Sample records for transfer cross section

  1. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less

  2. Charge-transfer cross sections in collisions of ground-state Ca and H+

    NASA Astrophysics Data System (ADS)

    Dutta, C. M.; Oubre, C.; Nordlander, P.; Kimura, M.; Dalgarno, A.

    2006-03-01

    We have investigated collisions of Ca(4s2) with H+ in the energy range of 200eV/u-10keV/u using the semiclassical molecular-orbital close-coupling (MOCC) method with 18 coupled molecular states ( 11Σ+1 and seven Π+1 states) to determine charge-transfer cross sections. Except for the incoming channel 6Σ+1 , the molecular states all correspond to charge-transfer channels. Inclusion of Ca2+-H- is crucial in the configuration-interaction calculation for generating the molecular wave functions and potentials. Because of the Coulomb attraction, the state separating to Ca2+-H- creates many avoided crossings, even though at infinite separation it lies energetically above all other states that we included. Because of the avoided crossings between the incoming channel 6Σ+1 and the energetically close charge-transfer channel 7Σ+1 the charge-transfer interaction occurs at long range. This makes calculations of charge-transfer cross sections by the MOCC method very challenging. The total charge-transfer cross sections increase monotonically from 3.4×10-15cm2 at 200eV/u to 4.5×10-15cm2 at 10keV/u . Charge transfer occurs mostly to the excited Ca+(5p) state in the entire energy range, which is the sum of the charge transfer to 7Σ+1 and 4Π+1 . It accounts for ˜47% of the total charge transfer cross sections at 200eV/u . However, as the energy increases, transfer to Ca+(4d) increases, and at 10keV/u the charge-transfer cross sections for Ca+(5p) and Ca+(4d) become comparable, each giving ˜38% of the total cross section.

  3. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution.

    PubMed

    Young, Meggie N; Bleiholder, Christian

    2017-04-01

    Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å 2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C 960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.

  4. Electron impact cross sections for the 2,2P state excitation of lithium

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.; Register, D. F.

    1982-01-01

    Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.

  5. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  6. Energy transfer of highly vibrationally excited biphenyl.

    PubMed

    Hsu, Hsu Chen; Dyakov, Yuri; Ni, Chi-Kung

    2010-11-07

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.

  7. Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections

    NASA Astrophysics Data System (ADS)

    Kuo, Ching Yi; Pan, Chin

    2010-09-01

    This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.

  8. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.

    2012-07-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less

  9. Dynamics of complete and incomplete fusion in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bao, Xiao Jun; Guo, Shu Qing; Zhang, Hong Fei; Li, Jun Qing

    2018-02-01

    In order to study the influence of the strong Coulomb and nuclear interactions on the dynamics of complete and incomplete fusion, we construct a new four-variable master equation (ME) so that the deformations as well as the nucleon transfer are viewed as consistently governed by MEs in the potential energy surface of the system. The calculated yields of quasifission fragments and evaporation residue cross section (ERCS) are in agreement with experimental data of hot fusion reactions. Comparing cross sections by theoretical results and experimental data, we find the improved dinuclear sysytem model also describes the transfer cross sections reasonably. The production cross sections of new neutron-rich isotopes are estimated by the multinucleon transfer reactions.

  10. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  11. Transfer reaction code with nonlocal interactions

    DOE PAGES

    Titus, L. J.; Ross, A.; Nunes, F. M.

    2016-07-14

    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d,N)(d,N) or (N,d)(N,d), including nonlocal nucleon–target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d,N)BA(d,N)B or B(N,d)AB(N,d)A. Details on the implementation of the TT-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided.more » This code is suitable to be applied for deuteron induced reactions in the range of View the MathML sourceEd=10–70MeV, and provides cross sections with 4% accuracy.« less

  12. Experimental study of low-energy charge transfer in nitrogen

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1979-01-01

    Total charge transfer cross sections were obtained for the N2(+)-N2 system with relative translational ion energies between 9 and 441 eV. Data were obtained to examine the dependence of total cross section on ion energy. The effect of ion excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over an electron energy range between 14.5 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at pressure values from 9.9 to 0.000199 torr. Cross section values obtained were compared with experimental and theoretical results of other investigations.

  13. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  14. Low energy e-Ar momentum transfer cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, M.J.

    1992-12-01

    Recent work has shown that solutions of the Boltzmann equation which use the so called {open_quotes}two-term{close_quotes} approximation provide an inadequate description of the transverse diffusion of electrons in argon gas at low values of E/N, contrary to earlier evidence. Previous determinations of the momentum transfer cross section for argon from the analysis of transport data have used two-term codes in good faith. Progress towards the determination of a new cross section in the energy range O - 4 eV, including an analysis of the energy dependence of the uncertainty in the derived cross section is reported.

  15. Experimental and theoretical studies of the He(2+)-He system - Differential cross sections for direct, single-, and double-charge-transfer scattering at keV energies

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.

    1992-01-01

    Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.

  16. Studies of electron-molecule collisions - Applications to e-H2O

    NASA Technical Reports Server (NTRS)

    Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1986-01-01

    Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.

  17. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri; Ni, Chi-Kung

    2011-05-14

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.

  18. Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Feng, Zhao-Qing; Zhang, Feng-Shou

    2015-08-01

    The dynamics of nucleon transfer processes in heavy-ion collisions is investigated within the dinuclear system model. The production cross sections of nuclei in the reactions 136Xe+208Pb and 238U+248Cm are calculated, and the calculations are in good agreement with the experimental data. The transfer cross sections for the 58Ni+208Pb reaction are calculated and compared with the experimental data. We predict the production cross sections of neutron-rich nuclei 165-168 Eu, 169-173 Tb, 173-178 Ho, and 181-185Yb based on the reaction 176Yb+238U. It can be seen that the production cross sections of the neutron-rich nuclei 165Eu, 169Tb, 173Ho, and 181Yb are 2.84 μb, 6.90 μb, 46.24 μb, and 53.61 μb, respectively, which could be synthesized in experiment.

  19. Closed-form expressions for state-to-state charge-transfer differential cross sections in a modified Faddeev three-body approach

    NASA Astrophysics Data System (ADS)

    Adivi, E. Ghanbari; Brunger, M. J.; Bolorizadeh, M. A.; Campbell, L.

    2007-02-01

    The second-order Faddeev-Watson-Lovelace approximation in a modified form is applied to charge transfer from hydrogenlike target atoms by a fully stripped energetic projectile ion. The state-to-state, nlm→n'l'm' , partial transition amplitudes are calculated analytically. The method is specifically applied to the collision of protons with hydrogen atoms, where differential cross sections of different transitions are calculated for incident energies of 2.8 and 5.0MeV . It is shown that the Thomas peak is present in all transition cross sections. The partial cross sections are then summed and compared with the available forward-angle experimental data, showing good agreement.

  20. Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data

    NASA Astrophysics Data System (ADS)

    Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan

    2015-04-01

    The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.

  1. Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes

    NASA Astrophysics Data System (ADS)

    Nikitin, N. N.; Semenov, V. P.

    2008-03-01

    We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.

  2. Electron transport parameters in NF3

    NASA Astrophysics Data System (ADS)

    Lisovskiy, V.; Yegorenkov, V.; Ogloblina, P.; Booth, J.-P.; Martins, S.; Landry, K.; Douai, D.; Cassagne, V.

    2014-03-01

    We present electron transport parameters (the first Townsend coefficient, the dissociative attachment coefficient, the fraction of electron energy lost by collisions with NF3 molecules, the average and characteristic electron energy, the electron mobility and the drift velocity) in NF3 gas calculated from published elastic and inelastic electron-NF3 collision cross-sections using the BOLSIG+ code. Calculations were performed for the combined RB (Rescigno 1995 Phys. Rev. E 52 329, Boesten et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5475) momentum-transfer cross-section, as well as for the JB (Joucoski and Bettega 2002 J. Phys. B: At. Mol. Opt. Phys. 35 783) momentum-transfer cross-section. In addition, we have measured the radio frequency (rf) breakdown curves for various inter-electrode gaps and rfs, and from these we have determined the electron drift velocity in NF3 from the location of the turning point in these curves. These drift velocity values are in satisfactory agreement with those calculated by the BOLSIG+ code employing the JB momentum-transfer cross-section.

  3. One-nucleon pickup reactions and compound-nuclear decays

    NASA Astrophysics Data System (ADS)

    Escher, J. E.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Scielzo, N. D.

    2018-05-01

    One-nucleon transfer reactions, long used as a tool to study the structure of nuclei, are potentially valuable for determining reaction cross sections indirectly. This is significant, as many reactions of interest to astrophysics and other applications involve short-lived isotopes and cannot be measured directly. We describe a procedure for obtaining constraints for calculations of neutron capture cross sections using observables from experiments with transfer reactions. As a first step toward demonstrating the method, we outline the theory developments used to properly describe the production of the compound nucleus 88Y* via the one-nucleon pickup reaction 89Y(p,d)88Y* and test the description with data from a recent experiment. We indicate how this development can be used to extract the unknown 87Y(n,γ) cross section from 89Y(p,dγ) data. The example illustrates a more generally applicable method for determining unknown cross sections via a combination of theory and transfer (or inelastic scattering) experiments.

  4. New electron-energy transfer rates for vibrational excitation of O2

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Campbell, L.; Bottema, M. J.; Brunger, M. J.

    2003-09-01

    We report on our computation of electron-energy transfer rates for vibrational excitation of O2. This work was necessitated by inadequacies in the electron-impact cross section databases employed in previous studies and, in one case, an inaccurate approximate formulation to the rate equation. Both these inadequacies led to incorrect energy transfer rates being published in the literature. We also demonstrate the importance of using cross sections that encompass an energy range that is extended enough to appropriately describe the environment under investigation.

  5. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Technical Reports Server (NTRS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  6. Compound-nuclear Reactions with Unstable Isotopes: Constraining Capture Cross Sections with Indirect Data and Theory

    NASA Astrophysics Data System (ADS)

    Escher, Jutta

    2016-09-01

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Several indirect methods have recently been proposed to determine neutron capture cross sections for unstable isotopes. These methods aim at constraining statistical calculations of capture cross sections with data obtained from the decay of the compound nucleus relevant to the desired reaction. Each method produces this compound nucleus in a different manner (via a light-ion reaction, a photon-induced reaction, or β decay) and requires additional ingredients to yield the sought-after cross section. This contribution focuses on the process of determining capture cross sections from inelastic scattering and transfer experiments. Specifically, theoretical descriptions of the (p,d) transfer reaction have been developed to complement recent measurements in the Zr-Y region. The procedure for obtaining constraints for unknown capture cross sections is illustrated. The main advantages and challenges of this approach are compared to those of the proposed alternatives. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Integral cross sections for electron impact excitation of the 1Σ+u and 1Πu electronic states in CO2

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Kato, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.

    2008-04-01

    We apply the method of Kim (2007 J. Chem. Phys. 126 064305) in order to derive integral cross sections for the 1Σ+u and 1Πu states of CO2, from our corresponding earlier differential cross section measurements (Green et al 2002 J. Phys. B: At. Mol. Opt. Phys. 35 567). The energy range of this work is 20 200 eV. In addition, the BEf-scaling approach is used to calculate integral cross sections for these same states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, over the entire common energy range. Finally, we employ our calculated integral cross sections to determine the electron energy transfer rates for these states, for a thermal electron energy distribution. Such transfer rates are in principle important for understanding the phenomena in atmospheres where CO2 is a dominant constituent, such as on Mars and Venus.

  8. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  9. Elastic, inelastic, and 1-nucleon transfer channels in the 7Li+120Sn system

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-03-01

    Background: Simultaneous description of major outgoing channels for a nuclear reaction by coupled-channels calculations using the same set of potential and coupling parameters is one of the difficult tasks to accomplish in nuclear reaction studies. Purpose: To measure the elastic, inelastic, and transfer cross sections for as many channels as possible in 7Li+120Sn system at different beam energies and simultaneously describe them by a single set of model calculations using fresco. Methods: Projectile-like fragments were detected using six sets of Si-detector telescopes to measure the cross sections for elastic, inelastic, and 1-nucleon transfer channels at two beam energies of 28 and 30 MeV. Optical model analysis of elastic data and coupled-reaction-channels (CRC) calculations that include around 30 reaction channels coupled directly to the entrance channel, with respective structural parameters, were performed to understand the measured cross sections. Results: Structure information available in the literature for some of the identified states did not reproduce the present data. Cross sections obtained from CRC calculations using a modified but single set of potential and coupling parameters were able to describe simultaneously the measured data for all the channels at both the measured energies as well as the existing data for elastic and inelastic cross sections at 44 MeV. Conclusions: Non-reproduction of some of the cross sections using the structure information available in the literature which are extracted from reactions involving different projectiles indicates that such measurements are probe dependent. New structural parameters were assigned for such states as well as for several new transfer states whose spectroscopic factors were not known.

  10. A Cross-Sectional Study on the Roles of Lexical Aspect and L1 Transfer in Tense-Aspect Acquisition

    ERIC Educational Resources Information Center

    Qian, Cuijing

    2015-01-01

    This study aims to investigate the acquisition of English verb morphology by learners of two typologically different L1s and the role of L1 transfer in the acquisition pattern, a cross-sectional study (n = 180) carried with Chinese and Mongolian college students learning English at two proficiency levels, using the cloze passage and composition.…

  11. Revised analysis of Ca 40 + Zr 96 fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esbensen, H.; Montagnoli, G.; Stefanini, A. M.

    2016-03-10

    Fusion data for 40Ca + 96Zr are analyzed by coupled-channels calculations that are based on a standard Woods-Saxon potential and include couplings to multiphonon excitations and transfer channels. The couplings to multiphonon excitations are the same as those used in a previous work. The transfer couplings are calibrated to reproduce the measured neutron transfer data. This type of calculation gives a poor fit to the fusion data. However, by multiplying the transfer couplings with a √2 one obtains an excellent fit. Finally, the scaling of the transfer strengths is supposed to simulate the combined effect of neutron and proton transfer,more » and the calculated one- and two-nucleon transfer cross sections are indeed in reasonable agreement with the measured cross sections.« less

  12. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.

    PubMed

    Chen Hsu, Hsu; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-08-07

    Energy transfer of highly vibrationally excited naphthalene in the triplet state in collisions with CHF(3), CF(4), and Kr was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene (2.0 eV vibrational energy) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. In comparison to Kr atoms, the energy transfer in collisions between CHF(3) and naphthalene shows more forward scatterings, larger cross section for vibrational to translational (V → T) energy transfer, smaller cross section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation, especially in the range -ΔE(d) = -100 to -800 cm(-1). On the other hand, the difference of energy transfer properties between collisional partners Kr and CF(4) is small. The enhancement of the V → T energy transfer in collisions with CHF(3) is attributed to the large attractive interaction between naphthalene and CHF(3) (1-3 kcal/mol).

  13. Heat transfer enhancement and entropy generation analysis of Al2O3-water nanofluid in an alternating oval cross-section tube using two-phase mixture model under turbulent flow

    NASA Astrophysics Data System (ADS)

    Najafi Khaboshan, Hasan; Nazif, Hamid Reza

    2018-04-01

    Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.

  14. Cross sections for electron collisions with nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com

    Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.

  15. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  16. Deep-inelastic multinucleon transfer processes in the 16O+27Al reaction

    NASA Astrophysics Data System (ADS)

    Roy, B. J.; Sawant, Y.; Patwari, P.; Santra, S.; Pal, A.; Kundu, A.; Chattopadhyay, D.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Nayak, B. K.; Saxena, A.; Kailas, S.; Nag, T. N.; Sahoo, R. N.; Singh, P. P.; Sekizawa, K.

    2018-03-01

    The reaction mechanism of deep-inelastic multinucleon transfer processes in the 16O+27Al reaction at an incident 16O energy (Elab=134 MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra, and angular distributions for various transfer channels have been measured. The Q -value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay among fusion-fission, deep-inelastic, multinucleon transfer, and particle evaporation processes is discussed.

  17. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  18. Investigation into aerodynamic and heat transfer of annular channel with inner and outer surface of the shape truncated cone and swirling fluid flow

    NASA Astrophysics Data System (ADS)

    Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.

    2017-11-01

    We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J.; Richard, P.; Gray, T.J.

    The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less

  20. Cross Sections and Transport Properties of BR- Ions in AR

    NASA Astrophysics Data System (ADS)

    Jovanovic, Jasmina; Stojanovic, Vladimir; Raspopovic, Zoran; Petrovic, Zoran

    2014-10-01

    We have used a combination of a simple semi-analytic theory - Momentum Transfer Theory (MTT) and exact Monte Carlo (MC) simulations to develop Br- in Ar momentum transfer cross section based on the available data for reduced mobility at the temperature T = 300 K over the range 10 Td <= E / N <= 300 Td. At very low energies, we have extrapolated obtained cross sections towards Langevin's cross section. Also, we have extrapolated data to somewhat higher energies based on behavior of similar ions in similar gases and by the addition of the total detachment cross section that was used from the threshold around 7.7 eV. Relatively complete set was derived which can be used in modeling of plasmas by both hybrid, particle in cell (PIC) and fluid codes. A good agreement between calculated and measured ion mobilities and longitudinal diffusion coefficients is an independent proof of the validity of the cross sections that were derived for the negative ion mobility data. In addition to transport coefficients we have also calculated the net rate coefficients of elastic scattering and detachment. Author acknowledge Ministry of Education, Science and Technology, Proj. Nos. 171037 and 410011.

  1. Measurement of Charged and Neutral Current e-p Deep Inelastic Scattering Cross Sections at High Q2

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J.; Norman, D. J.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; ZajaÇ, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voss, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y.; Long, K. R.; Miller, D. B.; Morawitz, P. P.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Schwarzer, O.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-08-01

    Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q2 above 400 GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ2 are presented. From the Q2 dependence of the CC cross section, the mass term in the CC propagator is determined to be MW = 76+/-16+/-13 GeV.

  2. Post-prior equivalence for transfer reactions with complex potentials

    NASA Astrophysics Data System (ADS)

    Lei, Jin; Moro, Antonio M.

    2018-01-01

    In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive breakup and transfer cross sections. For that, we employ the model proposed by Ichimura et al. [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431], conveniently generalized to include the part of the cross section corresponding the transfer to bound states. We pay particular attention to the case in which the unobserved particle is left in a bound state of the residual nucleus, in which case the theory prescribes the use of a complex potential, responsible for the spreading width of the populated single-particle states. We see that the introduction of this complex potential gives rise to an additional term in the prior cross-section formula, not present in the usual case of real binding potentials. The equivalence is numerically tested for the 58Ni(d ,p X ) reaction.

  3. Charge transfer of O3+ ions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O3+(2s22p 2P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.

  4. Arrays of flow channels with heat transfer embedded in conducting walls

    DOE PAGES

    Bejan, A.; Almerbati, A.; Lorente, S.; ...

    2016-04-20

    Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements,more » on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.« less

  5. Production of a tensor glueball in the reaction γγ → G2π0 at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Kivel, N.; Vanderhaeghen, M.

    2018-06-01

    We study the production of a tensor glueball in the reaction γγ →G2π0. We compute the cross section at higher momentum transfer using the collinear factorisation approach. We find that for a value of the tensor gluon coupling of fgT ∼ 100 MeV, the cross section can be measured in the near future by the Belle II experiment.

  6. Charge transfer between O6+ and atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.

    2011-05-01

    The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.

  7. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  8. Study of BenW (n = 1-12) clusters: An electron collision perspective

    NASA Astrophysics Data System (ADS)

    Modak, Paresh; Kaur, Jaspreet; Antony, Bobby

    2017-08-01

    This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.

  9. Parity-Dependent Rotational Energy Transfer in CN(A2Π, ν = 4, jF1ε) + N2, O2, and CO2 Collisions

    PubMed Central

    2015-01-01

    We report state-resolved total removal cross sections and state-to-state rotational energy transfer (RET) cross sections for collisions of CN(A2Π, ν = 4, jF1ε) with N2, O2, and CO2. CN(X2Σ+) was produced by 266 nm photolysis of ICN in a thermal bath (296 K) of the collider gas. A circularly polarized pulse from a dye laser prepared CN(A2Π, ν = 4) in a range of F1e rotational states, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5. These prepared states were monitored using the circularly polarized output of an external cavity diode laser by frequency-modulated (FM) spectroscopy on the CN(A–X)(4,2) band. The FM Doppler profiles were analyzed as a function of pump–probe delay to determine the time dependence of the population of the initially prepared states. Kinetic analysis of the resulting time dependences was used to determine total removal cross sections from the initially prepared levels. In addition, a range of j′ F1e and j′ F2f product states resulting from rotational energy transfer out of the j = 6.5 F1e initial state were probed, from which state-to-state RET cross sections were measured. The total removal cross sections lie in the order CO2 > N2 > O2, with evidence for substantial cross sections for electronic and/or reactive quenching of CN(A, ν = 4) to unobserved products with CO2 and O2. This is supported by the magnitude of the state-to-state RET cross sections, where a deficit of transferred population is apparent for CO2 and O2. A strong propensity for conservation of rotational parity in RET is observed for all three colliders. Spin–orbit-changing cross sections are approximately half of those of the respective conserving cross sections. These results are in marked disagreement with previous experimental observations with N2 as a collider but are in good agreement with quantum scattering calculations from the same study (Khachatrian et al. J. Phys. Chem. A2009, 113, 392219215110). Our results with CO2 as a collider are similarly in strong disagreement with a related experimental study (Khachatrian et al. J. Phys. Chem. A2009, 113, 1339019405498). We therefore propose that the previous experiments substantially underestimated the spin–orbit-changing cross sections for collisions with both N2 and CO2, suggesting that even approximate quantum scattering calculations may be more successful for such molecule–molecule systems than was previously concluded. PMID:24552624

  10. Electron collisions with ethylene

    NASA Astrophysics Data System (ADS)

    Panajotovic, R.; Kitajima, M.; Tanaka, H.; Jelisavcic, M.; Lower, J.; Campbell, L.; Brunger, M. J.; Buckman, S. J.

    2003-04-01

    We have measured absolute elastic scattering and vibrational excitation cross sections for electron impact on ethylene. The experimental data have been obtained on two different crossed-beam electron spectrometers and they cover the energy range from 1 to 100 eV and scattering angles between 10° and 130°. Both differential (in angle) and energy-dependent cross sections have been measured. The differential cross sections have also been analysed using a molecular phase shift analysis technique in order to derive the integral elastic and elastic momentum transfer cross sections. Comparison is made with earlier data, where available, and also with a number of recent theoretical calculations.

  11. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  12. The multistate impact parameter method for molecular charge exchange in nitrogen

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1980-01-01

    The multistate impact parameter method is applied to the calculation of total cross sections for low energy change transfer between nitrogen ions and nitrogen molecules. Experimental data showing the relationships between total cross section and ion energy for various pressures and electron ionization energies were obtained. Calculated and experimental cross section values from the work are compared with the experimental and theoretical results of other investigators.

  13. P(P bar)P elastic scattering and cosmic ray data

    NASA Technical Reports Server (NTRS)

    FAZAL-E-ALEEM; Saleem, M.

    1985-01-01

    It is shown that the total cross section for pp elastic scattering at cosmic ray energies, as well as the total cross section, the slope parameter b(s,t) and the differential cross section for small momentum transfer at ISR and collider energies for p(p)p elastic scattering can be simultaneously fitted by using a simple Regge pole model. The results of this theory is discussed in detail.

  14. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  15. Projectile-charge dependence of the differential cross section for the ionization of argon atoms at 1 keV

    NASA Astrophysics Data System (ADS)

    Purohit, G.; Kato, D.

    2017-10-01

    The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.

  16. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  17. Absorption effects in electron-sulfur-dioxide collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos

    2011-09-15

    A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations.more » Comparison of the present results is made with the theoretical and experimental results available in the literature.« less

  18. Compton-Scattering Cross Section on the Proton at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Danagoulian, A.; Mamyan, V. H.; Roedelbronn, M.; Aniol, K. A.; Annand, J. R. M.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, C. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hamilton, D. J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D. W.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meekins, D. G.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Ron, G.; Sabatié, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.

    2007-04-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s=5 11 and -t=2 7GeV2 with a statistical accuracy of a few percent. The scaling power for the s dependence of the cross section at fixed center-of-mass angle was found to be 8.0±0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

  19. a New Set-Up for Total Reaction Cross Section Measuring

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Ivanov, M. P.; Kugler, A.; Penionzhkevich, Yu. E.

    2013-06-01

    The experimental method and set-up based on 4 n-Υ-technique for direct and modelindependent measuring of the total reaction cross section σR have been presented. The excitation function σR(E) for 6He+197Au reaction at the Coulomb barrier energy region has been measured. The measured data are compared with the summarized cross section which has been prepared by summing of measured cross sections of main reaction channels: 1n-transfer and 197Au(6He, xn)203-xnT1 with x = 2÷7 evaporation reaction channels.

  20. Transfer Student Engagement: Blurring of Social and Academic Engagement

    ERIC Educational Resources Information Center

    Lester, Jaime; Leonard, Jeannie Brown; Mathias, David

    2013-01-01

    Transfer students are a distinct population. Their characteristics lead to a qualitatively different student experience. Drawing on interviews with a cross-sectional sample of transfer students at George Mason University (GMU), this study focused on the ways transfer students perceived their social and academic engagement, on the ways they engaged…

  1. Transfer couplings and hindrance far below the barrier for 40 Ca + 96 Zr

    DOE PAGES

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; ...

    2015-01-29

    The sub-barrier fusion excitation function of 40Ca + 96Zr has been measured down to cross sections ≃2.4µb, i.e. two orders of magnitude smaller than obtained in the previous experiment, where the sub-barrier fusion of this system was found to be greatly enhanced with respect to 40Ca + 90Zr, and the need of coupling to transfer channels was suggested. The purpose of this work was to investigate the behavior of 40Ca + 96Zr fusion far below the barrier. The smooth trend of the excitation function has been found to continue, and the logarithmic slope increases very slowly. No indication of hindrancemore » shows up, and a comparison with 48Ca + 96Zr is very useful in this respect. A new CC analysis of the complete excitation function has been performed, including explicitly one- and two-nucleon Q >0 transfer channels. Such transfer couplings bring significant cross section enhancements, even at the level of a few µb. Locating the hindrance threshold, if any, in 40Ca + 96Zr would require challenging measurements of cross sections in the sub-µb range.« less

  2. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo; Oliveira, Eliane M. de

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the numbermore » of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].« less

  3. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  4. Electron scattering by highly polar molecules. III - CsCl

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Srivastava, S. K.

    1981-01-01

    Utilizing a crossed electron-beam-molecular-beam scattering geometry, relative values of differential electron scattering cross sections for cesium chloride at 5 and 20 eV electron impact energies and at scattering angles between 10 and 120 deg have been measured. These relative cross sections have been normalized to the cross section at 15 deg scattering angle calculated by the hybrid S-matrix technique. In the angular range between 0 and 10 deg and between 120 and 180 deg extrapolations have been made to obtain integral and momentum transfer cross sections. An energy-loss spectrum is also presented which gives various spectral features lying between the 4 and 10 eV regions in CsCl.

  5. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  6. Mass spectra and fusion cross sections for /sup 20/Ne+/sup 24/Mg interaction at 55 and 85 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Belery, P.; Delbar, T.

    1981-06-01

    Inclusive ..gamma.. spectra from the /sup 20/Ne+/sup 24/Mg interaction have been measured using 55- and 85-MeV /sup 20/Ne ions. The identification of ..gamma.. lines allows the determination of mass spectra in the region 12< or =A< or =43. Experimental results are compared with statistical model calculations. The total reaction and fusion cross sections are extracted. Cross sections for inelastic scattering, few nucleon transfers, and deep inelastic scattering are estimated.

  7. Measurement of the total cross section from elastic scattering in pp collisions at s = 8   TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.

    2016-08-16

    A measurement of the total pp cross section at the LHC at √s = 8 TeV is presented. An integrated luminosity of 500 μb –1 was accumulated in a special run with high-β* beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. Here, the measurement is performed with the ALFA sub-detector of ATLAS.

  8. Measurement of the total cross section from elastic scattering in pp collisions at s = 8   TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.

    A measurement of the total pp cross section at the LHC at √s = 8 TeV is presented. An integrated luminosity of 500 μb –1 was accumulated in a special run with high-β* beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. Here, the measurement is performed with the ALFA sub-detector of ATLAS.

  9. Application of Variational Methods to the Thermal Entrance Region of Ducts

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Siegel. R.

    1960-01-01

    A variational method is presented for solving eigenvalue problems which arise in connection with the analysis of convective heat transfer in the thermal entrance region of ducts. Consideration is given, to both situations where the temperature profile depends upon one cross-sectional coordinate (e.g. circular tube) or upon two cross-sectional coordinates (e.g. rectangular duct). The variational method is illustrated and verified by application to laminar heat transfer in a circular tube and a parallel-plate channel, and good agreement with existing numerical solutions is attained. Then, application is made to laminar heat transfer in a square duct as a check, an alternate computation for the square duct is made using a method indicated by Misaps and Pohihausen. The variational method can, in principle, also be applied to problems in turbulent heat transfer.

  10. Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daub, B. H.; Bleuel, D. L.; Wiedeking, M.

    Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less

  11. Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals

    DOE PAGES

    Daub, B. H.; Bleuel, D. L.; Wiedeking, M.; ...

    2017-08-01

    Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less

  12. Measurements and calculations of the Coulomb cross section for the production of direct electron pairs by energetic heavy nuclei in nuclear track emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Fountain, W. F.; Parnell, T. A.; Dong, B. L.; Gregory, J. C.; Takahashi, Y.; King, D. T.

    1988-01-01

    Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed.

  13. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E<80 eV/u, the differences between the current total MOCC cross sections with and without rotational coupling are small (<3%). Rotational coupling becomes more important with increasing energy: for collision energies E>400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  14. Elastic, inelastic, and 1 n transfer cross sections for the 10B+120Sn reaction

    NASA Astrophysics Data System (ADS)

    Gasques, L. R.; Freitas, A. S.; Chamon, L. C.; Oliveira, J. R. B.; Medina, N. H.; Scarduelli, V.; Rossi, E. S.; Alvarez, M. A. G.; Zagatto, V. A. B.; Lubian, J.; Nobre, G. P. A.; Padron, I.; Carlson, B. V.

    2018-03-01

    The 10B+120Sn reaction has been investigated at ELab=37.5 MeV. The cross sections for different channels, such as the elastic scattering, the excitation of the 2+ and 3-120Sn states, the excitation of the 1+ state of 10B, and the 1 n pick-up transfer, have been measured. One-step distorted-wave Born approximation and coupled-reaction-channels calculations have been performed in the context of the double-folding São Paulo potential. The effect of coupling the inelastic and transfer states on the angular distributions is discussed in the paper. In general, the theoretical calculations within the coupled-reaction-channels formalism yield a satisfactory agreement with the corresponding experimental angular distributions.

  15. Low- ν Flux and Total Charged-current Cross Sections in MINERvA

    NASA Astrophysics Data System (ADS)

    Ren, Lu

    2014-03-01

    The MINER νA experiment measures neutrino and antineutrino interaction cross sections on carbon and other nuclei. Cross section measurements require accurate knowledge of the incident neutrino flux. The ``low- ν'' flux technique uses a standard-candle cross section for events with low energy transfer to to the hadronic system to determine the incident flux. MINER νA will use low- ν fluxes for neutrinos and antineutrinos to tune production models used in beam simulations and to extract total cross sections as a function of energy. We present the low- ν flux technique adapted for the MINER νA data samples and preliminary results for the extracted low- ν fluxes in MINER νA. MINER νA will extend the range of antineutino charged-current cross section measurements to lower energies which are of interest to future accelerator oscillation experiments.

  16. Low-energy elastic electron scattering from furan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M. A.; Muse, J.; Ralphs, K.

    We report normalized experimental and theoretical differential cross sections for elastic electron scattering by C{sub 4}H{sub 4}O (furan) molecules from a collaborative project between several Brazilian theoretical groups and an experimental group at California State Fullerton, USA. The measurements are obtained by using the relative flow method with helium as the standard gas and a thin aperture target gas collimating source. The relative flow method is applied without the restriction imposed by the relative flow pressure condition on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 1.5, 1.73, 2, 2.7, 3, 5,more » 7, 10, 20, 30, and 50 eV and covered the angular range between 10 deg. and 130 deg. The measurements verify observed {pi}* shape resonances at 1.65{+-}0.05eV and 3.10{+-}0.05 eV scattering energies, in good agreement with the transmission electron data of Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. Furthermore, the present results also indicated both resonances dominantly in the d-wave channel. The differential cross sections are integrated in the standard way to obtain integral elastic cross sections and momentum transfer cross sections. The calculations employed the Schwinger multichannel method with pseudopotentials and were performed in the static-exchange and in the static-exchange plus polarization approximations. The calculated integral and momentum transfer cross sections clearly revealed the presence of two shape resonances located at 1.95 and 3.56 eV and ascribed to the B{sub 1} and A{sub 2} symmetries of the C{sub 2v} point group, respectively, in very good agreement with the experimental findings. Overall agreement between theory and experiment regarding the differential, momentum transfer, and integral cross sections is very good, especially for energies below 10 eV.« less

  17. Low-energy elastic electron scattering from furan

    NASA Astrophysics Data System (ADS)

    Khakoo, M. A.; Muse, J.; Ralphs, K.; da Costa, R. F.; Bettega, M. H. F.; Lima, M. A. P.

