a deterministic relation between initial distributions and transferring matrix of the Markov chain, and takes the transferring matrix as a constriction to decrease statistical distortion the cover suffered in the process of information hiding. Furthermore, a hidden function is designed and the transferring matrix is also presented to be a matrix from the original cover to the stego cover. Experiment results show that the new model preserves a consistent statistical characterizations of original and stego cover.
Yan, Kun; Gao, Xiang; Luo, Yingwu
2015-07-01
A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surveying the quantum group symmetries of integrable open spin chains
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Retore, Ana L.
2018-05-01
Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.
The knowledge-value chain: A conceptual framework for knowledge translation in health.
Landry, Réjean; Amara, Nabil; Pablos-Mendes, Ariel; Shademani, Ramesh; Gold, Irving
2006-08-01
This article briefly discusses knowledge translation and lists the problems associated with it. Then it uses knowledge-management literature to develop and propose a knowledge-value chain framework in order to provide an integrated conceptual model of knowledge management and application in public health organizations. The knowledge-value chain is a non-linear concept and is based on the management of five dyadic capabilities: mapping and acquisition, creation and destruction, integration and sharing/transfer, replication and protection, and performance and innovation.
Kinetic chain contributions to elbow function and dysfunction in sports.
Ben Kibler, W; Sciascia, Aaron
2004-10-01
The elbow functions in throwing and other athletic activities as a link in the kinetic chain of force development, regulation, and transfer. Efficient function, with maximal performance and minimal injury risk, requires optimum activation of all the link in the kinetic chain. Injury is often associated with alterations in force production or regulation capabilities in links that may be distant to the site of injury. Evaluation of injured athletes should include screening examinations for these areas, and treatment and conditioning should also include these areas.
The knowledge-value chain: A conceptual framework for knowledge translation in health.
Landry, Réjean; Amara, Nabil; Pablos-Mendes, Ariel; Shademani, Ramesh; Gold, Irving
2006-01-01
This article briefly discusses knowledge translation and lists the problems associated with it. Then it uses knowledge-management literature to develop and propose a knowledge-value chain framework in order to provide an integrated conceptual model of knowledge management and application in public health organizations. The knowledge-value chain is a non-linear concept and is based on the management of five dyadic capabilities: mapping and acquisition, creation and destruction, integration and sharing/transfer, replication and protection, and performance and innovation. PMID:16917645
Technology transfer needs and experiences: The NASA Research Center perspective
NASA Technical Reports Server (NTRS)
Gross, Anthony R.
1992-01-01
Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.
Covariate adjustment of event histories estimated from Markov chains: the additive approach.
Aalen, O O; Borgan, O; Fekjaer, H
2001-12-01
Markov chain models are frequently used for studying event histories that include transitions between several states. An empirical transition matrix for nonhomogeneous Markov chains has previously been developed, including a detailed statistical theory based on counting processes and martingales. In this article, we show how to estimate transition probabilities dependent on covariates. This technique may, e.g., be used for making estimates of individual prognosis in epidemiological or clinical studies. The covariates are included through nonparametric additive models on the transition intensities of the Markov chain. The additive model allows for estimation of covariate-dependent transition intensities, and again a detailed theory exists based on counting processes. The martingale setting now allows for a very natural combination of the empirical transition matrix and the additive model, resulting in estimates that can be expressed as stochastic integrals, and hence their properties are easily evaluated. Two medical examples will be given. In the first example, we study how the lung cancer mortality of uranium miners depends on smoking and radon exposure. In the second example, we study how the probability of being in response depends on patient group and prophylactic treatment for leukemia patients who have had a bone marrow transplantation. A program in R and S-PLUS that can carry out the analyses described here has been developed and is freely available on the Internet.
ERIC Educational Resources Information Center
Duan, Yanqing; Bentley, Yongmei; Fu, Zetian; Zografos, Konstantinos; Bemeleit, Boris
2008-01-01
This paper reports research findings from a project funded by the European Commission. The research used case studies and surveys to identify gaps between Europe and China in the level of Internet adoption in fresh-produce supply chains. The project reveals barriers to Internet adoption in China in this industry, and employs a transnational…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao
The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.
Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao; ...
2018-01-01
The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.
ERIC Educational Resources Information Center
Chow, Alan F.; Van Haneghan, James P.
2016-01-01
This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…
Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael
2016-08-01
The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.
Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur
2010-02-01
Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites. 2009 Elsevier B.V. All rights reserved.
2015-01-01
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute–solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance. PMID:24650057
Proton transfer from imidazole to chloranil studied by FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Sharma, Amit
2018-05-01
Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. Histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Therefore it is important to study its proton transfer property. In the present work proton transfer from imidazole to chloranil is investigated by Fourier Transform Infra red Spectroscopy.
The human element in technology transfer
NASA Technical Reports Server (NTRS)
Peake, H. J.
1978-01-01
A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.
Energy transfer of nucleic acid products
NASA Astrophysics Data System (ADS)
Jung, Paul M.; Hu, Hsiang-Yun; Khalil, Omar S.
1995-04-01
Fluorescence energy transfer was investigated as a homogeneous detection method for the gapped ligase chain reaction (G-LCR). Oligonucleotides of a Chlamydia trachomatic G-LCR probe set were labeled with fluorescein as the donor and Texas Red as the acceptor fluorophore. Amplification and detection of 10 molecules of synthetic target was demonstrated in spiked urine samples.
Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2.
Kanagawa, Naoko; Yanagawa, Tatsuya; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku
2010-03-26
Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Simplification of irreversible Markov chains by removal of states with fast leaving rates.
Jia, Chen
2016-07-07
In the recent work of Ullah et al. (2012a), the authors developed an effective method to simplify reversible Markov chains by removal of states with low equilibrium occupancies. In this paper, we extend this result to irreversible Markov chains. We show that an irreversible chain can be simplified by removal of states with fast leaving rates. Moreover, we reveal that the irreversibility of the chain will always decrease after model simplification. This suggests that although model simplification can retain almost all the dynamic information of the chain, it will lose some thermodynamic information as a trade-off. Examples from biology are also given to illustrate the main results of this paper. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global Knowledge Transfer Issues. Symposium 12. [AHRD Conference, 2001].
ERIC Educational Resources Information Center
2001
This document contains three papers on global knowledge transfer issues and human resource development (HRD). "Indigenizing Knowledge Transfer" (Gary N. McLean) explores examples of HRD in which ethnocentric perspectives predominate and argues that, unless a HRD develops a global perspective, efforts to transfer knowledge within academia…
2-qubit quantum state transfer in spin chains and cold atoms with weak links
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Apollaro, Tony J. G.; Trombettoni, Andrea; Paganelli, Simone
In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.
The cutoff phenomenon in finite Markov chains.
Diaconis, P
1996-01-01
Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633
Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita
2009-07-01
Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.
The Epistemological Chain: Practical Applications in Sports
ERIC Educational Resources Information Center
Grecic, David; Collins, Dave
2013-01-01
This article highlights the role of personal epistemology in decision-making and proposes the construct of an epistemological chain (EC) to support this process in the domain of sports coaching. First, the EC is outlined using examples from education and other parallel disciplines. What it looks like to sports coaches is then described, and its…
ERIC Educational Resources Information Center
Behroozi, F.
2018-01-01
When a chain hangs loosely from its end points, it takes the familiar form known as the catenary. Power lines, clothes lines, and chain links are familiar examples of the catenary in everyday life. Nevertheless, the subject is conspicuously absent from current introductory physics and calculus courses. Even in upper-level physics and math courses,…
Gejl, Michael; Rungby, Jørgen; Brock, Birgitte; Gjedde, Albert
2014-08-01
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Pandelia, Maria-Eirini; Nitschke, Wolfgang; Infossi, Pascale; Giudici-Orticoni, Marie-Thérèse; Bill, Eckhard; Lubitz, Wolfgang
2011-04-12
Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron "wires" form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O(2) to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of (57)Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S](3+) state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress.
Pandelia, Maria-Eirini; Nitschke, Wolfgang; Infossi, Pascale; Giudici-Orticoni, Marie-Thérèse; Bill, Eckhard; Lubitz, Wolfgang
2011-01-01
Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron “wires” form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O2 to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of 57Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S]3+ state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress. PMID:21444783
NASA Astrophysics Data System (ADS)
Doin, Marie-Pierre; Lodge, Felicity; Guillaso, Stephane; Jolivet, Romain; Lasserre, Cecile; Ducret, Gabriel; Grandin, Raphael; Pathier, Erwan; Pinel, Virginie
2012-01-01
We assemble a processing chain that handles InSAR computation from raw data to time series analysis. A large part of the chain (from raw data to geocoded unwrapped interferograms) is based on ROI PAC modules (Rosen et al., 2004), with original routines rearranged and combined with new routines to process in series and in a common radar geometry all SAR images and interferograms. A new feature of the software is the range-dependent spectral filtering to improve coherence in interferograms with long spatial baselines. Additional components include a module to estimate and remove digital elevation model errors before unwrapping, a module to mitigate the effects of the atmospheric phase delay and remove residual orbit errors, and a module to construct the phase change time series from small baseline interferograms (Berardino et al. 2002). This paper describes the main elements of the processing chain and presents an example of application of the software using a data set from the ENVISAT mission covering the Etna volcano.
An algorithm for converting a virtual-bond chain into a complete polypeptide backbone chain
NASA Technical Reports Server (NTRS)
Luo, N.; Shibata, M.; Rein, R.
1991-01-01
A systematic analysis is presented of the algorithm for converting a virtual-bond chain, defined by the coordinates of the alpha-carbons of a given protein, into a complete polypeptide backbone. An alternative algorithm, based upon the same set of geometric parameters used in the Purisima-Scheraga algorithm but with a different "linkage map" of the algorithmic procedures, is proposed. The global virtual-bond chain geometric constraints are more easily separable from the loal peptide geometric and energetic constraints derived from, for example, the Ramachandran criterion, within the framework of this approach.
Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R
2017-08-30
Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.
Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain
2010-01-01
A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695
Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs.
Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo
2018-03-01
We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0≤α<1, the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N, the stationary current is independent on N. For α>1, heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α-dependent characteristic exponent.
Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs
NASA Astrophysics Data System (ADS)
Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo
2018-03-01
We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0 ≤α <1 , the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N , the stationary current is independent on N . For α >1 , heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α -dependent characteristic exponent.
Lligadas, Gerard; Grama, Silvia; Percec, Virgil
2017-04-10
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X 2 . Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Forecasting Workload for Defense Logistics Agency Distribution
2014-12-01
Distribution workload ...........................18 Monthly DD Sales for the four primary supply chains ( Avn , Land, Maritime, Ind HW) plotted to...average AVN Aviation BSM Business Systems Modernization CIT consumable items transfer C&E Construction and Equipment C&T Clothing...992081.437 See Figure 2 below for the graphical output of the linear regression. Monthly DD Sales for the four primary supply chains ( Avn , Land
Coenzyme Q biosynthesis and its role in the respiratory chain structure.
Alcázar-Fabra, María; Navas, Plácido; Brea-Calvo, Gloria
2016-08-01
Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Saini, Subhash (Technical Monitor)
1998-01-01
Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
26 CFR 1.1250-3 - Exceptions and limitations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... following examples: Example 1. (i) Green transfers section 1250 property on March 1, 1968, to a corporation... subparagraph may be illustrated by the following example: Example: (a) Green owns property consisting of land and a fully equipped factory building thereon. The property is condemned and proceeds of $100,000 are...
Code of Federal Regulations, 2010 CFR
2010-04-01
... range. (4) Examples. The principles of this paragraph (b) are illustrated by the following examples..., marketing, advertising programs and services, (including promotional programs, rebates, and co-op... sold and operating expenses. (4) Examples. The following examples illustrate the principles of this...
Kong, Fang; Hu, Chun-Li; Liang, Ming-Li; Mao, Jiang-Gao
2016-01-19
The first example of SHG crystal in the metal bromates containing π-conjugated planar triangle systems, namely, Pb4(OH)4(BrO3)3(NO3), was successfully synthesized via the hydrothermal method. Furthermore, a single crystal of centrosymmetric Pb8O(OH)6(BrO3)6(NO3)2·H2O was also obtained. Both compounds contain similar [Pb4(OH)4] cubane-like tetranuclear clusters, but they display different one-dimensional (1D) chain structures. Pb4(OH)4(BrO3)3(NO3) features a zigzag [Pb4(OH)4(BrO3)3](+) 1D chain, while Pb8O(OH)6(BrO3)6(NO3)2·H2O is composed of two different orthogonal chains: the linear [Pb4(OH)4(BrO3)2](2+) 1D chain along the b-axis and the zigzag [Pb4O2(OH)2(BrO3)4](2-) 1D chain along the a-axis. The NO3 planar triangles of the compounds are all isolated and located in the spaces of the structures. Pb4(OH)4(BrO3)3(NO3) exhibits the first example of SHG crystal in the metal bromates with π-conjugated planar triangle. The second-harmonic generation (SHG) efficiency of Pb4(OH)4(BrO3)3(NO3) is approximately equal to that of KDP and it is phase-matchable. Dipole moment and theory calculations indicate that BrO3, NO3, and PbO4 groups are the origin of its SHG efficiency, although some of the contributions cancel each other out.
Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David
2004-07-30
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
Di Mauro, S.
2010-01-01
In this brief review, I have highlighted recent advances in several areas of mitochondrial medicine, including mtDNA-related diseases, mendelian mitochondrial encephalomyopathies, and therapy. The pathogenic mechanisms of mtDNA mutations, especially those affecting mitochondrial protein synthesis, are still largely unknown. The pathogenicity of homoplasmic mtDNA mutations has become evident but has also called attention to modifying nuclear genes, yet another example of impaired intergenomic signaling. The functional significance of the homoplasmic changes associated with mitochondrial haplogroups has been confirmed. Among the mendelian disorders, a new form of “indirect hit” has been described, in which the ultimate pathogenesis is toxic damage to the respiratory chain. Three therapeutic strategies look promising: (i) allogeneic hematopoietic stem cell transplantation in MNGIE (mitochondrial neurogastrointestinal encephalomyopathy); (ii) bezafibrate, an activator of PGC-1α, has proven effective in animal models of mitochondrial myopathy; and (iii) pronucleus transfer into a normal oocyte is effective in eliminating maternal transmission of mtDNA, thus preventing the appearance of mtDNA-related disorders. PMID:21314015
Track finding in ATLAS using GPUs
NASA Astrophysics Data System (ADS)
Mattmann, J.; Schmitt, C.