    2010-06-01

    We report normalized experimental and theoretical differential cross sections for elastic electron scattering by C4H4O (furan) molecules from a collaborative project between several Brazilian theoretical groups and an experimental group at California State Fullerton, USA. The measurements are obtained by using the relative flow method with helium as the standard gas and a thin aperture target gas collimating source. The relative flow method is applied without the restriction imposed by the relative flow pressure condition on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 1.5, 1.73, 2, 2.7, 3, 5, 7, 10, 20, 30, and 50 eV and covered the angular range between 10° and 130°. The measurements verify observed π* shape resonances at 1.65±0.05eV and 3.10±0.05 eV scattering energies, in good agreement with the transmission electron data of Modelli and Burrow [J. Phys. Chem. AJPCAFH 1089-563910.1021/jp048759a 108, 5721 (2004)]. Furthermore, the present results also indicated both resonances dominantly in the d-wave channel. The differential cross sections are integrated in the standard way to obtain integral elastic cross sections and momentum transfer cross sections. The calculations employed the Schwinger multichannel method with pseudopotentials and were performed in the static-exchange and in the static-exchange plus polarization approximations. The calculated integral and momentum transfer cross sections clearly revealed the presence of two shape resonances located at 1.95 and 3.56 eV and ascribed to the B1 and A2 symmetries of the C2v point group, respectively, in very good agreement with the experimental findings. Overall agreement between theory and experiment regarding the differential, momentum transfer, and integral cross sections is very good, especially for energies below 10 eV.

  18. The formation of excited atoms during charge exchange between hydrogen ions and alkali atoms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nieman, R. A.

    1971-01-01

    The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).

  19. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  20. A Cross-Sectional Study of Engineering Students' Self-Efficacy by Gender, Ethnicity, Year, and Transfer Status

    ERIC Educational Resources Information Center

    Concannon, James P.; Barrow, Lloyd H.

    2009-01-01

    This is a cross-sectional study of 519 undergraduate engineering majors' self-efficacy beliefs at a large, research extensive, Midwestern university. Engineering self-efficacy is an individual's belief in his or her ability to successfully negotiate the academic hurdles of the engineering program. Engineering self-efficacy was obtained from four…

  1. Cross sections for electron collision with difluoroacetylene

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young

    2017-04-01

    We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.

  2. Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision

    NASA Astrophysics Data System (ADS)

    Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.

    2018-06-01

    A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.

  3. Cross sections of projectile-like fragments in the reaction {sup 19}F+{sup 66}Zn in the beam energy range of 3-6 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.

    2009-06-15

    Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less

  4. Elastic, inelastic, and 1 n transfer cross sections for the B 10 + Sn 120 reaction

    DOE PAGES

    Gasques, L. R.; Freitas, A. S.; Chamon, L. C.; ...

    2018-03-30

    The 10B+ 120Sn reaction has been investigated at E Lab=37.5 MeV. The cross sections for different channels, such as the elastic scattering, the excitation of the 2 + and 3 -120Sn states, the excitation of the 1 + state of 10B, and the 1n pick-up transfer, have been measured. One-step distorted-wave Born approximation and coupled-reaction-channels calculations have been performed in the context of the double-folding São Paulo potential. Here, the effect of coupling the inelastic and transfer states on the angular distributions is discussed in the paper. In general, the theoretical calculations within the coupled-reaction-channels formalism yield a satisfactory agreementmore » with the corresponding experimental angular distributions.« less

  5. Effect of Finite Chemical Reaction Rates on Heat Transfer to the Walls of Combustion-Driven Supersonic MHD Generator Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAILY, J. W. ..; RAEDER, J.; ZANKL, G.

    1974-03-01

    The effect of finite-rate homogeneous chemical reactions on the heat transfer rates to the walls of combustion-driven supersonic MHD generators was investigated. Experiments were performed on a 200 kW(e) combustion generator. The density of the heat flux to the wall was measured at various axial positions along both a circular cross section Hall-type channel and a diagonal wall channel with a rectangular cross section. From the results it was concluded that a substantial decrease in heat transfer rate to the walls of a combustion-driven supersonic MHD power generator was ob served which appears to occur because of chemical nonequilibrium inmore » the developing wall boundary layers. (LCL)« less

  6. Elastic, inelastic, and 1 n transfer cross sections for the B 10 + Sn 120 reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasques, L. R.; Freitas, A. S.; Chamon, L. C.

    The 10B+ 120Sn reaction has been investigated at E Lab=37.5 MeV. The cross sections for different channels, such as the elastic scattering, the excitation of the 2 + and 3 -120Sn states, the excitation of the 1 + state of 10B, and the 1n pick-up transfer, have been measured. One-step distorted-wave Born approximation and coupled-reaction-channels calculations have been performed in the context of the double-folding São Paulo potential. Here, the effect of coupling the inelastic and transfer states on the angular distributions is discussed in the paper. In general, the theoretical calculations within the coupled-reaction-channels formalism yield a satisfactory agreementmore » with the corresponding experimental angular distributions.« less

  7. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    NASA Astrophysics Data System (ADS)

    Winter, Thomas G.; Alston, Steven G.

    1992-02-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He+ ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v2/2, corresponding to the Thomas mechanism.

  8. Electroproduction of hyperons at low momentum transfer

    NASA Astrophysics Data System (ADS)

    Acha, Armando R.

    A high resolution study of the H(e,e'K+)Λ,Sigma 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Sigma0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (˜0.07 (GeV/c) 2) and W˜2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (thetaCM˜6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and thetaCM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Sigma 0/Λ production ratio were performed at theta CM˜6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Sigma 0/Λ production were binned in Q2, W and thetaCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.

  9. Elastic electron scattering from formamide

    NASA Astrophysics Data System (ADS)

    Buk, M. V.; Bardela, F. P.; da Silva, L. A.; Iga, I.; Homem, M. G. P.

    2018-05-01

    Differential cross sections for elastic electron scattering by formamide (NH2CHO) were measured in the 30–800 eV and 10°–120° ranges. The angular distribution of scattered electrons was obtained using a crossed electron beam-molecular beam geometry. The relative flow technique was applied to normalize our data. Integral and momentum-transfer cross sections were derived from the measured differential cross sections. Theoretical results in the framework of the independent-atom model at the static-exchange-polarization plus absorption level of approximation are also given. The present measured and calculated results are compared with those available in the literature showing a generally good agreement.

  10. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navin, A.; Tripathi, V.; Chatterjee, A.

    2004-10-01

    Reactions induced by radioactive {sup 6,8}He beams from the SPIRAL facility were studied on {sup 63,65}Cu and {sup 188,190,192}Os targets and compared to reactions with the stable {sup 4}He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam {gamma} rays for the {sup 6}He+{sup 63,65}Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic {gamma} rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei {sup 6}He at 19.5 and 30 MeV and {sup 8}He atmore » 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for {sup 6,8}He+Cu systems. Cross sections for fusion and direct reactions with {sup 4,6}He beams on heavier targets of {sup 188,192}Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam {gamma}-ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.« less

  11. Finite-element reentry heat-transfer analysis of space shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Quinn, Robert D.; Gong, Leslie

    1986-01-01

    A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.

  12. Elastic and transport cross sections for inert gases in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.

  13. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  14. Investigating Cognitive Transfer within the Framework of Music Practice: Genetic Pleiotropy Rather than Causality

    ERIC Educational Resources Information Center

    Mosing, Miriam A.; Madison, Guy; Pedersen, Nancy L.; Ullén, Fredrik

    2016-01-01

    The idea of far transfer effects in the cognitive sciences has received much attention in recent years. One domain where far transfer effects have frequently been reported is music education, with the prevailing idea that music practice entails an increase in cognitive ability (IQ). While cross-sectional studies consistently find significant…

  15. Voluntary or Mandatory Enrollment in Training and the Motivation to Transfer Training

    ERIC Educational Resources Information Center

    Curado, Carla; Henriques, Paulo Lopes; Ribeiro, Sofia

    2015-01-01

    The purpose of this study is to examine the motivation to transfer training in a multidimensional way. It investigates autonomous and controlled motivation and explores the difference in motivation to transfer according to whether the employee is enrolled in training on a voluntary or mandatory basis. This is a cross-sectional hypotheses-testing…

  16. Rosenbluth Separation of the π^{0} Electroproduction Cross Section Off the Neutron.

    PubMed

    Mazouz, M; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; Defurne, M; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Huber, G M; Hyde, C E; Iqbal, S; Itard, F; Kang, Ho; Kang, Hy; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Martí Jiménez-Argüello, A; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Muangma, N; Muñoz Camacho, C; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zana, L; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P

    2017-06-02

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π^{0} electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσ_{L}/dt, dσ_{T}/dt, dσ_{LT}/dt, and dσ_{TT}/dt are extracted as a function of the momentum transfer to the recoil system at Q^{2}=1.75  GeV^{2} and x_{B}=0.36. The ed→edπ^{0} cross sections are found compatible with the small values expected from theoretical models. The en→enπ^{0} cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π^{0} electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

  17. Microscopic description of production cross sections including deexcitation effects

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing results. However, there remain discrepancies between the measurements and the calculated cross sections, indicating a limit of the theoretical framework that works with a single mean-field potential. Possible causes of the discrepancies are discussed. Conclusions: To perfectly reproduce experimental cross sections for multinucleon transfer processes, one should go beyond the standard self-consistent mean-field description. Nevertheless, the proposed method will provide valuable information to optimize production mechanisms of new neutron-rich nuclei through its microscopic, nonempirical predictions.

  18. Heating times for round and rectangular cross sections of wood in steam

    Treesearch

    William T. Simpson

    2001-01-01

    Heat sterilization of wood in various forms is currently receiving attention as a means of killing insects or pathogens to prevent their transfer from one region of the world to another in trade. One concern is the amount of time required to heat wood of various cross-sectional sizes and configurations to a temperature that will kill the insects or pathogens....

  19. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    PubMed

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.

  20. Electron scattering by highly polar molecules. II - LiF

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Srivastavas, S. K.; Trajmar, S.

    1978-01-01

    The crossed electron-beam - molecular-beam scattering technique has been used to measure relative values of differential 'elastic' scattering cross sections at electron impact energies of 5.4 and 20 eV for the angular range from 20 to 130 deg. The absolute values of these cross sections have been obtained by normalization to the classical perturbation theory of Dickinson (1977) at a scattering angle of 40 deg. These differential cross sections have then been used to calculate the integral and momentum-transfer cross sections. An energy-loss spectrum at 100 eV electron impact energy and 15 deg scattering angle has also been obtained. Two weak features at the energy losses of 6.74 and 8.82 eV appear. Their energy positions are compared with the recent calculations of Kahn et al. (1974).

  1. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  2. FAST TRACK COMMUNICATION: Oscillation structures in elastic and electron capture cross sections for H+-H collisions in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, J. G.; Krstic, P. S.; Janev, R. K.

    2010-10-01

    We find that the number of vibrational states in the ground potential of a H2+ molecular ion embedded in the Debye plasma and the number of Regge oscillations in the resonant charge transfer cross section of the H+ + H collision system in the plasma are quasi-conserved when the Debye radius D is larger than 1.4a0. The elastic and resonant charge transfer processes in the H+ + H collision have been studied in the 0.1 meV-100 eV collision energy range for a wide range of Debye radii using a highly accurate calculation based on the modified ab initio multireference configuration interaction code. Remarkable plasma screening effects have been found in both the molecular structure and the collision dynamics of this system. Shape resonances, Regge and glory oscillations have been found in the integral cross sections in the considered energy range even for strong interaction screening, showing their ubiquitous nature.

  3. Domain wall dynamics along curved strips under current pulses: The influence of Joule heating

    NASA Astrophysics Data System (ADS)

    Raposo, Victor; Moretti, Simone; Hernandez, Maria Auxiliadora; Martinez, Eduardo

    2016-01-01

    The current-induced domain wall dynamics along curved ferromagnetic strips is studied by coupling the magnetization dynamics to the heat transport. Permalloy strips with uniform and non-uniform cross section are evaluated, taking into account the influence of the electrical contacts used to inject the current pulses and the substrate on top of which the ferromagnetic strip is sited. Micromagnetic simulations indicate that the geometry and the non-ferromagnetic materials in the system play a significant role in the current-induced domain wall dynamics. Due to the natural pinning, domain walls are hardly affected by the spin-transfer torques when placed in uniform cross section strips under current pulses with reduced magnitude. On the contrary, the current-induced domain wall displacement is significantly different in strips with non-uniform cross section, where thermal gradients emerge as due to the Joule heating. It is found that these thermal gradients can assist or act against the pure spin-transfer torques, in agreement with the recent experimental observations.

  4. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.

    2018-05-01

    A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.

  5. Production of vibrationally excited N 2 by electron impact

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.

    2004-08-01

    Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.

  6. Release of Continuous Representation for S(α,β) ACE Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlin, Jeremy Lloyd; Parsons, Donald Kent

    2014-03-20

    For low energy neutrons, the default free gas model for scattering cross sections is not always appropriate. Molecular effects or crystalline structure effects can affect the neutron scattering cross sections. These effects are included in the S(α; β) thermal neutron scattering data and are tabulated in file 7 of the ENDF6 format files. S stands for scattering. α is a momentum transfer variable and is an energy transfer variable. The S(α; β) cross sections can include coherent elastic scattering (no E change for the neutron, but specific scattering angles), incoherent elastic scattering (no E change for the neutron, but continuousmore » scattering angles), and inelastic scattering (E change for the neutron, and change in angle as well). Every S(α; β) material will have inelastic scattering and may have either coherent or incoherent elastic scattering (but not both). Coherent elastic scattering cross sections have distinctive jagged-looking Bragg edges, whereas the other cross sections are much smoother. The evaluated files from the NNDC are processed locally in the THERMR module of NJOY. Data can be produced either for continuous energy Monte Carlo codes (using ACER) or embedded in multi-group cross sections for deterministic (or even multi-group Monte Carlo) codes (using GROUPR). Currently, the S(α; β) files available for MCNP use discrete energy changes for inelastic scattering. That is, the scattered neutrons can only be emitted at specific energies— rather than across a continuous spectrum of energies. The discrete energies are chosen to preserve the average secondary neutron energy, i.e., in an integral sense, but the discrete treatment does not preserve any differential quantities in energy or angle.« less

  7. Nuclear structure studies performed using the (18O,16O) two-neutron transfer reactions

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Ferreira, J. L.; Foti, A.; Gargano, A.; Lenzi, S. M.; Linares, R.; Lubian, J.; Santagati, G.

    2018-02-01

    Excitation energy spectra and absolute cross section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. This reaction selectively populates two-neutron configurations in the states of the residual nucleus. Exact finite-range coupled reaction channel calculations are used to analyse the data. Two approaches are discussed: the extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre of mass reference frame, derived from shell-model calculations using the Moshinsky transformation brackets. The results describe well the experimental cross section and highlight cluster configurations in the involved wave functions.

  8. Triple differential cross section measurements for the outer valence molecular orbitals (1t2) of a methane molecule at 250 eV electron impact

    NASA Astrophysics Data System (ADS)

    Işık, N.; Doğan, M.; Bahçeli, S.

    2016-03-01

    In this study, detailed experimental research of triple differential cross section (TDCS) measurements is performed to investigate single ionization dynamics for the 1t2 orbital of methane molecule by 250 eV electron impact. In our experiments, the outgoing electrons are simultaneously measured in coincidence in a coplanar asymmetric geometry with the scattering angles of 10° and 20°. Therefore, TDCS measurements are performed for two different values of momentum transfer (K ≈ 0.9 au and 1.5 au). A detailed analysis of the dependence of the TDCS versus the momentum transfer is reported here.

  9. Resonant transfer excitation in collisions of F6+ and Mg9+ with H2

    NASA Astrophysics Data System (ADS)

    Bernstein, E. M.; Kamal, A.; Zaharakis, K. E.; Clark, M. W.; Tanis, J. A.; Ferguson, S. M.; Badnell, N. R.

    1991-10-01

    Experimental and theoretical investigations of resonant transfer excitation (RTE) for F6++H2 and Mg9++H2 collisions have been made. For both collision systems good agreement is obtained between the measured cross sections for K-shell x-ray emission coincident with electron-capture and theoretical RTE calculations. For F6+ the present calculations are about 10% lower than previous results of Bhalla and Karim [Phys. Rev. A 39, 6060 (1989); 41, 4097(E) (1990]; the measured cross sections are a factor of 2.3 larger than earlier measurements of Schulz et al. [Phys. Rev. A 38, 5454 (1988)]. The previous disagreement between experiment and theory for F6+ is removed.

  10. In-Hospital Mortality among Rural Medicare Patients with Acute Myocardial Infarction: The Influence of Demographics, Transfer, and Health Factors

    ERIC Educational Resources Information Center

    Muus, Kyle J.; Knudson, Alana D.; Klug, Marilyn G.; Wynne, Joshua

    2011-01-01

    Context/Purpose: Most rural hospitals can provide medical care to acute myocardial infarction (AMI) patients, but a need for advanced cardiac care requires timely transfer to a tertiary hospital. There is little information on AMI in-hospital mortality predictors among rural transfer patients. Methods: Cross-sectional retrospective analyses on…

  11. Interaction and charge transfer between dielectric spheres: Exact and approximate analytical solutions.

    PubMed

    Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning

    2016-11-21

    We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.

  12. Supervisor Behaviours that Facilitate Training Transfer

    ERIC Educational Resources Information Center

    Lancaster, Sue; Di Milia, Lee; Cameron, Roslyn

    2013-01-01

    Purpose: The purpose of this paper is to describe the supervisor behaviours that employees found to be helpful and unhelpful in facilitating training transfer. The study aims to provide rich qualitative data from the employee's perspective. Design/methodology/approach: This study utilises a cross-sectional design. A case study and a qualitative…

  13. Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.

    2017-06-01

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσL/dt, dσT/dt, dσLT/dt, and dσTT/dt are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36. The ed→edπ0 cross sections are found compatible with the small values expected from theoretical models. The en→enπ0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results withmore » previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section« less

  14. Rosenbluth Separation of the π0 Electroproduction Cross Section Off the Neutron

    NASA Astrophysics Data System (ADS)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J.-P.; Defurne, M.; de Jager, C. W.; de Leo, R.; Desnault, C.; Deur, A.; El Fassi, L.; Ent, R.; Flay, D.; Friend, M.; Fuchey, E.; Frullani, S.; Garibaldi, F.; Gaskell, D.; Giusa, A.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D.; Holmstrom, T.; Horn, T.; Huang, J.; Huang, M.; Huber, G. M.; Hyde, C. E.; Iqbal, S.; Itard, F.; Kang, Ho.; Kang, Hy.; Kelleher, A.; Keppel, C.; Koirala, S.; Korover, I.; LeRose, J. J.; Lindgren, R.; Long, E.; Magne, M.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Martí Jiménez-Argüello, A.; Meddi, F.; Meekins, D.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Muñoz Camacho, C.; Nadel-Turonski, P.; Nuruzzaman, N.; Paremuzyan, R.; Puckett, A.; Punjabi, V.; Qiang, Y.; Rakhman, A.; Rashad, M. N. H.; Riordan, S.; Roche, J.; Russo, G.; Sabatié, F.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Selvy, L.; Shahinyan, A.; Sirca, S.; Solvignon, P.; Sperduto, M. L.; Subedi, R.; Sulkosky, V.; Sutera, C.; Tobias, W. A.; Urciuoli, G. M.; Wang, D.; Wojtsekhowski, B.; Yao, H.; Ye, Z.; Zana, L.; Zhan, X.; Zhang, J.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Jefferson Lab Hall A Collaboration

    2017-06-01

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions d σL/d t , d σT/d t , d σL T/d t , and d σT T/d t are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36 . The e d →e d π0 cross sections are found compatible with the small values expected from theoretical models. The e n →e n π0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

  15. Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.

    Here, we report the first longitudinal/transverse separation of the deeply virtual exclusivemore » $$\\pi^0$$ electroproduction cross section off the neutron and coherent deuteron. Furthemore, the corresponding four structure functions $$d\\sigma_L/dt$$, $$d\\sigma_T/dt$$, $$d\\sigma_{LT}/dt$$ and $$d\\sigma_{TT}/dt$$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $$x_B$$=0.36. The $$ed \\to ed\\pi^0$$ cross sections are found compatible with the small values expected from theoretical models. The $$en \\to en\\pi^0$$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining our results with previous measurements of $$\\pi^0$$ electroproduction off the proton, we present a flavor decomposition of the $u$ and $d$ quark contributions to the cross section.« less

  16. Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron

    DOE PAGES

    Mazouz, M.; Ahmed, Z.; Albataineh, H.; ...

    2017-06-01

    Here, we report the first longitudinal/transverse separation of the deeply virtual exclusivemore » $$\\pi^0$$ electroproduction cross section off the neutron and coherent deuteron. Furthemore, the corresponding four structure functions $$d\\sigma_L/dt$$, $$d\\sigma_T/dt$$, $$d\\sigma_{LT}/dt$$ and $$d\\sigma_{TT}/dt$$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $$x_B$$=0.36. The $$ed \\to ed\\pi^0$$ cross sections are found compatible with the small values expected from theoretical models. The $$en \\to en\\pi^0$$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining our results with previous measurements of $$\\pi^0$$ electroproduction off the proton, we present a flavor decomposition of the $u$ and $d$ quark contributions to the cross section.« less

  17. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-12-01

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ˜1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ ⟩ϕ =1.11 ±0.10 (stat)±0.18 (syst)×1 0-38 cm2/nucleon . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 ×1 0-38 cm2/nucleon and the GENIE prediction is 1.08 ×1 0-38 cm2/nucleon . The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  18. Final state interactions in single- and multiparticle inclusive cross sections for hadronic collisions

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George

    2012-12-01

    We study the role of low momentum transfer (soft) interactions between high transverse momentum heavy particles and beam remnants (spectators) in hadronic collisions. Such final state interactions are power suppressed for single-particle inclusive cross sections whenever that particle is accompanied by a recoiling high-pT partner whose momentum is not fixed. An example is the single-top inclusive cross section in top-pair production. Final state soft interactions in multiparticle inclusive cross sections, including transverse momentum distributions, however, produce leading-power corrections in the absence of hard recoiling radiation. Nonperturbative corrections due to scattering from spectators are generically suppressed by powers of Λ/pT', where Λ is a hadronic scale and pT' is the largest transverse momentum of radiation recoiling against the particles whose momenta are observed.

  19. Low-energy electron collisions with C{sub 4}H{sub 6} isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A.R.; Bettega, M.H.F.; Lima, M.A.P.

    2004-01-01

    We report integral, differential, and momentum-transfer cross sections for elastic scattering of low-energy electrons by C{sub 4}H{sub 6} isomers, namely, 1,3-butadiene, 2-butyne, and cyclobutene. We use the Schwinger multichannel method with pseudopotentials [M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993)] at the static-exchange approximation to compute the cross sections for energies from 10 to 60 eV. In particular, we discuss the isomer effect, reported by experimental studies for isomers of C{sub 3}H{sub 4} and C{sub 4}H{sub 6}. We also calculate the total ionization cross section using the binary-encounter-Bethe model formore » 2-butyne and 1,3-butadiene, and estimate the inelastic cross section for these two isomers.« less

  20. Resonance charge transfer, transport cross sections, and collision integrals for N(+)(3P)-N(4S0) and O(+)(4S0)-O(3P) interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1991-01-01

    N2(+) and O2(+) potential energy curves have been constructed by combining measured data with the results from electronic structure calculations. These potential curves have been employed to determine accurate charge exchange cross sections, transport cross sections, and collision integrals for ground state N(+)-N and O(+)-O interactions. The cross sections have been calculated from a semiclassical approximation to the scattering using a computer code that fits a spline curve through the discrete potential data and incorporates the proper long-range behavior of the interactions forces. The collision integrals are tabulated for a broad range of temperatures 250-100,000 K and are intended to reduce the uncertainty in the values of the transport properties of nonequilibrium air, particularly at high temperatures.

  1. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    1998-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  2. Reporting of embryo transfer methods in IVF research: a cross-sectional study.

    PubMed

    Gambadauro, Pietro; Navaratnarajah, Ramesan

    2015-02-01

    The reporting of embryo transfer methods in IVF research was assessed through a cross-sectional analysis of randomized controlled trials (RCTs) published between 2010 and 2011. A systematic search identified 325 abstracts; 122 RCTs were included in the study. Embryo transfer methods were described in 42 out of 122 articles (34%). Catheters (32/42 [76%]) or ultrasound guidance (31/42 [74%]) were most frequently mentioned. Performer 'blinding' (12%) or technique standardization (7%) were seldom reported. The description of embryo transfer methods was significantly more common in trials published by journals with lower impact factor (less than 3, 39.6%; 3 or greater, 21.5%; P = 0.037). Embryo transfer methods were reported more often in trials with pregnancy as the main end-point (33% versus 16%) or with positive outcomes (37.8% versus 25.0%), albeit not significantly. Multivariate logistic regression confirmed that RCTs published in higher impact factor journals are less likely to describe embryo transfer methods (OR 0.371; 95% CI 0.143 to 0.964). Registered trials, trials conducted in an academic setting, multi-centric studies or full-length articles were not positively associated with embryo transfer methods reporting rate. Recent reports of randomized IVF trials rarely describe embryo transfer methods. The under-reporting of research methods might compromise reproducibility and suitability for meta-analysis. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Cross sections for elastic scattering of electrons by CF3Cl, CF2Cl2, and CFCl3

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Horie, M.; Kato, H.; Blanco, F.; García, G.; Limão-Vieira, P.; Sullivan, J. P.; Brunger, M. J.; Tanaka, H.

    2013-06-01

    Differential, integral, and momentum transfer cross sections have been determined for the elastic scattering of electrons from the molecules CF3Cl, CF2Cl2, and CFCl3.With the help of a crossed electron beam-molecular beam apparatus using the relative flow technique, the ratios of the elastic differential cross sections (DCSs) of CF3Cl, CF2Cl2, and CFCl3 to those of He were measured in the energy region from 1.5 to 100 eV and at scattering angles in the range 15° to 130°. From those ratios, the absolute DCSs were determined by utilizing the known DCS of He. For CF3Cl and CF2Cl2, at the common energies of measurement, we find generally good agreement with the results from the independent experiments of Mann and Linder [J. Phys. B 25, 1621 (1992), 10.1088/0953-4075/25/7/030; Mann and Linder J. Phys. B 25, 1633 (1992), 10.1088/0953-4075/25/7/031]. In addition, as a result of progressively substituting a Cl-atom, undulations in the angular distributions have been found to vary in a largely systematic manner in going from CF4 to CF3Cl to CF2Cl2 to CFCl3 and to CCl4. These observed features suggest that the elastic scattering process is, in an independently additive manner, dominated by the atomic-Cl atoms of the molecules. The present independent atom method calculation typically supports the experimental evidence, within the screened additivity rule formulation, for each species and for energies greater than about 10-20 eV. Integral elastic and momentum transfer cross sections were also derived from the measured DCSs, and are compared to the other available theoretical and experimental results. The elastic integral cross sections are also evaluated as a part of their contribution to the total cross section.

  4. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  5. Torque Transmission Device at Zero Leakage

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.

    2005-01-01

    In a few critical applications, mechanical transmission of power by rotation at low speed is required without leakage at an interface. Herein we examine a device that enables torque to be transmitted across a sealed environmental barrier. The barrier represents the restraint membrane through which the torque is transmitted. The power is transferred through elastic deformation of a circular tube into an elliptical cross-section. Rotation of the principle axis of the ellipse at one end results in a commensurate rotation of an elliptical cross section at the other end of the tube. This transfer requires no rigid body rotation of the tube allowing a membrane to seal one end from the other. Both computational and experimental models of the device are presented.

  6. Resonant charge transfer in He/+/-He collisions studied with the merging-beams technique

    NASA Technical Reports Server (NTRS)

    Rundel, R. D.; Nitz, D. E.; Smith, K. A.; Geis, M. W.; Stebbings, R. F.

    1979-01-01

    Absolute cross sections are reported for the resonant charge-transfer reaction He(+) + He yields He + He(+) at collision energies between 0.1 and 187 eV. The results, obtained using a new merging-beam apparatus are in agreement both with theory and with measurements made using other experimental techniques. The experimentally determined cross sections between 0.5 and 187 eV fall about a line given by sigma exp 1/2(sq-A) = 5.09-2.99 lnW, where W is the collision energy in eV. Considerable attention is paid to the configuration and operation of the apparatus. Tests and calculations which confirm the interpretation of the experimental data in a merging-beam experiment are discussed.

  7. Hydrodynamics and Heat Transfer in the Case of Combined Flow in a Annular Channel of Small Cross Section

    NASA Astrophysics Data System (ADS)

    Komov, A. T.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Boltenko, É. A.

    2017-01-01

    The present work is a continuation of experimental investigations conducted at the Moscow Power Engineering Institute (MPEI) on heat-transfer intensification. Brief descriptions of the working section and structure of intensifiers are given and their basic geometric parameters are enumerated. New systematized experimental data on the coefficients of hydraulic resistance and heat transfer in the regime of single-phase convection are given in an extended range of regime parameters and geometric characteristics of the intensifiers. Considerable increase in the heat-transfer coefficient as a function of the geometric characteristics of the intensifier has been established experimentally. The values of the relative fin height, at which these are the maxima of heat transfer and hydraulic resistance, have been established. Calculated dependences for the coefficient of hydraulic resistance and heat transfer have been obtained.

  8. Study of p-4He total reaction cross-section using Glauber and Coulomb-modified Glauber models

    NASA Astrophysics Data System (ADS)

    Tag El-Din, Ibrahim M. A.; Taha, M. M.; Hassan, Samia S. A.

    2014-02-01

    The total nuclear reaction cross-section σR for p-4He in the energy range from 25 MeV to 1000 MeV is calculated within Glauber and Coulomb-modified Glauber models. The Coulomb-modified Glauber model (CMGM) is introduced via modification of the Coulomb trajectory of the projectile from a straight line, and calculation of the effective radius of interaction. The effects of in-medium nucleon-nucleon (NN) total cross-section, phase variation, high order momentum transfer component of nucleon-nucleon elastic scattering amplitude and Pauli blocking are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR with γ = -1.6 fm2 at in-medium nuclear density ϱ = 0 and γ = -2 fm2 at ϱ = 0.17 fm-3 in the whole energy range. A remarkable fit to the available experimental data is obtained by invoking Pauli blocking and high order momentum transfer of nucleon-nucleon (NN) elastic scattering amplitude for Ep < 100 MeV.

  9. Size-Induced Segregation in the Stepwise Microhydration of Hydantoin and Its Role in Proton-Induced Charge Transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Bacchus-Montabonel, Marie-Christine

    2018-01-01

    Recent photochemistry experiments provided evidence for the formation of hydantoin by irradiation of interstellar ice analogues. The significance of these results and the importance of hydantoin in prebiotic chemistry and polypeptide synthesis motivate the present theoretical investigation, in which we analyzed the effects of stepwise hydration on the electronic and thermodynamical properties of the structure of microhydrated hydantoin using a variety of computational approaches. We generally find microhydration to proceed around the hydantoin heterocycle until 5 water molecules are reached, at which stage hydration becomes segregated with a water cluster forming aside the heterocycle. The reactivity of microhydrated hydantoin caused by an impinging proton was evaluated through charge transfer collision cross sections for microhydrated compounds but also for hydantoin on icy grains modeled using a cluster approach mimicking the true hexagonal ice surface. The effects of hydration on charge transfer efficiency are mostly significant when few water molecules are present, and they progressively weaken and stabilize in larger clusters. On the ice substrate, charge transfer essentially contributes to a global increase in the cross sections.

  10. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  11. Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan; Zarzana, Kyle J.; Tolbert, Margaret A.; Volkamer, Rainer

    2014-11-01

    Knowledge about Rayleigh scattering cross sections is relevant to predictions about radiative transfer in the atmosphere, and needed to calibrate the reflectivity of mirrors that are used in high-finesse optical cavities to measure atmospheric trace gases and aerosols. In this work we have measured the absolute Rayleigh scattering cross-section of nitrogen at 405.8 and 532.2 nm using cavity ring-down spectroscopy (CRDS). Further, multi-spectral measurements of the scattering cross-sections of argon, oxygen and air are presented relative to that of nitrogen from 350 to 660 nm using Broadband Cavity Enhanced Spectroscopy (BBCES). The reported measurements agree with refractive index based theory within 0.2±0.4%, and have an absolute accuracy of better than 1.3%. Our measurements expand the spectral range over which Rayleigh scattering cross section measurements of argon, oxygen and air are available at near-ultraviolet wavelengths. The expressions used to represent the Rayleigh scattering cross-section in the literature are evaluated to assess how uncertainties affect quantities measured by cavity enhanced absorption spectroscopic (CEAS) techniques. We conclude that Rayleigh scattering cross sections calculated from theory provide accurate data within very low error bounds, and are suited well to calibrate CEAS measurements of atmospheric trace gases and aerosols.

  12. Cross sections for electron scattering by carbon disulfide in the low- and intermediate-energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brescansin, L. M.; Iga, I.; Lee, M.-T.

    2010-01-15

    In this work, we report a theoretical study on e{sup -}-CS{sub 2} collisions in the low- and intermediate-energy ranges. Elastic differential, integral, and momentum-transfer cross sections, as well as grand total (elastic + inelastic) and absorption cross sections, are reported in the 1-1000 eV range. A recently proposed complex optical potential composed of static, exchange, and correlation-polarization plus absorption contributions is used to describe the electron-molecule interaction. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate the scattering amplitudes. The comparison between our calculated results and the existing experimental and/or theoretical results is encouraging.

  13. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  14. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  15. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  16. Breakup processes in heavy-ion induced reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udagawa, T.; Tamura, T.; Shimoda, T.

    1979-11-01

    Cross sections for breakup of /sup 20/Ne into /sup 16/O and ..cap alpha.. during scattering from /sup 40/Ca were calculated in terms of the distorted-wave Born approximation. The inclusive /sup 16/O cross section observed in the /sup 40/Ca(/sup 20/Ne,/sup 16/O) reaction was then found to be fitted very well by the sum of this breakup contribution and that of the ..cap alpha..-transfer reaction calculated in our previous work.

  17. Electron scattering by molecules. II - Experimental methods and data

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.; Register, D. F.

    1983-01-01

    Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.

  18. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  19. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less

  20. 7Li(p,n)7Be and 12C(p,n)12N reactions at 200, 300, and 400 MeV

    NASA Astrophysics Data System (ADS)

    Watson, J. W.; Pourang, R.; Abegg, R.; Alford, W. P.; Celler, A.; El-Kateb, S.; Frekers, D.; Häusser, O.; Helmer, R.; Henderson, R.; Hicks, K.; Jackson, K. P.; Jeppesen, R. G.; Miller, C. A.; Vetterli, M.; Yen, S.; Zafiratos, C. D.

    1989-07-01

    At 200, 300, and 400 MeV bombarding energies, we measured cross section angular distributions for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction and 0° cross sections for the 12C(p,n)12N(g.s.) reaction. Systematics of these reactions are presented. The center-of-mass cross section for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction, when plotted as a function of momentum transfer, is nearly independent of energy. The laboratory cross section for this reaction at 0° in the energy range from 60 to 400 MeV is also independent of energy, having a constant value, to within experimental errors, of 35.5 mb/sr with an estimated uncertainty of +/-1.5 mb/sr.

  1. Measurement of total and differential cross sections of neutrino and antineutrino coherent π± production on carbon

    NASA Astrophysics Data System (ADS)

    Mislivec, A.; Higuera, A.; Aliaga, L.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; Messerly, B.; Miller, J.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Nguyen, C.; Norrick, A.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Tagg, N.; Valencia, E.; Wospakrik, M.; Yaeggy, B.; Zavala, G.; MinerνA Collaboration

    2018-02-01

    Neutrino induced coherent charged pion production on nuclei, ν¯ μA →μ±π∓A , is a rare inelastic interaction in which the four-momentum squared transferred to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing |t | from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q2 , Eπ, and θπ . The Q2 dependence and equality of the neutrino and antineutrino cross sections at finite Q2 provide a confirmation of Adler's partial conservation of axial current hypothesis.

  2. Transition of young people with chronic conditions: a cross-sectional study of patient perceptions before and after transfer from pediatric to adult health care.

    PubMed

    Rutishauser, Christoph; Sawyer, Susan M; Ambresin, Anne-Emmanuelle

    2014-08-01

    The aim of this study was to compare perceived barriers to and the most preferred age for successful transition to adult health care between young people with chronic disorders who had not yet transferred from pediatric to adult health care (pre-transfer) and those who had already transferred (post-transfer). In a cross-sectional study, we compared 283 pre-transfer with 89 post-transfer young people, using a 28-item questionnaire that focused on perceived barriers to transition and beliefs about the most preferred age to transfer. Feeling at ease with the pediatrician was the most important barrier to successful transition in both groups, but was rated significantly higher in the pre-transfer compared to the post-transfer group (OR = 2.03, 95 %CI 1.12-3.71). Anxiety and lack of information were the next most important barriers, rated equally highly by the two groups (OR = 0.67, 95 %CI 0.35-1.28 and OR = 0.71, 95 %CI 0.36-1.38, respectively). More than 80 % of the respondents in both groups reported that 16-19 years was the most preferred age to transfer; more than half of all the respondents reported 18-19 years and older as the most preferred age. Better transition planning through the provision of regular and more detailed information about adult health-care providers and the transition process could reduce anxiety and contribute to a more positive attitude to overcome perceived barriers to transition from young people's perspective. Young people's preferences about transferring to adult health care provide a challenge to those children's hospitals that transfer to adult health care at a younger age.

  3. Rotational Energy Transfer and Collisional Induced Raman Linewidths in N2 Gas. 1; Energy Transfer Rates

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotationally inelastic transitions of N2 have been studied in the coupled state (CS) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigidrotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well; between 113 - 219 cm(exp -1) the average deviation is 14%. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp -1), shows that IOS is sensitive to the amount of inelasticity and the results for large DELTA J transitions are subject to larger errors. It is found that the state-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation in summing over partial waves. In order to use rigid-rotor results for the calculation of effective rotational excitation rates of N2 in the v=1 vibrational level colliding with bath N2 molecules in the v=0 level, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of Y. Good agreement with room temperature experimental data is obtained. The effective rates determined using the IOS and energy corrected sudden (ECS) approximations are also in reasonable agreement with experiment, with the ECS results being somewhat better. The problem with a degeneracy factor in earlier cross section expressions for collisions between identical molecules is pointed out and corrected.

  4. On the possibility for precision measurements of differential cross sections for elastic proton–proton scattering at the Protvino accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, S. P., E-mail: denisov@ihep.ru; Kozelov, A. V.; Petrov, V. A.

    Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton–proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton–proton scattering per IHEP accelerator run (20 days).more » Other lines of physics research with this facility are briefly discussed.« less

  5. New measurement of G_E/GM for the proton

    NASA Astrophysics Data System (ADS)

    Segel, Ralph

    2003-10-01

    Recent polarization transfer measurements of the ratio of the proton electric to magnetic form factor, G E /G_M, find μ_pG E /GM = 1 - 0.13Q ^2 while a long series of L-T separations are fit by μ_pG_E/GM ≈ 1. Jefferson Lab experiment E01-001 used a new technique for making L-T separations that greatly reduces the dominant systematic uncertainties present in previous determinations. Protons from ep scattering were measured over a wide range in ɛ at Q^2 = 2.64, 3.20 and 4.10 GeV^2 and, simultaneously, protons scattered at Q^2 = 0.5 GeV^2 were measured over a small range in ɛ. The Q^2 = 0.5 GeV^2 measurements provided an internal monitor and only kinematic factors and ratios of simultaneously measured cross sections enter into the determinations of G_E/G_M. Measuring the proton cross sections has the advantage that for the same Q^2, count rates change very little with ɛ and also proton momentum is the same at all ɛ thus eliminating the effect of any momentum-dependent inefficiencies. Neither of these is true for L-T separations performed by measuring electron cross sections. Furthermore, the radiative corrections for the proton cross sections are a factor of about 2.5 smaller. All previous L-T separations measured electron cross sections and none had the advantage of an internal monitor. Therefore, the results of E01-001 stringently test whether systematic uncertainties in previous L-T separations may have been sufficient to explain the discrepancy with the recent polarization transfer results.

  6. Plasma Physics Issues in Gas Discharge Laser Development

    DTIC Science & Technology

    1991-12-01

    possible where the ArF exciplex was previously formed by 2 3 4 5 6 7 8 reactions analogous to those shown above. These formation R (1) reactions are...exothermic bv a few to many electronvolts. Fig. n. Energy levels of the K’F exciplex . Laser oscillation at 248 nm takes resulting in KrF(B. v) being formed...all on a due to the large momentum-transfer cross section of the Rg single device. which forms the exciplex . The cross sections for electron- Excited

  7. Recent measurements concerning uranium hexafluoride-electron collision processes

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.; Srivastava, S.; Williams, W.; Cartwright, D. C.

    1976-01-01

    Scattering of electrons by UF6 molecules was studied at impact energies ranging from 5 to 100 eV and momentum transfer, elastic and inelastic scattering cross sections were determined. The measurements also yielded spectroscopic information which made possible to extend the optical absorption cross sections from 2000 angstroms to 435 angstroms. It was found that UF6 is a very strong absorber in the vacuum UV region. No transitions were found to lie below the onset of the optically detected 3.0 eV feature.

  8. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  9. Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment

    NASA Technical Reports Server (NTRS)

    Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)

    2002-01-01

    Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.

  10. Photoionization and pseudopotentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Lima, Marco A.P.; Ferreira, Luiz G.

    2003-05-01

    Transferability of norm-conserving pseudopotentials to low-energy electron-molecule scattering processes has been very successful [Bettega et al., Phys. Rev. A 47, 1111 (1993)]. In this paper we discuss the possibility of using effective potentials in calculations of valence electrons photoionization cross sections. Through atomic targets, we illustrate that pseudopotentials can be optimized to give cross sections in good agreement with all-electron calculations. The present work represents a first step towards more elaborate computer programs for photoionization of molecular targets containing heavy atoms.

  11. Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA

    NASA Astrophysics Data System (ADS)

    Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Han, J. Y.; Harris, D. A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; MinerνA Collaboration

    2017-04-01

    We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a subsample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, RCC , which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of ˜5 % at low energy. Our results for the antineutrino-nucleus scattering cross section and for RCC are the most precise to date in the energy range Eν<6 GeV .

  12. Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, L.; Aliaga, L.; Altinok, O.

    Here, we present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy rangemore » $$E_{\

  13. Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA

    DOE PAGES

    Ren, L.; Aliaga, L.; Altinok, O.; ...

    2017-04-14

    Here, we present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy rangemore » $$E_{\

  14. Using Cf-252 for single event upset testing

    NASA Astrophysics Data System (ADS)

    Howard, J. W.; Chen, R.; Block, R. C.; Becker, M.; Costantine, A. G.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    An improved system using Cf-252 and associated nuclear instrumentation has been used to determine single event upset (SEU) cross section versus linear energy transfer (LET) curve for several static random access memory (SRAM) devices. Through the use of a thin-film scintillator, providing energy information on each fission fragment, individual SEU's and ion energy can be associated to calculate the cross section curves. Results are presented from tests of several SRAM's over the 17-43 MeV-cm squared/mg LET range. Values obtained for SEU cross sections and LET thresholds are in good agreement with the results from accelerator testing. The equipment is described, the theory of thin-film scintillation detector response is summarized, experimental procedures are reviewed, and the test results are discussed.

  15. General upper bound on single-event upset rate. [due to ionizing radiation in orbiting vehicle avionics

    NASA Technical Reports Server (NTRS)

    Chlouber, Dean; O'Neill, Pat; Pollock, Jim

    1990-01-01

    A technique of predicting an upper bound on the rate at which single-event upsets due to ionizing radiation occur in semiconducting memory cells is described. The upper bound on the upset rate, which depends on the high-energy particle environment in earth orbit and accelerator cross-section data, is given by the product of an upper-bound linear energy-transfer spectrum and the mean cross section of the memory cell. Plots of the spectrum are given for low-inclination and polar orbits. An alternative expression for the exact upset rate is also presented. Both methods rely only on experimentally obtained cross-section data and are valid for sensitive bit regions having arbitrary shape.

  16. Alpha-transfer reactions with large energy transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froehlich, H.; Shimoda, T.; Ishihara, M.

    1979-06-04

    Alpha-transfer reactions (/sup 20/Ne,/sup 16/O), (/sup 14/N,/sup 10/B), and (/sup 13/C,/sup 9/Be) on a /sup 40/Ca target were studied at 262, 153, 149 MeV, respectively. Analysis in terms of the direction-reaction theory reproduced the observed continuum spectra and angular distributions well, except for the cross section of the reaction (/sup 20/Ne,/sup 16/O) at small angles, which is attributed to a projectile breakup process.

  17. Electron collisions with F2CO molecules

    NASA Astrophysics Data System (ADS)

    Freitas, Thiago Corrêa; Barbosa, Alessandra Souza; Bettega, Márcio Henrique Franco

    2017-07-01

    In this paper we present elastic differential, integral, and momentum-transfer cross sections for electron collisions with carbonyl fluoride (F2CO ) molecules for the incident electron's energy from 0.5 eV to 20 eV. The Schwinger multichannel method with pseudopotentials was employed to obtain the cross sections in the static-exchange and static-exchange plus polarization approximations. The present results were compared with the available data in the literature, in particular, with the results of Kaur, Mason, and Antony [Phys. Rev. A 92, 052702 (2015), 10.1103/PhysRevA.92.052702] for the differential, total, and momentum-transfer cross sections. We have found a π* shape resonance centered at 2.6 eV in the B1 symmetry and other resonance, in the B2 symmetry, located at around 9.7 eV. A systematic study of the inclusion of polarization effects was performed in order to have a well balanced description of this negative-ion transient state. The effects of the long-range electric dipole potential were included by the Born closure scheme. Electronic structure calculations were also performed to help in the interpretation of the scattering results, and associate the transient states to the unoccupied orbitals.

  18. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less

  19. Slow-electron collisions with CO molecules in an exact-exchange plus parameter-free polarization model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, A.; Norcross, D.W.

    1992-02-01

    We report low-energy (0.001--10-eV) electron-CO scattering cross sections obtained using an exact-exchange (via a separable-exchange formulation) plus a parameter-free correlation-polarization model in the fixed-nuclei approximation (FNA). The differential, total, and momentum-transfer cross sections are reported for rotationally elastic, inelastic, and summed processes. To remove the limitations of the FNA with respect to the convergence of total and differential cross sections, the multipole-extracted-adiabatic-nuclei approximation is used. The position and width of the well-known {sup 2}{Pi} shape-resonance structure in the cross section around 2 eV are reproduced quite well; however, some discrepancy between theory and experiment in the magnitude of the totalmore » cross section in the resonance region exists. We also present results for {sup 2}{Pi} shape-resonance parameters as a function of internuclear separation. Differential-cross-section results agree well with the measurements of Tanaka, Srivastava, and Chutjian (J. Chem. Phys. 69, 5329 (1978)) but are about a factor of 2 larger than the results obtained by Jung {ital et} {ital al}. (J. Phys. B 15, 3535 (1982)) in the vicinity of the {sup 2}{Pi} resonance.« less

  20. Collision cross sections and transport coefficients of O-, O2 -, O3 - and O4 - negative ions in O2, N2 and dry air for non-thermal plasmas modelling

    NASA Astrophysics Data System (ADS)

    Hennad, Ali; Yousfi, Mohammed

    2018-02-01

    The ions interaction data such as interaction potential parameters, elastic and inelastic collision cross sections and the transport coefficients (reduced mobility and diffusion coefficients) have been determined and analyzed in the case of the main negative oxygen ions (O-, O2 -, O3 - and O4 -) present in low temperature plasma at atmospheric pressure when colliding O2, N2 and dry air. The ion transport has been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer collision cross sections have been calculated from a semi-classical JWKB approximation based on a ( n-4) rigid core interaction potential model. The cross sections sets involving elastic and inelastic processes were then validated using measured reduced mobility data and also diffusion coefficient whenever available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for O3-/O2, O2 -/N2, O3 -/N2, and O4 -/N2 systems, the ion transport coefficients were calculated in pure gases and dry air over a wide range of the density reduced electric field E/N.

  1. Measurement of the total cross section from elastic scattering in pp collisions at √s=7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2014-10-28

    In this study, a measurement of the totalmore » $pp$ cross section at the LHC at $$\\sqrt{s}=7$$ TeV is presented. In a special run with high-$$\\beta^{\\star}$$ beam optics, an integrated luminosity of 80 µb -1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t| range from 0.01 GeV 2 to 0.1 GeV 2 to extrapolate to |t| → 0, the total cross section, σ tot($pp$ → X), is measured via the optical theorem to be: σ tot($pp$ → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0. In addition, the slope of the elastic cross section at small |t| is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV -2.« less

  2. Measurement of the total cross section from elastic scattering in pp collisions at √s=7 TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    In this study, a measurement of the totalmore » $pp$ cross section at the LHC at $$\\sqrt{s}=7$$ TeV is presented. In a special run with high-$$\\beta^{\\star}$$ beam optics, an integrated luminosity of 80 µb -1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t| range from 0.01 GeV 2 to 0.1 GeV 2 to extrapolate to |t| → 0, the total cross section, σ tot($pp$ → X), is measured via the optical theorem to be: σ tot($pp$ → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0. In addition, the slope of the elastic cross section at small |t| is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV -2.« less

  3. Kinetic energy of Ps formed by Ore mechanism in Ar gas

    NASA Astrophysics Data System (ADS)

    Sano, Yosuke; Kino, Yasushi; Oka, Toshitaka; Sekine, Tsutomu

    2015-06-01

    In order to investigate kinetic energy of positronium(Ps) formed by Ore mechanism, we performed positron annihilation age-momentum correlation (AMOC) measurements in Argas for 5.0 MPa and 7.5 MPa at room temperature. From the time dependence of Doppler broadening of para-Ps (p-Ps) self-annihilation gramma-ray component, we observed Ps slowing down process. Using a simple slowing down model, we obtained the initial kinetic energy of Ps formed by Ore mechanism and Ps-Armomentum transfer cross section. The initial kinetic energy was 3.9 eV which was higher than the kinetic energy of Ps formed at the upper limit of Ore gap. The momentum transfer cross section was 0.019 ± 0.010 nm2 in between 1 eV and 3.9 eV, and was close to the theoretical calculation.

  4. Resonant transfer excitation in collisions of F sup 6+ and Mg sup 9+ with H sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, E.M.; Kamal, A.; Zaharakis, K.E.

    1991-10-01

    Experimental and theoretical investigations of resonant transfer excitation (RTE) for F{sup 6+}+H{sub 2} and Mg{sup 9+}+H{sub 2} collisions have been made. For both collision systems good agreement is obtained between the measured cross sections for {ital K}-shell x-ray emission coincident with electron-capture and theoretical RTE calculations. For F{sup 6+} the present calculations are about 10% lower than previous results of Bhalla and Karim (Phys. Rev. A 39, 6060 (1989); 41, 4097(E) (1990)); the measured cross sections are a factor of 2.3 larger than earlier measurements of Schulz {ital et} {ital al}. (Phys. Rev. A 38, 5454 (1988)). The previous disagreementmore » between experiment and theory for F{sup 6+} is removed.« less

  5. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  6. Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, J. H.; Miao, B. F.; Sun, L.

    2011-11-01

    We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabaticmore » spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.« less

  7. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  8. Forced-convection Heat Transfer to Water at High Pressures and Temperatures in the Nonboiling Region

    NASA Technical Reports Server (NTRS)

    Kaufman, S J; Henderson, R W

    1951-01-01

    Forced-convection heat-transfer data have been obtained for water flowing in an electrically heated tube of circular cross section at water pressures of 200 and 2000 pounds per square inch, and temperatures in the nonboiling region, for water velocities ranging between 5 and 25 feet per second. The results indicate that conventional correlations can be used to predict heat-transfer coefficients for water at pressures up to 2000 pounds per square inch and temperatures in the nonboiling region.

  9. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  10. Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States.

    PubMed

    Bulut, Niyazi; Lique, François; Roncero, Octavio

    2015-12-17

    The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.

  11. Measurement of total and differential cross sections of neutrino and antineutrino coherent π ± production on carbon

    DOE PAGES

    Mislivec, A.; Higuera, A.; Aliaga, L.; ...

    2018-02-28

    Neutrino induced coherent charged pion production on nuclei,more » $$\\overline{v}μA$$→μ ±π ∓A, is a rare inelastic interaction in which the four-momentum squared transferred to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing |t| from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q 2, E π, and θ π. The Q 2 dependence and equality of the neutrino and antineutrino cross sections at finite Q 2 provide a confirmation of Adler’s partial conservation of axial current hypothesis.« less

  12. Revealing proton shape fluctuations with incoherent diffraction at high energy

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strongmore » geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.« less

  13. Production mechanism of new neutron-rich heavy nuclei in the 136Xe +198Pt reaction

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wen, Peiwei; Li, Jingjing; Zhang, Gen; Li, Bing; Xu, Xinxin; Liu, Zhong; Zhu, Shaofei; Zhang, Feng-Shou

    2018-01-01

    The multinucleon transfer reaction of 136Xe +198Pt at Elab = 7.98 MeV/nucleon is investigated by using the improved quantum molecular dynamics model. The quasielastic, deep-inelastic, and quasifission collision mechanisms are studied via analyzing the angular distributions of fragments and the energy dissipation processes during the collisions. The measured isotope production cross sections of projectile-like fragments are reasonably well reproduced by the calculation of the ImQMD model together with the GEMINI code. The isotope production cross sections for the target-like fragments and double differential cross sections of 199Pt, 203Pt, and 208Pt are calculated. It is shown that about 50 new neutron-rich heavy nuclei can be produced via deep-inelastic collision mechanism, where the production cross sections are from 10-3 to 10-6 mb. The corresponding emission angle and the kinetic energy for these new neutron-rich nuclei locate at 40∘-60∘ and 100-200 MeV, respectively.

  14. Electron Scattering from MERCURY-198 and Mercury -204.

    NASA Astrophysics Data System (ADS)

    Laksanaboonsong, Jarungsaeng

    This experiment is the first electron scattering study on mercury isotopes. Electron scattering from ^{198}Hg and ^{204 }Hg has been performed at the NIKHEF-K Medium Energy Accelerator. Measured cross sections cover an effective momentum transfer range from 0.4 to 2.9 fm^ {-1}. Elastic cross sections were determined for scattering from both isotopes. Cross section for inelastic excitations in ^{198}Hg below 3 MeV were also determined. Measured cross sections were fit using DWBA phase shift codes to determine coefficients for Fourier-Bessel expansions of ground state and transition charge densities. Differences between the ground state charge densities of the two isotopes reveal the effect of the polarization of the proton core in response to the addition of neutrons. Spin and parity of several excited states of ^{198}Hg were determined. Extracted transition densities of these states show their predominantly collective nature. Charge densities for members of the ground state rotational band were compared with axially symmetric Hartree-Fock and geometrical model predictions.

  15. One-neutron stripping processes to excited states of *90Y in the 89Y(6Li,5Li )*90Y reaction

    NASA Astrophysics Data System (ADS)

    Zhang, G. L.; Zhang, G. X.; Hu, S. P.; Yao, Y. J.; Xiang, J. B.; Zhang, H. Q.; Lubian, J.; Ferreira, J. L.; Paes, B.; Cardozo, E. N.; Sun, H. B.; Valiente-Dobón, J. J.; Testov, D.; Goasduff, A.; John, P. R.; Siciliano, M.; Galtarossa, F.; Francesco, R.; Mengoni, D.; Bazzacco, D.; Li, E. T.; Hao, X.; Qu, W. W.

    2018-01-01

    The measurement of one-neutron stripping cross sections for the 89Y(6Li,5Li )*90Y reaction at 22 MeV and 34 MeV is reported, using both in-beam and off-beam γ -ray spectroscopy methods. Characteristic γ lines of 90Y are clearly identified by both the γ -γ and proton-γ coincidence methods. The obtained cross section of one-neutron stripping at 34 MeV is found to be much smaller than that at 22 MeV. The one-neutron stripping cross sections measured for this system have the same order of magnitude as the one measured for the same reaction for the 6Li+96Zr system at energies around the Coulomb barrier. Parameter-free coupled reaction channel calculations agree quite well with the experimental data. Theoretical study of the effect of the one-neutron transfer on the elastic total fusion cross section is performed.

  16. Elastic electroproduction of ϱ and {J}/{ψ} mesons at large Q2 at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.

    1996-02-01

    The total cross sections for the elastic electroproduction of P and {J}/{ψ} mesons for Q2 > 8 GeV 2 and ⋍ 90 GeV/c 2 are measured at HERA with the H1 detector. The measurements are for an integrated electron-proton luminosity of ⋍3 pb-1. The dependences of the total virtual photon-proton ( γ ∗p ) cross sections on Q2, W and the momentum transfer squared to the proton ( t), and, for the ϱ, the dependence on the polar decay angle ( cos θ ∗ are presented. The {J}/{ψ} : ∂ cross section ratio is determined. The results are discussed in the light of theoretical models and of the interplay of hard and soft physics processes.

  17. Charge Exchange in Slow Collisions of O+ with He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).

  18. Elastic scattering of low-energy electrons by nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A. R.; D'A Sanchez, S.; Bettega, M. H. F.

    2011-06-15

    In this work, we present integral, differential, and momentum transfer cross sections for elastic scattering of low-energy electrons by nitromethane, for energies up to 10 eV. We calculated the cross sections using the Schwinger multichannel method with pseudopotentials, in the static-exchange and in the static-exchange plus polarization approximations. The computed integral cross sections show a {pi}* shape resonance at 0.70 eV in the static-exchange-polarization approximation, which is in reasonable agreement with experimental data. We also found a {sigma}* shape resonance at 4.8 eV in the static-exchange-polarization approximation, which has not been previously characterized by the experiment. We also discuss howmore » these resonances may play a role in the dissociation process of this molecule.« less

  19. Elastic scattering of low-energy electrons by C{sub 3}H{sub 4} isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A.R.; Bettega, M.H.F.

    2003-03-01

    We report integral, differential, and momentum-transfer cross sections for elastic scattering of low-energy electrons by the C{sub 3}H{sub 4} isomers allene, propyne, and cyclopropene, which belong to the D{sub 2d}, C{sub 3v}, and C{sub 2v} groups, respectively. We use the Schwinger multichannel method with pseudopotentials [Bettega et al., Phys. Rev. A 47, 1111 (1993)] at the static-exchange approximation to compute the cross sections for energies up to 40 eV. We compare our results with available experimental results and find very good agreement. Our results confirm the existence of the shape resonances in the cross sections of allene and propyne, andmore » the isomer effect, both reported by the experimental studies.« less

  20. Comparative study for elastic electron collisions on C{sub 2}N{sub 2} isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelin, S. E.; Falck, A. S.; Mazon, K. T.

    2006-08-15

    In this work, we present a theoretical study on elastic electron collisions with the four C{sub 2}N{sub 2} isomers. More specifically, calculated differential, integral, and momentum transfer cross sections are reported in the 1-100 eV energy range. Calculations are performed at both the static-exchange-absorption and the static-exchange-polarization-absorption levels. The iterative Schwinger variational method combined with the distorted wave approximation is used to solve the scattering equations. Our study reveals an interesting trend of the calculated cross sections for the four isomers. In particular, strong isomer effect is seen at low incident energies. Also, we have identified a shape resonance whichmore » leads to a depression in the calculated partial integral cross section.« less

  1. Nucleon Form Factors above 6 GeV

    DOE R&D Accomplishments Database

    Taylor, R. E.

    1967-09-01

    This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.

  2. Many-Body Theory for Positronium-Atom Interactions

    NASA Astrophysics Data System (ADS)

    Green, D. G.; Swann, A. R.; Gribakin, G. F.

    2018-05-01

    A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.

  3. He3 Spin-Dependent Cross Sections and Sum Rules

    NASA Astrophysics Data System (ADS)

    Slifer, K.; Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Ciofi Degli Atti, C.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Glöckle, W.; Golak, J.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Kamada, H.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J. J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R. D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nogga, A.; Pace, E.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatié, F.; Saha, A.; Salmè, G.; Scopetta, S.; Skibiński, R.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Witała, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the He→3(e→,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1≤Q2≤0.9GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

  4. Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross-sectional area

    NASA Astrophysics Data System (ADS)

    Mesalhy, O. M.; El-Sayed, Mostafa M.

    2015-06-01

    Flow and heat transfer characteristics of a plate-fin heat sink cooled by a rectangular impinging jet with different cross-sectional area were studied experimentally and numerically. The study concentrated on investigating the effect of jet width, fin numbers, and fin heights on thermal performance. Entropy generation minimization method was used to define the optimum design and operating conditions. It is found that, the jet width that minimizes entropy generation changes with heat sink height and fin numbers.

  5. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    NASA Technical Reports Server (NTRS)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  6. Energy transfer and 2.0 μm emission in Tm{sup 3+}/Ho{sup 3+} co-doped α-NaYF{sub 4} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhigang; Yang, Shuo; Xia, Haiping, E-mail: hpxcm@nbu.edu.cn

    2016-04-15

    Highlights: • Cubic NaYF{sub 4} single crystals co-doped with ∼1.90 mol% Tm{sup 3+} and various Ho{sup 3+} concentrations were grown by Bridgman method. • The maximum fluorescence lifetime was 23.23 ms for Tm{sup 3+} (1.90 mol%)/Ho{sup 3+} (3.89 mol%) co-doped α-NaYF{sub 4}. • The obtained energy transfer rate (W{sub ET}) and energy transfer efficiency (η) of Tm{sup 3+}:{sup 3}F{sub 4} are 1077 s{sup −1} and 95.0%, respectively. • The maximum emission cross section reached 1.06 × 10{sup −20} cm{sup 2}. - Abstract: Cubic NaYF{sub 4} single crystals co-doped with ∼1.90 mol% Tm{sup 3+} and various Ho{sup 3+} concentrations were grownmore » by Bridgman method. The energy transfer from Tm{sup 3+} to Ho{sup 3+} and the optimum fluorescence emission around 2.04 μm of Ho{sup 3+} ion were investigated based on the measured absorption spectra, emission spectra, emission cross section and decay curves under excitation of 800 nm LD. The emission intensity at 2.04 μm increased with the increase of Ho{sup 3+} concentration from 0.96 mol% to 3.89 mol% when the concentration of Tm{sup 3+} was held constantly at ∼1.90 mol%. Moreover, the maximum emission cross section reached 1.06 × 10{sup −20} cm{sup 2} and the maximum fluorescence lifetime was 23.23 ms for Tm{sup 3+}(1.90 mol%)/Ho{sup 3+}(3.89 mol%) co-doped one. According to the measured lifetime of Tm{sup 3+} single-doped and Tm{sup 3+}/Ho{sup 3+} co-doped samples, the maximum energy transfer efficiency of Tm{sup 3+}:{sup 3}F{sub 4} level was 95.0%. Analysis on the fluorescence dynamics indicated that electric dipole–dipole is dominant for the energy transfer from Tm{sup 3+} to Ho{sup 3+}.« less

  7. State-resolved differential and integral cross sections for the Ne + H{sub 2}{sup +} (v = 0–2, j = 0) → NeH{sup +} + H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu

    State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less

  8. Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

    DOE PAGES

    Rodrigues, P. A.