2012-12-01
The reconstruction and simulation of collision events is a major task in modern HEP experiments involving several ten thousands of standard CPUs. On the other hand the graphics processors (GPUs) have become much more powerful and are by far outperforming the standard CPUs in terms of floating point operations due to their massive parallel approach. The usage of these GPUs could therefore significantly reduce the overall reconstruction time per event or allow for the usage of more sophisticated algorithms. In this paper the track finding in the ATLAS experiment will be used as an example on how the GPUs can be used in this context: the implementation on the GPU requires a change in the algorithmic flow to allow the code to work in the rather limited environment on the GPU in terms of memory, cache, and transfer speed from and to the GPU and to make use of the massive parallel computation. Both, the specific implementation of parts of the ATLAS track reconstruction chain and the performance improvements obtained will be discussed.
NASA Astrophysics Data System (ADS)
Xi, Jiaxin; Liu, Ning
2017-09-01
Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.
ERIC Educational Resources Information Center
Cohen, Arthur M.
1991-01-01
Inconsistencies in the definition of transfer from two-year to four-year institutions and in the calculation of the transfer rate have given rise to incongruous findings. For example, one researcher in 1989 reported a transfer rate of less than 12% for the colleges in Illinois at the same time that the Chancellor's Office of the California…
2016-01-01
Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC=C + NC=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilbeck, Preston L.; Tang, Qun; Mothersole, David J.
Here, six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = N C=C + N C=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid firstmore » singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S 1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a lightharvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S 1 excited state B850*. This quenching is manifested as a substantial (~2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids« less
Dilbeck, Preston L.; Tang, Qun; Mothersole, David J.; ...
2016-06-10
Here, six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = N C=C + N C=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid firstmore » singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S 1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a lightharvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S 1 excited state B850*. This quenching is manifested as a substantial (~2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids« less
Ma, Yi-Ming; Wei, Dai-Xu; Yao, Hui; Wu, Lin-Ping; Chen, Guo-Qiang
2016-08-08
A thermoresponsive graft copolymer polyhydroxyalkanoate-g-poly(N-isopropylacrylamide) or short as PHA-g-PNIPAm, was successfully synthesized via a three-step reaction. First, PNIPAm oligomer with a trithiocarbonate-based chain transfer agent (CTA), short as PNIPAm-CTA, with designed polymerization degree was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, the PNIPAm-CTA was treated with n-butylamine for aminolysis in order to obtain a pendant thiol group at the end of the chain (PNIPAm-SH). Finally, the PNIPAm-SH was grafted onto unsaturated P(3HDD-co-3H10U), a random copolymer of 3-hydroxydodecanoate (3HDD) and 3-hydroxy-10-undecylenate (3H10U), via a thiol-ene click reaction. Enhanced hydrophilicity and thermoresponsive property of the resulted PHA-g-PNIPAm were confirmed by water contact angle studies. The biocompatibility of PHA-g-PNIPAm was comparable to poly-3-hydroxybutyrate (PHB). The graft copolymer PHA-g-PNIPAm based on biopolyester PHA could be a promising material for biomedical applications.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy
NASA Astrophysics Data System (ADS)
Lisnyi, Bohdan; Strečka, Jozef
2015-03-01
The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.
Polymer in a pore: Effect of confinement on the free energy barrier
NASA Astrophysics Data System (ADS)
Kumar, Sanjiv; Kumar, Sanjay
2018-06-01
We investigate the transfer of a polymer chain from cis- side to trans- side through two types of pores: cone-shaped channel and flat-channel. Using the exact enumeration technique, we obtain the free energy landscapes of a polymer chain for such systems. We have also calculated the free-energy barrier of a polymer chain attached to the edge of the pore. The model system allows us to calculate the force required to pull polymer from the pore and stall-force to confine polymer within the pore.
Cheng, Fei; Bonder, Edward M; Jäkle, Frieder
2013-11-20
Luminescent triarylborane homo and block copolymers with well-defined chain architectures were synthesized via reversible addition-fragmentation chain transfer polymerization of a vinyl-functionalized borane monomer. The Lewis acid properties of the polymers were exploited in the luminescent detection of fluoride ions. A dual-responsive fluoride sensor was developed by taking advantage of the reversible self-assembly of a PNIPAM-based amphiphilic block copolymer. Anion detection in aqueous solution was realized by introducing positively charged pyridinium moieties along the polymer chain.
Twenty Years of European Union Support to Gene Therapy and Gene Transfer.
Gancberg, David
2017-11-01
For 20 years and throughout its research programmes, the European Union has supported the entire innovation chain for gene transfer and gene therapy. The fruits of this investment are ripening as gene therapy products are reaching the European market and as clinical trials are demonstrating the safety of this approach to treat previously untreatable diseases.
EFFECT OF HUMIC ACID ON UPTAKE AND TRANSFER OF COPPER FROM MICROBES TO CILIATES TO COPEPODS
This research is part of an ongoing project designed to determine the effect of humic acid on the uptake and transfer of metals by marine organisms at the lower end of the food chain. Binding affinities for Cu, Cd, Zn, and Cr to Suwannee River humic acid were determined at variou...
Bourassa, Dianna V; Kannenberg, Elmar L; Sherrier, D Janine; Buhr, R Jeffrey; Carlson, Russell W
2017-02-01
Rhizobium bacteria live in soil and plant environments, are capable of inducing symbiotic nodules on legumes, invade these nodules, and develop into bacteroids that fix atmospheric nitrogen into ammonia. Rhizobial lipopolysaccharide (LPS) is anchored in the bacterial outer membrane through a specialized lipid A containing a very long-chain fatty acid (VLCFA). VLCFA function for rhizobial growth in soil and plant environments is not well understood. Two genes, acpXL and lpxXL, encoding acyl carrier protein and acyltransferase, are among the six genes required for biosynthesis and transfer of VLCFA to lipid A. Rhizobium leguminosarum mutant strains acpXL, acpXL - /lpxXL - , and lpxXL - were examined for LPS structure, viability, and symbiosis. Mutations in acpXL and lpxXL abolished VLCFA attachment to lipid A. The acpXL mutant transferred a shorter acyl chain instead of VLCFA. Strains without lpxXL neither added VLCFA nor a shorter acyl chain. In all strains isolated from nodule bacteria, lipid A had longer acyl chains compared with laboratory-cultured bacteria, whereas mutant strains displayed altered membrane properties, modified cationic peptide sensitivity, and diminished levels of cyclic β-glucans. In pea nodules, mutant bacteroids were atypically formed and nitrogen fixation and senescence were affected. The role of VLCFA for rhizobial environmental fitness is discussed.
Space benefits: The secondary application of aerospace technology in other sectors of the economy
NASA Technical Reports Server (NTRS)
1980-01-01
Over 580 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included.
Space Benefits: The secondary application of aerospace technology in other sectors of the economy
NASA Technical Reports Server (NTRS)
1981-01-01
Some 585 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number; and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included.
Solitons riding on solitons and the quantum Newton's cradle.
Ma, Manjun; Navarro, R; Carretero-González, R
2016-02-01
The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process. This periodic evolution is an analog of the classical Newton's cradle.
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.
Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W
2017-11-01
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. Copyright © 2017 American Society for Microbiology.
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family
Garcia Costas, Amaya M.; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J.; Ledbetter, Rhesa N.; Seefeldt, Lance C.; Adams, Michael W. W.
2017-01-01
ABSTRACT Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. PMID:28808132
Code of Federal Regulations, 2011 CFR
2011-04-01
... 1, 2007, at a time when the fair market value of the property is 1100X, I transfers the property to... market value of 500X and an adjusted basis of 100X to FT. At the time of the transfer, FT has no U.S... time of the transfer by DT to FT. Example 2. Transfer by a foreign trust. On January 1, 2001, A...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 1, 2007, at a time when the fair market value of the property is 1100X, I transfers the property to... market value of 500X and an adjusted basis of 100X to FT. At the time of the transfer, FT has no U.S... time of the transfer by DT to FT. Example 2. Transfer by a foreign trust. On January 1, 2001, A...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 1, 2007, at a time when the fair market value of the property is 1100X, I transfers the property to... market value of 500X and an adjusted basis of 100X to FT. At the time of the transfer, FT has no U.S... time of the transfer by DT to FT. Example 2. Transfer by a foreign trust. On January 1, 2001, A...
Shadowing of non-transversal heteroclinic chains
NASA Astrophysics Data System (ADS)
Delshams, Amadeu; Simon, Adrià; Zgliczyński, Piotr
2018-03-01
We present a new result about the shadowing of non-transversal chain of heteroclinic connections based on the idea of dropping dimensions. We illustrate this new mechanism with several examples. As an application we discuss this mechanism in a simplification of a toy model system derived by Colliander et al. in the context of cubic defocusing nonlinear Schrödinger equation.
Experiences with Markov Chain Monte Carlo Convergence Assessment in Two Psychometric Examples
ERIC Educational Resources Information Center
Sinharay, Sandip
2004-01-01
There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…
26 CFR 1.958-1 - Direct and indirect ownership of stock.
Code of Federal Regulations, 2013 CFR
2013-04-01
... treated as actually owned by such person. Thus, this rule creates a chain of ownership; however, since the... United States person in the chain of ownership running from the foreign entity. The application of this... Corporation. Example 4. Among the assets of foreign estate W are Blackacre and a block of stock, consisting of...
26 CFR 1.958-1 - Direct and indirect ownership of stock.
Code of Federal Regulations, 2010 CFR
2010-04-01
... treated as actually owned by such person. Thus, this rule creates a chain of ownership; however, since the... United States person in the chain of ownership running from the foreign entity. The application of this... Corporation. Example 4. Among the assets of foreign estate W are Blackacre and a block of stock, consisting of...
26 CFR 1.958-1 - Direct and indirect ownership of stock.
Code of Federal Regulations, 2014 CFR
2014-04-01
... treated as actually owned by such person. Thus, this rule creates a chain of ownership; however, since the... United States person in the chain of ownership running from the foreign entity. The application of this... Corporation. Example 4. Among the assets of foreign estate W are Blackacre and a block of stock, consisting of...
26 CFR 1.958-1 - Direct and indirect ownership of stock.
Code of Federal Regulations, 2012 CFR
2012-04-01
... treated as actually owned by such person. Thus, this rule creates a chain of ownership; however, since the... United States person in the chain of ownership running from the foreign entity. The application of this... Corporation. Example 4. Among the assets of foreign estate W are Blackacre and a block of stock, consisting of...
26 CFR 1.958-1 - Direct and indirect ownership of stock.
Code of Federal Regulations, 2011 CFR
2011-04-01
... treated as actually owned by such person. Thus, this rule creates a chain of ownership; however, since the... United States person in the chain of ownership running from the foreign entity. The application of this... Corporation. Example 4. Among the assets of foreign estate W are Blackacre and a block of stock, consisting of...
Walzer, Katelyn A; Chi, Jen-Tsan
2017-04-03
This review focuses on the role of trans-kingdom movement of small RNA (sRNA) molecules between parasites, particularly Plasmodium falciparum, and their respective host cells. While the intercellular transfer of sRNAs within organisms is well recognized, recent studies illustrate many examples of trans-kingdom sRNA exchange within the context of host-parasite interactions. These interactions are predominantly found in the transfer of host sRNAs between erythrocytes and the invading P. falciparum, as well as other host cell types. In addition, parasite-encoded sRNAs can also be transferred to host cells to evade the immune system. The transport of these parasite sRNAs in the body fluids of the host may also offer means to detect and monitor the parasite infection. These isolated examples may only represent the tip of the iceberg in which the transfer of sRNA between host and parasites is a critical aspect of host-pathogen interactions. In addition, the levels of these sRNAs and their speed of transfer may vary dramatically under different contexts to push the biologic equilibrium toward the benefit of hosts vs. parasites. Therefore, these sRNA transfers may offer potential strategies to detect, prevent or treat parasite infections. Here, we review a brief history of the discovery of host erythrocyte sRNAs, their transfers and interactions in the context of P. falciparum infection. We also provide examples and discuss the functional significance of the reciprocal transfer of parasite-encoded sRNAs into hosts. These understandings of sRNA exchanges are put in the context of their implications for parasite pathogenesis, host defenses and the evolution of host polymorphisms driven by host interactions with these parasites.
Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels
NASA Astrophysics Data System (ADS)
Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong
2012-08-01
A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.
Biochemistry of Catabolic Reductive Dehalogenation.
Fincker, Maeva; Spormann, Alfred M
2017-06-20
A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.
NASA Astrophysics Data System (ADS)
Wang, Ji-Guo; Yang, Shi-Jie
2017-05-01
We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.
Structure-Function of the Cytochrome b 6f Complex of Oxygenic Photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, W. A.; Yamashita, E.; Baniulis, D.
2014-03-20
Structure–function of the major integral membrane cytochrome b 6f complex that functions in cyanobacteria, algae, and green plants to transfer electrons between the two reaction center complexes in the electron transport chain of oxygenic photosynthesis is discussed in the context of recently obtained crystal structures of the complex and soluble domains of cytochrome f and the Rieske iron–sulfur protein. The energy-transducing function of the complex, generation of the proton trans-membrane electrochemical potential gradient, centers on the oxidation/reduction pathways of the plastoquinol/plastoquinone (QH 2/Q), the proton donor/acceptor within the complex. These redox reactions are carried out by five redox prosthetic groupsmore » embedded in each monomer, the high potential two iron–two sulfur cluster and the heme of cytochrome f on the electropositive side (p) of the complex, two noncovalently bound b-type hemes that cross the complex and the membrane, and a covalently bound c-type heme (c n) on the electronegative side (n). These five redox-active groups are organized in high- (cyt f/[2Fe–2S] and low-potential (hemes b p, b n, c n) electron transport pathways that oxidize and reduce the quinol and quinone on the p- and n-sides in a Q-cycle-type mechanism, while translocating as many as 2 H + to the p-side aqueous side for every electron transferred through the high potential chain to the photosystem I reaction center. The presence of heme c n and the connection of the n-side of the membrane and b 6f complex to the cyclic electron transport chain indicate that the Q cycle in the oxygenic photosynthetic electron transport chain differs from those connected to the bc 1 complex in the mitochondrial respiratory chain and the chain in photosynthetic bacteria. Inferences from the structure and C2 symmetry of the complex for the pathway of QH 2/Q transfer within the complex, problems posed by the presence of lipid in the inter-monomer cavity, and the narrow portal for QH2 passage through the p-side oxidation site proximal to the [2Fe–2S] cluster are discussed.« less
Villa, R F; Gorini, A; Hoyer, S
2006-11-01
The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni
Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.
Wang, Jie; Wang, Xinbo; Xue, Wentao; Chen, Gaojian; Zhang, Weidong; Zhu, Xiulin
2016-05-01
A new, visible light-catalyzed, one-pot and one-step reaction is successfully employed to design well-controlled side-chain functionalized polymers, by the combination of ambient temperature revisible addtion-fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymerizations are well controlled in a living way under the irradiation of visible light-emitting diode (LED) light without photocatalyst and initiator, using the trithiocarbonate agent as iniferter (initiator-transfer agent-terminator) agent at ambient temperature. Fourier transfer infrared spectroscopy (FT-IR), NMR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) data confirm the successful one-pot reaction. Compared to the reported zero-valent metal-catalyzed one-pot reaction, the polymerization rate is much faster than that of the click reaction, and the visible light-catalyzed one-pot reaction can be freely and easily regulated by turning on and off the light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafalce, E.; Toglia, P.; Jiang, X.