    2016-02-17

    Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced populationmore » of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Furthermore, improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.« less

  9. Correlations and currents in 3He studied with the (e, e'pp) reaction

    NASA Astrophysics Data System (ADS)

    Groep, David Leo

    2000-01-01

    Nucleon-nucleon correlations, especially those of short-range character, can be well studied with electron-induced two-nucleon knockout reactions at intermediate electron energies. However, these reactions are not only driven by one-body currents, i.e., coupling of the virtual photon to one of the nucleons of a correlated pair, a process that directly probes NN-correlations. Also two-body currents, resulting from intermediate Delta-excitation and coupling to exchanged mesons, as well as final state interactions, influence the experimental cross section. Exclusive measurements of the three-body breakup of 3He offer the opportunity to compare data to microscopic calculations. The relative importance of competing two-proton knockout mechanisms can be investigated by varying the energy and momentum of the virtual photon. The experiment was performed with the electron beam extracted from the Amsterdam Pulse Stretcher (AmPS) at NIKHEF; the incident electron energy was 564 MeV. A cryogenic, high-pressure 3He gas target was used with a thickness of 270 mg/cm^2. Scattered electrons were detected in the QDQ magnetic spectrometer and both emitted protons in the HADRON plastic scintillator arrays. Cross sections were determined for three values of the three-momentum transfer of the virtual photon (q=305, 375, and 445 MeV/c) at an energy transfer value omega of 220 MeV. At q=375 MeV/c, measurements were performed over a continuous range in energy transfer from 170 to 290 MeV. The data are compared to results of continuum-Faddeev calculations performed by Golak et al., that account for rescattering among the emitted nucleons. Various potential models were used in the calculations: Bonn-B, CD-Bonn, Nijmegen-93 and Argonne v18 . Presentation of the data as a function of the missing or neutron momentum, pm, shows that the cross section decreases exponentially as a function of pm. Calculations performed with only a one-body hadronic current operator show fair agreement with data obtained at pm < 100 MeV/c at omega = 220 MeV for all q-values. It can therefore be concluded that at omega = 220 MeV and pm < 100 MeV/c the cross section is dominated by direct knockout of two protons via a one-body hadronic current. At higher neutron momentum values, data and theoretical predictions differ up to a fac tor of five for all values of omega. Within the range of energy transfer values probed in this experiment, the high pm domain is expected to be strongly influenced by intermediate excitation in the proton-neutron pair. Within specific regions of phase space, where two nucleons are emitted with comparable momentum vectors, rescattering processes strongly influence the cross section. For a such a region, measured at q=445 MeV/c, good agreement was found between data and the continuum- Faddeev calculations as a function of the pn momentum difference in the final state. Information on the wave function of 3He may be obtained in the domain omega = 220 MeV and pm < 100 MeV/c by representing the cross section as a function of pdiff1, which can be related to the relative momentum of the constituents of the two-proton pair in the initial state. The observed decrease of the cross section reflects the behaviour of the wave function and is well reproduced by calculations. At present, the data do not permit to express preference for any one of the potential models considered.

  10. Transfer Technique Is Associated With Shoulder Pain and Pathology in People With Spinal Cord Injury: A Cross-Sectional Investigation.

    PubMed

    Hogaboom, Nathan S; Worobey, Lynn A; Boninger, Michael L

    2016-10-01

    To evaluate how transfer technique and subject characteristics relate to ultrasound measures of shoulder soft tissue pathology and self-reported shoulder pain during transfers in a sample of wheelchair users with spinal cord injury (SCI). Cross-sectional observational study. Research laboratory, national and local veterans' wheelchair sporting events. A convenience sample of wheelchair users (N=76) with nonprogressive SCI. Participants were aged >18 years, >1 year postinjury, and could complete repeated independent wheelchair transfers without the use of their leg muscles. Not applicable. Transfer pain items from the Wheelchair User's Shoulder Pain Index; transfer technique assessed using the Transfer Assessment Instrument (TAI); and shoulder pathology markers examined using the Ultrasound Shoulder Pathology Rating Scale (USPRS). Better transfer technique (higher TAI) correlated with less injury (lower USPRS) (partial η(2)=.062, P<.05) and less pain during transfers (partial η(2)=.049, P<.10). Greater age was the strongest predictor of greater pathology (USPRS total: partial η(2)=.225, supraspinatus grade: partial η(2)=.174, P<.01). An interaction between technique and weight was found (P<.10): participants with lower body weights showed a decrease in pathology markers with better transfer technique (low weight: R(2)=.422, P<.05; middle weight: R(2)=.200, P<.01), while those with higher weight showed little change with technique (R(2)=.018, P>.05). Participants with better transfer technique exhibited less shoulder pathology and reported less pain during transfers. The relationship between technique and pathology was strongest in lower-weight participants. While causation cannot be proven because of study design, it is possible that using a better transfer technique and optimizing body weight could reduce the incidence of shoulder pathology and pain. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Breakup and n -transfer effects on the fusion reactions Li,76+Sn,119120 around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Fisichella, M.; Shotter, A. C.; Figuera, P.; Lubian, J.; Di Pietro, A.; Fernandez-Garcia, J. P.; Ferreira, J. L.; Lattuada, M.; Lotti, P.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2017-03-01

    This paper presents values of complete fusion cross sections deduced from activation measurements for the reactions 6Li+120Sn and 7Li+119Sn , and for a projectile energy range from 17.5 to 28 MeV in the center-of-mass system. A new deconvolution analysis technique is used to link the basic activation data to the actual fusion excitation function. The complete fusion cross sections above the barrier are suppressed by about 70 % and 85 % with respect to the universal fusion function, used as a standard reference, in the 6Li and 7Li induced reactions, respectively. From a comparison of the excitation functions of the two systems at energies below the barrier, no significant differences can be observed, despite the two systems have different n -transfer Q values. This observation is supported by the results of coupled reaction channels (CRC) calculations.

  12. The H2 + + He proton transfer reaction: quantum reactive differential cross sections to be linked with future velocity mapping experiments

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio

    2018-01-01

    We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.

  13. Measurement of the total cross section from elastic scattering in pp collisions at s = 8   TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    A measurement of the total ppcross section at the LHC at √s=8TeV is presented. An integrated luminosity of 500 μb-1 was accumulated in a special run with high-β beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the -t range from 0.014GeV2 to 0.1GeV2 to extrapolate t→0, the total cross section, σtot(pp →X), is measured via the optical theorem to be σtot(pp→ X) = 96.07±0.18 (stat.)±0.85 (exp.)± 0.31 (extr.) mb,more » where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation t→0. In addition, the slope of the exponential function describing the elastic cross section at small t is determined to be B =19.74 ±0.05 (stat.) ±0.23 (syst.) GeV-2.« less

  14. Infinite order sudden approximation for rotational energy transfer in gaseous mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, R.; Green, S.; Kouri, D.J.

    1977-11-01

    Rotational energy transfer in gaseous mixtures has been considered within the framework of the infinite order sudden (IOS) approximation. A new derivation of the IOS from the coupled states Lippmann--Schwinger equation is given. This approach shows the relation between the IOS and CS T matrices and also shows in a rather transparent fashion Sencrest's result that the IOS method does not truncate closed channels but rather employs a closure relation to sum over all rotor states. The general CS effective cross section formula for relaxation processes is used, along with the IOS approximation to the CS T matrix, to derivemore » the general IOS effctive cross section.Factorization permits one to calculate other types of cross sections if any one type of cross section has been obtained by some procedure. The functional form can also be used to compact data. This formalism has been applied to calculate pressure broadening for the systems HD--He, HCl--He, CO--He, HCN--He, HCl--Ar, and CO/sub 2/--Ar. To test the IOS approximation, comparisons have been made to the CS results, which are known to be accurate for all these systems. The IOS approximation is found to be very accurate whenever the rotor spacings are small compared to the kinetic energy, provided closed channels do not play too great a role. For the systems CO--He, HCN--He, and CO/sub 2/--Ar, these conditions are well satisfied and the IOS is found to yield results accurate to within 10%--15%.« less

  15. Collisions of low-energy electrons with isopropanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettega, M. H. F.; Winstead, C.; McKoy, V.

    2011-10-15

    We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10 deg. to 130 deg. The cross sections were computedmore » over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C{sub 3}H{sub 7}OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C{sub 4}H{sub 9}OH.« less

  16. Computer program /P1-GAS/ calculates the P-0 and P-1 transfer matrices for neutron moderation in a monatomic gas

    NASA Technical Reports Server (NTRS)

    Collier, G.; Gibson, G.

    1968-01-01

    FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.

  17. SCATTERING OF SLOW NEUTRONS FROM PROPANE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, K.A.; Marshall, G.D.; Brugger, R.M.

    1962-02-01

    Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0l01, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3 and 84.7 deg using the Materials Testing Reactor phased chopper velocity selector. The data are convented to the scattering-law presentation and compared with three theoretical calculations: The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limitedmore » agreement for energy transfer less than 0.5 k/sub b/T at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. A modification of the Krieger- Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibratlonal states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methylgroup barrier height for the three lowest energy modes, to the harmonlc oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation. (auth)« less

  18. Proton elastic scattering at 200 A MeV and high momentum transfers of 1.7-2.7 fm-1 as a probe of the nuclear matter density of 6He

    NASA Astrophysics Data System (ADS)

    Chebotaryov, S.; Sakaguchi, S.; Uesaka, T.; Akieda, T.; Ando, Y.; Assie, M.; Beaumel, D.; Chiga, N.; Dozono, M.; Galindo-Uribarri, A.; Heffron, B.; Hirayama, A.; Isobe, T.; Kaki, K.; Kawase, S.; Kim, W.; Kobayashi, T.; Kon, H.; Kondo, Y.; Kubota, Y.; Leblond, S.; Lee, H.; Lokotko, T.; Maeda, Y.; Matsuda, Y.; Miki, K.; Milman, E.; Motobayashi, T.; Mukai, T.; Nakai, S.; Nakamura, T.; Ni, A.; Noro, T.; Ota, S.; Otsu, H.; Ozaki, T.; Panin, V.; Park, S.; Saito, A.; Sakai, H.; Sasano, M.; Sato, H.; Sekiguchi, K.; Shimizu, Y.; Stefan, I.; Stuhl, L.; Takaki, M.; Taniue, K.; Tateishi, K.; Terashima, S.; Togano, Y.; Tomai, T.; Wada, Y.; Wakasa, T.; Wakui, T.; Watanabe, A.; Yamada, H.; Yang, Zh; Yasuda, M.; Yasuda, J.; Yoneda, K.; Zenihiro, J.

    2018-05-01

    Differential cross sections of p-^6He elastic scattering were measured in inverse kinematics at an incident energy of 200 A MeV, covering the high momentum transfer region of 1.7-2.7 fm^{-1}. The sensitivity of the elastic scattering at low and high momentum transfers to the density distribution was investigated quantitatively using relativistic impulse approximation calculations. In the high momentum transfer region, where the present data were taken, the differential cross section has an order of magnitude higher sensitivity to the inner part of the ^6He density relative to the peripheral part (15:1). This feature makes the obtained data valuable for the deduction of the inner part of the ^6He density. The data were compared to a set of calculations assuming different proton and neutron density profiles of ^6He. The data are well reproduced by the calculation assuming almost the same profiles of proton and neutron densities around the center of ^6He, and a proton profile reproducing the known point-proton radius of 1.94 fm. This finding is consistent with the assumption that the ^6He nucleus consists of a rigid α-like core with a two-neutron halo.

  19. Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.

    1994-01-01

    Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.

  20. Measurement of coherent ϕ-meson photoproduction from the deuteron at low energies

    NASA Astrophysics Data System (ADS)

    Mibe, T.; Gao, H.; Hicks, K.; Kramer, K.; Stepanyan, S.; Tedeschi, D. J.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dashyan, N.; Masi, R. De; Vita, R. De; Sanctis, E. De; Degtyarenko, P. V.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Feldman, G.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hersman, F. W.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, J.; Livingston, K.; Lu, H. Y.; MacCormick, M.; Marchand, C.; Markov, N.; Mattione, P.; McKinnon, B.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pereira, S. Anefalos; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shvedunov, N. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2007-11-01

    The cross section and decay angular distributions for the coherent ϕ-meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t=(pγ-pϕ)2=-2 GeV2/c2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a rescattering model. In a framework of vector meson dominance, the data are consistent with the total ϕ-N cross section σϕN at about 10 mb. If vector meson dominance is violated, a larger σϕN is possible by introducing a larger t slope for the ϕN→ϕN process than that for the γN→ϕN process. The decay angular distributions of the ϕ are consistent with helicity conservation.

  1. Measurement of the p(e,e‧π+)n reaction close to threshold and at low Q2

    NASA Astrophysics Data System (ADS)

    Friščić, I.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Böhm, R.; Bosnar, D.; Debenjak, L.; Denig, A.; Ding, M.; Distler, M. O.; Esser, A.; Merkel, H.; Middleton, D. G.; Mihovilovič, M.; Müller, U.; Pochodzalla, J.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Thiel, M.; Walcher, Th.

    2017-03-01

    The cross section of the p (e ,e‧π+) n reaction has been measured for five kinematic settings at an invariant mass of W = 1094 MeV and for a four-momentum transfer of Q2 = 0.078 (GeV / c)2. The measurement has been performed at MAMI using a new short-orbit spectrometer (SOS) of the A1 collaboration, intended for detection of low-energy pions. The transverse and longitudinal cross section terms were separated using the Rosenbluth method and the transverse-longitudinal interference term has been determined from the left-right asymmetry. The experimental cross section terms are compared with the calculations of three models: DMT2001, MAID2007 and χMAID. The results show that we do not yet understand the dynamics of the fundamental pion.

  2. Enhanced boiling in microchannels due to recirculation induced by repeated saw-toothed cross-sectional geometry

    NASA Astrophysics Data System (ADS)

    Gao, Le; Bhavnani, Sushil H.

    2017-10-01

    A saw-toothed shaped microchannel heat sink is investigated for enhancing flow boiling heat transfer. Tests are conducted at mass fluxes of 444-1776 kg/m2 s and an inlet subcooling of 15 °C. The effects of channel geometry on boiling curves, flow patterns, pressure drops, and heat transfer coefficient are discussed in this letter. It is found that heat transfer performance is enhanced by up to 50% especially at heat flux levels associated with the current generation of microprocessors.

  3. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  4. A new multigroup method for cross-sections that vary rapidly in energy

    DOE PAGES

    Haut, Terry Scot; Ahrens, Cory D.; Jonko, Alexandra; ...

    2016-11-04

    Here, we present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods.

  5. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  6. An R-matrix study of electron induced processes in BF3 plasma

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Chakrabarti, Kalyan; Yoon, Jung-Sik; Song, Mi-Young

    2017-12-01

    An R-matrix formalism is used to study electron collision with the BF3 molecule using Quantemol-N, a computational system for electron molecule collisions which uses the molecular R-matrix method. Several target models are tested for BF3 in its equilibrium geometry, and the results are presented for the best model. Scattering calculations are then performed to yield resonance parameters, elastic, differential, excitation, and momentum transfer cross sections. The results for all the cross sections are compared with the experimental and theoretical data, and a good agreement is obtained. The resonances have been detected at 3.79 and 13.58 eV, with the ionization threshold being 15.7 eV. We have also estimated the absolute dissociative electron attachment (DEA) cross section for the F- ion production from BF3, which is a maiden attempt. The peak of the DEA is at around 13.5 eV, which is well supported by the resonance detected at 13.58 eV. The cross sections reported here find a variety of applications in the plasma technology.

  7. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    PubMed

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.

  8. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, David Christopher

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction v N → v N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises ~18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using ~10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q 2. This is the first measurement of a differential cross section with MiniBooNE data. Frommore » this analysis, a value for the nucleon axial mass M A was extracted to be 1.34 ± 0.25 GeV consistent with previous measurements. The integrated cross section for the Q 2 range 0.189 → 1.13 GeV 2 was calculated to be (8.8 ± 0.6(stat) ± 0.2(syst)) x 10 -40 cm 2.« less

  9. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at Eν˜1GeV

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2010-11-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH2) as a function of four-momentum transferred squared, Q2. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass MA that provides a best fit for MA=1.39±0.11GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q2 has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q2=0, Δs, is found to be Δs=0.08±0.26.

  10. Comparative study of elastic electron collisions on the isoelectronic SiN{sub 2}, SiCO, and CSiO radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, M. M.; Michelin, S. E.; Mazon, K. T.

    2007-07-15

    We report a theoretical study of elastic electron collisions on three isoelectronic free radicals, namely, SiNN, SiCO, and CSiO. More specifically, differential, integral, and momentum-transfer cross sections are calculated and reported in the (1-100) eV energy range. Calculations are performed at the static-exchange-polarization-absorption level of approximation. A combination of the iterative Schwinger variational method and the distorted-wave approximation is used to solve the scattering equations. Our study reveals that the calculated cross sections for the e{sup -}-SiNN and e{sup -}-SiCO collisions are very similar even at incident energies as low as 3 eV. Strong isomeric effects are also observed inmore » the calculated cross sections for e{sup -}-CSiO and e{sup -}-SiCO collisions, particularly at incident energies below 20 eV. It is believed that the position of the silicon atom being at the center or extremity of the molecules may exert important influence on the calculated cross sections.« less

  11. Excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms by electron impact: Differential and integrated cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milisavljevic, S.; Rabasovic, M. S.; Sevic, D.

    2007-08-15

    Experimental measurements of electron impact excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms have been made at incident electron energies E{sub 0}=10, 20, 40, 60, 80, and 100 eV and scattering angles from 10 deg. to 150 deg. In addition, relativistic distorted-wave calculations have been carried out at these energies. The data obtained include the differential (DCS), integral (Q{sub I}), momentum transfer (Q{sub M}), and viscosity (Q{sub V}) cross sections. Absolute values for the differential cross sections have been obtained by normalizing the relative DCSs at 10 deg. to the experimental DCS values of [S. Milisavljevic, M.more » S. Rabasovic, D. Sevic, V. Pejcev, D. M. Filipovic, L. Sharma, R. Srivastava, A. D. Stauffer, and B. P. Marinkovic, Phys. Rev. A 75, 052713 (2007)]. The integrated cross sections were determined by numerical integration of the absolute DCSs. The experimental results have been compared with the corresponding calculations and good agreement is obtained.« less

  12. Self-consistent models for Coulomb heated X-ray pulsar atmospheres

    NASA Technical Reports Server (NTRS)

    Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.

    1983-01-01

    Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.

  13. [Effect of biological electric stimulation on free muscle transfer].

    PubMed

    Yuang, F; Guan, W; Cao, Y

    1997-01-01

    The rectus femoris muscles of rabbits were used as muscle model. The electrical stimulation which resembled the normal motor-unit activity was used to observe its effects on free transferred muscle. After three months, the moist muscle weight (MW), its maximum cross-section area, its contractility and its histochemical characteristics were examined. The results showed that the function and morphology of the muscles were well preserved. These findings might encourage its clinical application.

  14. A screened independent atom model for the description of ion collisions from atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom

    2018-05-01

    We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

  15. Born distorted-wave approximation applied to the H+ + He collisions at intermediate and high energies

    NASA Astrophysics Data System (ADS)

    Rahmanian, M.; Fathi, R.; Shojaei, F.

    2017-11-01

    The single-charge transfer process in collision of protons with helium atoms in their ground states is investigated. The model utilizes the second-order three-body Born distorted-wave approximation (BDW-3B) with correct Coulomb boundary conditions to calculate the differential and total cross sections at intermediate and high energies. The role of the passive electrons and electron-electron correlations are studied by comparing our results and the BDW-4B calculations with the complete perturbation potential. The present results are also compared with other theories, and the Thomas scattering mechanism is investigated. The obtained results are also compared with the recent experimental measurements. For the prior differential cross sections, the comparisons show better agreement with the experiments at smaller scattering angles. The agreement between the total cross sections and the BDW-4B results as well as the experimental data is good at higher impact energies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mislivec, A.; Higuera, A.; Aliaga, L.

    Neutrino induced coherent charged pion production on nuclei,more » $$\\overline{v}μA$$→μ ±π ∓A, is a rare inelastic interaction in which the four-momentum squared transferred to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing |t| from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q 2, E π, and θ π. The Q 2 dependence and equality of the neutrino and antineutrino cross sections at finite Q 2 provide a confirmation of Adler’s partial conservation of axial current hypothesis.« less

  17. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    NASA Astrophysics Data System (ADS)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  18. Experimental investigations of heat transfer and temperature fields in models simulating fuel assemblies used in the core of a nuclear reactor with a liquid heavy-metal coolant

    NASA Astrophysics Data System (ADS)

    Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.

    2015-09-01

    The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with an intricately shaped cross section simulating the flow pass sections for liquid-metal coolants cooling the core of nuclear reactors.

  19. The hydrogen anomaly in neutron Compton scattering: new experiments and a quantitative theoretical explanation

    NASA Astrophysics Data System (ADS)

    Karlsson, E. B.; Hartmann, O.; Chatzidimitriou-Dreismann, C. A.; Abdul-Redah, T.

    2016-08-01

    No consensus has been reached so far about the hydrogen anomaly problem in Compton scattering of neutrons, although strongly reduced H cross-sections were first reported almost 20 years ago. Over the years, this phenomenon has been observed in many different hydrogen-containing materials. Here, we use yttrium hydrides as test objects, YH2, YH3, YD2 and YD3, Y(H x D1-x )2 and Y(H x D1-x )3, for which we observe H anomalies increasing with transferred momentum q. We also observe reduced deuteron cross-sections in YD2 and YD3 and have followed those up to scattering angles of 140° corresponding to high momentum transfers. In addition to data taken using the standard Au-197 foils for neutron energy selection, the present work includes experiments with Rh-103 foils and comparisons were also made with data from different detector setups. The H and D anomalies are discussed in terms of the different models proposed for their interpretation. The ‘electron loss model’ (which assumes energy transfer to excited electrons) is contradicted by the present data, but it is shown here that exchange effects in scattering from two or more protons (or deuterons) in the presence of large zero-point vibrations, can explain quantitatively the reduction of the cross-sections as well as their q-dependence. Decoherence processes also play an essential role. In a scattering time representation, shake-up processes can be followed on the attosecond scale. The theory also shows that large anomalies can appear only when the neutron coherence lengths (determined by energy selection and detector geometry) are about the same size as the distance between the scatterers.

  20. Depolarization and Scattering of Electromagnetic Waves. Appendices.

    DTIC Science & Technology

    1986-06-30

    for both specular point scattering and Bragg scattering in a self-consistent manner is used to express the total cross section of the flake as a...by Arbitrarily Oriented Composite Rough Surfaces. In this work the full wave approach is used to determine the modu- lations of the like and cross...analyze multiple scattering using the equation of radiative transfer with the general Stokes’ parameters. Our ultimate goal is to develop codes which will

  1. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  2. Explicit inclusion of nonlocality in ( d , p ) transfer reactions

    DOE PAGES

    Titus, L. J.; Nunes, F. M.; Potel, G.

    2016-01-06

    Traditionally, nucleon-nucleus optical potentials are made local for convenience. In recent work we studied the effects of including nonlocal interactions explicitly in the final state for (d,p) reactions, within the distorted wave Born approximation. Our goal in this work is to develop an improved formalism for nonlocal interactions that includes deuteron breakup and to use it to study the effects of including nonlocal interactions in transfer (d,p) reactions, in both the deuteron and the proton channel. We extend the finite-range adiabatic distorted wave approximation to include nonlocal nucleon optical potentials. We apply our method to (d,p) reactions on 16O, 40Ca,more » 48Ca, 126Sn, 132Sn, and 208Pb at 10, 20 and 50 MeV. Here, we find that nonlocality in the deuteron scattering state reduces the amplitude of the wave function in the nuclear interior, and shifts the wave function outward. In many cases, this has the effect of increasing the transfer cross section at the first peak of the angular distributions. This increase was most significant for heavy targets and for reactions at high energies. Lastly, our systematic study shows that, if only local optical potentials are used in the analysis of experimental (d, p) transfer cross sections, the extracted spectroscopic factors may be incorrect by up to 40% due to the local approximation.« less

  3. Weak e+e- lines from internal pair conversion observed in collisions of 238U with heavy nuclei

    NASA Astrophysics Data System (ADS)

    Heinz, S.; Berdermann, E.; Heine, F.; Joeres, O.; Kienle, P.; Koenig, I.; Koenig, W.; Kozhuharov, C.; Leinberger, U.; Rhein, M.; Schröter, A.; Tsertos, H.

    1998-01-01

    We present the results of a Doppler-shift correction to the measured e+e- sum-energy spectra obtained from e+e- coincidence measurements in 238U +206Pb and 238U +181Ta collisions at beam energies close to the Coulomb barrier, using an improved experimental setup at the double-Orange spectrometer of GSI. Internal-Pair-Conversion (IPC) e+e- pairs from discrete nuclear transitions of a moving emitter have been observed following Coulomb excitation of the 1.844 MeV (E1) transition in 206Pb and neutron transfer to the 1.770 MeV (M1) transition in 207Pb. In the collision system 238U +181Ta, IPC transitions were observed from the Ta-like as well as from the U-like nuclei. In all systems the Doppler-shift corrected e+e- sum-energy spectra show weak lines at the energies expected from the corresponding γ ray spectra with cross sections being consistent with the measured excitation cross sections of the γ lines and the theoretically predicted IPC coefficients. No other than IPC e+e- sum-energy lines were found in the measured spectra. The transfer cross sections show a strong dependence on the distance of closest approach (Rmin), thus signaling also a strong dependence on the bombarding energy close to the Coulomb barrier.

  4. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  5. Integral and differential cross section measurements at low collision energies for the N2++CH4/CD4 reactions

    NASA Astrophysics Data System (ADS)

    Nicolas, Christophe; Torrents, Raquel; Gerlich, Dieter

    2003-02-01

    Absolute integral cross sections are measured in the collision energy range between 0.1 to 3.5 eV for the N2++CH4 and N2++CD4 reactions using the universal guided ion beam apparatus. The reaction branching ratio, CX3+:CX2+:N2X+ (X=H or D), is found to be 0.86:0.09:0.05 and 0.88:0.07:0.05 for the N2++CH4 and N2++CD4 reactions, respectively. The CH3+/CH2+ ratio is constant over the whole collision energy range and very similar to the one obtained for the almost isoenergetic Ar++CH4 reaction. Axial velocity distributions of the product ions are measured by time of flight at collision energies between 0.1 and 3.5 eV. The results provide direct insight into the reaction dynamics. The dissociative charge transfer channels, leading to CH3+ and CH2+ product ions, occur via an electron jump combined with some exchange of momentum between the colliding partners. The H (D) transfer leading to N2H+ can be described as a direct process, similar to a spectator stripping mechanism. Various isotope effects are observed, the dominant being that the cross sections for reaction with CH4 are up to 20% bigger than the corresponding ones for CD4.

  6. Prospects of heavy and superheavy element production via inelastic nucleus-nucleus collisions - from 238U+238U to18O+254Es

    NASA Astrophysics Data System (ADS)

    Schädel, Matthias

    2016-12-01

    Multi-nucleon transfer reactions, frequently termed deep-inelastic, between heavy-ion projectiles and actinide targets provide prospects to synthesize unknown isotopes of heavy actinides and superheavy elements with neutron numbers beyond present limits. The 238U on 238U reaction, which revealed essential aspects of those nuclear reactions leading to surviving heavy nuclides, mainly produced in 3n and 4n evaporation channels, is discussed in detail. Positions and widths of isotope distributions are compared. It is shown, as a general rule, that cross sections peak at irradiation energies about 10% above the Coulomb barrier. Heavy target nuclei are essential for maximizing cross sections. Experimental results from the 238U on 248Cm reaction, including empirical extrapolations, are compared with theoretical model calculations predicting relatively high cross sections for neutron-rich nuclei. Experiments to test the validity of such predictions are proposed. Comparisons between rather symmetric heavy-ion reactions like 238U on 248Cm (or heavier targets up to 254Es) with very asymmetric ones like 18O on 254Es reveal that the ones with 238U as a projectile have the highest potential in the superheavy element region while the latter ones can be advantageous for the synthesis of heavy actinide isotopes. Concepts for highly efficient recoil separators designed for transfer products are presented.

  7. Guest editorial: From neuroscience to neuro-rehabilitation: transferring basic neuroscientific principles from laboratory to bedside.

    PubMed

    Koenig, Alexander; Luft, Andreas; Cajigas, Iahn

    2013-01-21

    Several new approaches for treatment of Central Nervous System (CNS) disorders are currently under investigation, including the use of rehabilitation training strategies, which are often combined with electrical and/or pharmacological modulation of spinal locomotor circuitries. While these approaches show great promise in the laboratory setting, there still exists a large gap in knowledge on how to transfer these treatments to daily clinical use. This thematic series presents a cross section of cutting edge approaches with the goal of transferring basic neuroscience principles from the laboratory to the proverbial "bedside".

  8. Change of electric dipole moment in charge transfer transitions of ferrocene oligomers studied by ultrafast two-photon absorption

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Alexander; Arias, Eduardo; Moggio, Ivana; Ziolo, Ronald; Uudsemaa, Merle; Trummal, Aleksander; Cooper, Thomas; Rebane, Aleksander

    2017-02-01

    Change of permanent electric dipole moment in the lower-energy charge transfer transitions for a series of symmetrical and non-symmetrical ferrocene-phenyleneethynylene oligomers were studied by measuring the corresponding femtosecond two-photon absorption cross section spectra, and were determined to be in the range Δμ = 3 - 10 D. Quantum-chemical calculations of Δμ for the non-symmetrical oligomers show good quantitative agreement with the experimental results, thus validating two-photon absorption spectroscopy as a viable experimental approach to study electrostatic properties of organometallics and other charge transfer systems.

  9. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  10. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment*)

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2012-11-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  11. Charge transfer and ionization in collisions of Si3+ with H from low to high energy

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-01

    Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  12. Electroproduction of η Mesons in the S 11(1535) Resonance Region at High Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, Mark Macrae

    2008-08-01

    The differential cross-section for the exclusive process p(e, e0p) has been measured at Q 2 5.7 and 7.0 (GeV/c) 2, which represents the highest momentum transfer measurement of this to date, significantly higher than the previous highest at Q 2 3.6 (GeV/c) 2. Data was taken for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the pη channel. The total cross section is obtained, from which is extracted the helicity-conserving transition amplitude A 1/2, for the production of the S11(1535) resonance. This quantity appears to begin scaling as Q -3, a predicted signal of themore » dominance of perturbative QCD, within the Q 2 range of this measurement. No currently available theoretical predictions can account for the behaviour of this quantity over the full measured range of Q 2.« less

  13. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser

    NASA Astrophysics Data System (ADS)

    Aghel, Babak; Rahimi, Masoud; Almasi, Saeed

    2017-03-01

    The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.

  14. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  15. Effects of unconventional breakup modes on incomplete fusion of weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Quraishi, Daanish

    2018-02-01

    The incomplete fusion dynamics of 6Li+209Bi collisions at energies above the Coulomb barrier is investigated. The classical dynamical model implemented in the platypus code is used to understand and quantify the impact of both 6Li resonance states and transfer-triggered breakup modes (involving short-lived projectile-like nuclei such as 8Be and 5Li) on the formation of incomplete fusion products. Model calculations explain the experimental incomplete-fusion excitation function fairly well, indicating that (i) delayed direct breakup of 6Li reduces the incomplete fusion cross sections and (ii) the neutron-stripping channel practically determines those cross sections.

  16. Indirect study of 12C(α,γ)16O reaction

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Roussel, P.; Pellegriti, M. G.; Audouin, L.; Beaumel, D.; Bouda, A.; Descouvemont, P.; Fortier, S.; Gaudefroy, L.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.

    2016-01-01

    The radiative capture reaction 12C(α,γ)16O plays an important role in helium burning in massive stars and their subsequent evolution [1]. However, despite various experimental studies, the cross section of this reaction at stellar energies remains highly uncertain. The extrapolation down to stellar energy (Ecm˜300 keV) of the measured cross sections at higher energies is made difficult by the overlap of various contributions of which some are badly known such as that of the 2+ (Ex=6.92 MeV) and 1- (Ex=7.12 MeV) sub-threshold states of 16O. Hence, to further investigate the contribution of these two-subthreshold resonances to the 12C(α,γ)16O cross section, a new determination of their a-reduced widths and so their a- spectroscopic-factors was performed using 12C(7Li,t)16O transfer reaction measurements at two incident energies and a detailed DWBA analysis of the data [2]. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a- reduced widths as well as the assymptotic normalization constants (ANC) for the 2+ and 1- subthreshold states. Finally, the results obtained from the R-matrix calculations of the 12C(α,γ)16O cross section using our obtained a-reduced widths for the two sub-threshold resonances are presented and discussed.

  17. Determinants of Effective Communication among Undergraduate Students

    ERIC Educational Resources Information Center

    Anvari, Roya; Atiyaye, Dauda Mohammed

    2014-01-01

    This study aims to investigate the relationship between effective communication and transferring information. In the present correlational study, a cross-sectional research design was employed, and data were collected using a questionnaire-based survey. 46 students were chosen based on random sampling and questionnaires were distributed among…

  18. Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Andreev, V.; Antonelli, S.; Aushev, V.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hlushchenko, O.; Hochman, D.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Jacquet, M.; Janssen, X.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Masciocchi, S.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F. Mohamad; Mohammad Nasir, N.; Morozov, A.; Müller, K.; Myronenko, V.; Nagano, K.; Nam, J. D.; Naumann, Th.; Newman, P. R.; Nicassio, M.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Onderwaater, J.; Onishchuk, Yu.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Selyuzhenkov, I.; Shcheglova, L. M.; Shushkevich, S.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Surrow, B.; Sykora, T.; Sztuk-Dambietz, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Abdullah, W. A. T. Wan; Wegener, D.; Wichmann, K.; Wing, M.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2018-06-01

    Measurements of open charm and beauty production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon 2.5 GeV^2≤Q^2 ≤2000 GeV^2 and Bjorken scaling variable 3 \\cdot 10^{-5} ≤ x_Bj ≤ 5 \\cdot 10^{-2}. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as m_c(m_c) = 1.290^{+0.046}_{-0.041} (exp/fit) {}^{+0.062}_{-0.014} (model) {}^{+0.003}_{-0.031} (parameterisation) GeV and m_b(m_b) = 4.049^{+0.104}_{-0.109} (exp/fit) {}^{+0.090}_{-0.032} (model) {}^{+0.001}_{-0.031} (parameterisation) GeV.