2012-05-21
A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out.more » The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (« less
Solís, D; Jiménez-Barbero, J; Kaltner, H; Romero, A; Siebert, H C; von der Lieth, C W; Gabius, H J
2001-01-01
The term 'code' in biological information transfer appears to be tightly and hitherto exclusively connected with the genetic code based on nucleotides and translated into functional activities via proteins. However, the recent appreciation of the enormous coding capacity of oligosaccharide chains of natural glycoconjugates has spurred to give heed to a new concept: versatile glycan assembly by the genetically encoded glycosyltransferases endows cells with a probably not yet fully catalogued array of meaningful messages. Enciphered by sugar receptors such as endogenous lectins the information of code words established by a series of covalently linked monosaccharides as letters for example guides correct intra- and intercellular routing of glycoproteins, modulates cell proliferation or migration and mediates cell adhesion. Evidently, the elucidation of the structural frameworks and the recognition strategies within the operation of the sugar code poses a fascinating conundrum. The far-reaching impact of this recognition mode on the level of cells, tissues and organs has fueled vigorous investigations to probe the subtleties of protein-carbohydrate interactions. This review presents information on the necessarily concerted approach using X-ray crystallography, molecular modeling, nuclear magnetic resonance spectroscopy, thermodynamic analysis and engineered ligands and receptors. This part of the treatise is flanked by exemplarily chosen insights made possible by these techniques. Copyright 2001 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
Transfer Entropy as a Log-Likelihood Ratio
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Bossomaier, Terry
2012-09-01
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
Transfer entropy as a log-likelihood ratio.
Barnett, Lionel; Bossomaier, Terry
2012-09-28
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
Hawkes, Corinna
2009-07-01
The mapping and analysis of supply chains is a technique increasingly used to address problems in the food system. Yet such supply chain management has not yet been applied as a means of encouraging healthier diets. Moreover, most policies recommended to promote healthy eating focus on the consumer end of the chain. This article proposes a consumption-oriented food supply chain analysis to identify the changes needed in the food supply chain to create a healthier food environment, measured in terms of food availability, prices, and marketing. Along with established forms of supply chain analysis, the method is informed by a historical overview of how food supply chains have changed over time. The method posits that the actors and actions in the chain are affected by organizational, financial, technological, and policy incentives and disincentives, which can in turn be levered for change. It presents a preliminary example of the supply of Coca-Cola beverages into school vending machines and identifies further potential applications. These include fruit and vegetable supply chains, local food chains, supply chains for health-promoting versions of food products, and identifying financial incentives in supply chains for healthier eating.
Hawkes, Corinna
2009-01-01
The mapping and analysis of supply chains is a technique increasingly used to address problems in the food system. Yet such supply chain management has not yet been applied as a means of encouraging healthier diets. Moreover, most policies recommended to promote healthy eating focus on the consumer end of the chain. This article proposes a consumption-oriented food supply chain analysis to identify the changes needed in the food supply chain to create a healthier food environment, measured in terms of food availability, prices, and marketing. Along with established forms of supply chain analysis, the method is informed by a historical overview of how food supply chains have changed over time. The method posits that the actors and actions in the chain are affected by organizational, financial, technological, and policy incentives and disincentives, which can in turn be levered for change. It presents a preliminary example of the supply of Coca-Cola beverages into school vending machines and identifies further potential applications. These include fruit and vegetable supply chains, local food chains, supply chains for health-promoting versions of food products, and identifying financial incentives in supply chains for healthier eating. PMID:23144674
Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Hoffmann, Peter; Bowie, John H
2011-12-15
A joint experimental and theoretical investigation of the fragmentation behaviour of energised [M-H](-) anions from selected phosphorylated peptides has confirmed some of the most complex rearrangement processes yet to be reported for peptide negative ions. In particular: pSer and pThr (like pTyr) may transfer phosphate groups to C-terminal carboxyl anions and to the carboxyl anion side chains of Asp and Glu, and characteristic nucleophilic/cleavage reactions accompany or follow these rearrangements. pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely transfer of a phosphate group from pSer or pThr to Tyr, is energetically unfavourable in comparison. pSer can transfer phosphate to a non-phosphorylated Ser. The non-rearranged [M-H](-) species yields more abundant product anions than its rearranged counterpart. If a peptide containing any or all of Ser, Thr and Tyr is not completely phosphorylated, negative-ion cleavages can determine the number of phosphated residues, and normally the positions of Ser, Thr and Tyr, but not which specific residues are phosphorylated. This is in accord with comments made earlier by Lehmann and coworkers. Copyright © 2011 John Wiley & Sons, Ltd.
Strategic Planning of Technology Transfer.
ERIC Educational Resources Information Center
Groff, Warren H.
Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…
Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan
2015-01-01
Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au–allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. PMID:26248980
How Knowledge Organisations Work: The Case of Software Firms
ERIC Educational Resources Information Center
Gottschalk, Petter
2007-01-01
Knowledge workers in software firms solve client problems in sequential and cyclical work processes. Sequential and cyclical work takes place in the value configuration of a value shop. While typical examples of value chains are manufacturing industries such as paper and car production, typical examples of value shops are law firms and medical…
Aronson, Samuel; Babb, Lawrence; Ames, Darren; Gibbs, Richard A; Venner, Eric; Connelly, John J; Marsolo, Keith; Weng, Chunhua; Williams, Marc S; Hartzler, Andrea L; Liang, Wayne H; Ralston, James D; Devine, Emily Beth; Murphy, Shawn; Chute, Christopher G; Caraballo, Pedro J; Kullo, Iftikhar J; Freimuth, Robert R; Rasmussen, Luke V; Wehbe, Firas H; Peterson, Josh F; Robinson, Jamie R; Wiley, Ken; Overby Taylor, Casey
2018-05-31
The eMERGE Network is establishing methods for electronic transmittal of patient genetic test results from laboratories to healthcare providers across organizational boundaries. We surveyed the capabilities and needs of different network participants, established a common transfer format, and implemented transfer mechanisms based on this format. The interfaces we created are examples of the connectivity that must be instantiated before electronic genetic and genomic clinical decision support can be effectively built at the point of care. This work serves as a case example for both standards bodies and other organizations working to build the infrastructure required to provide better electronic clinical decision support for clinicians.
Ochi, Toshiki; Nakatsugawa, Munehide; Chamoto, Kenji; Tanaka, Shinya; Yamashita, Yuki; Guo, Tingxi; Fujiwara, Hiroshi; Yasukawa, Masaki; Butler, Marcus O; Hirano, Naoto
2015-09-01
Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity affects reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1(235-243) (A24/WT1(235)) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1(235) and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically unselected TCRs. ©2015 American Association for Cancer Research.
Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M
2013-03-28
This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.
Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi
2014-06-04
A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.
Tomanov, Konstantin; Nehlin, Lilian; Ziba, Ionida
2018-01-01
The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation. PMID:29133528
Pantusa, Manuela; Stirpe, Andrea; Sportelli, Luigi; Bartucci, Rosa
2010-05-01
Electron spin resonance (ESR) spectroscopy is used to study the transfer of stearic acids between human serum albumin (HSA) and sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) and of submicellar content of poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Protein/lipid dispersions are considered in which spin-labelled stearic acids at the 16th carbon atom along the acyl chain (16-SASL) are inserted either in the protein or in the SSL. Two component ESR spectra with different rotational mobility are obtained over a broad range of temperature and membrane composition. Indeed, superimposed to an anisotropic protein-signal, appears a more isotropic lipid-signal. Since in the samples only one matrix (protein or membranes) is spin-labelled, the other component accounts for the transfer of 16-SASL between albumin and membranes. The two components have been resolved and quantified by spectral subtractions, and the fraction, f (p) (16-SASL), of spin labels bound non-covalently to the protein has been used to monitor the transfer. It is found that it depends on the type of donor and acceptor matrix, on the physical state of the membranes and on the grafting density of the polymer-lipids. Indeed, it is favoured from SSL to HSA and the fraction of stearic acids transferred increases with temperature in both directions of transfer. Moreover, in the presence of polymer-lipids, the transfer from HSA to SSL is slightly attenuated, especially in the brush regime of the polymer-chains. Instead, the transfer from SSL to HSA is favoured by the polymer-lipids much more in the mushroom than in the brush regime.
From bicycle chain ring shape to gear ratio: algorithm and examples.
van Soest, A J
2014-01-03
A simple model of the bicycle drive system with a non-circular front chain ring is proposed and an algorithm is devised for calculation of the corresponding Gear Ratio As a Function Of Crank Angle (GRAFOCA). It is shown that the true effective radius of the chain ring is always the perpendicular distance between the crank axis and the line through the chain segment between the chain ring and the cog. It is illustrated that the true effective radius of the chain ring at any crank angle may differ substantially from the maximum vertical distance between the crank axis and the chain ring circumference that is used as a proxy for the effective chain ring radius in several studies; in particular, the crank angle at which the effective chain ring radius is maximal as predicted from the latter approach may deviate by as much as 0.30 rad from the true value. The algorithm proposed may help in designing chain rings that achieve the desired GRAFOCA. © 2013 Published by Elsevier Ltd. All rights reserved.
Technology transfer: the key to fusion commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, S.C.
1981-01-01
The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer.
Food Chains. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. The food chain provides a clear example of how life continues year after year. Students learn how the cycle of energy starts with the sun,…
Matter, Hans; Diekert, Kerstin; Dörner, Wolfgang; Dröse, Stefan; Licher, Thomas
2013-01-01
Abstract The electron transport chain (ETC) couples electron transfer between donors and acceptors with proton transport across the inner mitochondrial membrane. The resulting electrochemical proton gradient is used to generate chemical energy in the form of adenosine triphosphate (ATP). Proton transfer is based on the activity of complex I–V proteins in the ETC. The overall electrical activity of these proteins can be measured by proton transfer using Solid Supported Membrane technology. We tested the activity of complexes I, III, and V in a combined assay, called oxidative phosphorylation assay (oxphos assay), by activating each complex with the corresponding substrate. The oxphos assay was used to test in-house substances from different projects and several drugs currently available on the market that have reported effects on mitochondrial functions. The resulting data were compared to the influence of the respective compounds on mitochondria as determined by oxygen consumption and to data generated with an ATP depletion assay. The comparison shows that the oxidative phosphorylation assay provides both a rapid approach for detecting interaction of compounds with respiratory chain proteins and information on their mode of interaction. Therefore, the oxphos assay is a useful tool to support structure activity relationship studies by allowing early identification of mitotoxicity and for analyzing the outcome of phenotypic screens that are susceptible to the generation of mitotoxicity-related artifacts. PMID:23992120
Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria.
Pisciotta, John M; Zou, Yongjin; Baskakov, Ilia V
2011-07-01
Certain anaerobic bacteria, termed electrogens, produce an electric current when electrons from oxidized organic molecules are deposited to extracellular metal oxide acceptors. In these heterotrophic "metal breathers", the respiratory electron transport chain (R-ETC) works in concert with membrane-bound cytochrome oxidases to transfer electrons to the extracellular acceptors. The diversity of bacteria able to generate an electric current appears more widespread than previously thought, and aerobic phototrophs, including cyanobacteria, possess electrogenic activity. However, unlike heterotrophs, cyanobacteria electrogenic activity is light dependent, which suggests that a novel pathway could exist. To elucidate the electrogenic mechanism of cyanobacteria, the current studies used site-specific inhibitors to target components of the photosynthetic electron transport chain (P-ETC) and cytochrome oxidases. Here, we show that (1) P-ETC and, particularly, water photolysed by photosystem II (PSII) is the source of electrons discharged to the environment by illuminated cyanobacteria, and (2) water-derived electrons are transmitted from PSII to extracellular electron acceptors via plastoquinone and cytochrome bd quinol oxidase. Two cyanobacterial genera (Lyngbya and Nostoc) displayed very similar electrogenic responses when treated with P-ETC site-specific inhibitors, suggesting a conserved electrogenic pathway. We propose that in cyanobacteria, electrogenic activity may represent a form of overflow metabolism to protect cells under high-intensity light. This study offers insight into electron transfer between phototrophic microorganisms and the environment and expands our knowledge into biologically based mechanisms for harnessing solar energy.
Lane, D D; Chiu, D Y; Su, F Y; Srinivasan, S; Kern, H B; Press, O W; Stayton, P S; Convertine, A J
2015-02-28
Aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of linear copolymers of N,N-dimethylacrylamide (DMA) and 2-hydroxyethylacrylamide (HEAm) with narrow Đ values over a molecular weight range spanning three orders of magnitude (10 3 to 10 6 Da). Trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted onto these scaffolds using carbodiimide chemistry catalyzed with DMAP. The resultant graft chain transfer agent (gCTA) was subsequently employed to synthesize polymeric brushes with a number of important vinyl monomer classes including acrylamido, methacrylamido, and methacrylate. Brush polymerization kinetics were evaluated for the aqueous RAFT polymerization of DMA from a 10 arm gCTA. Polymeric brushes containing hydroxyl functionality were further functionalized in order to prepare 2nd generation gCTAs which were subsequently employed to prepare polymers with a brushed-brush architecture with molecular weights in excess of 10 6 Da. These resultant single particle nanoparticles (SNPs) were employed as drug delivery vehicles for the anthracycline-based drug doxorubicin via copolymerization of DMA with a protected carbazate monomer (bocSMA). Cell-specific targeting functionality was also introduced via copolymerization with a biotin-functional monomer (bioHEMA). Drug release of the hydrazone linked doxorubicin was evaluated as function of pH and serum and chemotherapeutic activity was evaluated in SKOV3 ovarian cancer cells.
Atomistic determinants of co-enzyme Q reduction at the Qi-site of the cytochrome bc1 complex
NASA Astrophysics Data System (ADS)
Postila, Pekka A.; Kaszuba, Karol; Kuleta, Patryk; Vattulainen, Ilpo; Sarewicz, Marcin; Osyczka, Artur; Róg, Tomasz
2016-09-01
The cytochrome (cyt) bc1 complex is an integral component of the respiratory electron transfer chain sustaining the energy needs of organisms ranging from humans to bacteria. Due to its ubiquitous role in the energy metabolism, both the oxidation and reduction of the enzyme’s substrate co-enzyme Q has been studied vigorously. Here, this vast amount of data is reassessed after probing the substrate reduction steps at the Qi-site of the cyt bc1 complex of Rhodobacter capsulatus using atomistic molecular dynamics simulations. The simulations suggest that the Lys251 side chain could rotate into the Qi-site to facilitate binding of half-protonated semiquinone - a reaction intermediate that is potentially formed during substrate reduction. At this bent pose, the Lys251 forms a salt bridge with the Asp252, thus making direct proton transfer possible. In the neutral state, the lysine side chain stays close to the conserved binding location of cardiolipin (CL). This back-and-forth motion between the CL and Asp252 indicates that Lys251 functions as a proton shuttle controlled by pH-dependent negative feedback. The CL/K/D switching, which represents a refinement to the previously described CL/K pathway, fine-tunes the proton transfer process. Lastly, the simulation data was used to formulate a mechanism for reducing the substrate at the Qi-site.