  19. Cross sections for ν μ and ν ¯ μ induced pion production on hydrocarbon in the few-GeV region using MINERvA

    DOE PAGES

    McGivern, C. L.; Le, T.; Eberly, B.; ...

    2016-09-06

    Separate samples of charged-current pion production events representing two semi-inclusive channels ν μ–CC(π +) and ν¯ μ–CC(π 0) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon μ±-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer Q 2 are reported, and cross sections versus neutrino energy are obtained. Comparisons with predictions of current neutrino event generators are used to clarify the role of the Δ(1232) and higher-mass baryon resonances in CC pion production and to show themore » importance of pion final-state interactions. For the ν μ–CC(π +) [ν¯ μ–CC(π 0)] sample, the absolute data rate is observed to lie below (above) the predictions of some of the event generators by amounts that are typically 1-to- 2σ. Furthermore, the generators are able to reproduce the shapes of the differential cross sections for all kinematic variables of either data set.« less

  20. Is localized infrared spectroscopy now possible in the electron microscope?

    PubMed

    Rez, Peter

    2014-06-01

    The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.

  1. Modelling heat transfer during flow through a random packed bed of spheres

    NASA Astrophysics Data System (ADS)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  2. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  3. Self-consistent models for Coulomb-heated X-ray pulsar atmospheres

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Kirk, J. G.; Galloway, D. J.; Meszaros, P.

    1984-01-01

    Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of Protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres. Previously announced in STAR as N84-12012

  4. a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Runge, Keith

    A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.

  5. Comparison of x-ray cross sections for diagnostic and therapeutic medical physics.

    PubMed

    Boone, J M; Chavez, A E

    1996-12-01

    The purpose of this technical report is to make available an up-to-date source of attenuation coefficient data to the medical physics community, and to compare these data with other more familiar sources. Data files from Lawrence Livermore National Laboratory (in Livermore, CA) were truncated to match the needs of the medical physics community, and an interpolation routine was written to calculate a continuous set of cross sections spanning energies from 1 keV to 50 MeV. Coefficient data are available for elements Z = 1 through Z = 100. Values for mass attenuation coefficients, mass-energy-transfer coefficients, and mass-energy absorption coefficients are produced by a single computer subroutine. In addition to total interaction cross sections, the cross sections for photoelectric, Rayleigh, Compton, pair, and some triplet interactions are also produced by this single program. The coefficients were compared to the 1970 data of Storm and Israel over the energy interval from 1 to 1000 keV; for elements 10, 20, 30, 40, 50, 60, 70, and 80, the average positive difference between the Storm and Israel coefficients and the coefficients reported here are 1.4%, 2.7%, and 2.6%, for the mass attenuation, mass energy-transfer, and mass-energy absorption coefficients, respectively. The 1969 data compilation of mass attenuation coefficients from McMaster et al. were also compared with the newer LLNL data. Over the energy region from 10 keV to 1000 keV, and from elements Z = 1 to Z = 82 (inclusive), the overall average difference was 1.53% (sigma = 0.85%). While the overall average difference was small, there was larger variation (> 5%) between cross sections for some elements. In addition to coefficient data, other useful data such as the density, atomic weight, K, L1, L2, L3, M, and N edges, and numerous characteristic emission energies are output by the program, depending on a single input variable. The computer source code, written in C, can be accessed and downloaded from the World Wide Web at: http:@www.aip.org/epaps/epaps.html [E-MPHSA-23-1977].

  6. Oscillator strengths and integral cross sections for the valence-shell excitations of nitric oxide studied by fast electron impact.

    PubMed

    Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-01-28

    The generalized oscillator strengths for the valence-shell excitations of A 2 Σ + , C 2 Π, and D 2 Σ + electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.

  7. Inequalities of Income and Inequalities of Longevity: A Cross-Country Study

    PubMed Central

    Plümper, Thomas

    2016-01-01

    Objectives. We examined the effects of market income inequality (income inequality before taxes and transfers) and income redistribution via taxes and transfers on inequality in longevity. Methods. We used life tables to compute Gini coefficients of longevity inequality for all individuals and for individuals who survived to at least 10 years of age. We regressed longevity inequality on market income inequality and income redistribution, and we controlled for potential confounders, in a cross-sectional time-series sample of up to 28 predominantly Western developed countries and up to 37 years (1974–2011). Results. Income inequality before taxes and transfers was positively associated with inequality in the number of years lived; income redistribution (the difference between market income inequality and income inequality after taxes and transfers were accounted for) was negatively associated with longevity inequality. Conclusions. To the extent that our estimated effects derived from observational data are causal, governments can reduce longevity inequality not only via public health policies, but also via their influence on market income inequality and the redistribution of incomes from the relatively rich to the relatively poor. PMID:26562120

  8. Rotationally inelastic collisions of He and Ar with NaK: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Malenda, R. F.; Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Hickman, A. P.; Huennekens, J.; Talbi, D.; Gatti, F.

    2012-06-01

    We are investigating collisions of the ground (X^1&+circ;) and first excited (A^1&+circ;) electronic states of NaK using both experimental and theoretical methods. Potential surfaces for HeNaK (fixed NaK bond length) are used for coupled channel calculations of cross sections for rotational energy transfer and also for collisional transfer of orientation and alignment. Additional calculations use the MCTDH wavepacket method. The measurements of the A state collisions involve a pump--probe excitation scheme using polarization labeling and laser-induced fluorescence spectroscopy. The pump excites a particular ro-vibrational level (v,J) of the A state from the X state, and the probe laser is scanned over various transitions to the 3^1π state. In addition to strong direct transitions, weak satellite lines are observed that arise from collisionally-induced transitions from the (v,J) level to (v,J'=J+δJ). This method provides information about the cross sections for transfer of population and orientation for A state levels, and it can be adapted to transitions starting in the X state. For the A state we observe a strong δJ=even propensity for both He and Ar perturbers. Preliminary results for the X state do not show this propensity.

  9. A national survey of organizational transfer practices in chronic disease prevention in Canada.

    PubMed

    Hanusaik, Nancy; O'Loughlin, Jennifer L; Paradis, Gilles; Kishchuk, Natalie

    2011-08-01

    Underuse of best practices in chronic disease prevention (CDP) represents missed opportunities to promote healthy living and prevent chronic disease. Better understanding of how CDP programs, practices and policies (PPPs) are transferred from 'resource' organizations that develop them to 'user' organizations that implement them is crucial. The objectives of this work were to develop psychometrically sound measures of transfer practices occurring within resource organizations; describe the use of these transfer practices and identify correlates of the transfer process. Cross-sectional data were collected in structured telephone interviews with the person most knowledgeable about PPP transfer in 77 Canadian organizations that develop PPPs. Independent correlates of transfer were identified using multiple linear regression. The transfer practices most commonly used included: identification of barriers to PPP adoption/implementation, tailoring transfer strategies and designing a transfer plan. Skill at planning/implementing transfer, external sources of funding specifically allocated for transfer, type of resource organization, attitude toward process of collaboration and user-centeredness were all positively associated with the transfer process. These factors represent possible targets for interventions to improve transfer of CDP PPPs.

  10. Mass correlation between light and heavy reaction products in multinucleon transfer 197Au+130Te collisions

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Corradi, L.; Szilner, S.; Fioretto, E.; Pollarolo, G.; Mijatović, T.; Montanari, D.; Ackermann, D.; Bourgin, D.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; Jia, H. M.; John, P. R.; Mengoni, D.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Skukan, N.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.

    2018-05-01

    We studied multinucleon transfer reactions in the 197Au+130Te system at Elab=1.07 GeV by employing the PRISMA magnetic spectrometer coupled to a coincident detector. For each light fragment we constructed, in coincidence, the distribution in mass of the heavy partner of the reaction. With a Monte Carlo method, starting from the binary character of the reaction, we simulated the de-excitation process of the produced heavy fragments to be able to understand their final mass distribution. The total cross sections for pure neutron transfer channels have also been extracted and compared with calculations performed with the grazing code.

  11. Carbon dioxide electron cooling rates in the atmospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Rescigno, T. N.

    2008-08-01

    The cooling of electrons in collisions with carbon dioxide in the atmospheres of Venus and Mars is investigated. Calculations are performed with both previously accepted electron energy transfer rates and with new ones determined using more recent theoretical and experimental cross sections for electron impact on CO2. Emulation of a previous model for Venus confirms the validity of the current model and shows that use of the updated cross sections leads to cooling rates that are lower by one third. Application of the same model to the atmosphere of Mars gives more than double the previous cooling rates at altitudes where the electron temperature is very low.

  12. Comparative study of quantal and semiclassical treatments of charge transfer between O+ and He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study for the electron capture process O+(S40,D20,P20)+He→O(P3)+He+ is reported. The cross sections are calculated using fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. Detailed comparison of transition probabilities and cross sections is made from both MOCC approaches and displays close agreement above ˜125eV/u . The remarkable discrepancies between the earlier semiclassical and quantal MOCC approaches may be attributed to the insufficient step-size resolution in their semiclassical calculation [M. Kimura , Phys. Rev. A 50, 4854 (1994)]. Our results have also been compared with experiment and found to be in good agreement.

  13. Elastic scattering of 8He on 4He and 4 n system

    NASA Astrophysics Data System (ADS)

    Wolski, R.; Sidorchuk, S. I.; Ter-Akopian, G. M.; Fomichev, A. S.; Rodin, A. M.; Stepantsov, S. V.; Mittig, W.; Roussel-Chomaz, P.; Savajols, H.; Alamanos, N.; Auger, F.; Lapoux, V.; Raabe, R.; Tchuvil'sky, Yu. M.; Rusek, K.

    2003-07-01

    Elastic scattering of a 26A MeV beam of 8He on a gaseous helium target has been studied. In spite of efforts made for the observation of backward angle enhancement only upper limits could be obtained for the elastic scattering cross section at backward angles. The angular distribution of 8He nuclei scattered to CM 20°-80° was was analyzed in terms of a phenomenological Optical Model. Possible contributions from transfer reactions were estimated. The DWBA calculations indicate that the two step 2n transfer is more important than the one step 4n transfer. The transfer reaction d( 8He, 6Li)4n is discussed in terms of possible tests of a four-neutron system.

  14. Relativistic effects in ab initio electron-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina

    2018-05-01

    The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.

  15. Measurement of D ∗ meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J. C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burrage, A.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; İşsever, Ç.; Jacquet, M.; Jaffre, M.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jones, M.; Jung, H.; Kästli, H. K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, K.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lüders, S.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Müller, D.; Müller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žaček, J.; Zálešak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.; H1 Collaboration

    1999-04-01

    With the H1 detector at the ep collider HERA, D ∗ meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q2 > 3 GeV 2 and in photoproduction at energies around Wγp ≈ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, xgg( xg), has been extracted in the momentum fraction range 7.5 × 10 -4 < xg < 4 × 10 -2 at average scales μ2 = 25 to 50 GeV 2. The gluon momentum fraction xg has been obtained from the measured kinematics of the scattered electron and the D ∗ meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F2.

  16. Systematics of capture and fusion dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wen, Kai; Zhao, Wei-Juan; Zhao, En-Guang; Zhou, Shan-Gui

    2017-03-01

    We perform a systematic study of capture excitation functions by using an empirical coupled-channel (ECC) model. In this model, a barrier distribution is used to take effectively into account the effects of couplings between the relative motion and intrinsic degrees of freedom. The shape of the barrier distribution is of an asymmetric Gaussian form. The effect of neutron transfer channels is also included in the barrier distribution. Based on the interaction potential between the projectile and the target, empirical formulas are proposed to determine the parameters of the barrier distribution. Theoretical estimates for barrier distributions and calculated capture cross sections together with experimental cross sections of 220 reaction systems with 182 ⩽ZPZT ⩽ 1640 are tabulated. The results show that the ECC model together with the empirical formulas for parameters of the barrier distribution work quite well in the energy region around the Coulomb barrier. This ECC model can provide prediction of capture cross sections for the synthesis of superheavy nuclei as well as valuable information on capture and fusion dynamics.

  17. Mathematical Model of Solidification During Electroslag Casting of Pilger Roll

    NASA Astrophysics Data System (ADS)

    Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin

    A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.

  18. Comparative study of tool machinery sliding systems; comparison between plane and cylindrical basic shapes

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Babanatsas, T.; Babanatis Merce, R. M.; Glăvan, A.

    2018-01-01

    The paper brings in attention the importance that the sliding system of a tool machinery is having in the final precision of the manufacturing. We are basically comparing two type of slides, one constructed with plane surfaces and the other one with circular cross-sections (as known as cylindrical slides), analysing each solution from the point of view of its technology of manufacturing, of the precision that the particular slides are transferring to the tool machinery, cost of production, etc. Special attention is given to demonstrate theoretical and to confirm by experimental works what is happening with the stress distribution in the case of plane slides and cylindrical slides, both in longitudinal and in cross-over sections. Considering the results obtained for the stress distribution in the transversal and longitudinal cross sections, by composing them, we can obtain the stress distribution on the semicircular slide. Based on the results, special solutions for establishing the stress distribution between two surfaces without interact in the contact zone have been developed.

  19. Delta-Isobar Production in the Hard Photodisintegration of a Deuteron

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2010-02-01

    Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )

  20. Mechanism of multinucleon transfer reaction based on the GRAZING model and DNS model

    NASA Astrophysics Data System (ADS)

    Wen, Pei-wei; Li, Cheng; Zhu, Long; Lin, Cheng-jian; Zhang, Feng-shou

    2017-11-01

    Multinucleon transfer (MNT) reactions have been studied by either the GRAZING model or dinuclear system (DNS) model before. MNT reactions in the grazing regime have been described quite well by the GRAZING model. The DNS model is able to deal with MNT reactions, which happen in the closer overlapped regime after contact of two colliding nuclei. Since MNT reactions can happen in both areas and cannot be distinguished in view of experimental work, it is beneficial to compare these two models to clarify mechanism of MNT reactions. In this study, the mechanism of the MNT reaction has been studied by comparing the GRAZING model and DNS model for the first time. Reaction systems 136Xe+208Pb at {E}{{c}.{{m}}.}=450 MeV and 64Ni+238U at {E}{{c}.{{m}}.}=307 MeV are taken as examples in this paper. It is found that the gradients of transfer cross sections with respect to the impact parameter of the GRAZING model and DNS model are mainly concentrated on two different areas, which represents two kinds of transfer mechanisms. The theoretical framework of these two models are exclusive according to whether capture happens, which guarantees that the theoretical results calculated by these two models have no overlap and can be added up. Results indicate that the description of experimental MNT reaction cross sections can be significantly improved if calculations of the GRAZING model and DNS model are both considered.

  1. Wireless induction coils embedded in diamond for power transfer in medical implants.

    PubMed

    Sikder, Md Kabir Uddin; Fallon, James; Shivdasani, Mohit N; Ganesan, Kumaravelu; Seligman, Peter; Garrett, David J

    2017-08-26

    Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.

  2. Neutral pion photoproduction in a Regge model

    DOE PAGES

    Mathieu, Vincent; Fox, G.; Szczepaniak, Adam P.

    2015-10-08

    The reactionmore » $$\\gamma p \\to \\pi^0 p$$ is investigated in the energy range above the resonance region. The amplitudes include the leading Regge singularities in the cross-channel and correctly describe the differential cross section for beam energies above 4 GeV and for momentum transferred above $$-3\\mbox{ GeV}^2$$. Furthermore, the energy dependence of the beam asymmetry and the reaction $$\\gamma n \\to \\pi^0 n$$ seem is quantitative consistent with the Regge-pole dominance.« less

  3. Collision energy dependent cross section and rotational alignment of NO (A 2Σ+) in the energy-transfer reaction of N2 (A 3Σu+) + NO (X 2Π) → N2 (X 1Σg+) + NO (A 2Σ+).

    PubMed

    Ohoyama, H

    2014-10-16

    We have studied the collision energy dependent cross section and alignment of NO (A (2)Σ(+)) rotation in the energy-transfer reaction of N2 (A (3)Σ(u)(+)) + NO (X (2)Π) → N2 (X (1)Σ(g)(+)) + NO (A (2)Σ(+)) at the collision energy (E) region of 0.03-0.2 eV. NO (A (2)Σ(+)) emission in two linear polarization directions in the collision frame (parallel (∥) and perpendicular (⊥) with respect to the relative velocity vector (vR)) has been measured as a function of collision energy. NO (A (2)Σ(+)) rotation (J-vector) turns out to be aligned perpendicular to vR. In addition, collision energy is found to enhance the degree of alignment of NO (A (2)Σ(+)) rotation. The collision energy dependent cross sections σ(∥,(⊥))(E) (excitation functions) show a rapid fall-off following an initial rise with a threshold less than 0.02 eV. The excitation function at the parallel alignment of NO (A (2)Σ(+)) rotation, σ(J∥v(R), (E), is slightly shifted to the low collision energy region as compared with σ(J ⊥ vR, E). We propose that the rapid fall-off feature in the excitation function is attributed to the multidimensional nonadiabatic transitions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.L.; Reading, J.F.; Becker, R.L.

    Theoretical methods used previously for H/sup +/, He/sup 2 +/, and C/sup 6 +/ collisions with neutral argon atoms have been applied to collisions of H/sup +/, He/sup 2 +/, and Li/sup 3 +/ projectiles with neon, and to collisions of H/sup +/ with carbon targets. The energy range covered by the calculations is 0.4 to 4.0 MeV/amu for the neon target, and 0.2 to 2.0 MeV/amu for carbon. We calculate single-electron amplitudes for target K-shell ionization and target K- and L-shell, to projectile K-shell, charge transfer. These single-electron amplitudes are used, in an independent-particle model that allows for multielectronmore » processes, to compute K-shell vacancy production cross sections sigma/sup IPM//sub V/K, and cross sections sigma/sup IPM//sub C/,VK for producing a charge-transfer state of the projectile in the coincidence with a K-shell vacancy in the target. These cross sections are in reasonable agreement with the recent experiments of Rodbro et al. at Aarhus. In particular, the calculated, as well as the experimental, sigma/sub C/,VK scale with projectile nuclear charge Z/sub p/ less strongly than the Z/sup 5//sub p/ of the Oppenheimer-Brinkman-Kramers (OBK) approximation. For He/sup 2 +/ and Li/sup 3 +/ projectiles at collision energies below where experimental data are available, our calculated multielectron corrections to the single-electron approximation for sigma/sub C/,VK are large.« less

  5. Transfer of New Earth Science Understandings to Classroom Teaching: Lessons Learned From Teachers on the Leading Edge

    NASA Astrophysics Data System (ADS)

    Butler, R.; Ault, C.; Bishop, E.; Southworth-Neumeyer, T.; Magura, B.; Hedeen, C.; Groom, R.; Shay, K.; Wagner, R.

    2006-05-01

    Teachers on the Leading Edge (TOTLE) provided a field-based teacher professional development program that explored the active continental margin geology of the Pacific Northwest during a two-week field workshop that traversed Oregon from the Pacific Coast to the Snake River. The seventeen teachers on this journey of geological discovery experienced regional examples of subduction-margin geology and examined the critical role of geophysics in connecting geologic features with plate tectonic processes. Two examples of successful transfer of science content learning to classroom teaching are: (1) Great Earthquakes and Tsunamis. This topic was addressed through instruction on earthquake seismology; field observations of tsunami geology; examination of tsunami preparedness of a coastal community; and interactive learning activities for children at an Oregon Museum of Science and Industry (OMSI) Science Camp. Teachers at Sunnyside Environmental School in Portland developed a story line for middle school students called "The Tsunami Hotline" in which inquiries from citizens serve as launch points for studies of tsunamis, earthquakes, and active continental margin geology. OMSI Science Camps is currently developing a new summer science camp program entitled "Tsunami Field Study" for students ages 12-14, based largely on TOTLE's Great Earthquakes and Tsunamis Day. (2) The Grand Cross Section. Connecting regional geologic features with plate tectonic processes was addressed many times during the field workshop. This culminated with teachers drawing cross sections from the Juan de Fuca Ridge across the active continental margin to the accreted terranes of northeast Oregon. Several TOTLE teachers have successfully transferred this activity to their classrooms by having student teams relate earthquakes and volcanoes to plate tectonics through artistic renderings of The Grand Cross Section. Analysis of program learning transfer to classroom teaching (or lack thereof) clearly indicates the importance of pedagogical content knowledge and having teachers share their wisdom in crafting new earth science content knowledge into learning activities. These lessons and adjustments to TOTLE program goals and strategies may be valuable to other Geoscience educators seeking to prepare K-12 teachers to convey the discoveries of EarthScope's USArray and Plate Boundary Observatory experiments to their students.

  6. Energy and Electron Transfer in Enhanced Two-Photon-Absorbing Systems with Triplet Cores

    PubMed Central

    Finikova, Olga S.; Troxler, Thomas; Senes, Alessandro; DeGrado, William F.; Hochstrasser, Robin M.; Vinogradov, Sergei A.

    2008-01-01

    Enhanced two-photon-absorbing (2PA) systems with triplet cores are currently under scrutiny for several biomedical applications, including photodynamic therapy (PDT) and two-photon microscopy of oxygen. The performance of so far developed molecules, however, is substantially below expected. In this study we take a detailed look at the processes occurring in these systems and propose ways to improve their performance. We focus on the interchromophore distance tuning as a means for optimization of two-photon sensors for oxygen. In these constructs, energy transfer from several 2PA chromophores is used to enhance the effective 2PA cross section of phosphorescent metalloporphyrins. Previous studies have indicated that intramolecular electron transfer (ET) can act as an effective quencher of phosphorescence, decreasing the overall sensor efficiency. We studied the interplay between 2PA, energy transfer, electron transfer, and phosphorescence emission using Rhodamine B-Pt tetrabenzoporphyrin (RhB-PtTBP) adducts as model compounds. 2PA cross sections (σ2) of tetrabenzoporphyrins (TBPs) are in the range of several tens of GM units (near 800 nm), making TBPs superior 2PA chromophores compared to regular porphyrins (σ2 values typically 1-2 GM). Relatively large 2PA cross sections of rhodamines (about 200 GM in 800-850 nm range) and their high photostabilities make them good candidates as 2PA antennae. Fluorescence of Rhodamine B (λfl = 590 nm, ϕfl = 0.5 in EtOH) overlaps with the Q-band of phosphorescent PtTBP (λabs = 615 nm, ϵ = 98 000 M-1 cm-1, ϕp ∼ 0.1), suggesting that a significant amplification of the 2PA-induced phosphorescence via fluorescence resonance energy transfer (FRET) might occur. However, most of the excitation energy in RhB-PtTBP assemblies is consumed in several intramolecular ET processes. By installing rigid nonconducting decaproline spacers (Pro10) between RhB and PtTBP, the intramolecular ETs were suppressed, while the chromophores were kept within the Förster r0 distance in order to maintain high FRET efficiency. The resulting assemblies exhibit linear amplification of their 2PA-induced phosphorescence upon increase in the number of 2PA antenna chromophores and show high oxygen sensitivity. We also have found that PtTBPs possess unexpectedly strong forbidden S0 → T1 bands (λmax = 762 nm, ϵ = 120 M-1 cm-1). The latter may overlap with the laser spectrum and lead to unwanted linear excitation. PMID:17608457

  7. Energy Transfer Highway in Nd3+-Sensitized Nanoparticles for Efficient near-Infrared Bioimaging.

    PubMed

    Cao, Cong; Xue, Meng; Zhu, Xingjun; Yang, Pengyuan; Feng, Wei; Li, Fuyou

    2017-06-07

    Despite the large absorption cross-section of Nd 3+ dopant as a sensitizer in lanthanide doped luminescence system, the strong cross-relaxation effect of it impedes the promotion of doping concentration and thus reduces the utilization of excitation light. In this work, we introduce a highly efficient acceptor, Yb 3+ ion, which can quickly receive energy from Nd 3+ ions, to construct an energy transfer highway for the enhancement of near-infrared emission. By using the energy transfer highway, the doping amount of Nd 3+ ions in our NaYF 4 :Yb,Nd@CaF 2 core/shell nanoparticles (CSNPs) can be markedly elevated to 60%. The quantum yield of CSNPs was determined to be 20.7%, which provides strong near-infrared luminescence for further bioimaging application. Remarkably, deep tissue penetration depth (∼10 mm) in in vitro imaging and high spatial resolution of blood vessel (∼0.19 mm) in in vivo imaging were detected clearly with weak autofluorescence, demonstrating that probes can be used as excellent NIR biosensors.

  8. The electron-furfural scattering dynamics for 63 energetically open electronic states

    NASA Astrophysics Data System (ADS)

    da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.

    2016-03-01

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.

  9. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  10. The electron-furfural scattering dynamics for 63 energetically open electronic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580; Varella, Márcio T. do N

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C{sub 5}H{sub 4}O{sub 2}). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N{sub open}) at either the static-exchange (N{sub open} ch-SE) or the static-exchange-plus-polarisation (N{sub open} ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channelmore » coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.« less

  11. Measurement of Muon Neutrino Charged Current Single $$\\pi^0$$ Production on Hydrocarbon using MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altinok, Ozgur

    A sample of charged-current single pion production events for the semi- exclusive channel ν µ + CH → µ -π 0 + nucleon(s) has been obtained using neutrino exposures of the MINERvA detector. Differential cross sections for muon momentum, muon production angle, pion momentum, pion production angle, and four-momentum transfer square Q 2 are reported and are compared to a GENIE-based simulation. The cross section versus neutrino energy is also re- ported. The effects of pion final-state interactions on these cross sections are investigated. The effect of baryon resonance suppression at low Q 2 is examined and an event re-weight used by two previous experiments is shown to improve the data versus simulation agreement. The differential cross sections for Q 2 for Eν < 4.0 GeV and E ν ≥ 4.0 GeV are examined and the shapes of these distributions are compared to those from the experiment’smore » $$\\bar{v}$$ µ-CC (π 0) measurement. The polarization of the pπ 0 system is measured and compared to the simulation predictions. The hadronic invariant mass W distribution is examined for evidence of resonance content, and a search is reported for evidence of a two-particle two-hole (2p2h) contribution. All of the differential cross-section measurements of this Thesis are compared with published MINERvA measurements for ν µ-CC (π +) and \\bar{v}$ µ-CC (π 0) processes.« less

  12. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  13. Comparative stereodynamics in molecule-atom and molecule-molecule rotational energy transfer: NO(A{sup 2}Σ{sup +}) + He and D{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxford, Thomas F. M.; Sharples, Thomas R.; McKendrick, Kenneth G.

    2016-08-28

    We present a crossed molecular beam scattering study, using velocity-map ion-imaging detection, of state-to-state rotational energy transfer for NO(A{sup 2}Σ{sup +}) in collisions with the kinematically identical colliders He and D{sub 2}. We report differential cross sections and angle-resolved rotational angular momentum polarization moments for transfer of NO(A, v = 0, N = 0, j = 0.5) to NO(A, v = 0, N′ = 3, 5-12) in collisions with He and D{sub 2} at respective average collision energies of 670 cm{sup −1} and 663 cm{sup −1}. Quantum scattering calculations on a literature ab initio potential energy surface for NO(A)-He [J.more » Kłos et al., J. Chem. Phys. 129, 244303 (2008)] yield near-quantitative agreement with the experimental differential scattering cross sections and good agreement with the rotational polarization moments. This confirms that the Kłos et al. potential is accurate within the experimental collisional energy range. Comparison of the experimental results for NO(A) + D{sub 2} and He collisions provides information on the hitherto unknown NO(A)-D{sub 2} potential energy surface. The similarities in the measured scattering dynamics of NO(A) imply that the general form of the NO(A)-D{sub 2} potential must be similar to that calculated for NO(A)-He. A consistent trend for the rotational rainbow maximum in the differential cross sections for NO(A) + D{sub 2} to peak at more forward angles than those for NO(A) + He is consistent with the NO(A)-D{sub 2} potential being more anisotropic with respect to NO(A) orientation. No evidence is found in the experimental measurements for coincident rotational excitation of the D{sub 2}, consistent with the potential having low anisotropy with respect to D{sub 2}. The NO(A) + He polarization moments deviate systematically from the predictions of a hard-shell, kinematic-apse scattering model, with larger deviations as N′ increases, which we attribute to the shallow gradient of the anisotropic repulsive NO(A)-He potential energy surface.« less

  14. Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Lu, J. F.; Yang, H. R.; Zhang, J. S.; Zhang, H.; Yue, G. X.

    Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (α) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercritical parameters. Experimental study on the heat transfer in a commercial 300MWe CFB boiler was conducted. The α from the bed to the water wall was measured by the finite element method (FEM), at five different heights. The influence of suspension density and bed temperature on α was analyzed. It was found that the pressure difference between the inlet and exit of the three cyclones, and the chamber pressure of the corresponding loop seal were not equal. The results indicated the suspension solid density was non-uniform in the cross section at a certain height. Consequently, the distributions of heat flux and α in the horizontal plane in the furnace was non-uniform. The furnace can divided into three sections according to the arrangement of the platen superheaters hanging in the upper CFB furnace. In each section, the heat flux near the center showed increasing trend.

  15. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.

    PubMed

    Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R

    2009-09-01

    Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.

  16. Radiative transfer in a sphere illuminated by a parallel beam - An integral equation approach. [in planetary atmosphere

    NASA Technical Reports Server (NTRS)

    Shia, R.-L.; Yung, Y. L.

    1986-01-01

    The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.

  17. Tm3+-doped lead silicate glass sensitized by Er3+ for efficient 2 μm mid-infrared laser material

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Wang, Ning; Guo, Yanyan; Cai, Muzhi; Tian, Ying; Huang, Feifei; Xu, Shiqing

    2018-06-01

    Er3+/Tm3+ co-doped lead silicate glasses with low phonon (953 cm-1) and good thermal stability were synthesized. The 2 μm mid-infrared emission resulting from the 3F4 → 3H6 transition of Tm3+ sensitized by Er3+ has been observed by 808 nm LD pumping. The optimal luminescence intensity was obtained in the sample with 1Tm2O3/2.5Er2O3 co-doped. Moreover, the energy transfer mechanism from Er3+ to Tm3+ ion was analyzed. Absorption and emission cross section have been calculated. The calculated maximum emission cross section of Tm3+ is 2.689 × 10-21 cm2 at 1863 nm. Microparameters of energy transfer between Er3+ and Tm3+ ions have also been analyzed. These results ensure that the prepared Er3+/Tm3+ co-doped lead silicate glasses have excellent spectroscopic properties in mid-infrared region and provide a beneficial guide for mid-infrared laser material.

  18. Forced convective heat transfer in curved diffusers

    NASA Technical Reports Server (NTRS)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  19. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO/sub 2/ scattering. [0. 01 to 10 eV, potentials, partial waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO/sub 2/ collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is convergedmore » by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO/sub 2/ scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to ..sigma../sub g/ symmetry. Comparison with static and static-exchange approximations are made.« less

  20. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  1. Genetic relationships among seven sections of genus Arachis studied by using SSR markers

    PubMed Central

    2010-01-01

    Background The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis. Results The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea. Conclusion A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut. PMID:20089171

  2. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE PAGES

    Bourgin, D.; Courtin, S.; Haas, F.; ...

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from E lab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  3. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  4. Coincidence charged-current neutrino-induced deuteron disintegration for 2H2 16O

    NASA Astrophysics Data System (ADS)

    Van Orden, J. W.; Donnelly, T. W.; Moreno, O.

    2017-12-01

    Semi-inclusive charge-changing neutrino reactions on targets of heavy water are investigated with the goal of determining the relative contributions to the total cross section of deuterium and oxygen in kinematics chosen to emphasize the former. The study is undertaken for conditions where the typical neutrino beam energies are in the few GeV region, and hence relativistic modeling is essential. For this, the previous relativistic approach for the deuteron is employed, together with a spectral function approach for the case of oxygen. Upon optimizing the kinematics of the final-state particles assumed to be detected (typically a muon and a proton) it is shown that the oxygen contribution to the total cross section is suppressed by roughly an order of magnitude compared with the deuterium cross section, thereby confirming that CC ν studies of heavy water can effectively yield the cross sections for deuterium, with acceptable backgrounds from oxygen. This opens the possibility of using deuterium to determine the incident neutrino flux distribution, to have it serve as a target for which the nuclear structure issues are minimal, and possibly to use deuterium to provide improved knowledge of specific aspects of hadronic structure, such as to explore the momentum transfer dependence of the isovector axial-vector form factor of the nucleon.