A New One-dimensional Quantum Material - Ta2Pd3Se8 Atomic Chain
NASA Astrophysics Data System (ADS)
Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Antipina, Liubov; Sorokin, Pavel; Sanchez, Ana
Since the discovery of carbon nanotube, there has been a persistent effort to search for other one dimensional (1D) quantum systems. However, only a few examples have been found. We report a new 1D example - semiconducting Ta2Pd3Se8. We demonstrate that the Ta2Pd3Se8 nanowire as thin as 1.3nm can be easily obtained by applying simple mechanical exfoliation from its bulk counterpart. High resolution TEM shows an intrinsic 1D chain-like crystalline morphology on these nano wires, indicating weak bonding between these atomic chains. Theoretical calculation shows a direct bandgap structure, which evolves from 0.53eV in the bulk to 1.04eV in single atomic chain. The field effect transistor based on Ta2Pd3Se8 nanowire achieved a promising performance with 104On/Off ratio and 80 cm2V-1s-1 mobility. Low temperature transport study reflects two different mechanisms, variable range hopping and thermal activation, which dominate the transport properties at different temperature regimes. Ta2Pd3Se8 nanowire provides an intrinsic 1D material system for the study low dimensional condensed matter physics.
Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.
2006-01-01
Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.
Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil
2015-01-01
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.
Inferring properties of disordered chains from FRET transfer efficiencies
NASA Astrophysics Data System (ADS)
Zheng, Wenwei; Zerze, Gül H.; Borgia, Alessandro; Mittal, Jeetain; Schuler, Benjamin; Best, Robert B.
2018-03-01
Förster resonance energy transfer (FRET) is a powerful tool for elucidating both structural and dynamic properties of unfolded or disordered biomolecules, especially in single-molecule experiments. However, the key observables, namely, the mean transfer efficiency and fluorescence lifetimes of the donor and acceptor chromophores, are averaged over a broad distribution of donor-acceptor distances. The inferred average properties of the ensemble therefore depend on the form of the model distribution chosen to describe the distance, as has been widely recognized. In addition, while the distribution for one type of polymer model may be appropriate for a chain under a given set of physico-chemical conditions, it may not be suitable for the same chain in a different environment so that even an apparently consistent application of the same model over all conditions may distort the apparent changes in chain dimensions with variation of temperature or solution composition. Here, we present an alternative and straightforward approach to determining ensemble properties from FRET data, in which the polymer scaling exponent is allowed to vary with solution conditions. In its simplest form, it requires either the mean FRET efficiency or fluorescence lifetime information. In order to test the accuracy of the method, we have utilized both synthetic FRET data from implicit and explicit solvent simulations for 30 different protein sequences, and experimental single-molecule FRET data for an intrinsically disordered and a denatured protein. In all cases, we find that the inferred radii of gyration are within 10% of the true values, thus providing higher accuracy than simpler polymer models. In addition, the scaling exponents obtained by our procedure are in good agreement with those determined directly from the molecular ensemble. Our approach can in principle be generalized to treating other ensemble-averaged functions of intramolecular distances from experimental data.
Eiriksdottir, Elsa; Catrambone, Richard
2011-12-01
The goal of this article is to investigate how instructions can be constructed to enhance performance and learning of procedural tasks. Important determinants of the effectiveness of instructions are type of instructions (procedural information, principles, and examples) and pedagogical goal (initial performance, learning, and transfer). Procedural instructions describe how to complete tasks in a stepwise manner, principles describe rules governing the tasks, and examples demonstrate how instances of the task are carried out. The authors review the research literature associated with each type of instruction to identify factors determining effectiveness for different pedagogical goals. The results suggest a trade-off between usability and learnability. Specific instructions help initial performance, whereas more general instructions, requiring problem solving, help learning and transfer. Learning from instructions takes cognitive effort, and research suggests that learners typically opt for low effort. However, it is possible to meet both goals of good initial performance and learning with methods such as fading and by combining different types of instructions. How instructions are constructed influences their effectiveness for the goals of good initial performance, learning, and transfer, and it is therefore important for researchers and practitioners alike to define the pedagogical goal of instructions. If the goal is good initial performance, then instructions should highly resemble the task at hand (e.g., in the form of detailed procedural instructions and examples), but if the goal is good learning and transfer, then instructions should be more abstract, inducing learners to expend the necessary cognitive effort for learning.
Zengin, Adem; Caykara, Tuncer
2017-05-01
Herein, we have designed a novel multilayer system composed of poly(methyl methacrylate) [poly(MMA)] brush, biotin, streptavidin and protein-A on a silicon substrate to attach onanti-immunoglobulin G (anti-IgG). poly(MMA) brush with vinyl end-group was first synthesized by the interface-mediated catalytic chain transfer polymerization. The brush was then modified with cysteamine molecules to generate the polymer chains with amine end-group via a thiol-ene click chemistry. The amine end-groups of poly(MMA) chains were also modified with biotin units to ensure selective connection points for streptavidin molecules. Finally, a multilayer system on the silicon substrate was formed by using streptavidin and protein-A molecules, respectively. This multilayer system was employed to attach anti-IgG molecules in a highly oriented manner and provide anti-IgG molecular functional configuration on the multilayer. High reproducibility of the amount of anti-IgG adsorption and homogeneous anti-IgG adsorption layer on the silicon surface could be provided by this multilayer system. The multilayer system with protein A may be opened the door for designing an efficient immunoassay protein chip. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Smith, MC
2016-09-01
This paper studies the problem of passive control of a multi-storey building subjected to an earthquake disturbance. The building is represented as a homogeneous mass chain model, i.e., a chain of identical masses in which there is an identical passive connection between neighbouring masses and a similar connection to a movable point. The paper considers passive interconnections of the most general type, which may require the use of inerters in addition to springs and dampers. It is shown that the scalar transfer functions from the disturbance to a given inter-storey drift can be represented as complex iterative maps. Using these expressions, two graphical approaches are proposed: one gives a method to achieve a prescribed value for the uniform boundedness of these transfer functions independent of the length of the mass chain, and the other is for a fixed length of the mass chain. A case study is presented to demonstrate the effectiveness of the proposed techniques using a 10-storey building model. The disturbance suppression performance of the designed interconnection is also verified for a 10-storey building model which has a different stiffness distribution but with the same undamped first natural frequency as the homogeneous model.
2018-01-01
High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition–fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA–PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions. PMID:29805184
Ying, L; Yu, W H; Kang, E T; Neoh, K G
2004-07-06
Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media.
Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains
NASA Astrophysics Data System (ADS)
Cofré, Rodrigo; Maldonado, Cesar
2018-01-01
We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.
Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi
2013-10-17
Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.
Shojaei, Taha Roodbar; Mohd Salleh, Mohamad Amran; Tabatabaei, Meisam; Ekrami, Alireza; Motallebi, Roya; Rahmani-Cherati, Tavoos; Hajalilou, Abdollah; Jorfi, Raheleh
2014-01-01
Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmore, D.
1972-07-04
Nitrogen-heterocyclic phosphonic acids and derivatives are characterized by aminomethyl (or substituted methyl) phosphonic acids or derivatives thereof bonded directly or indirectly, i.e., through a N-side chain to the nitrogen atom in the heterocyclic ring, for example those containing in the molecule at least one of the following units: ..pi..Equation/sup -/ where represents a heterocyclic ring having a nitrogen atom on the ring; -R'N- represents an amino- terminated side chain attached directly to the ring nitrogen (which side chain may or may not be present); and ..pi..Equation/sup -/ represents a methyl (or substituted methyl) phosphonic acid group where M is hydrogen,more » an alcohol or a salt moiety, and X and Y are hydrogen or a substituted group such as alkyl, aryl, etc., of which one or 2 units may be present depending on the available nitrogen bonded by hydrogens, and to uses for these compounds, for example, as scale inhibitors, corrosion inhibitors, etc. (5 claims)« less
Lu, Lu; Huang, Xirong; Qu, Yinbo
2011-10-01
The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.
Hennebicq, Emmanuelle; Deleener, Caroline; Brédas, Jean-Luc; Scholes, Gregory D; Beljonne, David
2006-08-07
The influence of chemical defects and conformational kinks on the nature of the lowest electronic excitations in phenylenevinylene-based polymers is assessed at the semiempirical quantum-chemical level. The amount of excited-state localization and the amplitude of through-space (Coulomb-like) versus through-bond (charge-transfer-like) interactions have been quantified by comparing the results provided by excitonic and supermolecular models. While excitation delocalization among conjugated segments delineated by the defects occurs in the acceptor configuration, self-confinement on individual chromophores follows from geometric relaxation in the excited-state donor configuration. The extent of excited-state localization is found to be sensitive to both the nature of the defect and the length of the conjugated chains. Implications for resonant energy transfer along conjugated polymer chains are discussed.
EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures
NASA Astrophysics Data System (ADS)
Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander
2007-12-01
Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.
Tenenbaum, Evelyn M
2016-01-01
Kidney chains are a recent and novel method of increasing the number of available kidneys for transplantation and have the potential to save thousands of lives. However, because they are novel, kidney chains do not fit neatly within existing legal and ethicalframeworks, raising potential barriers to their full implementation. Kidney chains are an extension of paired kidney donation, which began in the United States in 2000. Paired kidney donations allow kidney patients with willing, but incompatible, donors to swap donors to increase the number of donor/recipient pairs and consequently, the number of transplants. More recently, transplant centers have been using non-simultaneous, extended, altruistic donor ("NEAD") kidney chains--which consist of a sequence of donations by incompatible donors--to further expand the number of donations. This Article fully explains paired kidney donation and kidney chains and focuses on whether NEAD chains are more coercive than traditional kidney donation to a family member or close friend and whether NEAD chains violate the National Organ Transplant Act's prohibition on the transfer of organs for valuable consideration.
NASA Astrophysics Data System (ADS)
Tanigaki, Nobutaka; Mizokuro, Toshiko; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki
2018-02-01
We have been studying oriented thin films of polymers fabricated by the friction-transfer method, which allows the alignment of a variety of conjugated polymers into highly oriented films. In this study, we prepared oriented blend films of a mixture of a low-bandgap polymer, poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7), and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), which is a promising combination for application in organic solar cells. We obtained oriented blend films of PTB7 and PC71BM by the friction-transfer method from a solid block. Polarized UV-visible spectra show that the PTB7 chains were aligned parallel to the friction direction in the blend films. Grazing-incidence X-ray diffraction (GIXD) studies with synchrotron radiation suggested that the preferred orientation of PTB7 crystallites was face-on in the blend films. The GIXD results also showed the high uniaxial orientation of PTB7 chains in blend films. Photovoltaic devices were fabricated using the friction-transferred blend films of the PTB7 and PC71BM. These bulk heterojunction devices showed better performance than planar heterojunction devices fabricated using pure friction-transferred PTB7 films.
Supersymmetric quantum spin chains and classical integrable systems
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Emerging magnetic order in platinum atomic contacts and chains
Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten
2015-01-01
The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size. PMID:25649440
Emerging magnetic order in platinum atomic contacts and chains
NASA Astrophysics Data System (ADS)
Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten
2015-02-01
The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size.
Emerging magnetic order in platinum atomic contacts and chains.
Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten
2015-02-04
The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size.
Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...
2014-12-22
Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less
Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P
2001-10-16
Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.
Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu
2016-05-25
We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.
Borges, Itamar; Aquino, Adélia J A; Köhn, Andreas; Nieman, Reed; Hase, William L; Chen, Lin X; Lischka, Hans
2013-12-11
A detailed quantum chemical simulation of the excitonic and charge-transfer (CT) states of a bulk heterojunction model containing poly(thieno[3,4-b]thiophene benzodithiophene) (PTB1)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. The largest molecular model contains two stacked PTB1 trimer chains interacting with C60 positioned on top of and lateral to the (PTB1)3 stack. The calculations were performed using the algebraic diagrammatic construction method to second order (ADC(2)). One main result of the calculations is that the CT states are located below the bright inter-chain excitonic state, directly accessible via internal conversion processes. The other important aspects of the calculations are the formation of discrete bands of CT states originating from the lateral C60's and the importance of inter-chain charge delocalization for the stability of the CT states. A simple model for the charge separation step is also given, revealing the energetic feasibility of the overall photovoltaic process.
Demmelmair, Hans; Kuhn, Angelika; Dokoupil, Katharina; Hegele, Verena; Sauerwald, Thorsten; Koletzko, Berthold
2016-06-01
The origin of fatty acids in milk has not been elucidated in detail. We investigated the contribution of dietary α-linolenic acid (ALA) to human milk fat, its oxidation and endogenous conversion to long-chain polyunsaturated fatty acids. Ten lactating women were given (13)C-ALA orally, and breath and milk samples were collected for a five-day period, while dietary intakes were assessed. 37.5 ± 2.7 % (M ± SE) of the tracer was recovered in breath-CO2, and 7.3 ± 1.1 % was directly transferred into milk. About 0.25 % of the tracer was found in milk long-chain polyunsaturated fatty acids. Combining intake and milk data, we estimate that about 65 % of milk ALA is directly derived from maternal diet. Thus, the major portion of milk ALA is directly derived from the diet, but dietary ALA does not seem to contribute much as a precursor to milk n-3 long-chain polyunsaturated fatty acids within the studied time period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.
LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from themore » binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.« less
Gene Transfers Between Distantly Related Organisms
NASA Technical Reports Server (NTRS)
Doolittle, Russell F.
2003-01-01
With the completion of numerous microbial genome sequences, reports of individual gene transfers between distantly related prokaryotes have become commonplace. On the other hand, transfers between prokaryotes and eukaryotes still excite the imagination. Many of these claims may be premature, but some are certainly valid. In this chapter, the kinds of supporting data needed to propose transfers between distantly related organisms and cite some interesting examples are considered.
26 CFR 1.684-1 - Recognition of gain on transfers to certain foreign trusts and estates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... required to recognize gain at the time of the transfer equal to the excess of the fair market value of the...) of this section, A recognizes gain at the time of the transfer equal to 800X. Example 4. Exchange of... 26 Internal Revenue 8 2012-04-01 2012-04-01 false Recognition of gain on transfers to certain...