  5. Elastic collisions of low-energy electrons with SiY4 (Y = Cl, Br, I) molecules

    NASA Astrophysics Data System (ADS)

    Bettega, M. H. F.

    2011-11-01

    We employed the Schwinger multichannel method to compute elastic integral, differential, and momentum transfer cross sections for low-energy electron collisions with SiY4 (Y = Cl, Br, I) molecules. The calculations were carried out in the static-exchange and static-exchange plus polarization approximations for energies up to 10 eV. The elastic integral cross section for SiCl4 and SiBr4, computed in the static-exchange plus polarization approximation, shows two shape resonances belonging to the T2 and E symmetries of the Td group, and for SiI4 shows one shape resonance belonging to the E symmetry of the Td group. The present results agree well in shape with experimental total cross sections. The positions of the resonances observed in the calculated integral cross sections are also in agreement with the experimental positions. We have found the presence of a virtual state for SiCl4 and a Ramsauer-Townsend minimum for SiI4 at 0.5 eV. The present results show that the proper inclusion of polarization effects is crucial in order to correctly describe the resonance spectra of these molecules and also to identify a Ramsauer-Townsend minimum for SiI4 and a virtual state for SiCl4.

  6. Flood boundaries and water-surface profile for the computed 100-year flood, Swift Creek at Afton, Wyoming, 1986

    USGS Publications Warehouse

    Rankl, James G.; Wallace, Joe C.

    1989-01-01

    Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)

  7. Auditory and visual interhemispheric communication in musicians and non-musicians.

    PubMed

    Woelfle, Rebecca; Grahn, Jessica A

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  8. Peculiarities of heat transfer at the liquid metal flow in a vertical channel in a coplanar magnetic field

    NASA Astrophysics Data System (ADS)

    Razuvanov, N. G.; Poddubnyi, I. I.; Kostychev, P. V.

    2017-11-01

    The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ˜1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the LM flow in the heat exchange channels for cooling the liquid metal module of the blanket of the thermonuclear reactor (TNR) of the TOKAMAK type. The experiments were carried out on the basis of the mercury magnetohydrodynamic test-bed (MHD) Moscow Power Engineering Institute (MPEI) - Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). The probe measurement technique was used in the flow. Profiles of averaged velocity and averaged temperature, as well as profiles of temperature pulsations in the axial planes of the channel cross-section, are obtained; the distribution of the dimensionless wall temperature along the perimeter unfolding of the channel in the section and along the length of the channel. A significant effect of thermogravitational convection (TGC), which leads to unexpected effects, is found. At the downflow in a magnetic field, in some modes, low-frequency pulsations of anomalously high intensity occur.

  9. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  10. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  11. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  12. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  13. Elastic scattering and total reaction cross section for the 6He +58Ni system

    NASA Astrophysics Data System (ADS)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.

    2014-11-01

    Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  14. Measurement of the Two-Photon Exchange Contribution to the Elastic e ± p Scattering Cross Sections at the VEPP-3 Storage Ring

    DOE PAGES

    Rachek, I. A.; Arrington, J.; Dmitriev, V. F.; ...

    2015-02-12

    The ratio of the elastic e +p to e –p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15° and 105°. The data obtained show evidence of a significant two-photon exchange effect. Furthermore, the results are compared with several theoretical predictions.

  15. The Research Program at RIBRAS (Radioactive Ion Beams in Brasil)-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.

    A part of the research program developed in the RIBRAS facility over the last four years is presented. Experiments using radioactive secondary beams of light exotic nuclei such as {sup 6}He, {sup 7}Be, {sup 8}Li on several targets have been performed. Elastic angular distributions have been analysed by the Optical Model and four body Continuous Discretized Coupled Channels Calculations (4b-CDCC) and the total reaction cross sections have been obtained. A comparison between the reaction cross sections of {sup 6}He and other stable projectiles with medium-heavy targets was performed. Measurements of the proton transfer reaction {sup 12}C({sup 8}Li,{sup 9}Be){sup 11}B aremore » also presented.« less

  16. Reactions between NO/+/ and metal atoms using magnetically confined afterglows

    NASA Technical Reports Server (NTRS)

    Lo, H. H.; Clendenning, L. M.; Fite, W. L.

    1977-01-01

    A new method of studying thermal energy ion-neutral collision processes involving nongaseous neutral atoms is described. A long magnetic field produced by a solenoid in a vacuum chamber confines a thermal-energy plasma generated by photoionization of gas at very low pressure. As the plasma moves toward the end of the field, it is crossed by a metal atom beam. Ionic products of ion-atom reactions are trapped by the field and both the reactant and product ions move to the end of the magnetic field where they are detected by a quadrupole mass filter. The cross sections for charge transfer between NO(+) and Na, Mg, Ca, and Sr and that for rearrangement between NO(+) and Ca have been obtained. The charge-transfer reaction is found strongly dominant over the rearrangement reaction that forms metallic oxide ions.

  17. Perspectives of Academic Social Scientists on Knowledge Transfer and Research Collaborations: A Cross-Sectional Survey of Australian Academics

    ERIC Educational Resources Information Center

    Cherney, Adrian; Head, Brian; Boreham, Paul; Povey, Jenny; Ferguson, Michele

    2012-01-01

    This paper reports results from a survey of academic social scientists in Australian universities on their research engagement experience with industry and government partners and end-users of research. The results highlight that while academics report a range of benefits arising from research collaborations, there are also significant impediments…

  18. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  19. [Excitation transfer between high-lying states in K2 in collisions with ground state K and H2 molecules].

    PubMed

    Shen, Xiao-Yan; Liu, Jing; Dai, Kang; Shen, Yi-Fan

    2010-02-01

    Pure potassium vapor or K-H2 mixture was irradiated in a glass fluorescence cell with pulses of 710 nm radiation from an OPO laser, populating K2 (1lambda(g)) state by two-photon absorption. Cross sections for 1lambda(g)-3lambda(g) transfer in K2 were determined using methods of molecular fluorescence. During the experiments with pure K vapor, the cell temperature was varied between 553 and 603 K. The K number density was determined spectroscopically by the white-light absorption measurement in the blue wing of the self-broadened resonance D2 line. The resulting fluorescence included a direct component emitted in the decay of the optically excitation and a sensitized component arising from the collisionally populated state. The decay signal of time-resolved fluorescence from1lambda(g) -->1 1sigma(u)+ transition was monitored. It was seen that just after the laser pulse the fluorescence of the photoexcited level decreased exponentially. The effective lifetimes of the 1lambda(g) state can be resolved. The plot of reciprocal of effective lifetimes of the 1lambda(g) state against K densities yielded the slope that indicated the total cross section for deactivation and the intercept that provided the radiative lifetime of the state. The radiative lifetime (20 +/- 2) ns was obtained. The cross section for deactivation of the K2(1lambda(g)) molecules by collisions with K is (2.5 +/- 0.3) x 10(-14) cm2. The time-resolved intensities of the K23lambda(g) --> 1 3sigma(u)+ (484 nm) line were measured. The radiative lifetime (16.0 +/- 3.2) ns and the total cross section (2.5 +/- 0.6) x 10(-14) cm2 for deactivation of the K2 (3lambda(g)) state can also be determined through the analogous procedure. The time-integrated intensities of 1lambda(g) --> 1 1sigma(u)+ and 3lambda(g) --> 1 3sigma(u)+ transitions were measured. The cross section (1.1 +/- 0.3) x10(-14) cm2 was obtained for K2 (1lambda(g))+ K --> K2 (3lambda(g)) + K collisions. During the experiments with K-H2 mixture, the cell temperature was kept constant at 553 K. The H2 pressure was varied between 40 and 400 Pa. The effects of K2-K collisions could not be neglected. These effects were subtracted out using the results of the pure K experiments. The cross section (2.7 +/- 1.1) x 10(-15) cm2 was obtained for K2 (1lambda(g)) + H2 --> K2 (3lambda(g))+H2 collisions. The cross section is (6.8 +/- 2.7) x 10(-15) cm2 for K2 (3lambda(g)) + H2 --> states out of K2 (3lambda(g)) + H2 collisions.

  20. Cross sections and Rosenbluth separations from kaon electroproduction on protons up to Q(2) = 2.35(GeV/c)(2)

    NASA Astrophysics Data System (ADS)

    Coman, Marius

    The kaon electroproduction reaction H(e, e 'K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Cerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, sigma L, and transverse, sigmaT, terms were separated using the Rosenbluth separation technique. Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed.

  1. Heavy ion-induced DNA double-strand breaks in yeast.

    PubMed

    Kiefer, Jürgen; Egenolf, Ralf; Ikpeme, Samuel

    2002-02-01

    Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.

  2. Genetically encoded releasable photo-cross-linking strategies for studying protein-protein interactions in living cells.

    PubMed

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R

    2017-10-01

    Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.

  3. Deeply virtual and exclusive electroproduction of ω-mesons

    NASA Astrophysics Data System (ADS)

    Morand, L.; Doré, D.; Garçon, M.; Guidal, M.; Laget, J.-M.; Morrow, S.; Sabatié, F.; Smith, E.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Feldman, G.; Fersch, R. G.; Feuerbach, R. J.; Funsten, H.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F.-X.; Goetz, J. T.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ito, M. M.; Jenkins, D.; Jo, H.-S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Kubarovski, V.; Kramer, L. H.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Livingston, K.; Marchand, C.; Maximon, L. C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rubin, P. D.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S.; Stepanyan, S. S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.

    2005-06-01

    The exclusive ω electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross-sections were measured up to large values of the four-momentum transfer (- t < 2.7 GeV2) to the proton. The contributions of the interference terms σ{TT} and σ{TL} to the cross-sections, as well as an analysis of the ω spin density matrix, indicate that helicity is not conserved in this process. The t-channel π0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction γ*p↦ωp, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross-sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.

  4. Effects of relativity of RTEX in collisions of U sup q+ with light targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mau Hsiung.

    1990-11-07

    We have calculated the resonant transfer and excitation cross sections in collisions of U{sup q+} (q = 82, 89, 90) ion with H{sub 2}, He and C in impulse approximation using the multi-configuration Dirac-Fock method. The calculations were carried out in intermediate coupling with configuration interaction. The quantum electrodynamic and finite nuclear size corrections were included in the calculations of transition energies. The Auger rates were calculated including the contributions from Coulomb as well as the transverse Breit interactions. For U{sup 89+} and U{sup 90+}, effects of relatively not only shift the peak positions but also change the peak structure.more » The total dielectronic recombination strength has been found to increase by 50% due to the effects of relativity. The present theoretical RTEX cross sections for U{sup 90+} in hydrogen agree well with experiment. For U{sup 82+}, Breit interaction had been found to have little effect on the RTEX cross sections involving L-shell excitation. However, the spin-orbit interaction can still make significant change in the peak structure. 24 refs., 4 figs.« less

  5. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

  6. Oscillating flow and heat transfer in a channel with sudden cross section change

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Hashim, Waqar

    1993-01-01

    We have computationally examined oscillating flow (zero mean) between two parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The cases studied cover wide ranges of Re(sub max) (from 187.5 to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A(sub r) (2 and 4). Also, three different geometric cases were discussed: (1) asymmetric expansion/contraction; (2) symmetric expansion/contraction; and (3) symmetric blunt body. For these oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden contraction inthe other half. The instantaneous friction factor, for some ranges of Re(sub max) and Va, deviated substantially from the steady-state friction factor for the same flow parameters. A region has been identified below which the flow is laminar quasi-steady. A videotape showing computer simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing information on the transient hydraulic phenomena.

  7. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    NASA Astrophysics Data System (ADS)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-02-01

    There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .

  8. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; ...

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  9. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  10. Measurement of {nu}-bar{sub e}-e scattering cross section with CsI(Tl) detector array and the Beyond Standard Model constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, V.; Singh, L.; Singh, M. K.

    A search of {nu}-bar{sub e}-e scattering cross section was carried out at the Kuo-Sheng nuclear power station. Based on 29882 and 7369 kg-days of reactor ON/OFF data, respectively, at an average reactor ON {nu}-bar{sub e} flux of 6.4x10{sup 12} cm{sup -2} s{sup -1}, the standard model (SM) electroweak interaction was probed at the squared 4-momentum transfer range of Q{sup 2}{approx}3x10{sup -6} GeV{sup 2}. The ratio of experimental to SM cross section was measured [1.08{+-}0.21(stat){+-}0.16(sys)]. We placed the constraints on the electroweak parameters (g{sub V},g{sub A}), corresponding to a weak mixing angle measurement of sin{sup 2}{theta}{sub W} = 0.251{+-}0.031(stat){+-}0.024(sys). A Pointmore » Contact Germanium Detector (PCGe) of mass 1 kg has been installed at a new underground laboratory 'China Jin-Ping Laboratory (CJPL)' in China.« less

  11. Prediction of error rates in dose-imprinted memories on board CRRES by two different methods. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Stassinopoulos, E. G.

    1991-01-01

    An analysis of the expected space radiation effects on the single event upset (SEU) properties of CMOS/bulk memories onboard the Combined Release and Radiation Effects Satellite (CRRES) is presented. Dose-imprint data from ground test irradiations of identical devices are applied to the predictions of cosmic-ray-induced space upset rates in the memories onboard the spacecraft. The calculations take into account the effect of total dose on the SEU sensitivity of the devices as the dose accumulates in orbit. Estimates of error rates, which involved an arbitrary selection of a single pair of threshold linear energy transfer (LET) and asymptotic cross-section values, were compared to the results of an integration over the cross-section curves versus LET. The integration gave lower upset rates than the use of the selected values of the SEU parameters. Since the integration approach is more accurate and eliminates the need for an arbitrary definition of threshold LET and asymptotic cross section, it is recommended for all error rate predictions where experimental sigma-versus-LET curves are available.

  12. Thinking for Speaking and Cross-Linguistic Transfer in Preschool Bilingual Children

    ERIC Educational Resources Information Center

    Nicoladis, Elena; Rose, Alyssa; Foursha-Stevenson, Cassandra

    2010-01-01

    Bilingual children sometimes produce constructions influenced by their other language (cross-linguistic transfer). Transfer can often be predicted by the existence of overlapping and ambiguous constructions in both languages. In this paper, we investigate whether cross-linguistic transfer occurs when overlapping constructions exist, but there are…

  13. Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier

    NASA Astrophysics Data System (ADS)

    Kratz, J. V.; Schädel, M.; Gäggeler, H. W.

    2013-11-01

    Recent theoretical work has renewed interest in radiochemically determined isotope distributions in reactions of 238U projectiles with heavy targets that had previously been published only in parts. These data are being reexamined. The cross sections σ(Z) below the uranium target have been determined as a function of incident energy in thick-target bombardments. These are compared to predictions by a diffusion model whereby consistency with the experimental data is found in the energy intervals 7.65-8.30 MeV/u and 6.06-7.50 MeV/u. In the energy interval 6.06-6.49 MeV/u, the experimental data are lower by a factor of 5 compared to the diffusion model prediction indicating a threshold behavior for massive charge and mass transfer close to the barrier. For the intermediate energy interval, the missing mass between the primary fragment masses deduced from the generalized Qgg systematics including neutron pair-breaking corrections and the centroid of the experimental isotope distributions as a function of Z have been used to determine the average excitation energy as a function of Z. From this, the Z dependence of the average total kinetic-energy loss (TKEL¯) has been determined. This is compared to that measured in a thin-target counter experiment at 7.42 MeV/u. For small charge transfers, the values of TKEL¯ of this work are typically about 30 MeV lower than in the thin-target experiment. This difference is decreasing with increasing charge transfer developing into even slightly larger values in the thick-target experiment for the largest charge transfers. This is the expected behavior which is also found in a comparison of the partial cross sections for quasielastic and deep-inelastic reactions in both experiments. The cross sections for surviving heavy actinides, e.g., 98Cf, 99Es, and 100Fm indicate that these are produced in the low-energy tails of the dissipated energy distributions, however, with a low-energy cutoff at about 35 MeV. Excitation functions show that identical isotope distributions are populated independent of the bombarding energy indicating that the same bins of excitation energy are responsible for the production of these fissile isotopes. A comparison of the survival probabilities of the residues of equal charge and neutron transfers in the reactions of 238U projectiles with either 238U or 248Cm targets is consistent with such a cutoff as evaporation calculations assign the surviving heavy actinides to the 3n and/or 4n evaporation channels.

  14. [Modeling and analysis of volume conduction based on field-circuit coupling].

    PubMed

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  15. New results in low-energy fusion of Ca 40 + Zr 90 , 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.

    Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca + 96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca + 90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840μb). Here, a rather complete data set is available for 40Ca + 94Zr, while no measurement of 40Ca + 92Zr fusion has been performed in the past.

  16. New results in low-energy fusion of Ca 40 + Zr 90 , 92

    DOE PAGES

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; ...

    2017-07-07

    Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca + 96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca + 90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840μb). Here, a rather complete data set is available for 40Ca + 94Zr, while no measurement of 40Ca + 92Zr fusion has been performed in the past.

  17. Interosseous nerve transfers for tibialis anterior muscle paralysis (foot drop): a human cadaver-based feasibility study.

    PubMed

    Pirela-Cruz, Miguel A; Hansen, Uel; Terreros, Daniel A; Rossum, Alfred; West, Priscilla

    2009-03-01

    This study explored the anatomical feasibility of using an interosseous nerve transfer (routed between the tibia and fibula) to restore motor function to the tibialis anterior (TA) muscle, following injury to the common peroneal nerve (resulting in a foot drop). The specific nerve branches evaluated as possible donor nerves included the nerves to the medial gastrocnemius, the lateral gastrocnemius, and the soleus muscles. All nerve transfers were accomplished using a direct interosseous route and a direct repair (one medial gastrocnemius transfer did require interpositional grafting). The distance from the repair site to the TA muscle was shortest for the transfer using the nerve branch to the soleus. Histologically, the nerve branch to the soleus was most similar to the branch to the TA for both axonal count and cross-sectional area. A two-incision surgical approach using a fibular window (mobilizing a fibular segment after double osteotomy) and interosseous routing of the transfer is proposed.

  18. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes

    PubMed Central

    2011-01-01

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901

  19. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    NASA Astrophysics Data System (ADS)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  20. Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data

    DOE PAGES

    Carmignotto, M.; Ali, S.; Aniol, K.; ...

    2018-02-28

    The 1H(e,e 'K +)Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q 2 of 1.00, 1.36, and 2.07 GeV 2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998)]. Here, the results establish the method, previously used successfully for pionmore » analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q 2 between 5 and 10 GeV 2, which makes data in the few-GeV regime particularly interesting. Finally, the Q 2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.« less

  1. Low-energy electron collisions with proline and pyrrolidine: A comparative study

    NASA Astrophysics Data System (ADS)

    Barbosa, Alessandra Souza; Freitas, Thiago Corrêa; Bettega, M. H. F.

    2018-02-01

    We present a comparative study on the calculated cross sections obtained for the elastic collisions of low-energy electrons with the amino acid proline (C5H9NO2) and its building block pyrrolidine (C4H9N). We employed the Schwinger multichannel method implemented with pseudopotentials to compute integral, differential, and momentum transfer cross sections in the static-exchange plus polarization approximation, for energies up to 15 eV. We report three shape resonances for proline at around 1.7 eV, 6.8 eV, and 10 eV and two shape resonances for pyrrolidine centered at 7 eV and 10.2 eV. The present resonance energies are compared with available experimental data on vertical attachment energies and dissociative electron attachment, where a good agreement is found. From the comparison of the present results with available calculated cross sections for the simplest carboxylic acid, formic acid (HCOOH), and from electronic structure calculations, we found that the first resonance of proline, at 1.7 eV, is due the presence of the carboxylic group, whereas the other two structures, at 6.8 eV and 10 eV, clearly arise from the pyrrolidine ring. A comparison between the differential cross sections for proline and pyrrolidine at some selected energies of the incident electron is also reported in this paper.

  2. Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmignotto, M.; Ali, S.; Aniol, K.

    The 1H(e,e 'K +)Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q 2 of 1.00, 1.36, and 2.07 GeV 2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998)]. Here, the results establish the method, previously used successfully for pionmore » analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q 2 between 5 and 10 GeV 2, which makes data in the few-GeV regime particularly interesting. Finally, the Q 2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.« less

  3. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  4. Measurement of elastic pp scattering at $$\\sqrt{\\hbox {s}} = \\hbox {8}$$ TeV in the Coulomb–nuclear interference region: Determination of the ρ-parameter and the total cross-section

    DOE PAGES

    Antchev, G.; Aspell, P.; Atanassov, I.; ...

    2016-11-30

    Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less

  5. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak; Granados, Carlos

    2009-05-01

    We investigate hard photodisintegration of two nucleons from ^3He nucleus within the framework of hard rescattering model (HRM). In HRM a quark of one nucleon knocked-out by incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. HRM allows to express the amplitude of two-nucleon break-up reaction through the convolution of photon-quark scattering, NN hard scattering amplitude and nuclear spectral function which can be calculated using nonrelativistic ^3He wave function. HRM predicts several specific features for hard break-up reaction. First, the cross section will approximately scale as s-11. Also one predicts comparable or larger cross section for pp break up as compared to that of pn break-up, which is opposite to what is observed in low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn break-up cross sections. This is due to the fact that same-helicity pp-component is strongly suppressed in the ground state wave function of ^3He. Due to this suppression HRM predicts significantly different asymmetries for the cross section of polarization transfer NN break-up reactions for circularly polarized photons. For the pp break-up this asymmetry is predicted to be zero while for the pn it is close to 23.

  6. Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data

    NASA Astrophysics Data System (ADS)

    Carmignotto, M.; Ali, S.; Aniol, K.; Arrington, J.; Barrett, B.; Beise, E. J.; Blok, H. P.; Boeglin, W.; Brash, E. J.; Breuer, H.; Chang, C. C.; Christy, M. E.; Dittmann, A.; Ent, R.; Fenker, H.; Gaskell, D.; Gibson, E.; Holt, R. J.; Horn, T.; Huber, G. M.; Jin, S.; Jones, M. K.; Keppel, C. E.; Kim, W.; King, P. M.; Kovaltchouk, V.; Liu, J.; Lolos, G. J.; Mack, D. J.; Margaziotis, D. J.; Markowitz, P.; Matsumura, A.; Meekins, D.; Miyoshi, T.; Mkrtchyan, H.; Niculescu, G.; Niculescu, I.; Okayasu, Y.; Pegg, I. L.; Pentchev, L.; Perdrisat, C.; Potterveld, D.; Punjabi, V.; Reimer, P. E.; Reinhold, J.; Roche, J.; Sarty, A.; Smith, G. R.; Tadevosyan, V.; Tang, L. G.; Trotta, R.; Tvaskis, V.; Vargas, A.; Vidakovic, S.; Volmer, J.; Vulcan, W.; Warren, G.; Wood, S. A.; Xu, C.; Zheng, X.; JLAB FPI-2; E93-018 Collaboration

    2018-02-01

    The 1H(e ,e'K+ )Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q2 of 1.00, 1.36, and 2.07 GeV2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998), 10.1103/PhysRevC.57.1454]. The results establish the method, previously used successfully for pion analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q2 between 5 and 10 GeV2, which makes data in the few-GeV regime particularly interesting. The Q2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.

  7. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Gran, R.; Betancourt, M.; Elkins, M.; Rodrigues, P. A.; Akbar, F.; Aliaga, L.; Andrade, D. A.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Budd, H.; Vera, G. F. R. Caceres; Cai, T.; Carneiro, M. F.; Coplowe, D.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gallagher, H.; Ghosh, A.; Haider, H.; Han, J. Y.; Harris, D. A.; Henry, S.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Leistico, J. R.; Lovlein, A.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Nguyen, C.; Norrick, A.; Nuruzzaman, Olivier, A.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Ruterbories, D.; Schellman, H.; Salinas, C. J. Solano; Su, H.; Sultana, M.; Falero, S. Sánchez; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2018-06-01

    We report on multinucleon effects in low momentum transfer (<0.8 GeV /c ) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.

  8. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer.

    PubMed

    Gran, R; Betancourt, M; Elkins, M; Rodrigues, P A; Akbar, F; Aliaga, L; Andrade, D A; Bashyal, A; Bellantoni, L; Bercellie, A; Bodek, A; Bravar, A; Budd, H; Vera, G F R Caceres; Cai, T; Carneiro, M F; Coplowe, D; da Motta, H; Dytman, S A; Díaz, G A; Felix, J; Fields, L; Fine, R; Gallagher, H; Ghosh, A; Haider, H; Han, J Y; Harris, D A; Henry, S; Jena, D; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Lu, X-G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Nguyen, C; Norrick, A; Nuruzzaman; Olivier, A; Paolone, V; Patrick, C E; Perdue, G N; Ramírez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schellman, H; Salinas, C J Solano; Su, H; Sultana, M; Falero, S Sánchez; Valencia, E; Wolcott, J; Wospakrik, M; Yaeggy, B

    2018-06-01

    We report on multinucleon effects in low momentum transfer (<0.8  GeV/c) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.

  9. Auditory and Visual Interhemispheric Communication in Musicians and Non-Musicians

    PubMed Central

    Woelfle, Rebecca; Grahn, Jessica A.

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer. PMID:24386382

  10. Warthog: Coupling Status Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Shane W. D.; Reardon, Bradley T.

    The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthogmore » is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a stand-alone BISON run. Future work involves improving the user interface (UI), likely through integration with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench. Furthermore, automating the input creation would ease the user experience. The next priority is to continue coupling the work with other codes in the SHARP package. Efforts on other projects include work to couple the Nek5000 thermo-hydraulics code to MOOSE, but this is in the preliminary stages.« less

  11. A new method for using Cf-252 in SEU testing

    NASA Astrophysics Data System (ADS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-12-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  12. Absolute differential cross sections for electron impact excitation of the 10.8-11.5 eV energy-loss states of CO2

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Teubner, P. J. O.; Campbell, L.; Brunger, M. J.; Hoshino, M.; Ishikawa, T.; Kitajima, M.; Tanaka, H.; Itikawa, Y.; Kimura, M.; Buenker, R. J.

    2002-02-01

    Absolute differential cross sections (DCSs) for electron impact excitation of electronic states of CO2 in the 10.8-11.5 eV energy-loss range are reported. These data were obtained at the incident electron energies 20,30,60,100 and 200 eV and over the scattered electron angular range 3.5°-90°. The accuracy of our experimental methods has been established independently by using several different normalization techniques at both Sophia and Flinders Universities. Generalized oscillator strengths were derived from our measured DCSs and then extrapolated to zero momentum transfer, in order to determine the optical oscillator strengths. These optical oscillator strengths, where possible, are compared with the results from previous measurements and calculations.

  13. Determination of the longitudinal proton structure function FL(x,Q2) at low x

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arndt, C.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Blümlein, J.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Noyes, G. W.; Nunnemann, T.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Riemersma, S.; Rick, H.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.

    1997-02-01

    A measurement of the inclusive cross section for the deep-inelastic scattering of positrons off protons at HERA is presented at momentum transfers 8.5 <= Q2 <= 35 GeV2 and large inelasticity = 0.7, i.e. for the Bjorken-x range 0.00013 <= x <= 0.00055. Using a next-to-leading order QCD fit to the structure function F2 at lower y values, the contribution of F2 to the measured cross section at high y is calculated and, by subtraction, the longitudinal structure function FL is determined for the first time with an average value of FL = 0.52+/-0.03 (stat)+0.25-0.22 (syst) at Q2 = 15.4 GeV2 and x = 0.000243.

  14. N(+)-N and O(+)-O interaction energies, dipole transition moments, and transport cross sections

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Stallcop, J. R.

    1986-01-01

    Complete sets of ion-atom interaction energies have been computed for nitrogen and oxygen with accurate large scale structure calculations. The computed energies agree well with the accurate potential curves available from spectroscopic measurement. The state functions from the nitrogen calculations have been applied to determine the transition moment for all allowed dipole transitions. These results can be combined to compute a detailed radiation spectrum such as that required to define the highly nonequilibrium environment of aeroassisted orbital transfer vehicle (AOTV). The long-range interaction energies have been used to determine the ion-atom resonance charge exchange cross sections that are important for transport processes such as diffusion. A calculation to determine reliable transport properties for energies that include the AOTV temperature range from these computed properties is described.

  15. Physical processes in the strong magnetic fields of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  16. Photodecomposition of Mo(CO)[sub 6]/Si(111) 7[times]7: CO state-resolved evidence for excited state relaxation and quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, P.M.; Buntin, S.A.; Richter, L.J.

    1994-08-15

    State-resolved detection techniques have been used to characterize the ultraviolet photodecomposition dynamics of Mo(CO)[sub 6] on Si(111) 7[times]7 at 100 K. Details of the excitation/fragmentation mechanism including adsorbate energy transfer were examined by measuring the cross sections and the internal and translational energies of the photoejected CO from submonolayer through multilayer coverage regimes. The CO energy distributions are found to be independent of Mo(CO)[sub 6] coverage, and can be characterized by two components with markedly different mean energies. In contrast to the coverage independence of the measured energy disposal, the cross section was found to decrease by a factor ofmore » 3 from multilayer coverages to submonolayer coverages.« less

  17. A new method for using Cf-252 in SEU testing

    NASA Technical Reports Server (NTRS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-01-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  18. Heat pipes and their use in technology

    NASA Technical Reports Server (NTRS)

    Vasilyev, L.

    1977-01-01

    Heat pipes may be employed as temperature regulators, heat diodes, transformers, storage batteries, or utilized for transforming thermal energy into mechanical, electric, or other forms of energy. General concepts were established for the analysis of the transfer process in heat pipes. A system of equations was developed to describe the thermodynamics of steam passage through a cross section of a heat pipe.

  19. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    ERIC Educational Resources Information Center

    Tang, Tian; Popp, David

    2016-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…

  20. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    4874–48??, 1970. [16] R. O. Jung , J. B. Boffard, L. W. Anderson, and C. C. Lin. Electron-impact excitation cross sections from the xenon j = 2...Journal of Quantitative Spectroscopy and Radiative Transfer, 5(2):503– 510, 1965. [35] O. Zatsarinny and K. Bartschat. B -spline Breit- Pauli R-matrix

  1. Electron capture in collisions of S4+ with helium

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Stancil, P. C.; Zygelman, B.

    2002-07-01

    Charge transfer due to collisions of ground-state S4+(3s2 1S) ions with helium is investigated for energies between 0.1 meV u-1 and 10 MeV u-1. Total and state-selective single electron capture (SEC) cross sections and rate coefficients are obtained utilizing the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling (AOCC), classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Previous data are limited to a calculation of the total SEC rate coefficient using the Landau-Zener model that is, in comparison to the results presented here, three orders of magnitude smaller. The MOCC SEC cross sections at low energy reveal a multichannel interference effect. True double capture is also investigated with the AOCC and CTMC approaches while autoionizing double capture and transfer ionization (TI) is explored with CTMC. SEC is found to be the dominant process except for E>200 keV u-1 when TI becomes the primary capture channel. Astrophysical implications are briefly discussed.

  2. Hyperspherical close-coupling calculations for charge-transfer cross sections in He2++H(1s) collisions at low energies

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Nan; Le, Anh-Thu; Morishita, Toru; Esry, B. D.; Lin, C. D.

    2003-05-01

    A theory for ion-atom collisions at low energies based on the hyperspherical close-coupling (HSCC) method is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer approximation where the adiabatic channel functions are calculated with B-spline basis functions while the coupled hyperradial equations are solved by a combination of R-matrix propagation and the slow/smooth variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for He2++H(1s)→He+(n=2)+H+ reactions at center-of-mass energies from 10 eV to 4 keV. The results are shown to be in general good agreement with calculations based on the molecular orbital (MO) expansion method where electron translation factors (ETF’s) or switching functions have been incorporated in each MO. However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to study low-energy ion-atom collisions without the need to introduce the ad hoc ETF’s, and the results are free from ambiguities associated with the traditional MO expansion approach.

  3. Tape transfer printing of a liquid metal alloy for stretchable RF electronics.

    PubMed

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2014-09-03

    In order to make conductors with large cross sections for low impedance radio frequency (RF) electronics, while still retaining high stretchability, liquid-alloy-based microfluidic stretchable electronics offers stretchable electronic systems the unique opportunity to combine various sensors on our bodies or organs with high-quality wireless communication with the external world (devices/systems), without sacrificing enhanced user comfort. This microfluidic approach, based on printed circuit board technology, allows large area processing of large cross section conductors and robust contacts, which can handle a lot of stretching between the embedded rigid active components and the surrounding system. Although it provides such benefits, further development is needed to realize its potential as a high throughput, cost-effective process technology. In this paper, tape transfer printing is proposed to supply a rapid prototyping batch process at low cost, albeit at a low resolution of 150 μm. In particular, isolated patterns can be obtained in a simple one-step process. Finally, a stretchable radio frequency identification (RFID) tag is demonstrated. The measured results show the robustness of the hybrid integrated system when the tag is stretched at 50% for 3000 cycles.