26 CFR 1.684-1 - Recognition of gain on transfers to certain foreign trusts and estates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... required to recognize gain at the time of the transfer equal to the excess of the fair market value of the...) of this section, A recognizes gain at the time of the transfer equal to 800X. Example 4. Exchange of... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Recognition of gain on transfers to certain...
Thermodynamic limit and boundary energy of the su(3) spin chain with non-diagonal boundary fields
NASA Astrophysics Data System (ADS)
Wen, Fakai; Yang, Tao; Yang, Zhanying; Cao, Junpeng; Hao, Kun; Yang, Wen-Li
2017-02-01
We investigate the thermodynamic limit of the su (n)-invariant spin chain models with unparallel boundary fields. It is found that the contribution of the inhomogeneous term in the associated T-Q relation to the ground state energy does vanish in the thermodynamic limit. This fact allows us to calculate the boundary energy of the system. Taking the su (2) (or the XXX) spin chain and the su (3) spin chain as concrete examples, we have studied the corresponding boundary energies of the models. The method used in this paper can be generalized to study the thermodynamic properties and boundary energy of other high rank models with non-diagonal boundary fields.
Duret, Steven; Guillier, Laurent; Hoang, Hong-Minh; Flick, Denis; Laguerre, Onrawee
2014-06-16
Deterministic models describing heat transfer and microbial growth in the cold chain are widely studied. However, it is difficult to apply them in practice because of several variable parameters in the logistic supply chain (e.g., ambient temperature varying due to season and product residence time in refrigeration equipment), the product's characteristics (e.g., pH and water activity) and the microbial characteristics (e.g., initial microbial load and lag time). This variability can lead to different bacterial growth rates in food products and has to be considered to properly predict the consumer's exposure and identify the key parameters of the cold chain. This study proposes a new approach that combines deterministic (heat transfer) and stochastic (Monte Carlo) modeling to account for the variability in the logistic supply chain and the product's characteristics. The model generates a realistic time-temperature product history , contrary to existing modeling whose describe time-temperature profile Contrary to existing approaches that use directly a time-temperature profile, the proposed model predicts product temperature evolution from the thermostat setting and the ambient temperature. The developed methodology was applied to the cold chain of cooked ham including, the display cabinet, transport by the consumer and the domestic refrigerator, to predict the evolution of state variables, such as the temperature and the growth of Listeria monocytogenes. The impacts of the input factors were calculated and ranked. It was found that the product's time-temperature history and the initial contamination level are the main causes of consumers' exposure. Then, a refined analysis was applied, revealing the importance of consumer behaviors on Listeria monocytogenes exposure. Copyright © 2014. Published by Elsevier B.V.
An exploration in mineral supply chain mapping using tantalum as an example
Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.
2013-01-01
This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.
Lee, Joonkoo; Gereffi, Gary; Beauvais, Janet
2012-01-01
The rise of private food standards has brought forth an ongoing debate about whether they work as a barrier for smallholders and hinder poverty reduction in developing countries. This paper uses a global value chain approach to explain the relationship between value chain structure and agrifood safety and quality standards and to discuss the challenges and possibilities this entails for the upgrading of smallholders. It maps four potential value chain scenarios depending on the degree of concentration in the markets for agrifood supply (farmers and manufacturers) and demand (supermarkets and other food retailers) and discusses the impact of lead firms and key intermediaries on smallholders in different chain situations. Each scenario is illustrated with case examples. Theoretical and policy issues are discussed, along with proposals for future research in terms of industry structure, private governance, and sustainable value chains. PMID:21149723
Event-chain Monte Carlo algorithms for three- and many-particle interactions
NASA Astrophysics Data System (ADS)
Harland, J.; Michel, M.; Kampmann, T. A.; Kierfeld, J.
2017-02-01
We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.
26 CFR 1.963-0 - Repeal of section 963; effective dates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... after December 31, 1975, then a foreign corporation shall be includible in such election only if— (i) It... (i) of this paragraph from a chain or group election of a United States shareholder for its taxable.... The application of this paragraph may be illustrated by the following example: Example. (a) M is a...
Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."
ERIC Educational Resources Information Center
Colorado Advanced Tech. Inst., Denver.
The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonacci, R.; Colombo, I.; Volta, M.
The electron-transfer flavoprotein (ETF), located in the mitochondrial matrix, is a nuclear-encoded enzyme delivering to the respiratory chain electrons by straight-chain acyl-CoA dehydrogenases and other dehydrogenases. ETF is composed of a 35-kDa [alpha]-subunit that is cleaved to a 32-kDa protein during mitochondrial import (ETFA) and a [beta]-subunit that reaches the mitochondrion unmodified (ETFB). The cDNA encoding both these subunits has been cloned and sequenced. 14 refs., 1 fig.
Adapting to wildfire: Moving beyond homeowner risk perceptions to taking action
Patricia Champ
2017-01-01
Champâs presentation focused on how to get homeowners to take action to protect their properties from fire. She framed this challenge as a last-mile problem, which is a concept from the literature on supply chain. The last mile is the end of the supply chain where a product is transferred to the customer. The last mile is often the most difficult part of the entire...
Bidirectional plant canopy reflection models derived from the radiation transfer equation
NASA Technical Reports Server (NTRS)
Beeth, D. R.
1975-01-01
A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.
Schäfers, Stephanie; Meyer, Ulrich; von Soosten, Dirk; Krey, Britta; Hüther, Liane; Tröscher, Arnulf; Pelletier, Wolf; Kienberger, Hermine; Rychlik, Michael; Dänicke, Sven
2018-06-19
Vitamin E (Vit. E) is discussed to influence ruminal biohydrogenation. The objective of this study was to investigate the influence of a Vit. E supplementation on rumen fermentation characteristics, ruminal microbial protein synthesis as well as ruminal organic matter fermentation. Furthermore, we aimed to investigate the influence of Vit. E supplementation on short-chain fatty acids (SCFA) and protozoa concentrations in the rumen and, in addition, on transfer rates of middle-chain and long-chain fatty acids into the duodenum in lactating dairy cows. Eight rumen and duodenum fistulated German Holstein cows were assigned to either a group receiving 2,327 IU/d Vit. E (138.6 IU/kg DM DL-α-tocopherylacetate; n = 4) or a control group (23.1 IU/kg DM; n = 4). Neither ruminal protein synthesis nor organic matter fermentation was influenced by treatment. Vit. E did not act on the concentrations of short-chain fatty acids and protozoa in rumen fluid. Duodenal flow of C13:0 (1.3 versus 0.2 g/d, p = 0.014) and iso-C14:0 (1.0 versus 0.5 g/d, p = 0.050) was higher in the Vit. E group. We observed a trend for higher duodenal flows for C12:0 (1.6 versus 0.9 g/d, p = 0.095) and anteiso-C15:0 (12.2 versus 8.9 g/d, p = 0.084). Transfer rate of C12:0 tended to be higher in the Vit. E group (125.61 versus 73.96, p = 0.082). No other transfer rates were affected by treatment. Further studies are necessary to investigate the influence of Vit. E on rumen microbiota and their fatty acid production as well as on the impact of different doses of Vit. E supplementation on variables of protein synthesis efficiency. © 2018 Blackwell Verlag GmbH.
Toward an Organic Chemist's Periodic Table.
ERIC Educational Resources Information Center
Hall, H. K., Jr.
1980-01-01
An analogy between electron transfer reactions of the elements and those of organic molecules is offered. Examples of organic electron transfer reactions are presented. The rationale of constructing an organic chemists' periodic table is also discussed. (HM)
Power Transfer in Physical Systems.
ERIC Educational Resources Information Center
Kaeck, Jack A.
1990-01-01
Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)
Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.
Cui, Chaohua; Wong, Wai-Yeung
2016-02-01
Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Alex W.; Rivas, Angel; Huelga, Susana F.
2010-09-15
By using the properties of orthogonal polynomials, we present an exact unitary transformation that maps the Hamiltonian of a quantum system coupled linearly to a continuum of bosonic or fermionic modes to a Hamiltonian that describes a one-dimensional chain with only nearest-neighbor interactions. This analytical transformation predicts a simple set of relations between the parameters of the chain and the recurrence coefficients of the orthogonal polynomials used in the transformation and allows the chain parameters to be computed using numerically stable algorithms that have been developed to compute recurrence coefficients. We then prove some general properties of this chain systemmore » for a wide range of spectral functions and give examples drawn from physical systems where exact analytic expressions for the chain properties can be obtained. Crucially, the short-range interactions of the effective chain system permit these open-quantum systems to be efficiently simulated by the density matrix renormalization group methods.« less
Disconnection: the user voice within the wound dressing supply chain.
Campling, Natasha; Grocott, Patricia; Cowley, Sarah
2008-03-01
This study examined the user voice in England's National Health Service (NHS) wound dressing supply chain. The impetus for this work came from involvement in a collaboration between industry and clinicians, entitled Woundcare Research for Appropriate Products. Experiences from that study highlighted the notable absence of research about the impact of the supply chain on the users of dressings. Interview data are presented following an outline of the grounded theory method used. These data were obtained from key stakeholders (n = 41) within the wound dressing supply chain such as nurses, manufacturers, distributors, professional organizations, government organizations and user groups. The consequences of supply disconnection revealed haphazard supply, unmet user needs and lack of information transfer between player groups. These consequences explain the lack of user voice in the supply chain and have far-reaching implications for nursing management, through purchasing decisions and nurses' management of wound care.
Properties of the branched-chain 2-hydroxy acid/2-oxo acid shuttle in mouse spermatozoa.
Coronel, C E; Gallina, F G; Gerez de Burgos, N M; Burgos, C; Blanco, A
1986-05-01
Operation of the branched-chain 2-hydroxy acid/2-oxo acid shuttle for the transfer of reducing equivalents in mitochondria of mouse spermatozoa was studied in vitro in reconstituted systems. Results show that the branched-chain 2-oxo acids within the mitochondria are offered several metabolic pathways. (a) Decarboxylation: mouse sperm mitochondria possess high branched-chain 2-oxo acid decarboxylase activity. (b) Recycling to the cytosol by using a transport system which can be inhibited by alpha-cyano-3-hydroxycinnamate and pH 6.8. (c) Transamination to the corresponding amino acids: experiments presented indicate that leucine formed from 4-methyl-2-oxopentanoate may pass to the external phase, re-initiating the cycle. These two last possibilities would allow autocatalytic operation of the shuttle. The branched-chain 2-hydroxy acids apparently do not utilize the monocarboxylate carrier to penetrate the mitochondria.
[A wrong move in an amateur football player reveals a light chain myeloma].
Peyneau, Marine; Nassiri, Shiva; Myara, Anne; Ohana, Salomon; Laplanche, Sophie
2016-01-01
Light chain multiple myeloma is a hematologic malignancy characterized by an excess of tumor plasma cells in the bone marrow and a monoclonal light chain in blood. It is generally diagnosed in patients aged 60-75 years old. Hypercalcemia, anemia, kidney failure, and bone pains are the main clinical and biological signs. Here is an atypical case report about a 30 year-old man who was diagnosed a light chain multiple myeloma. This patient had been suffering from back pain for 5 months. Osteolytic lesions were discovered on X-rays prescribed by the family practitioner. Admitted to the Emergency department, all blood tests showed results within the normal range. The serum protein electrophoresis was also normal. Only the urine analysis showed proteinuria. The urine immunofixation electrophoresis showed a massive κ light chain. The bone marrow aspiration cell count confirmed the myeloma diagnosis with an infiltration of dystrophic plasma cells. The patient was transferred to the hematology ward of Necker Hospital for treatment of light chain myeloma.
Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G
1992-05-05
Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.
Erathostenes: An Example of Work with University Students in Didactics and History of Astronomy
NASA Astrophysics Data System (ADS)
Lanciano, Nicoletta; Berardo, Mariangela
2016-12-01
We present below, through an example, the richness of the use of a method of clues to enter the history of Astronomy, tested with university students and teachers in training. The question presented as an example is the study of the work of Eratosthenes to measure the Earth's meridian. It shows how the course generates a chain of questions and new questions and problems arise as the students learn to look for answers and solutions.
Transfer factor - hypotheses for its structure and function.
Shifrine, M; Scibienski, R
1975-01-01
Transfer factor (TF) is a dialyzable extract from primed lymphocytes that is able to transfer specific delayed hypersensitivity from one animal to another. On the basis of available data we suggest that TF is a polypeptide with a molecular weight below 15,000 daltons. We hypothesize that TF is the variable light or heavy chain domain of immunoglobulin: such a molecule conforms with the accepted properties of TF and also has the necessary specificity requirements. We also hypothesize that TF is part of a receptor site. beta-2-microglobulin, a molecule that is an integral part of cell surfaces, could be the anchor for TF. beta-2-microglobulin has homologies with the constant portion of immunoglobulin light or heavy chain and thus would combine with the variable domain (TF) to form a complete receptor site for a specific antigen. The properties of TF suggest its mode of action, which is discussed in detail in the text. The biologic advantages of TF is its ability to confer immediate (immunologie specific) protection while the 'normal' immune response develops.
Maximizing kinetic energy transfer in one-dimensional many-body collisions
NASA Astrophysics Data System (ADS)
Ricardo, Bernard; Lee, Paul
2015-03-01
The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions.
NASA Astrophysics Data System (ADS)
Blazejewski, Jacob; Schultz, Chase; Mazzuca, James
2015-03-01
Many biological systems utilize water chains to transfer charge over long distances by means of an excess proton. This study examines how quantum effects impact these reactions in a small model system. The model consists of a water molecule situated between an imidazole donor and acceptor group, which simulate a fixed amino acid backbone. A one dimensional energy profile is evaluated using density functional theory at the 6-31G*/B3LYP level, which generates a barrier with a width of 0.6 Å and a height of 20.7 kcal/mol. Quantum transmission probability is evaluated by solving the time dependent Schrödinger equation on a grid. Isotopic effects are examined by performing calculations with both hydrogen and deuterium. The ratio of hydrogen over the deuterium shows a 130-fold increase in transmission probability at low temperatures. This indicates a substantial quantum tunneling effect. The study of higher dimensional systems as well as increasing the number of water molecules in the chain will be necessary to fully describe the proton transfer process. Alma College Provost's Office.
NASA Astrophysics Data System (ADS)
Nguyen, Huong T. H.; Tureček, František
2017-07-01
Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second ( B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.
Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira
2016-08-16
Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control Transfer in Operating System Kernels
1994-05-13
microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating
Heat transfer in aeropropulsion systems
NASA Astrophysics Data System (ADS)
Simoneau, R. J.
1985-07-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Heat transfer in aeropropulsion systems
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1985-01-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Structural insights into electron transfer in caa3-type cytochrome oxidase
Lyons, Joseph A.; Aragão, David; Slattery, Orla; Pisliakov, Andrei V.; Soulimane, Tewfik; Caffrey, Martin
2012-01-01
Summary Paragraph Cytochrome c oxidase is a member of the heme copper oxidase superfamily (HCO)1. HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c2–4. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented. PMID:22763450
Conductance of single microRNAs chains related to the autism spectrum disorder
NASA Astrophysics Data System (ADS)
Oliveira, J. I. N.; Albuquerque, E. L.; Fulco, U. L.; Mauriz, P. W.; Sarmento, R. G.; Caetano, E. W. S.; Freire, V. N.