  4. The Scaled SLW model of gas radiation in non-uniform media based on Planck-weighted moments of gas absorption cross-section

    NASA Astrophysics Data System (ADS)

    Solovjov, Vladimir P.; Andre, Frederic; Lemonnier, Denis; Webb, Brent W.

    2018-02-01

    The Scaled SLW model for prediction of radiation transfer in non-uniform gaseous media is presented. The paper considers a new approach for construction of a Scaled SLW model. In order to maintain the SLW method as a simple and computationally efficient engineering method special attention is paid to explicit non-iterative methods of calculation of the scaling coefficient. The moments of gas absorption cross-section weighted by the Planck blackbody emissive power (in particular, the first moment - Planck mean, and first inverse moment - Rosseland mean) are used as the total characteristics of the absorption spectrum to be preserved by scaling. Generalized SLW modelling using these moments including both discrete gray gases and the continuous formulation is presented. Application of line-by-line look-up table for corresponding ALBDF and inverse ALBDF distribution functions (such that no solution of implicit equations is needed) ensures that the method is flexible and efficient. Predictions for radiative transfer using the Scaled SLW model are compared to line-by-line benchmark solutions, and predictions using the Rank Correlated SLW model and SLW Reference Approach. Conclusions and recommendations regarding application of the Scaled SLW model are made.

  5. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.

  6. Forward and inverse functional variations in rotationally inelastic scattering

    NASA Astrophysics Data System (ADS)

    Guzman, Robert; Rabitz, Herschel

    1986-09-01

    This paper considers the response of various rotational energy transfer processes to functional variations about an assumed model intermolecular potential. Attention is focused on the scattering of an atom and a linear rigid rotor. The collision dynamics are approximated by employing both the infinite order sudden (IOS) and exponential distorted wave (EDW) methods to describe Ar-N2 and He-H2, respectively. The following cross sections are considered: state-to-state differential and integral, final state summed differential and integral, and effective diffusion and viscosity cross sections. Attention is first given to the forward sensitivity densities δ0/δV(R,r) where 0 denotes any of the aforementioned cross sections, R is the intermolecular distance, and r is the internal coordinates. These forward sensitivity densities (functional derivatives) offer a quantitative measure of the importance of different regions of the potential surface to a chosen cross section. Via knowledge of the forward sensitivities and a particular variation δV(R,r) the concomitant response δ0 is generated. It was found that locally a variation in the potential can give rise to a large response in the cross sections as measured by these forward densities. In contrast, a unit percent change in the overall potential produced a 1%-10% change in the cross sections studied indicating that the large + and - responses to local variations tend to cancel. In addition, inverse sensitivity densities δV(R,r)/δ0 are obtained. These inverse densities are of interest since they are the exact solution to the infinitesimal inverse scattering problem. Although the inverse sensitivity densities do not in themselves form an inversion algorithm, they do offer a quantitative measure of the importance of performing particular measurements for the ultimate purpose of inversion. Using a set of state-to-state integral cross sections we found that the resultant responses from the infinitesimal inversion were typically small such that ‖δV(R,r)‖≪‖V(R,r)‖. From the viewpoint of an actual inversion, these results indicate that only through an extensive effort will significant knowledge of the potential be gained from the cross sections. All of these calculations serve to illustrate the methodology, and other observables as well as dynamical schemes could be explored as desired.

  7. Turbulent Heat Transfer in Curved Pipe Flow

    NASA Astrophysics Data System (ADS)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  8. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.

    PubMed

    Rezaee, Mohammad; Hunting, Darel J; Sanche, Léon

    2014-07-01

    The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.

  9. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Marozas, J. A.; Weaver, J.; Obenschain, S. P.; Schmitt, A. J.

    2015-11-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of direct-drive experiments, and especially for polar-direct-drive (PDD) ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly detrimental over the equator of the target, which is hydrodynamically very sensitive to such losses in the PDD configuration. A promising solution uses laser wavelength detuning between beams to shift the resonance, thereby reducing the interaction cross section between them. Testing this process for direct drive is now underway at the Nike laser at the Naval Research Laboratory. Calculations evaluating the effect CBET has on the scattered-light signals indicate such an experiment will demonstrate the benefits of wavelength detuning for direct-drive implosions. Two-dimensional simulation results will be presented, predicting the effect for both spherical and cylindrical experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B.; Crispin, Max; Scrivens, Jim

    2016-01-01

    Nitrogen cross sections of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein, thyroglobulin and fucosylated glycoproteins from the human parotid gland were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3GlcNAc3 from chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra. Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an overall asymmetric ATD profile usually suggested that separations were due to conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in cross sections were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between cross sections and structural types were also investigated and it was found that complex glycans tended to have slightly smaller cross sections than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger cross sections. PMID:27477117

  11. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skobelev, N. K., E-mail: skobelev@jinr.ru

    2016-07-15

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at themore » Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.« less

  12. Effects of geometry and fluid properties during condensation in minichannels: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Toninelli, Paolo; Bortolin, Stefano; Azzolin, Marco; Del, Davide, Col

    2017-10-01

    The present paper aims at investigating the condensation process inside minichannels, at low mass fluxes, where bigger discrepancies from conventional channels can be expected. At high mass flux, the condensation in minichannels is expected to be shear stress dominated. Therefore, models originally developed for conventional channels could still do a good job in predicting the heat transfer coefficient. When the mass flow rate decreases, the condensation process in minichannels starts to display differences with the same process in macro-channels. With the purpose of investigating condensation at these operating conditions, new experimental data are here reported and compared with data already published in the literature. In particular, heat transfer coefficients have been measured during R134a and R1234ze(E) condensation inside circular and square cross section minichannels at mass flux ranging between 65 and 200 kg m-2 s-1. These new data are compared with those of R32, R717, R290, R152a to show the effect of channel shape and fluid properties and to assess the applicability of correlations developed for macroscale condensation. For this purpose, a new criterion based on the Weber number is presented to decide when the macroscale condensation correlation can be applied. The present experimental data are also compared against three-dimensional Volume of Fluid (VOF) simulations of condensation in minichannels with circular and square cross section. This comparison allows to get an insight into the process and evaluate the main heat transfer mechanisms.

  13. Incomplete fusion analysis of the 7Li-induced reaction on 93Nb within 3-6.5 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Maiti, Moumita

    2017-10-01

    Background: It is understood from the recent experimental studies that prompt/resonant breakup, and transfer followed by breakup in the weakly bound Li,76-induced reactions play a significant role in the complete-incomplete fusion (CF-ICF), suppression/enhancement in the fusion cross section around the Coulomb barrier. Purpose: Investigation of ICF over CF by measuring cross sections of the populated residues, produced via different channels in the 7Li-induced reaction on a natNb target within the 3-6.5 MeV/nucleon energy region. Method: The 7Li beam was allowed to hit the self-supporting 93Nb targets, backed by the aluminium (Al) foil alternately, within 3-6.5 MeV/nucleon energy. Populated residues were identified by offline γ -ray spectrometry. Measured excitation functions of different channels were compared with different equilibrium and pre-equilibrium models. Result: The enhancement in cross sections in the proton (˜20 -30 MeV) and α -emitting channels, which may be ascribed to ICF, was observed in the measured energy range when compared to the Hauser-Feshbach and exciton model calculations using empire, which satisfactorily reproduces the neutron channels, compared to the Weisskopf-Ewing model and hybrid Monte Carlo calculations. The increment of the incomplete fusion fraction was observed with rising projectile energy. Conclusion: Contrary to the alice14, experimental results are well reproduced by the empire throughout the measured energy range. The signature of ICF over CF indicates that the breakup/transfer processes are involved in the weakly bound 7Li-induced reaction on 93Nb slightly above the Coulomb barrier.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hssen; Férid, Mokhtar; Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn

    Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimesmore » were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I 13/2 → ⁴I 15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I 13/2 → ⁴I 15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.« less

  15. Coincidence studies of He ionized by C{sup 6+}, Au{sup 24+}, and Au{sup 53+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, M.; Walters, H. R. J.; Assafrao, D.

    2010-04-15

    A recently developed [Phys. Rev. A 79, 042707 (2009)] impact parameter coupled pseudostate approximation (CP) is applied to calculate triple differential cross sections for single ionization of He by C{sup 6+}, Au{sup 24+}, and Au{sup 53+} projectiles at impact energies of 100 and 2 MeV/amu for C{sup 6+} and 3.6 MeV/amu for Au{sup 24+} and Au{sup 53+}. For C{sup 6+}, satisfactory, but not perfect, agreement is found with experimental measurements in coplanar geometry, but there is substantial disagreement with data taken in a perpendicular plane geometry. The CP calculations firmly contradict a projectile-nucleus interaction model which has been used tomore » support the perpendicular plane measurements. For Au{sup 24+} and Au{sup 53+}, there is a complete lack of accord with the available experiments. However, for Au{sup 24+} the theoretical position appears to be quite firm with clear indications of convergence in the CP approximation and very good agreement between CP and the completely different three-distorted-waves eikonal-initial-state (3DW-EIS) approximation. The situation for Au{sup 53+} is different. At the momentum transfers at which the measurements were made, there are doubts about the convergence of the CP approximation and a factor of 2 difference between the CP and 3DW-EIS predictions. The discord between theory and experiment is even greater with the experiment giving cross sections a factor of 10 larger than the theory. A study of the convergence of the CP approximation shows that it improves rapidly with reducing momentum transfer. As a consequence, lower-order cross sections than the triple are quite well converged and present an opportunity for a more reliable test of the experiment.« less

  16. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2014-07-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper.

  17. Three-dimensional simulation of human teeth and its application in dental education and research.

    PubMed

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible.

  18. Three-dimensional simulation of human teeth and its application in dental education and research

    PubMed Central

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible. PMID:28491836

  19. Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; Gallis, M. A.

    2008-11-01

    In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks

    NASA Astrophysics Data System (ADS)

    Hogg, Chip; Majetich, Sara A.; Bain, James A.

    2009-03-01

    Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.

  1. Capillary condenser/evaporator

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  2. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Astrophysics Data System (ADS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-06-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  3. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Technical Reports Server (NTRS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-01-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  4. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  5. A simple and fast method for computing the relativistic Compton Scattering Kernel for radiative transfer

    NASA Technical Reports Server (NTRS)

    Kershaw, David S.; Prasad, Manoj K.; Beason, J. Douglas

    1986-01-01

    The Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution is analytically reduced to a single integral, which can then be rapidly evaluated in a variety of ways. A particularly fast method for numerically computing this single integral is presented. This is, to the authors' knowledge, the first correct computation of the Compton scattering kernel.

  6. The Relationship between Career Decision-Making Self-Efficacy and Perceived Career Barriers in the Career Decision Making of Selected Community College Students

    ERIC Educational Resources Information Center

    Kelly, Rosemary Ritter

    2010-01-01

    This study explored the differences between career decision-making self-efficacy (CDMSE) and perceived career barriers of students enrolled in the applied technology program compared to those enrolled in a college transfer program at a southeastern urban community college. Participants in the ex-post facto cross-sectional survey included 787…

  7. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; Betancourt, M.; Elkins, M.

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  8. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; et al.

    2018-03-25

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  9. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; et al.

    2018-06-01

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  10. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer

    DOE PAGES

    Gran, R.; Betancourt, M.; Elkins, M.; ...

    2018-06-01

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  11. Gas transfer in a bubbly wake flow

    NASA Astrophysics Data System (ADS)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  12. Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-06-01

    We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.

  13. Bacterial contamination and stethoscope disinfection practices: a cross-sectional survey of healthcare workers in Karachi, Pakistan.

    PubMed

    Rao, Danish Ahmed; Aman, Aiysha; Muhammad Mubeen, Syed; Shah, Ahmed

    2017-07-01

    Stethoscopes routinely used for clinical examination of patients may potentially transfer micro-organisms and cause iatrogenic infections. This study was undertaken to detect the presence of microorganisms on stethoscopes used clinically in hospitals of Karachi, Pakistan and to ascertain the infection control practices of healthcare workers (HCWs). In a cross-sectional study, 118 samples were collected from public and private institutions. Samples were tested for the presence and sensitivity of pathogenic microorganisms. Microorganisms were found on diaphragms of 33/64 (51.6%) and 19/57 (33.3%) stethoscopes in public and private sector hospitals, respectively. Methycillin resistance was identified in all staphylococcally contaminated samples. Only 33 (18%) respondents reported cleaning their stethoscopes regularly. We highlight the need for more and better on-the-job routines for decontaminating stethoscopes among HCWs in Karachi.

  14. Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.

    2015-01-01

    Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

  15. The HITRAN 2008 Molecular Spectroscopic Database

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Gordon, Iouli E.; Barbe, Alain; Benner, D. Chris; Bernath, Peter F.; Birk, Manfred; Boudon, V.; Brown, Linda R.; Campargue, Alain; Champion, J.-P.; hide

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.

  16. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybridmore » potential to fit the experimental data. The total reaction cross section was derived.« less

  17. Sub-barrier fusion and transfers in the 40Ca + 58,64Ni systems

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Szilner, S.; Mijatović, T.

    2016-05-01

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at energies around and below the Coulomb barrier. The 40Ca beam was delivered by the XTU Tandem accelerator of the Laboratori Nazionali di Legnaro and evaporation residues were measured at very forward angles with the LNL electrostatic beam deflector. Coupled-channels calculations were performed which highlight possible strong effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni system. Microscopic time-dependent Hartree-Fock calculations have also been performed for both systems. Preliminary results are shown.

  18. Influence of thermo-gravitational convection in the flow of liquid metal in a horizontal pipe with a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Akhmedagaev, R.; Listratov, Y.

    2017-11-01

    The direct numerical simulation (DNS) of MHD-heat transfer problems in turbulent flow of liquid metal (LM) in a horizontal pipe with a joint effect of the longitudinal magnetic field (MF) and thermo-gravitational convection (TGC). The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.

  19. High efficiency graphene coated copper based thermocells connected in series

    NASA Astrophysics Data System (ADS)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  20. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  1. Electron transfer in proton-hydrogen collisions under dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Nayek, Sujay; Bhattacharya, Arka; Kamali, Mohd Zahurin Mohamed; Ghoshal, Arijit; Ratnavelu, Kurunathan

    2017-09-01

    The effects of dense quantum plasma on 1 s → nlm charge transfer, for arbitrary n,l,m, in proton-hydrogen collisions have been studied by employing a distorted wave approximation. The interactions among the charged particles in the plasma have been represented by modified Debye-Huckel potentials. A detailed study has been made to explore the effects of background plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range 10-1000 keV. For the unscreened case, our results agree well with some of the most accurate results available in the literature.

  2. Exploring Hadron Structure Through Exclusive Kaon Electroproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmignotto, Marco A.

    The kaon electroproduction cross section was extracted from data from the E93-018 and the E01-004 (FPI-2) experiments taken at the Thomas Jefferson National Accelerator Facility in the p(e,e'K +)Λ channel. The cross section was fully separated into longitudinal, transverse, and two interference components at four-momentum transfers Q 2 of 1.0 (GeV/c) 2 (with center of mass energy W=1.81 GeV), 1.36 and 2.07 (GeV/c) 2 (W=2.31 GeV). The kaon form factor (FK) was extracted from the longitudinal cross section in these kinematics using the Regge model by Vanderhaeghen, Guidal, and Laget. Results show F K to be systematically lower than themore » empirical monopole form, although still compatible with this form within the estimated uncertainties. The resulting kaon form factor values were combined with the world pion and kaon form factor data to extract the transverse change densities of the pion and kaon. These were compared to that of the proton, showing a possible experimental glimpse of the transition between the proton core and the meson cloud in terms of transverse densities.« less

  3. Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements

    PubMed Central

    2015-01-01

    We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties. PMID:25821415

  4. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.

    There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraiz, Joaquin Lopez

    Experimental coincidence cross section and transverse-longitudinal asymmetry ATL have been obtained for the quasielastic (e,e'p) reaction in 16O, 12C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p miss < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A TL asymmetrymore » have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A TL measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A TL, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.« less

  6. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    DOE PAGES

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; ...

    2015-02-10

    There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less

  7. Towards a resolution of the proton form factor problem: new electron and positron scattering data.

    PubMed

    Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-02-13

    There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45  GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75  GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3  GeV(2).

  8. Crossed-beam experiment for the scattering of low- and intermediate-energy electrons from BF{sub 3}: A comparative study with XF{sub 3} (X = C, N, and CH) molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, M., E-mail: masami-h@sophia.ac.jp; Suga, A.; Kato, H.

    2015-07-14

    Absolute differential cross sections (DCSs) for electron interaction with BF{sub 3} molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found tomore » agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF{sub 3} (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF{sub 3} molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.« less

  9. Incomplete Multisource Transfer Learning.

    PubMed

    Ding, Zhengming; Shao, Ming; Fu, Yun

    2018-02-01

    Transfer learning is generally exploited to adapt well-established source knowledge for learning tasks in weakly labeled or unlabeled target domain. Nowadays, it is common to see multiple sources available for knowledge transfer, each of which, however, may not include complete classes information of the target domain. Naively merging multiple sources together would lead to inferior results due to the large divergence among multiple sources. In this paper, we attempt to utilize incomplete multiple sources for effective knowledge transfer to facilitate the learning task in target domain. To this end, we propose an incomplete multisource transfer learning through two directional knowledge transfer, i.e., cross-domain transfer from each source to target, and cross-source transfer. In particular, in cross-domain direction, we deploy latent low-rank transfer learning guided by iterative structure learning to transfer knowledge from each single source to target domain. This practice reinforces to compensate for any missing data in each source by the complete target data. While in cross-source direction, unsupervised manifold regularizer and effective multisource alignment are explored to jointly compensate for missing data from one portion of source to another. In this way, both marginal and conditional distribution discrepancy in two directions would be mitigated. Experimental results on standard cross-domain benchmarks and synthetic data sets demonstrate the effectiveness of our proposed model in knowledge transfer from incomplete multiple sources.

  10. Pomeron pole plus grey disk model: Real parts, inelastic cross sections and LHC data

    NASA Astrophysics Data System (ADS)

    Roy, S. M.

    2017-01-01

    I propose a two component analytic formula F (s , t) =F (1) (s , t) +F (2) (s , t) for (ab → ab) + (a b bar → a b bar) scattering at energies ≥ 100 GeV, where s , t denote squares of c.m. energy and momentum transfer. It saturates the Froissart-Martin bound and obeys Auberson-Kinoshita-Martin (AKM) [1,2] scaling. I choose ImF (1) (s , 0) + ImF (2) (s , 0) as given by Particle Data Group (PDG) fits [3,4] to total cross sections, corresponding to simple and triple poles in angular momentum plane. The PDG formula is extended to non-zero momentum transfers using partial waves of ImF (1) and ImF (2) motivated by Pomeron pole and 'grey disk' amplitudes and constrained by inelastic unitarity. ReF (s , t) is deduced from real analyticity: I prove that ReF (s , t) / ImF (s , 0) → (π / ln ⁡ s) d / dτ (τImF (s , t) / ImF (s , 0)) for s → ∞ with τ = t(lns) 2 fixed, and apply it to F (2). Using also the forward slope fit by Schegelsky-Ryskin [5], the model gives real parts, differential cross sections for (- t) < . 3 GeV2, and inelastic cross sections in good agreement with data at 546 GeV, 1.8 TeV, 7 TeV and 8 TeV. It predicts for inelastic cross sections for pp or p bar p, σinel = 72.7 ± 1.0 mb at 7 TeV and 74.2 ± 1.0 mb at 8 TeV in agreement with pp Totem [7-10] experimental values 73.1 ± 1.3 mb and 74.7 ± 1.7 mb respectively, and with Atlas [12-15] values 71.3 ± 0.9 mb and 71.7 ± 0.7 mb respectively. The predictions σinel = 48.1 ± 0.7 mb at 546 GeV and 58.5 ± 0.8 mb at 1800 GeV also agree with p bar p experimental results of Abe et al. [47] 48.4 ± . 98 mb at 546 GeV and 60.3 ± 2.4 mb at 1800 GeV. The model yields for √{ s} > 0.5 TeV, with PDG2013 [4] total cross sections, and Schegelsky-Ryskin slopes [5] as input, σinel (s) = 22.6 + . 034 lns + . 158(lns) 2 mb, and σinel /σtot → 0.56, s → ∞, where s is in GeV2 units. Continuation to positive t indicates an 'effective' t-channel singularity at ∼(1.5 GeV) 2, and suggests that usual Froissart-Martin bounds are quantitatively weak as they only assume absence of singularities upto 4mπ2.

  11. Embryo transfer practices in the United States: a survey of clinics registered with the Society for Assisted Reproductive Technology.

    PubMed

    Jungheim, Emily S; Ryan, Ginny L; Levens, Eric D; Cunningham, Alexandra F; Macones, George A; Carson, Kenneth R; Beltsos, Angeline N; Odem, Randall R

    2010-09-01

    To gain a better understanding of factors influencing clinicians' embryo transfer practices. Cross-sectional survey. Web-based survey conducted in December 2008 of individuals practicing IVF in centers registered with the Society for Assisted Reproductive Technology (SART). None. None. Prevalence of clinicians reporting following embryo transfer guidelines recommended by the American Society for Reproductive Medicine (ASRM), prevalence among these clinicians to deviate from ASRM guidelines in commonly encountered clinical scenarios, and practice patterns related to single embryo transfer. Six percent of respondents reported following their own, independent guidelines for the number of embryos to transfer after IVF. Of the 94% of respondents who reported routinely following ASRM embryo transfer guidelines, 52% would deviate from these guidelines for patient request, 51% for cycles involving the transfer of frozen embryos, and 70% for patients with previously failed IVF cycles. All respondents reported routinely discussing the risks of multiple gestations associated with standard embryo transfer practices, whereas only 34% reported routinely discussing single embryo transfer with all patients. Although the majority of clinicians responding to our survey reported following ASRM embryo transfer guidelines, at least half would deviate from these guidelines in a number of different situations. Copyright (c) 2010 American Society for Reproductive Medicine. All rights reserved.

  12. Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    1999-01-01

    Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry.

  13. Critical Assessment of Theoretical Methods for Li3+ Collisions with He at Intermediate and High Impact Energies

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad

    2013-09-01

    The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.

  14. Radiological health risks for exploratory class missions in space

    NASA Technical Reports Server (NTRS)

    Nachtwey, D. Stuart; Yang, Tracy Chui-Hsu

    1991-01-01

    The radiation risks to crewmembers on missions to the moon and Mars are studied. A graph is presented of the cross section as a function of linear energy transfer (LET) for cell inactivation and neoplastic cell transformation. Alternatives to conventional approaches to radiation protection using dose and Q are presented with attention given to a hybrid of the conventional system for particles with LET less than 100 keV/micron.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577

    The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less

  16. Reentry heat transfer analysis of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Quinn, R. D.; Gong, L.

    1982-01-01

    A structural performance and resizing finite element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle. Two typical wing cross sections and a midfuselage cross section were selected for the analysis. The surface heat inputs to the thermal models were obtained from aerodynamic heating analyses, which assumed a purely turbulent boundary layer, a purely laminar boundary layer, separated flow, and transition from laminar to turbulent flow. The effect of internal radiation was found to be quite significant. With the effect of the internal radiation considered, the wing lower skin temperature became about 39 C (70 F) lower. The results were compared with fight data for space transportation system, trajectory 1. The calculated and measured temperatures compared well for the wing if laminar flow was assumed for the lower surface and bay one upper surface and if separated flow was assumed for the upper surfaces of bays other than bay one. For the fuselage, good agreement between the calculated and measured data was obtained if laminar flow was assumed for the bottom surface. The structural temperatures were found to reach their peak values shortly before touchdown. In addition, the finite element solutions were compared with those obtained from the conventional finite difference solutions.

  17. Measurements of the ^89Y(n,n')^89Y^m reaction cross section using the ASP D-T fusion source

    NASA Astrophysics Data System (ADS)

    Simons, Andrew; Gardner, Matthew; Williams, Ben; Rubery, Michael

    2012-10-01

    A programme of measurements of the ^89Y(n,n')^89Y^m reaction cross section has commenced at AWE using the ASP accelerator to impinge deuterons onto tritiated titanium layers mounted on copper discs producing fluxes of approximately 10^11 neutrons per second. The neutrons are generated for up to half an hour and are used to excite Yttrium into its first isomeric state at 909.1 keV which then decays with a half life of 15.7 seconds. Two other high purity foils (of ^27Al and ^63,65Cu) are used as a reference to establish consistency between the isotopes energetic and temporal decay signatures. These foils mainly serve to check the reported total neutron fluence, produced by the accelerator, incident on the targets. The activation foils are extracted from the irradiation position by a pneumatic transfer system in ˜ 7 seconds and are transferred to the counting station in 5 to 30 seconds. Data are taken with a BEGe detector and recorded with both a Canberra Genie analogue system and a Xia Pixie-4 digital system. The results from the first campaigns are presented with a discussion of improvements and future plans.

  18. A theoretical investigation of two typical two-photon pH fluorescent probes.

    PubMed

    Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang

    2013-01-01

    Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Luca, A., E-mail: antonio.deluca@fis.unical.it; Dhama, R.; Rashed, A. R.

    We report on the broadband resonant energy transfer processes observed in dye doped gold nanoshells, consisting of spherical particles with a dielectric core (SiO{sub 2}) covered by a thin gold shell. The silica core has been doped with rhodamine B molecules in order to harness a coherent plasmon-exciton coupling between chromophores and plasmonic shell. This plasmon-exciton interplay depends on the relative spectral position of their bands. Here, we present a simultaneous double strong coupling plasmon-exciton and exciton-plasmon. Indeed, experimental observations reveal of a transmittance enhancement as function of the gain in a wide range of optical wavelengths (about 100 nm), whilemore » scattering cross sections remains almost unmodified. These results are accompanied by an overall reduction of chromophore fluorescence lifetimes that are a clear evidence of nonradiative energy transfer processes. The increasing of transmission in the range of 630–750 nm is associated with a striking enhancement of the extinction cross-section in the 510–630 nm spectral region. In this range, the system assumes super-absorbing features. This double behavior, as well as the broadband response of the presented system, represents a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic nanoshells as building blocks for advanced optical materials.« less

  20. On the enhancement of p-11B fusion reaction rate in laser-driven plasma by α → p collisional energy transfer

    NASA Astrophysics Data System (ADS)

    Belloni, Fabio; Margarone, Daniele; Picciotto, Antonino; Schillaci, Francesco; Giuffrida, Lorenzo

    2018-02-01

    The possibility of triggering an avalanche reaction in laser-driven p-11B fusion by the effect of collisional energy transfer from α particles to protons has recently been debated, especially in connection to the high yield of α particles (4 × 108 per laser shot) achieved on engineered targets at the Prague Asterix Laser System (PALS), with a pulse of 500 J, 0.3 ns FWHM. We elucidate this controversial subject within the framework of a simple two-population model for protons, based on the binary collision theory in a plasma. We find an avalanche characteristic time of almost 1 μs for the 675 keV fusion cross section resonance in typical PALS plasma, upon idealized confinement conditions. This avalanche time is one order of magnitude higher than previously reported, meaning that no such process can substantially develop in plasma at the PALS on the 675 keV resonance, not even in the most optimistic confinement scenarios. Nevertheless, we put forward for further investigation that more realistic conditions for setting up the avalanche regime could rather be attained by suitably targeting the narrow 163 keV resonance in the fusion cross section, also in connection to recently proposed laser-driven magnetic trapping techniques.

  1. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I withinmore » DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.« less

  2. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide. PMID:24989405

  3. Electroproduction of Photons and of Pawns on the Proton in Quadrimoment of Transfer Q 2=1.0GeV 2. Measure Cross Sections and Extraction of Polarizabilities Generalities; Electroproduction de Photons et de Pions sur le Proton au Quadrimoment de Transfert Q 2=1.0GeV 2. Mesure des Sections Efficaces et Extraction des Polarisabilites Generalisees (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laveissiere, Geraud

    In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focused on the VCS experiment performed at Jefferson Lab in 1998.

  4. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    PubMed

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Xichun; Tong, Zhen; Liang, Yingchun

    2014-12-01

    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.

  6. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.

    PubMed

    Keefe, D H; Bulen, J C; Campbell, S L; Burns, E M

    1994-01-01

    The diffuse-field pressure transfer function from a reverberant field to the ear canal of human infants, ages 1, 3, 6, 12, and 24 months, has been measured from 125-10700 Hz. The source was a loudspeaker using pink noise, and the diffuse-field pressure and the ear-canal pressure were simultaneously measured using a spatial averaging technique in a reverberant room. The results in most subjects show a two-peak structure in the 2-6-kHz range, corresponding to the ear-canal and concha resonances. The ear-canal resonance frequency decreases from 4.4 kHz at age 1 month to 2.9 kHz at age 24 months. The concha resonance frequency decreases from 5.5 kHz at age 1 month to 4.5 kHz at age 24 months. Below 2 kHz, the diffuse-field transfer function shows effects due to the torsos of the infant and parent, and varies with how the infant is held. Comparisons are reported of the diffuse-field absorption cross section for infants relative to adults. This quantity is a measure of power absorbed by the middle ear from a diffuse sound field, and large differences are observed in infants relative to adults. The radiation efficiencies of the infant and the adult ear are small at low frequencies, near unity at midfrequencies, and decrease at higher frequencies. The process of ear-canal development is not yet complete at age 24 months. The results have implications for experiments on hearing in infants.

  7. Cement line staining in undecalcified thin sections of cortical bone

    NASA Technical Reports Server (NTRS)

    Bain, S. D.; Impeduglia, T. M.; Rubin, C. T.

    1990-01-01

    A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.

  8. Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields.

    PubMed

    Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Kaptein, Robert; Vieth, Hans-Martin; Ivanov, Konstantin L

    2013-08-01

    We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.

  9. Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet

    NASA Astrophysics Data System (ADS)

    Sahu, M. K.; Pandey, K. M.; Chatterjee, S.

    2018-05-01

    In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.

  10. Heat Transfer in Conical Corner and Short Superelliptical Transition Ducts

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local surface heat transfer measurements were experimentally mapped using a transient liquid-crystal heat-transfer technique on the surface of two circular-to-rectangular transition ducts. One has a transition cross section defined by conical corners (Duct 1) and the other by an elliptical equation with changing coefficients (Duct 2). Duct 1 has a length-to-diameter ratio of 0.75 and an exit plane aspect ratio of 1.5. Duct 2 has a length-to-diameter ratio of 1.0 and an exit plane aspect ratio of 2.9. Test results are reported for various inlet-diameter-based Reynolds numbers ranging from 0.45 106 to 2.39 106 and two freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  11. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  12. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOEpatents

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  13. Incomplete mass transfer processes in 28Si +93Nb reaction

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Ramachandran, K.; Sharma, S. K.; Pujari, P. K.

    Cross sections of reaction products were measured in 28Si +93Nb reaction using recoil catcher technique involving by off-line gamma-ray spectrometry at beam energies of 105 and 155MeV. At Elab = 155MeV, the contribution from different incomplete mass transfer processes is investigated. Results of the present studies show the contribution from deep inelastic collision (DIC), massive transfer or incomplete fusion (ICF) and quasi-elastic transfer (QET). The contribution from massive transfer reactions was confirmed from the fractional yield of the reaction products in the forward catcher foil. The present results are different from those from the reactions with comparatively higher entrance channel mass asymmetry with lighter projectiles, for which dominant transfer processes are ICF and QET which involve mass transfer predominantly from projectile to target. The N/Z values of the products close to the target mass were observed to be in a wide range, starting from N/Z of the target (93Nb) and extending slightly below the N/Z of the composite system, consistent with the contribution from DIC and QET reactions. At Elab = 105MeV, a small contribution from QET was observed in addition to complete fusion.

  14. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  15. Hair and fiber transfer in an abduction case--evidence from different levels of trace evidence transfer.

    PubMed

    Taupin, J M

    1996-07-01

    Levels of trace evidence transfer were examined in a casework context. A girl was allegedly abducted in a car and rape attempted by the accused, who denied any contact with the victim. Clothing worn by the victim and the accused, and the covers from the front seats of the car, were analyzed for trace evidence. Three types of corresponding fibers and four possible pathways of transfer were identified. Synthetic fibers similar to those composing the car seat covers were located on the victim's clothing, consistent with direct transfer. Secondary transfer was indicated by dyed brown human head-type hairs (possibly originating from the accused's wife) located on the seat covers and on the victim's clothing. Secondary and possibly tertiary transfer was indicated by pink synthetic material and associated fibers (possibly originating from the victim's mother) located on the victim's clothing, a car seat cover and the accused's clothing. Light microscopy, comparison microscopy, and cross-sectioning techniques were used. The multiple fiber matches and the differing pathways and levels of transfer increased the strength of the association between the accused and the victim. After the fiber evidence was led at the trial, the accused pleaded guilty, thereby affirming the value of secondary transfer evidence.