2014-09-01
The charge transport properties of single-stranded microRNAs (miRNAs) chains associated to autism disorder were investigated. The computations were performed within a tight-binding model, together with a transfer matrix technique, with ionization energies and hopping parameters obtained by quantum chemistry method. Current-voltage (I× V) curves of twelve miRNA chains related to the autism spectrum disorders were calculated and analysed. We have obtained both semiconductor and insulator behavior, and a relationship between the current intensity and the autism-related miRNA bases sequencies, suggesting that a kind of electronic biosensor can be developed to distinguish different profiles of autism disorders.
Finite-size effects on the static properties of a single-chain magnet
NASA Astrophysics Data System (ADS)
Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.
2005-08-01
We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.
Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki
2016-12-21
Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).
Specificity, transfer, and the development of expertise
NASA Astrophysics Data System (ADS)
Brookes, David T.; Ross, Brian H.; Mestre, José P.
2011-06-01
In this paper we present the results of two experiments designed to understand how physics students’ learning of the concept of refraction is influenced by the cognitive phenomenon of “specificity.” In both experiments participants learned why light bends as it travels from one optical medium to another with an analogy made to a car driving from paved road into mud and vice versa. They then learned how to qualitatively draw the direction of refracted light rays with an example of a glass prism. One group learned with a rectangular prism example while a second group learned with a triangular prism example. In a transfer test, the participants revealed how, even when they seemed able to implement the refraction concept, their responses were biased by the example they had seen. Participants frequently violated the refraction principle they had just learned (reversing the bend direction) in order to make sure their response matched the surface features of their learning example. This tended to happen when their test question looked superficially similar to their learning example. We discuss the implications of these results for physics instruction.
Kinetic Isotope Effects as a Probe of Hydrogen Transfers to and from Common Enzymatic Cofactors
Roston, Daniel; Islam, Zahidul; Kohen, Amnon
2013-01-01
Enzymes use a number of common cofactors as sources of hydrogen to drive biological processes, but the physics of the hydrogen transfers to and from these cofactors is not fully understood. Researchers study the mechanistically important contributions from quantum tunneling and enzyme dynamics and connect those processes to the catalytic power of enzymes that use these cofactors. Here we describe some progress that has been made in studying these reactions, particularly through the use of kinetic isotope effects (KIEs). We first discuss the general theoretical framework necessary to interpret experimental KIEs, and then describe practical uses for KIEs in the context of two case studies. The first example is alcohol dehydrogenase, which uses a nicotinamide cofactor to catalyze a hydride transfer, and the second example is thymidylate synthase, which uses a folate cofactor to catalyze both a hydride and a proton transfer. PMID:24161942
NASA Astrophysics Data System (ADS)
Matveev, V. I.; Makarov, D. N.
2017-01-01
The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.
Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains
NASA Astrophysics Data System (ADS)
Formentin, M.; Külske, C.; Reichenbachs, A.
2012-01-01
We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.
Light-induced Conversion of Trp to Gly and Gly Hydroperoxide in IgG1
Haywood, Jessica; Mozziconacci, Olivier; Allegre, Kevin M.; Kerwin, Bruce A.; Schöneich, Christian
2013-01-01
The exposure of IgG1 in aqueous solution to light with λ = 254 nm or λ > 295 nm yields products consistent with Trp radical cation formation followed by αC-βC cleavage of the Trp side chain. The resulting glycyl radicals are either reduced to Gly, or add oxygen prior to reduction to Gly hydroperoxide. Photoirradiation at λ = 254 nm targets Trp at positions 191 (light chain), 309 and 377 (heavy chain) while photoirradiation at λ > 295 nm targets Trp at position 309 (heavy chain). Mechanistically, the formation of Trp radical cations likely proceeds via photo-induced electron- or hydrogen-transfer to disulfide bonds, yielding thiyl radicals and thiols, where thiols may serve as reductants for the intermediary glycyl or glycylperoxyl radicals. PMID:23363477
Predicting the chemical stability of monatomic chains
NASA Astrophysics Data System (ADS)
Lin, Zheng-Zhe; Chen, Xi
2013-02-01
A simple model for evaluating the thermal atomic transfer rates in nanosystems (Lin Z.-Z. et al., EPL, 94 (2011) 40002) was developed to predict the chemical reaction rates of nanosystems with small gas molecules. The accuracy of the model was verified by MD simulations for molecular adsorption and desorption on a monatomic chain. By the prediction, a monatomic carbon chain should survive for 1.2 × 102 years in the ambient of 1 atm O2 at room temperature, and it is very invulnerable to N2, H2O, NO2, CO and CO2, while a monatomic gold chain quickly ruptures in vacuum. It is worth noting that since the model can be easily applied via common ab initio calculations, it could be widely used in the prediction of chemical stability of nanosystems.
Kinetic chain abnormalities in the athletic shoulder.
Sciascia, Aaron; Thigpen, Charles; Namdari, Surena; Baldwin, Keith
2012-03-01
Overhead activities require the shoulder to be exposed to and sustain repetitive loads. The segmental activation of the body's links, known as the kinetic chain, allows this to occur effectively. Proper muscle activation is achieved through generation of energy from the central segment or core, which then transfers the energy to the terminal links of the shoulder, elbow, and hand. The kinetic chain is best characterized by 3 components: optimized anatomy, reproducible efficient motor patterns, and the sequential generation of forces. However, tissue injury and anatomic deficits such as weakness and/or tightness in the leg, pelvic core, or scapular musculature can lead to overuse shoulder injuries. These injuries can be prevented and maladaptations can be detected with a thorough understanding of biomechanics of the kinetic chain as it relates to overhead activity.
Let there be light: photo-cross-linked block copolymer nanoparticles.
Roy, Debashish; Sumerlin, Brent S
2014-01-01
Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suzuki, Tadashi; Shinoda, Mio; Osanai, Yohei; Isozaki, Tasuku
2013-08-22
Photoreaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP) with basic amino acids (histidine, lysine, and arginine) and dipeptides (carnosine and anserine) including a histidine moiety in phosphate buffer solution (pH 7.4) has been investigated with transient absorption spectroscopy. With UV irradiation KP(-) gave rise to a carbanion through a decarboxylation reaction, and the carbanion easily abstracted a proton from the surrounding molecule to yield a 3-ethylbenzophenone ketyl biradical (EBPH). The dipeptides as well as the basic amino acids were found to accelerate the proton transfer reaction whereas alanine and glycine had no effect on the reaction, revealing that these amino acids having a protonated side chain act as a proton donor. The formation quantum yield of EBPH was estimated to be fairly large by means of an actinometrical method with benzophenone, and the bimolecular reaction rate constant for the proton transfer between the carbanion and the protonated basic amino acids or the protonated dipeptides was successfully determined. It has become apparent that the bimolecular reaction rate constant for the proton transfer depended on the acid dissociation constant for the side chain of the amino acids for the first time. This reaction mechanism was interpreted by difference of the heat of reaction for each basic amino acid based on the thermodynamical consideration. These results strongly suggest that the side chain of the basic amino acid residue in protein should play an important role for photochemistry of KP in vivo.
Kitayama, Yukiya; Takeuchi, Toshifumi
2014-10-28
CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.
Feng, Juanjuan; Sun, Min; Xu, Lili; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2011-10-28
Polymeric 1-vinyl-3-octylimidazolium hexafluorophosphate was synthesized in situ on stainless steel wire by surface radical chain-transfer polymerization and used as sensitive coatings in solid-phase microextraction. The outer surface of the stainless steel wire was firstly coated with microstructured silver layer via silver mirror reaction and then functionalized with self-assembled monolayers of 1,8-octanedithiol, which acted as chain transfer agent in the polymerization. Coupled to gas chromatography, extraction performance of the fiber was studied with both headspace and direct-immersion modes using benzene, toluene, ethylbenzene and xylenes (BTEX), phenols and polycyclic aromatic hydrocarbon (PAHs) as model analytes. In combination with the microstructured silver layer, the PIL-coated fiber exhibited high extraction efficiency. Linear ranges for BTEX with headspace mode were in the range of 0.2-1000 μg L(-1) for benzene, and 0.1-1000 μg L(-1) for toluene, ethylbenzene and xylenes. Limits of detection (LODs) were from 0.02 to 0.05 μg L(-1). Wide linear ranges of direct-immersion mode for the extraction of several phenols and PAHs were also obtained with correlation coefficients (R) from 0.9943 to 0.9997. The proposed fiber showed good durability with long lifetime. RSDs of 56 times extraction were still in an acceptable range, from 8.85 to 22.8%. Copyright © 2011 Elsevier B.V. All rights reserved.
Chain of point-like potentials in Script R3 and infiniteness of the number of bound states
NASA Astrophysics Data System (ADS)
Boitsev, A. A.; Popov, I. Yu; Sokolov, O. V.
2014-10-01
Infinite chain of point-like potentials having the Hamiltonian with infinite number of eigenvalues below the continuous spectrum is constructed. The background of the model is the theory of self-adjoint extensions of symmetric operators in the Hilbert space. The analogous example of the Hamiltonian is obtained for the system of three-dimensional waveguides coupled through point-like windows.
Technology Transfer as an Entrepreneurial Practice in Higher Education. CELCEE Digest No. 98-9.
ERIC Educational Resources Information Center
Faris, Shannon K.
This digest examines some of the literature on technology transfer in the context of higher education, noting that the practice of capitalizing on academic research for commercial purposes has the potential to generate financial resources for the participating institutions of higher education. Several examples of technology transfer are cited,…
Bernard, Clémence; Vincent, Clémentine; Testa, Damien; Bertini, Eva; Ribot, Jérôme; Di Nardo, Ariel A; Volovitch, Michel; Prochiantz, Alain
2016-05-01
During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these "transfer" sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system.
Polar-Nonpolar Radical Copolymerization under Li+ Catalysis
2008-09-21
bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover
2014-10-15
led to lower PL efficiencies. The latter, however, posed no problems for solar cells aplications . Furthermore, the molecular dipoles composed of...illuminated under the light of the energy falling in the absorption range of the conjugated polymer, the polymer chain mobility decreased...the other hand, increased concomitantly (Figs. 33, 35). The driving force for the molecular flows is the diffusion of the mobile PS chains toward
NASA Astrophysics Data System (ADS)
Bauer, William Joseph, Jr.
The fate of an individual cell, or even an entire organism, is often determined by minute, yet very specific differences in the conformation of a single protein species. Very often, proteins take on alternate folds or even side chain conformations to deal with different situations present within the cell. These differences can be as large as a whole domain or as subtle as the alteration of a single amino acid side chain. Yet, even these seemingly minor side chain conformational differences can determine the development of a cell type during differentiation or even dictate whether a cell will live or die. Two examples of situations where minor conformational differences within a specific protein could lead to major differences in the life cycle of a cell are described herein. The first example describes the variations seen in DNA conformations which can lead to slightly different Hox protein binding conformations responsible for recognizing biologically relevant regulatory sites. These specific differences occur in the minor groove of the bound DNA and are limited to the conformation of only two side chains. The conformation of the bound DNA, however, is not solely determined by the sequence of the DNA, as multiple sequences can result in the same DNA conformation. The second example takes place in the context of a yeast prion protein which contains a mutation that decreases the frequency at which fibrils form. While the specific interactions leading to this physiological change were not directly detected, it can be ascertained from the crystal structure that the structural changes are subtle and most likely involve another binding partner. In both cases, these conformational changes are very slight but have a profound effect on the downstream processes.
Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred
2014-02-01
The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Information management in DNA replication modeled by directional, stochastic chains with memory
NASA Astrophysics Data System (ADS)
Arias-Gonzalez, J. Ricardo
2016-11-01
Stochastic chains represent a key variety of phenomena in many branches of science within the context of information theory and thermodynamics. They are typically approached by a sequence of independent events or by a memoryless Markov process. Stochastic chains are of special significance to molecular biology, where genes are conveyed by linear polymers made up of molecular subunits and transferred from DNA to proteins by specialized molecular motors in the presence of errors. Here, we demonstrate that when memory is introduced, the statistics of the chain depends on the mechanism by which objects or symbols are assembled, even in the slow dynamics limit wherein friction can be neglected. To analyze these systems, we introduce a sequence-dependent partition function, investigate its properties, and compare it to the standard normalization defined by the statistical physics of ensembles. We then apply this theory to characterize the enzyme-mediated information transfer involved in DNA replication under the real, non-equilibrium conditions, reproducing measured error rates and explaining the typical 100-fold increase in fidelity that is experimentally found when proofreading and edition take place. Our model further predicts that approximately 1 kT has to be consumed to elevate fidelity in one order of magnitude. We anticipate that our results are necessary to interpret configurational order and information management in many molecular systems within biophysics, materials science, communication, and engineering.
Cohen-Atiya, Meirav; Mandler, Daniel
2006-10-14
A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.
Channel characteristics and coordination in three-echelon dual-channel supply chain
NASA Astrophysics Data System (ADS)
Saha, Subrata
2016-02-01
We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.
Markov chains for testing redundant software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1988-01-01
A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.
Ultrasound Picture Archiving And Communication Systems
NASA Astrophysics Data System (ADS)
Koestner, Ken; Hottinger, C. F.
1982-01-01
The ideal ultrasonic image communication and storage system must be flexible in order to optimize speed and minimize storage requirements. Various ultrasonic imaging modalities are quite different in data volume and speed requirements. Static imaging, for example B-Scanning, involves acquisition of a large amount of data that is averaged or accumulated in a desired manner. The image is then frozen in image memory before transfer and storage. Images are commonly a 512 x 512 point array, each point 6 bits deep. Transfer of such an image over a serial line at 9600 baud would require about three minutes. Faster transfer times are possible; for example, we have developed a parallel image transfer system using direct memory access (DMA) that reduces the time to 16 seconds. Data in this format requires 256K bytes for storage. Data compression can be utilized to reduce these requirements. Real-time imaging has much more stringent requirements for speed and storage. The amount of actual data per frame in real-time imaging is reduced due to physical limitations on ultrasound. For example, 100 scan lines (480 points long, 6 bits deep) can be acquired during a frame at a 30 per second rate. In order to transmit and save this data at a real-time rate requires a transfer rate of 8.6 Megabaud. A real-time archiving system would be complicated by the necessity of specialized hardware to interpolate between scan lines and perform desirable greyscale manipulation on recall. Image archiving for cardiology and radiology would require data transfer at this high rate to preserve temporal (cardiology) and spatial (radiology) information.
Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Huang, Cheng-Fu; Yeh, Cheng-Ta
2016-04-01
In supply chain management, satisfying customer demand is the most concerned for the manager. However, the goods may rot or be spoilt during delivery owing to natural disasters, inclement weather, traffic accidents, collisions, and so on, such that the intact goods may not meet market demand. This paper concentrates on a stochastic-flow distribution network (SFDN), in which a node denotes a supplier, a transfer station, or a market, while a route denotes a carrier providing the delivery service for a pair of nodes. The available capacity of the carrier is stochastic because the capacity may be partially reserved by other customers. The addressed problem is to evaluate the system reliability, the probability that the SFDN can satisfy the market demand with the spoilage rate under the budget constraint from multiple suppliers to the customer. An algorithm is developed in terms of minimal paths to evaluate the system reliability along with a numerical example to illustrate the solution procedure. A practical case of fruit distribution is presented accordingly to emphasise the management implication of the system reliability.
Capasso Palmiero, Umberto; Morosi, Lavinia; Bello, Ezia; Ponzo, Marianna; Frapolli, Roberta; Matteo, Cristina; Ferrari, Mariella; Zucchetti, Massimo; Minoli, Lucia; De Maglie, Marcella; Romanelli, Pierpaolo; Morbidelli, Massimo; D'Incalci, Maurizio; Moscatelli, Davide
2018-04-28
The improvement of the pharmacological profile of lipophilic drug formulations is one of the main successes achieved using nanoparticles (NPs) in medicine. However, the complex synthesis procedure and numerous post-processing steps hamper the cost-effective use of these formulations. In this work, an approach which requires only a syringe to produce self-assembling biodegradable and biocompatible poly(caprolactone)-based NPs is developed. The effective synthesis of monodisperse NPs has been made possible by the optimization of the block-copolymer synthesized via a combination of ring opening polymerization and reversible addition-fragmentation chain transfer polymerization. These NPs can be used to formulate lipophilic drugs that are barely soluble in water, such as trabectedin, a potent anticancer therapeutic. Its biodistribution and antitumor activity have been compared with the commercially available formulation Yondelis®. The results indicate that this trabectedin NP formulation performs with the same antitumor activity as Yondelis®, but does not have the drawback of severe local vascular toxicity in the injection site. Copyright © 2018 Elsevier B.V. All rights reserved.
A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase.
Goris, Tobias; Wait, Annemarie F; Saggu, Miguel; Fritsch, Johannes; Heidary, Nina; Stein, Matthias; Zebger, Ingo; Lendzian, Friedhelm; Armstrong, Fraser A; Friedrich, Bärbel; Lenz, Oliver
2011-05-01
Hydrogenases are essential for H(2) cycling in microbial metabolism and serve as valuable blueprints for H(2)-based biotechnological applications. However, most hydrogenases are extremely oxygen sensitive and prone to inactivation by even traces of O(2). The O(2)-tolerant membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha H16 is one of the few examples that can perform H(2) uptake in the presence of ambient O(2). Here we show that O(2) tolerance is crucially related to a modification of the internal electron-transfer chain. The iron-sulfur cluster proximal to the active site is surrounded by six instead of four conserved coordinating cysteines. Removal of the two additional cysteines alters the electronic structure of the proximal iron-sulfur cluster and renders the catalytic activity sensitive to O(2) as shown by physiological, biochemical, spectroscopic and electrochemical studies. The data indicate that the mechanism of O(2) tolerance relies on the reductive removal of oxygenic species guided by the unique architecture of the electron relay rather than a restricted access of O(2) to the active site.
The role of energy losses in photosynthetic light harvesting
NASA Astrophysics Data System (ADS)
Krüger, T. P. J.; van Grondelle, R.
2017-07-01
Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.
Solowey, Douglas P; Mane, Manoj V; Kurogi, Takashi; Carroll, Patrick J; Manor, Brian C; Baik, Mu-Hyun; Mindiola, Daniel J
2017-11-01
Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CH t Bu(CH 3 ) (PNP=N[2-P(CHMe 2 ) 2 -4-methylphenyl] 2 - ), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C 4 to C 8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.
NASA Astrophysics Data System (ADS)
Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.
2017-11-01
Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.
Applications of aerospace technology in industry. A technology transfer profile: Food technology
NASA Technical Reports Server (NTRS)
Murray, D. M.
1971-01-01
Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.
Extinction and the associative structure of heterogeneous instrumental chains.
Thrailkill, Eric A; Bouton, Mark E
2016-09-01
Drug abuse, overeating, and smoking are all examples of instrumental behaviors that often involve chains or sequences of behavior. A behavior chain is minimally composed of a procurement response that is required in order for a subsequent consumption response to be reinforced. Despite the translational importance of behavior chains, few studies have attempted to understand what binds them together and takes them apart. This article surveys the development of the heterogeneous instrumental chain method and introduces recent findings that have used extinction to analyze the associative content of (what is learned in) the chain. Chained responses that are occasion-set by their own discriminative stimuli may be directly associated; extinction of the procurement response weakens its associated consumption response, and extinction of the consumption response weakens its associated procurement response. Extinction itself involves learning to inhibit the response. Extinguished chained responses are subject to renewal when they are tested either back in the acquisition context or in a new context. In addition, a consumption response that is extinguished outside its chain is renewed when returned to the context of the preceding response in the chain. Research on heterogeneous behavior chains can provide important insights into an important but often overlooked aspect of instrumental learning. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, S.; Grasty, K; Hernandez-Cuebas, L
2009-01-01
The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handedmore » helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.« less
Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots
NASA Astrophysics Data System (ADS)
Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil
2018-05-01
Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
NASA Astrophysics Data System (ADS)
Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.
2017-12-01
During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.
Finite-size scaling and integer-spin Heisenberg chains
NASA Astrophysics Data System (ADS)
Bonner, Jill C.; Müller, Gerhard
1984-03-01
Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently, investigations have begun which subject the theoretical basis to systematic and intensive scrutiny to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is an example of a situation where finite-size scaling methods encounter difficulty, related to the occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of the spin-1/2 antiferromagnetic XXZ model where the T=0 critical behavior is exactly known and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling techniques do not convincingly reproduce the exact phase behavior and this is attributable to the essential singularity. The point is relevant in connection with a finite-size scaling analysis of a spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that the T=0 phase behavior of integer-spin Heisenberg chains is significantly different from that of half-integer-spin Heisenberg chains.
NASA Astrophysics Data System (ADS)
Vijayashree, M.; Uthayakumar, R.
2017-09-01
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.
Biophysical basis of low-power-laser effects
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-06-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1995-05-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria, and cyt d in E. coli). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation of some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
Mechanisms of interaction of monochromatic visible light with cells
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-01-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O'2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low- power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Besides explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
NASA Technical Reports Server (NTRS)
1994-01-01
This video presents two examples of NASA Technology Transfer. The first is a Downhole Video Logger, which uses remote sensing technology to help in mining. The second example is the use of satellite image processing technology to enhance ultrasound images taken during pregnancy.
26 CFR 25.7520-3T - Limitation on the application of section 7520 (temporary).
Code of Federal Regulations, 2011 CFR
2011-04-01
... section are illustrated by the following example: Example. Terminal illness. The donor transfers property... age 75 but has been diagnosed with an incurable illness and has at least a 50 percent probability of...
26 CFR 25.7520-3T - Limitation on the application of section 7520 (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... section are illustrated by the following example: Example. Terminal illness. The donor transfers property... age 75 but has been diagnosed with an incurable illness and has at least a 50 percent probability of...
26 CFR 1.215-1 - Periodic alimony, etc., payments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... section 215: Example 1. Pursuant to the terms of a decree of divorce, H, in 1956, transferred securities... are not deductible from his income. Example 2. A decree of divorce obtained by W from H incorporated a...
Telematics and satellites. Part 1: Information systems
NASA Astrophysics Data System (ADS)
Burke, W. R.
1980-06-01
Telematic systems are identified and described. The applications are examined emphasizing the role played by satellite links. The discussion includes file transfer, examples of distributed processor systems, terminal communication, information retrieval systems, office information systems, electronic preparation and publishing of information, electronic systems for transfer of funds, electronic mail systems, record file transfer characteristics, intra-enterprise networks, and inter-enterprise networks.
ERIC Educational Resources Information Center
de Jong, Terry; Cullity, Marguerite; Sharp, Sue; Spiers, Sue; Wren, Julia
2010-01-01
The effective "transfer" of knowledge and skills from university to the workplace is of global interest, yet this area of inquiry lacks research. Teacher educators, for example, require information on how to advance pre-service teachers' transfer of group-based learning to the primary school classroom (Scott & Baker, 2003). Group-based learning…
26 CFR 1.707-3 - Disguised sales of property to partnership; general rules.
Code of Federal Regulations, 2010 CFR
2010-04-01
... time of an earlier transfer; (ii) That the transferor has a legally enforceable right to the subsequent... of transfers at different times as a sale. (i) The facts are the same as in Example 1, except that... building on the land. At the time the land is transferred to the partnership, it is unencumbered and has an...
26 CFR 1.707-3 - Disguised sales of property to partnership; general rules.
Code of Federal Regulations, 2013 CFR
2013-04-01
... time of an earlier transfer; (ii) That the transferor has a legally enforceable right to the subsequent... of transfers at different times as a sale. (i) The facts are the same as in Example 1, except that... building on the land. At the time the land is transferred to the partnership, it is unencumbered and has an...
Coronado Mondragon, Adrian E; Coronado Mondragon, Christian E; Coronado, Etienne S
2015-01-01
Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a "high-tech" industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a "high-tech" industry such as composite materials would be to review supply chain lessons and practices in "low-tech" industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived "low-tech" industry that can be used to provide guidelines in the design of the supply chain of a "high-tech" industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a "low-tech" industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry.
Earl, David J; Deem, Michael W
2005-04-14
Adaptive Monte Carlo methods can be viewed as implementations of Markov chains with infinite memory. We derive a general condition for the convergence of a Monte Carlo method whose history dependence is contained within the simulated density distribution. In convergent cases, our result implies that the balance condition need only be satisfied asymptotically. As an example, we show that the adaptive integration method converges.
Reestablishing Strategic and Critical Material Security in the Department of Defense
2011-05-11
Nickel >700% Tungsten 300% Titanium 600% Cobalt 325% Germanium 300% Chromium 500% Molybdenum 500% Indium 300% Manganese 350% Rhenium > 1000% Peak...CHAIN LEADERSHIP New Mission Example • Currently working with Tinker Air Force Base on a rhenium availability issue – Rhenium is a super alloy used in...acquisitions to assure industrial base capability – Titanium – Rare Earth Elements – Germanium – Rhenium / nickel super-alloys – Other materials as supply chain
Quantum logic between remote quantum registers
NASA Astrophysics Data System (ADS)
Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.
2013-02-01
We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.
Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment.
Boonsaner, Maliwan; Hawker, Darryl W
2013-10-01
There has been recent concern regarding the possibility of antibiotics entering the aquatic food chain and impacting human consumers. This work reports experimental results of the bioconcentration of the antibiotic oxytetracycline (OTC) by the Asian watermeal plant (Wolffia globosa Hartog & Plas) and bioaccumulation of OTC in watermeal and water by the seven-striped carp (Probarbus jullieni). They show, for the first time, the extent to which OTC is able to transfer from water to plant to fish and enter the food chain. The mean bioconcentration factor (dry weight basis) with watermeal was 1.28 × 10(3) L kg(-1). Separate experiments were undertaken to characterize accumulation of OTC by carp from water and watermeal. These showed the latter pathway to be dominant under the conditions employed. The bioconcentration and biomagnification factors for these processes were 1.75 L kg(-1) and 2 × 10(-4) kg g(-1) respectively. Using an aqueous concentration range of 0.34-3.0 μg L(-1), hazard quotients for human consumption of contaminated fish of 1.3 × 10(-2) to 1.15 × 10(-1) were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transferable Coarse-Grained Models for Ionic Liquids.
Wang, Yanting; Feng, Shulu; Voth, Gregory A
2009-04-14
The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.
Schön, Eva; Zhang, Xiangyang; Zhou, Zhiping; Chisholm, Malcolm H; Chen, Peter
2004-11-15
The gas-phase reactions of a series of mass-selected mononuclear and dinuclear Cr(salen) complexes with propylene oxide suggest that the enhanced reactivity of the dinuclear complexes in gas-phase and in solution may derive from a dicationic mechanism in which the alkoxide chain is mu(2)-coordinated to two Lewis acidic metal centers. The double coordination is proposed to suppress backbiting, and hence chain-transfer in the gas-phase homopolymerization of epoxides.
Learning from Physical Analogies: A Study in Analogy and the Explanation Process
1988-12-27
support of the various transfer operations, the forward chaining ATRE rule system is paired with an abductive retriever. This is a backward chaining...pO) is believed.3 When a new datum is entered in the database, ATRE exhaustively runs all rules made executable by the datum’s presence in a forward ...ZR) INFLUENESST1 (CTA (AIOUN-O ?V-2)) NERTON V- (ASUM (DISSOLVE-RAT SELF))) ER ) (DSETT (SKSOLUTIO-S -12)COOL (NOTUM (LSSOU-THN-1 A CONTRATO V-P) ER
Evidence for the interior evolution of Ceres from geologic analysis of fractures
Scully, Jennifer E. C.; Buczkowski, Debra; Schmedemann, Nico; Raymond, Carol A.; Castillo-Rogez, Julie C.; Scott King,; Bland, Michael T.; Ermakov, Anton; O'Brien, D.P.; Marchi, S.; Longobardo, A.; Russell, C.T.; Fu, R.R.; Neveu, M.
2017-01-01
Ceres is the largest asteroid belt object, and the Dawn spacecraft observed Ceres since 2015. Dawn observed two morphologically distinct linear features on Ceres's surface: secondary crater chains and pit chains. Pit chains provide unique insights into Ceres's interior evolution. We interpret pit chains called the Samhain Catenae as the surface expression of subsurface fractures. Using the pit chains' spacings, we estimate that the localized thickness of Ceres's fractured, outer layer is approximately ≥58 km, at least ~14 km greater than the global average. We hypothesize that extensional stresses, induced by a region of upwelling material arising from convection/diapirism, formed the Samhain Catenae. We derive characteristics for this upwelling material, which can be used as constraints in future interior modeling studies. For example, its predicted location coincides with Hanami Planum, a high-elevation region with a negative residual gravity anomaly, which may be surficial evidence for this proposed region of upwelling material.
Optimizing pricing and ordering strategies in a three-level supply chain under return policy
NASA Astrophysics Data System (ADS)
Noori-daryan, Mahsa; Taleizadeh, Ata Allah
2018-03-01
This paper develops an economic production quantity model in a three-echelon supply chain composing of a supplier, a manufacturer and a wholesaler under two scenarios. As the first scenario, we consider a return contract between the outside supplier and the supplier and also between the manufacturer and the wholesaler, but in the second one, the return policy between the manufacturer and the wholesaler is not applied. Here, it is assumed that shortage is permitted and demand is price-sensitive. The principal goal of the research is to maximize the total profit of the chain by optimizing the order quantity of the supplier and the selling prices of the manufacturer and the wholesaler. Nash-equilibrium approach is considered between the chain members. In the end, a numerical example is presented to clarify the applicability of the introduced model and compare the profit of the chain under two scenarios.
Orientation of chain molecules in ionotropic gels: a Brownian dynamics model
NASA Astrophysics Data System (ADS)
Woelki, Stefan; Kohler, Hans-Helmut
2003-09-01
As is known from birefringence measurements, polysaccharide molecules of ionotropic gels are preferentially orientated normal to the direction of gel growth. In this paper the orientation effect is investigated by means of an off-lattice Brownian dynamics model simulating the gel formation process. The model describes the integration of a single coarse grained phantom chain into the growing gel. The equations of motion of the chain are derived. The computer simulations show that, during the process of integration, the chain is contracting normal to the direction of gel growth. A scaling relation is obtained for the degree of contraction as a function of the length parameters of the chain, the velocity of the gel formation front and the rate constant of the crosslinking reaction. It is shown that the scaling relation, if applied to the example of ionotropic copper alginate gel, leads to reasonable predictions of the time course of the degree of contraction of the alginate chains.
The physics of volume rendering
NASA Astrophysics Data System (ADS)
Peters, Thomas
2014-11-01
Radiation transfer is an important topic in several physical disciplines, probably most prominently in astrophysics. Computer scientists use radiation transfer, among other things, for the visualization of complex data sets with direct volume rendering. In this article, I point out the connection between physical radiation transfer and volume rendering, and I describe an implementation of direct volume rendering in the astrophysical radiation transfer code RADMC-3D. I show examples for the use of this module on analytical models and simulation data.
Bouzat, Juan L; Hoostal, Matthew J
2013-05-01
Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.
Dioxygen in Polyoxometalate Mediated Reactions.
Weinstock, Ira A; Schreiber, Roy E; Neumann, Ronny
2018-03-14
In this review article, we consider the use of molecular oxygen in reactions mediated by polyoxometalates. Polyoxometalates are anionic metal oxide clusters of a variety of structures that are soluble in liquid phases and therefore amenable to homogeneous catalytic transformations. Often, they are active for electron transfer oxidations of a myriad of substrates and upon reduction can be reoxidized by molecular oxygen. For example, the phosphovanadomolybdate, H 5 PV 2 Mo 10 O 40 , can oxidize Pd(0) thereby enabling aerobic reactions catalyzed by Pd and H 5 PV 2 Mo 10 O 40 . In a similar vein, polyoxometalates can stabilize metal nanoparticles, leading to additional transformations. Furthermore, electron transfer oxidation of other substrates such as halides and sulfur-containing compounds is possible. More uniquely, H 5 PV 2 Mo 10 O 40 and its analogues can mediate electron transfer-oxygen transfer reactions where oxygen atoms are transferred from the polyoxometalate to the substrate. This unique property has enabled correspondingly unique transformations involving carbon-carbon, carbon-hydrogen, and carbon-metal bond activation. The pathway for the reoxidation of vanadomolybdates with O 2 appears to be an inner-sphere reaction, but the oxidation of one-electron reduced polyoxotungstates has been shown through intensive research to be an outer-sphere reaction. Beyond electron transfer and electron transfer-oxygen transfer aerobic transformations, there a few examples of apparent dioxygenase activity where both oxygen atoms are donated to a substrate.
Precise Nanoelectronics with Adatom Chains
NASA Technical Reports Server (NTRS)
Yamada, Toshishige
1999-01-01
Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.
Relay entanglement and clusters of correlated spins
NASA Astrophysics Data System (ADS)
Doronin, S. I.; Zenchuk, A. I.
2018-06-01
Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.
Study on transport packages used for food freshness preservation based on thermal analysis
NASA Astrophysics Data System (ADS)
Yu, Ying
2016-12-01
In recent time, as the Chinese consumption level increases, the consumption quantity of high-value fruits, vegetables and seafood products have been increasing year by year. As a consequence, the traffic volume of refrigerated products also increases yearly and the popularization degree of the cold-chain transportation enhances. A low-temperature environment should be guaranteed during transportation, thus there is about 40% of diesel oil should be consumed by the refrigerating system and the cold-chain transportation becomes very costly. This study aimed to explore methods that could reduce the cost of transport packages of refrigerated products. On the basis of the heat transfer theory and the fluid mechanics theory, the heat exchanging process of corrugated cases during the operation of refrigerating system was analyzed, the heat transfer process of corrugated cases and refrigerator van was theoretically analyzed and the heat balance equation of corrugated cases was constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Justin; Rzayev, Javid
Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. Themore » resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.« less
Seidler, Konstanze; Griesser, Markus; Kury, Markus; Reghunathan, Harikrishna; Dorfinger, Peter; Koch, Thomas; Svirkova, Anastasiya; Marchetti-Deschmann, Martina; Stampfl, Jürgen; Moszner, Norbert; Gorsche, Christian; Liska, Robert
2018-05-04
Photoinitiated radical polymer network formation is lacking freedom for tailored network design. Resulting inhomogeneous network architectures and brittle material behavior of such glassy-type networks limit the commercial application of photopolymers in 3D printing, biomedicine or microelectronics. An ester-activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate-based networks with nearly no retardation, reduced shrinkage stress, high monomer conversion and improved material toughness. Laser flash photolysis followed by theoretical calculations and photoreactor studies elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit high tensile strength, improved elongation at break and high impact resistance, while maintaining high modulus and hardness at ambient conditions. These findings make EVS an exceptional candidate for the 3D printing of tough photopolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less
The mechanism of proton conduction in phosphoric acid
NASA Astrophysics Data System (ADS)
Vilčiauskas, Linas; Tuckerman, Mark E.; Bester, Gabriel; Paddison, Stephen J.; Kreuer, Klaus-Dieter
2012-06-01
Neat liquid phosphoric acid (H3PO4) has the highest intrinsic proton conductivity of any known substance and is a useful model for understanding proton transport in other phosphate-based systems in biology and clean energy technologies. Here, we present an ab initio molecular dynamics study that reveals, for the first time, the microscopic mechanism of this high proton conductivity. Anomalously fast proton transport in hydrogen-bonded systems involves a structural diffusion mechanism in which intramolecular proton transfer is driven by specific hydrogen bond rearrangements in the surrounding environment. Aqueous media transport excess charge defects through local hydrogen bond rearrangements that drive individual proton transfer reactions. In contrast, strong, polarizable hydrogen bonds in phosphoric acid produce coupled proton motion and a pronounced protic dielectric response of the medium, leading to the formation of extended, polarized hydrogen-bonded chains. The interplay between these chains and a frustrated hydrogen-bond network gives rise to the high proton conductivity.
Baseline concentration of 210Po in Kuwait's commercial fish species.
Uddin, S; Al-Ghadban, A N; Behbehani, M; Aba, A; Al Mutairi, A; Karam, Q
2012-11-01
This baseline study highlights the (210)Po variation in whole fishes with different feeding habits. Whole-body (210)Po concentrations were determined in ten important commercial fish species found in the northern Arabian Gulf to serve as baseline data. Primarily, (210)Po is absorbed from water, concentrated by phytoplankton and microzooplankton, and then transferred to the next trophic level along the marine food chain. The lowest concentration of (210)Po was measured in larger carnivorous fishes like hamoor (0.089 Bq kg(-1)), while the highest was found in the fishes that feed on algae, zooplanktons and detritus, like battan (3.30 Bq kg(-1)). The baseline data can be used to understand both the trophic transfer of (210)Po in the marine food chain and the (210)Po concentration factors in fish from the Arabian Gulf. Copyright © 2012 Elsevier Ltd. All rights reserved.
Giuffrida, Maria Chiara; Pignatello, Rosario; Castelli, Francesco; Sarpietro, Maria Grazia
2017-09-01
Naproxen, a nonsteroid anti-inflammatory drug studied for Alzheimer's disease, was conjugated with lipoamino acids (LAA) directly or through a diethylamine (EDA) spacer to improve the drug lipophilicity and the interaction with phospholipid bilayers. The interaction of naproxen and its prodrugs with biomembrane models consisting of dimyristoylphosphatidylcholine multilamellar vesicles was studied by differential scanning calorimetry. The transfer of prodrugs from a lipophilic carrier to a biomembrane model was also studied. Naproxen conjugation to lipoamino acids improves its interaction with biomembrane models and affects the transfer from a lipophilic carrier to biomembrane model. LAA portion may localize between the phospholipid chains; the entity of the interaction depends not only on the presence of the spacer but also on the LAA chain length. Variation of LAA portion can modulate the naproxen prodrugs affinity towards the biological membrane as well as towards the lipophilic carrier. © 2017 Royal Pharmaceutical Society.
Wang, Yong; Zhao, Yajun; Ye, Yunsheng; Peng, Haiyan; Zhou, Xingping; Xie, Xiaolin; Wang, Xianhong; Wang, Fosong
2018-03-26
The one-step synthesis of well-defined CO 2 -based diblock copolymers was achieved by simultaneous ring-opening copolymerization (ROCOP) of CO 2 /epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC-COOH) as the bifunctional chain transfer agent (CTA). The double chain-transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09-1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC-COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO 2 -based polycarbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Closed loop supply chain network design with fuzzy tactical decisions
NASA Astrophysics Data System (ADS)
Sherafati, Mahtab; Bashiri, Mahdi
2016-09-01
One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.
Senoo, M; Matsubara, Y; Fujii, K; Nagasaki, Y; Hiratsuka, M; Kure, S; Uehara, S; Okamura, K; Yajima, A; Narisawa, K
2000-04-01
Fetal somatic cell gene therapy could become an attractive solution for some congenital genetic diseases or the disorders which manifest themselves during the fetal period. We performed adenovirus-mediated gene transfer to mice and guinea pig fetuses in utero and evaluated the efficiency of gene transfer by histochemical analysis and a quantitative TaqMan-polymerase chain reaction (TaqMan-PCR) assay. We first injected a replication-deficient recombinant adenovirus containing the Escherichia coli LacZ gene driven by a CAG promoter (AxCALacZ) into pregnant mice through the amniotic space, placenta, or intraperitoneal space of the fetus. Histochemical analysis showed limited transgene expression in fetal tissues. We then administered AxCALacZ to guinea pig fetuses in the late stage of pregnancy through the umbilical vein. The highest beta-galactosidase expression was observed in liver followed by moderate expression in heart, spleen, and adrenal gland. The transgene expression was also present in kidney, intestine, and placenta to a lesser degree. No positively stained cells were observed in lung, muscle, or pancreas except in the vascular endothelium of these organs. Quantitative measurement of recombinant adenoviral DNA by the TaqMan-PCR assay showed that the vast majority of the injected viruses was present in liver. The current study indicated that adenovirus-mediated gene transfer into guinea pig fetus through the umbilical vein is feasible and results in efficient transgene expression in fetal tissues. The experimental procedures using pregnant guinea pigs might serve as a good experimental model for in utero gene transfer. Since our TaqMan-PCR assay detects the LacZ gene, one of the most widely used reporter genes, it may be generally applicable to adenovirus quantification in various gene transfer experiments.
Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein
Augustin, Peter; Toplak, Marina; Fuchs, Katharina; Gerstmann, Eva Christine; Prassl, Ruth; Winkler, Andreas; Macheroux, Peter
2018-01-01
The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria. PMID:29301933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijssen, J.G.; Oosting, R.S.; Nkamp, F.Pv.
1986-10-01
Guinea pig alveolar macrophages were labeled by incubation with either arachidonate or linoleate. Arachidonate labeled phosphatidylcholine (PC), phosphatidylethanolamine (PE) and triglycerides (TG) equally well, with each lipid containing about 30% of total cellular radioactivity. In comparison to arachidonate, linoleate was recovered significantly less in PE (7%) and more in TG (47%). To investigate whether redistributions of acyl chains among lipid classes took place, the macrophages were incubated with 1-acyl-2-(1-/sup 14/C)arachidonoyl PC or 1-acyl-2-(1-/sup 14/C)linoleoyl PC. After harvesting, the cells incubated with 1-acyl-2-(1-/sup 14/C)linoleoyl PC contained 86% of the recovered cellular radioactivity in PC, with only small amounts of label beingmore » transferred to PE and TG (3 and 6%, respectively). More extensive redistributions were observed with arachidonate-labeled PC. In this case, only 60% of cellular radioactivity was still associated with PC, while 22 and 12%, respectively, had been transferred to PE and TG. Arachidonate transfer from PC to PE was unaffected by an excess of free arachidonate which inhibited this transfer to TG for over 90%, indicating that different mechanisms or arachidonoyl CoA pools were involved in the transfer of arachidonate from PC to PE and TG. Cells prelabeled with 1-acyl-2-(1-/sup 14/C)arachidonoyl PC released /sup 14/C-label into the medium upon further incubation. This release was slightly stimulated by zymosan and threefold higher in the presence of the Ca2+-ionophore A23187. Labeling of macrophages with intact phospholipid molecules appears to be a suitable method for studying acyl chain redistribution and release reactions.« less
NASA Astrophysics Data System (ADS)
Fan, Dehui; Gao, Shan
This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.
Research on Duplication Dynamics and Evolutionary Stable of Reverse Supply Chain
NASA Astrophysics Data System (ADS)
Huizhong, Dong; Hongli, Song
An evolutionary game model of Reverse Supply Chain(RSC) is established based on duplication dynamics function and evolutionary stable strategy. Using the model framework, this paper provides insights into a deeper understanding on how each supplier make strategic decision independently in reverse supply chain to determine their performance. The main conclusion is as follow: Under the market mechanism, not unless the extra income derived from the implementation of RSC exceeds zero point would the suppliers implement RSC strategy. When those suppliers are passive to RSC, the effective solution is that the government takes macro-control measures, for example, to force those suppliers implement RSC through punishment mechanism.
ERIC Educational Resources Information Center
Sundberg, Donald C.; Someshwar, Arun V.
1989-01-01
Describes the structure of an in-depth laboratory project chemical engineering. Provides modeling work to guide experimentation and experimental work on heat transfer analysis. Discusses the experimental results and evaluation of the project. (YP)
Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercer, Brian Scott
2016-05-19
In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior ofmore » PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate functions. The model is shown to work well for predicting the onset of primary backbone bond failure, as well as the onset of secondary bond failure via chain slippage for the case of isolated non-interacting chain-end defects.« less
NASA Astrophysics Data System (ADS)
Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi
2017-09-01
Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.
Thiede, Erik; VAN Koten, Brian; Weare, Jonathan
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.