  16. Exclusive diffractive production of real photons and vector mesons in a factorized Regge-pole model with nonlinear Pomeron trajectory

    NASA Astrophysics Data System (ADS)

    Fazio, S.; Fiore, R.; Jenkovszky, L.; Lavorini, A.

    2012-03-01

    Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon production (deeply virtual Compton scattering), as well as production of vector mesons treated on the same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a satisfactory description of the experimental data, both for the total cross section as a function of the photon virtuality Q2 or the energy W in the center of mass of the γ*p system, and the differential cross sections as a function of the squared four-momentum transfer t with fixed Q2 and W.

  17. Electroproduction of ϕ(1020) mesons at 1.4⩽Q2⩽3.8 GeV2 measured with the CLAS spectrometer

    NASA Astrophysics Data System (ADS)

    Santoro, J. P.; Smith, E. S.; Garçon, M.; Guidal, M.; Laget, J. M.; Weiss, C.; Adams, G.; Amaryan, M. J.; Anghinolfi, M.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bonner, B. E.; Bookwalter, C.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Casey, L.; Cazes, A.; Chen, S.; Cheng, L.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dale, D.; Dashyan, N.; de Masi, R.; de Sanctis, E.; de Vita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dhamija, S.; Dharmawardane, K. V.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Fradi, A.; Funsten, H.; Gavalian, G.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gordon, C. I. O.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hardie, J.; Hassall, N.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Keller, D.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Marchand, C.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Moreno, B.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Pasyuk, E.; Paterson, C.; Pereira, S. Anefalos; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Sapunenko, V.; Schott, D.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shvedunov, N. V.; Skabelin, A. V.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yurov, M.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2008-08-01

    Electroproduction of exclusive ϕ vector mesons has been studied with the CLAS detector in the kinematic range 1.4⩽Q2⩽3.8 GeV2,0.0⩽t'⩽3.6 GeV2, and 2.0⩽W⩽3.0 GeV. The scaling exponent for the total cross section as 1/(Q2+Mϕ2)n was determined to be n=2.49±0.33. The slope of the four-momentum transfer t' distribution is bϕ=0.98±0.17 GeV-2. Under the assumption of s-channel helicity conservation, we determine the ratio of longitudinal to transverse cross sections to be R=0.86±0.24. A two-gluon exchange model is able to reproduce the main features of the data.

  18. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    NASA Astrophysics Data System (ADS)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  19. New measurement of inclusive deep inelastic scattering cross sections at HERA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picuric, Ivana

    2016-03-25

    A combined measurement is presented of all inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised e{sup ±}p scattering at HERA. The H1 and ZEUS collaborations collected total integrated luminosities of approximately 500 pb{sup −1} each, divided about equally between e{sup +}p and e{sup −}p scattering. They include data taken at electron (positron) beam energy of 27.5 GeV and proton beam energies of 920, 820, 575 and 460 GeV corresponding to centre-of-mass energy of 320, 300, 251 and 225 GeV respectively. This enabled the two collaborations to explore a large phasemore » space in Bjorken x and negative four-momentum-transfer squared, Q{sup 2}. The combination method takes the correlations of the systematic uncertainties into account, resulting in improved accuracy.« less

  20. A FORTRAN Program for Elastic Scattering of Deuterons with an Optical Model Containing Tensorial Potentials; PROGRAMME FORTRAN POUR LA DIFFUSION ELASTIQUE DE DEUTONS AVEC UN MODELE OPTIQUE CONTENANT DES TERMES TENSORIELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, J.

    1963-01-01

    The FORTRAN program 5PM 037 calculates the effective elastic scattering cross section, polarizations, the effective total reaction cross section, and the polarization transfer coefficients for spin-1 particles of low charge and mass incident on a low charge and mass target at medium energy. The number of partial waves can not exceed 38, and calculations for different values of parameters for the optical model used can be made. The effect of tensorial potentials constructed from the distance of the deuteron from the target, and its angular momentum with respect to it, can also be studied. The optical model, necessary data, numericalmore » methods, and description of the problem are discussed. The program is described, and tables of equivalent statements necessary for modifying it are included. (auth)« less

  1. Re-entry vehicle shape for enhanced performance

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Garcia, Joseph A. (Inventor); Prabhu, Dinesh K. (Inventor)

    2008-01-01

    A convex shell structure for enhanced aerodynamic performance and/or reduced heat transfer requirements for a space vehicle that re-enters an atmosphere. The structure has a fore-body, an aft-body, a longitudinal axis and a transverse cross sectional shape, projected on a plane containing the longitudinal axis, that includes: first and second linear segments, smoothly joined at a first end of each the first and second linear segments to an end of a third linear segment by respective first and second curvilinear segments; and a fourth linear segment, joined to a second end of each of the first and second segments by curvilinear segments, including first and second ellipses having unequal ellipse parameters. The cross sectional shape is non-symmetric about the longitudinal axis. The fourth linear segment can be replaced by a sum of one or more polynomials, trigonometric functions or other functions satisfying certain constraints.

  2. The HITRAN2016 molecular spectroscopic database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, I. E.; Rothman, L. S.; Hill, C.

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additionalmore » absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 200 additional significant molecules have been added to the database.« less

  3. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less

  4. NEAMS Update. Quarterly Report for January - March 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Marius

    2014-08-01

    This quarterly report covers the following points: A fully three-dimensional smeared cracking model has been implemented and tested in BISON; DAKOTA-BISON was used to study the parameters that govern heat transfer across the fuel-cladding; Calculations of grain boundary mobility in UO 2 have been extended to high temperatures; Mesh adaptivity is being employed in MARMOT simulations to increase computational efficiency; Molecular dynamics simulations have shown correlation between atomic displacements and the anisotropic thermal conductivity in UO 2; The SHARP team continues to address the application of the toolkit to assembly deformations driven by reactivity feedback; The Nek5000 team has extendedmore » the low-Machnumber capability to mixtures with multiple species; The generalized cross section library has been tested for various fuel assemblies and reactor types; and The subgroup cross-section interface was successfully implemented in PROTEUS-SN (page 6).« less

  5. Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons

    PubMed Central

    Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.

    2017-01-01

    Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116

  6. Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haluk Denizli; James Mueller; Steven Dytman

    2007-07-01

    New cross sections for the reactionmore » $$ep \\to e'\\eta p$$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $$\\eta N$$ coupling strengths of baryon resonances. A sharp structure is seen at $$W\\sim$$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $$S_{11}$$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.« less

  7. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  8. Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return

    NASA Astrophysics Data System (ADS)

    Johnson, Joshua E.

    A differential evolutionary algorithm has been executed to optimize the hypersonic aerodynamic and stagnation-point heat transfer performance of Earth entry heat shields for Lunar and Mars return manned missions with entry velocities of 11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield geometry is composed of an axial profile tailored to fit a base cross section. Axial profiles consist of spherical segments, spherically blunted cones, and power laws. Heat shield cross sections include oblate and prolate ellipses, rounded-edge parallelograms, and blendings of the two. Aerothermodynamic models are based on modified Newtonian impact theory with semi-empirical correlations for convection and radiation. Multi-objective function optimization is performed to determine optimal trade-offs between performance parameters. Objective functions consist of minimizing heat load and heat flux and maximizing down range and cross range. Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross range increases by ˜20% with an increase in entry velocity from 11 to 12.5 km/s. Optimal configurations for all three lift-to-drag ratios produce down ranges up to approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass and L/D = 0.27, the current Orion configuration is projected to experience a heat load of approximately 68 kJ/cm2 for Mars return flight conditions. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate cross section with an eccentricity of 0.968 produces a 35% reduction in heat load over designs with zero eccentricity due to the eccentric heat shield's greater drag area that allows the vehicle to decelerate higher in the atmosphere. In this case, the heat shield's drag area is traded off with volumetric efficiency while fulfilling the given set of mission requirements. Additionally, the high radius-of-curvature of the spherical segment axial profile provides the best combination of heat transfer and aerodynamic performance for both entry velocities and a 5 g deceleration limit.

  9. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.

    2008-06-01

    Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  10. From bare to renormalized order parameter in gauge space: Structure and reactions

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2017-09-01

    It is not physically obvious why one can calculate with similar accuracy, as compared to the experimental data, the absolute cross section associated with two-nucleon transfer processes between members of pairing rotational bands, making use of simple BCS (constant matrix elements) or of many-body [Nambu-Gorkov (NG), nuclear field theory (NFT)] spectroscopic amplitudes. Restoration of spontaneous symmetry breaking and associated emergent generalized rigidity in gauge space provides the answer and points to a new emergence: A physical sum rule resulting from the intertwining of structure and reaction processes, closely connected with the central role induced pairing interaction plays in structure, together with the fact that successive transfer dominates Cooper pair tunneling.

  11. Electroproduction of Eta Mesons in the S11(1535) Resonance Region at High Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, Mark; Adams, Gary; Ahmidouch, Abdellah

    2009-01-01

    The differential cross-section for the process p(e,e'p)eta has been measured at Q2 ~ 5.7 and 7.0 (GeV/c)2 for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the channel. This is the highest momentum transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A_1/2, for the production of the S11(1535) resonance, is extracted from the data. This quantity appears to begin scaling as 1/Q3, a predicted signal of the dominance of perturbative QCD, at Q2 ~ 5 (GeV/c)2.

  12. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard

    NASA Astrophysics Data System (ADS)

    Vogels, Sjoerd N.; Karman, Tijs; Kłos, Jacek; Besemer, Matthieu; Onvlee, Jolijn; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Over the last 25 years, the formalism known as coupled-cluster (CC) theory has emerged as the method of choice for the ab initio calculation of intermolecular interaction potentials. The implementation known as CCSD(T) is often referred to as the gold standard in quantum chemistry. It gives excellent agreement with experimental observations for a variety of energy-transfer processes in molecular collisions, and it is used to calibrate density functional theory. Here, we present measurements of low-energy collisions between NO radicals and H2 molecules with a resolution that challenges the most sophisticated quantum chemistry calculations at the CCSD(T) level. Using hitherto-unexplored anti-seeding techniques to reduce the collision energy in a crossed-beam inelastic-scattering experiment, a resonance structure near 14 cm-1 is clearly resolved in the state-to-state integral cross-section, and a unique resonance fingerprint is observed in the corresponding differential cross-section. This resonance structure discriminates between two NO-H2 potentials calculated at the CCSD(T) level and pushes the required accuracy beyond the gold standard.

  13. Tracking uptake of innovations from the European Union Public Health Programme.

    PubMed

    Voss, Margaretha; Alexanderson, Kristina; McCarthy, Mark

    2013-11-01

    The European Commission developed the Public Health Programme to enable cross-national innovation and transfer in fields of health information, health threats and health promotion. PHIRE (Public Health Innovation and Research in Europe), a collaboration of the European Public Health Association (EUPHA) with seven partners, addressed the uptake of these public health innovation projects at country level. EUPHA thematic sections lead on areas of public health practice and research and experts can choose to be section members. The section presidents of seven sections chose eight European public health projects, starting in the EU Public Health Programme in 2003-05, that provided new knowledge for practice and covered a majority of the EU countries. A web-based questionnaire recorded country informants' (CIs) perceptions of uptake, assessed as relevance and dissemination to a range of public and non-governmental organizations. 108 CIs individually described the eight innovations in an average of 14 (46%) of the 30 European countries. Three of the eight innovations were considered of high relevance by >60% of respondents and at least 70% of informants considered seven of the eight innovation projects as of high or moderate relevance. Dissemination was noted across governmental, professional and academic settings, with high impact on knowledge/awareness for at least 30% of CIs. Some projects had uptake within the policy cycle in particular countries and connected strongly with academics and professionals. Projects working at local level had less visibility nationally and some projects were unknown to national respondents. European Union funding for public health can contribute to cross-national knowledge transfer and uptake of innovations. More attention is needed to classify, characterize and identify public health innovations and to demonstrate their direct contribution to European health and well-being.

  14. Laser and gain parameters at 2.7 μm of Er 3+-doped oxyfluoride transparent glass-ceramics

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Méndez-Ramos, J.; Rodríguez, V. D.; Furniss, D.; Seddon, A. B.

    2006-07-01

    The room temperature emission spectrum at about 2.7 μm corresponding to the laser transition 4I 11/2 → 4I 13/2 in Er 3+-doped nano-scaled transparent oxyfluoride glass-ceramic has been measured and stimulated emission cross-section for the transition has been calculated. The intensity of the transition has been found to be 40 times stronger and lifetime 50 times longer in the glass-ceramics compared to the precursor glass, which we show to be due to a change of frequency of the phonon involved in non-radiative de-excitation of the 4I 11/2 level from 900 cm -1 in the precursor glass to 240 cm -1 in the ensuing glass-ceramics. The absorption cross-section for the excited state absorption 4I 13/2 → 4I 11/2 has been calculated based on the experimental reciprocal emission spectrum and wavelength dependence of the gain cross-section for the lasing transition 4I 11/2 → 4I 13/2 vs population inversion has been derived. The lasing/optical amplification gain parameters, such as population inversion, pump saturation intensity and product of emission cross-section and fluorescence lifetime have been obtained at the 2.7 μm wavelength. A noteworthy result is that laser action at 2.7 μm is possible in these Er 3+-doped glass-ceramics, already not taking into account energy transfer or up-conversion processes, related to the 4I 13/2 level, which favour the population inversion.

  15. Two-Phase Flow in Microchannels with Non-Circular Cross Section

    NASA Astrophysics Data System (ADS)

    Eckett, Chris A.; Strumpf, Hal J.

    2002-11-01

    Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.

  16. Space, energy and anisotropy effects on effective cross sections and diffusion coefficients in the resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meftah, B.

    1982-01-01

    Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less

  17. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp.

    NASA Astrophysics Data System (ADS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-05-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.

  18. Two-photon exchange in elastic electron–proton scattering

    DOE PAGES

    Afanasev, A.; Blunden, P. G.; Hasell, D.; ...

    2017-04-17

    Here, we review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e +p to e -p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, E.K.

    Measurements of pressure losses and heat transfer rates were made for an unconventional crossflow heat exchanger with tubes of lenticular cross section so spaced to reduce variation in the velocity of the fluid outside the tubes, thus reducing separation and drag. The results of these experiments are reported for various tube spacing and demonstrate that the performance of the lenticular tube heat exchanger is superior to that of conventional circular tubes by 20 percent at Reynolds numbers of 20,000 to 50,000.

  20. Prevalence of direct-reaction mechanism in a deeply inelastic reaction, /sup 197/Au(/sup 19/F,/sup 12/B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, M.; Shimoda, T.; Froehlich, H.

    1979-07-09

    Continuum cross sections and spin polarizations of /sup 12/B produced in the reaction /sup 197/Au(/sup 19/F,/sup 12/B) induced by 186-MeV/sup 19/F were measured. The observed data were reproduced very well in terms of a distorted-wave Born-approximation theory, indicating that this reaction transferring as many as seven nucleons proceeds as a direct process.

  1. An Integrated Interdisciplinary Model for Accelerating Student Achievement in Science and Reading Comprehension across Grades 3-8: Implications for Research and Practice

    ERIC Educational Resources Information Center

    Romance, Nancy R.; Vitale, Michael R.

    2011-01-01

    The purpose of this cross-sectional study was to investigate the effects of a multi-year implementation of the Science IDEAS model on (a) the Iowa Tests of Basic Skills (ITBS) achievement growth in Reading Comprehension and Science of grade 3-5 students receiving the model, and (b) the transfer effects of the model as measured by ITBS Reading…

  2. Charge distribution of the neven sulphur isotopes from elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Rychel, D.; Emrich, H. J.; Miska, H.; Gyufko, R.; Wiedner, C. A.

    1983-10-01

    Elastic electron scattering experiments on the isotopes 32,34,36S were performed covering a range in momentum transfer q = 0.5-2.6 fm -. The cross sections were analysed with the Fourier-Bessel method yielding model-independent charge distributions and their differences. The extracted rms radii follow approximately the systematics of even-even nuclei; this also holds for the gross features as expressed in dms radii and skin thicknesses.

  3. Photoproduction of light vector mesons in Xe-Xe ultraperipheral collisions at the LHC and the nuclear density of Xe-129

    NASA Astrophysics Data System (ADS)

    Guzey, V.; Kryshen, E.; Zhalov, M.

    2018-07-01

    We make predictions for cross sections of ρ and ϕ vector meson photoproduction in ultraperipheral Xe-Xe collisions at √{sNN } = 5.44TeV. Analyzing the momentum transfer distribution of ρ mesons in this process, we explore the feasibility of extracting the nuclear density of 129Xe, which is needed in searches for dark matter with Xenon-based detectors.

  4. Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2018-03-01

    The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .

  5. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant

    2014-03-01

    Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  6. Absolute cross section measurements for the scattering of low- and intermediate-energy electrons from PF3. I. Elastic scattering

    NASA Astrophysics Data System (ADS)

    Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.

    2017-12-01

    We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.

  7. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  8. Shock interference heat transfer to tank configurations mated to a straight-wing space shuttle orbiter at Mach number 10.3. [investigated in a Langley hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Crawford, D. H.

    1976-01-01

    Heat transfer was measured on a space shuttle-tank configuration with no mated orbiter in place and with the orbiter in 10 different mated positions. The orbiter-tank combination was tested at angles of attack of 0 deg and 5 deg, at a Mach number of 10.3, and at a free-stream Reynolds number of one million based on the length of the tank. Comparison of interference heat transfer with no-interference heat transfer shows that shock interference can increase the heat transfer to the tank by two orders of magnitude along the ray adjacent to the orbiter and can cause high temperature gradients along the tank skin. The relative axial location of the two mated vehicles determined the location of the sharp peaks of extreme heating as well as their magnitude. The other control variables (the angle of attack, the gap, and the cross-section shape) had significant effects that were not as consistent or as extreme.

  9. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  10. Measurement of low-$$p_T$$ $D^+$ meson production cross-section at CDF II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchese, L.

    In this paper I report on a measurement of the low- p T D + -meson production cross-section in proton-antiproton collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the CDF experiment at the Tevatron collider during Run II. The measurement is performed in a yet unexplored low transverse momentum range, down to 1.5 GeV/ c . The actual QCD theory cannot predict the behavior of the strong interactions in the low transferred-four-momentum region because in these kinematic conditions the strong coupling constant is of the order of the unity. Thus, a perturbative expansion is notmore » useful. At present, several phenomenological models have been proposed, but they are able to describe only a few aspects of the observed physical quantities and not the full complexity. Experimental results in these conditions are then crucial to test new QCD models. The measurement of the differential cross section at low p T plays an important role in this context allowing refinement of current knowledge. While these results lie within the band of theoretical uncertainty, differences in shape suggest that theoretical predictions can benefit from further refinement taking account of them.« less

  11. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    NASA Astrophysics Data System (ADS)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  12. Comparison of the effect of soft-core potentials and Coulombic potentials on bremsstrahlung during laser matter interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward

    2018-04-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.

  13. R-Matrix Analysis of the 13C(α,n)16O Reaction

    NASA Astrophysics Data System (ADS)

    Kock, Arthur; Rogachev, Grigory

    2015-10-01

    The 13C(α,n)16O reaction plays a crucial role in the main s-process occurring in low-mass thermally-pulsing asymptotic giant branch (TP-AGB) stars, which produces about half of all nuclei heavier than iron. However, direct measurements of this reaction cross section near the Gamow-peak energy are currently not possible due to very small reaction cross sections. Additionally, available cross-section data at higher energy have some inconsistencies, leading to significant uncertainties in low energy extrapolations. A global R-matrix fit was conducted, using all available data for the 13C(α,n)16O, 13C(α, α)13C, and 16O(n,n)16O reactions. Of particular importance was the inclusion of the fixed ANC for the 1 / 2 + state at 6 . 356 MeV in 17O, which was measured recently using the sub-Coulomb α-transfer reaction, as well as the new 13C+ α elastic-scattering data measured in the low-energy region 1 . 6 - 3 . 8 MeV. Important constraining information on various resonances was found, and the uncertainty for the astrophysical 13C(α,n)16O reaction rate was dramatically reduced. Much work on the analysis was done by A. K. Nurmukhanbetova from National Laboratory Astana in Astana, Kazakhstan.

  14. Measurement of low-$$p_T$$ $D^+$ meson production cross-section at CDF II

    DOE PAGES

    Marchese, L.

    2017-03-17

    In this paper I report on a measurement of the low- p T D + -meson production cross-section in proton-antiproton collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the CDF experiment at the Tevatron collider during Run II. The measurement is performed in a yet unexplored low transverse momentum range, down to 1.5 GeV/ c . The actual QCD theory cannot predict the behavior of the strong interactions in the low transferred-four-momentum region because in these kinematic conditions the strong coupling constant is of the order of the unity. Thus, a perturbative expansion is notmore » useful. At present, several phenomenological models have been proposed, but they are able to describe only a few aspects of the observed physical quantities and not the full complexity. Experimental results in these conditions are then crucial to test new QCD models. The measurement of the differential cross section at low p T plays an important role in this context allowing refinement of current knowledge. While these results lie within the band of theoretical uncertainty, differences in shape suggest that theoretical predictions can benefit from further refinement taking account of them.« less

  15. Sources and routing of the Amazon River Flood Wave

    NASA Astrophysics Data System (ADS)

    Richey, Jeffrey E.; Mertes, Leal A. K.; Dunne, Thomas; Victoria, Reynaldo L.; Forsberg, Bruce R.; Tancredi, AntôNio C. N. S.; Oliveira, Eurides

    1989-09-01

    We describe the sources and routing of the Amazon River flood wave through a 2000-km reach of the main channel, between São Paulo de Olivença and Obidos, Brazil. The damped hydrograph of the main stem reflects the large drainage basin area, the 3-month phase lag in peak flows between the north and south draining tributaries due to seasonal differences in precipitation, and the large volume of water stored on the floodplain. We examined several aspects of the valley floor hydrology that are important for biogeochemistry. These include volumes of water storage in the channel and the floodplain and the rates of transfer between these two storage elements at various seasons and in each segment of the valley. We estimate that up to 30% of the water in the main stem is derived from water that has passed through the floodplain. To predict the discharge at any cross section within the study reach, we used the Muskingum formula to predict the hydrograph at downriver cross sections from a known hydrograph at upstream cross-sections and inputs and outputs along each reach. The model was calibrated using three years of data and was successfully tested against an additional six years of data. With this model it is possible to interpolate discharges for unsampled times and sites.

  16. Temperatures and Stresses on Hollow Blades For Gas Turbines

    NASA Technical Reports Server (NTRS)

    Pollmann, Erich

    1947-01-01

    The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GMbH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900 degrees and circumferential velocities of 600 meters per second are discussed. The assumptions onthe heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The temperature distribution in the cross section of a blade Is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distribution is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for 550 C gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into account.

  17. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  18. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species.

    PubMed

    Satya, Pratik; Paswan, Pramod Kumar; Ghosh, Swagata; Majumdar, Snehalata; Ali, Nasim

    2016-06-01

    Cross-species transferability is a quick and economic method to enrich SSR database, particularly for minor crops where little genomic information is available. However, transferability of SSR markers varies greatly between species, genera and families of plant species. We assessed confamiliar transferability of SSR markers from cotton (Gossypium hirsutum) and jute (Corchorus olitorius) to 22 species distributed in different taxonomic groups of Malvaceae. All the species selected were potential industrial crop species having little or no genomic resources or SSR database. Of the 14 cotton SSR loci tested, 13 (92.86 %) amplified in G. arboreum and 71.43 % exhibited cross-genera transferability. Nine out of 11 jute SSRs (81.81 %) showed cross-transferability across genera. SSRs from both the species exhibited high polymorphism and resolving power in other species. The correlation between transferability of cotton and jute SSRs were highly significant (r = 0.813). The difference in transferability among species was also significant for both the marker groups. High transferability was observed at genus, tribe and subfamily level. At tribe level, transferability of jute SSRs (41.04 %) was higher than that of cotton SSRs (33.74 %). The tribe Byttnerieae exhibited highest SSR transferability (48.7 %). The high level of cross-genera transferability (>50 %) in ten species of Malvaceae, where no SSR resource is available, calls for large scale transferability testing from the enriched SSR databases of cotton and jute.

  19. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux

    PubMed Central

    Ting, Hsien-Hung; Hou, Shuhn-Shyurng

    2016-01-01

    This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698

  20. Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts

    NASA Astrophysics Data System (ADS)

    Abroshan, Hamid

    2018-02-01

    Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.

  1. Hot-atom versus Eley-Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case.

    PubMed

    Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F

    2004-05-08

    We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping. (c) 2004 American Institute of Physics.

  2. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into account the ortho or para state of H2 were performed, at temperatures ranging from 10 K to 100K, typically. Reliable results are found, that compare favorably to experiments. In particular, the water-molecular hydrogen system has been thoroughly computed and successfully experimentally tested 6. New projects consider other simple molecules as well as heavier systems, relevant for cometary comae and planetary high atmospheres. as part of the GNU EPrints system , and is freely redistributable under the GPL .

  3. Energy transfer in O collisions with He isotopes and helium escape from Mars

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Zhang, P.; Kharchenko, V.; Dalgarno, A.

    2010-12-01

    Helium is one of the dominant constituents in the upper atmosphere of Mars [1]. Thermal (Jeans’) escape of He is negligible on Mars [2] and major mechanism of escape is related to the collisional ejection of He atoms by energetic oxygen. Collisional ejection dominates over ion-related mechanisms [3] and evaluation of the escape flux of neutral He becomes an important issue. The dissociative recombination of O2+ is considered to be the major source of energetic oxygen atoms [4]. We report accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas. Angular dependent scattering cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation, describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O + He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere at different solar conditions. We have identified atmospheric layers mostly responsible for production of the He escape flux. Our results are consistent with recent data from Monte Carlo simulations of the escape of O atoms: strong angular anisotropy of atomic cross sections leads to an increased transparency of the upper atmosphere for escaping O flux [5] and stimulate the collisional ejection of He atoms. References [1] Krasnopolsky, V. A., and G. R. Gladstone (2005), Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395. [2] Chassefiere E. and F. Leblanc (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52, 1039 [3] Krasnopolsky, V. (2010), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmoshpere, Icarus, 207, 638. [4] Fox, J. L. (1995), On the escape of oxygen and hydrogen from Mars, Geophy. Rev. Lett., 20, 1847. [5] Krestyanikova, M. A. and V. I. Shematovich (2006), Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars, Solar System Research, 40, 384.

  4. MMS Observations of the Evolution of Ion-Scale Flux Transfer Events

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.

    2017-12-01

    Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.

  5. Spectroscopic properties and energy transfer of Tm(3+)/Ho(3+)-codoped TeO(2)-WO(3)-ZnO glasses for 1.47mum amplifier.

    PubMed

    Chen, Ganxin; Zhang, Qinyuan; Cheng, Yun; Zhao, Chun; Qian, Qi; Yang, Zhongmin; Jiang, Zhonghong

    2009-05-01

    We report on spectroscopic properties and energy transfer of Tm(3+)/Ho(3+)-codoped tungsten tellurite glasses for 1.47microm amplifier. Fluorescence spectra and the analysis of energy transfer indicate that Ho(3+) is an excellent codopant for 1.47microm emission. Comparing with other tellurite glasses, the radiative lifetime of the (3)H(4) level of Tm(3+) in tungsten tellurite glass is slightly lower, but the spontaneous emission probability, stimulated emission cross-section and the figure of merit for bandwidth are obviously larger. Although the pump efficiency of tungsten tellurite amplifier is approximately 50% less than that of fluoride glass, the figure of merit for bandwidth is approximately three times larger in tungsten tellurite glass than in fluoride glass. The results indicate that Tm(3+)/Ho(3+)-codoped tungsten tellurite glass is attractive for broadband amplifier.

  6. Detailed heat/mass transfer distributions in a rotating two pass coolant channel with engine-near cross section and smooth walls.

    PubMed

    Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R

    2001-05-01

    This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.

  7. SU-E-T-236: Deconvolution of the Total Nuclear Cross-Sections of Therapeutic Protons and the Characterization of the Reaction Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmer, W.

    2015-06-15

    Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated withmore » typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the description of lateral scatter.« less

  8. A new detector for low Pt physics

    NASA Astrophysics Data System (ADS)

    Da Via, C.; DeSalvo, R.; Lundin, M.; Mondardini, M. R.; Orear, J.; Shimizu, T.; Shinji, O.

    1992-12-01

    Elastic pp (or poverlinep) scattering at microradian angles provides a measurement of the total pp (or poverlinep) cross sectio elastic scattering cross section with t (the square of the momentum transfer) and the ratio of real to imaginary scattering amplitudes, as well as an absolute luminosity calibration. A detector is proposed which can measure elastic scattering and small angle processes which are usually missed by a typical 4π detector. The detector consists of a bundle of scintillating fibers. Images from these fibers are transported via glass fiber optics and intensified with two proximity focused image intensifiers. Images are then reduced via an image taper and read out with a charge coupled device (CCD).

  9. Cross-section perimeter is a suitable parameter to describe the effects of different baffle geometries in shaken microtiter plates

    PubMed Central

    2014-01-01

    Background Biotechnological screening processes are performed since more than 8 decades in small scale shaken bioreactors like shake flasks or microtiter plates. One of the major issues of such reactors is the sufficient oxygen supply of suspended microorganisms. Oxygen transfer into the bulk liquid can in general be increased by introducing suitable baffles at the reactor wall. However, a comprehensive and systematic characterization of baffled shaken bioreactors has never been carried out so far. Baffles often differ in number, size and shape. The exact geometry of baffles in glass lab ware like shake flasks is very difficult to reproduce from piece to piece due to the hard to control flow behavior of molten glass during manufacturing. Thus, reproducibility of the maximum oxygen transfer capacity in such baffled shake flasks is hardly given. Results As a first step to systematically elucidate the general effect of different baffle geometries on shaken bioreactor performance, the maximum oxygen transfer capacity (OTRmax) in baffled 48-well microtiter plates as shaken model reactor was characterized. This type of bioreactor made of plastic material was chosen, as the exact geometry of the baffles can be fabricated by highly reproducible laser cutting. As a result, thirty different geometries were investigated regarding their maximum oxygen transfer capacity (OTRmax) and liquid distribution during shaking. The relative perimeter of the cross-section area as new fundamental geometric key parameter is introduced. An empirical correlation for the OTRmax as function of the relative perimeter, shaking frequency and filling volume is derived. For the first time, this correlation allows a systematic description of the maximum oxygen transfer capacity in baffled microtiter plates. Conclusions Calculated and experimentally determined OTRmax values agree within ± 30% accuracy. Furthermore, undesired out-of-phase operating conditions can be identified by using the relative perimeter as key parameter. Finally, an optimum well geometry characterized by an increased perimeter of 10% compared to the unbaffled round geometry is identified. This study may also assist to comprehensively describe and optimize the baffles of shake flasks in future. PMID:25093039

  10. Polarization Spectroscopy and Collisions in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2009-05-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.

  11. Calibration of polarimetric radar systems with good polarization isolation

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.; Tassoudji, M. Ali

    1990-01-01

    A practical technique is proposed for calibrating single-antenna polarimetric radar systems using a metal sphere plus any second target with a strong cross-polarized radar cross section. This technique assumes perfect isolation between antenna ports. It is shown that all magnitudes and phases (relative to one of the like-polarized linear polarization configurations) of the radar transfer function can be calibrated without knowledge of the scattering matrix of the second target. Comparison of the values measured (using this calibration technique) for a tilted cylinder at X-band with theoretical values shows agreement within + or - 0.3 dB in magnitude and + or - 5 degrees in phase. The radar overall cross-polarization isolation was 25 dB. The technique is particularly useful for calibrating a radar under field conditions, because it does not require the careful alignment of calibration targets.

  12. Minima in generalized oscillator strengths for initially excited hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Matsuzawa, M.; Omidvar, K.; Inokuti, M.

    1976-01-01

    Generalized oscillator strengths for transitions from an initially excited state of a hydrogenic atom to final states (either discrete or continuum) have complicated structures, including minima and shoulders, as functions of the momentum transfer. Extensive calculations carried out in the present work have revealed certain systematics of these structures. Some implications of the minima to the energy dependence of the inner-shell ionization cross section of heavy atoms by proton impact are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agafonov, A. I., E-mail: aai@isssph.kiae.ru

    The inelastic scattering of cold neutrons by a ring leads to quantum jumps of a superconducting current which correspond to a decrease in the fluxoid quantum number by one or several units while the change in the ring energy is transferred to the kinetic energy of the scattered neutron. The scattering cross sections of transversely polarized neutrons have been calculated for a thin type-II superconductor ring, the thickness of which is smaller than the field penetration depth but larger than the electron mean free path.

  14. Flight Behaviors of a Complex Projectile Using a Coupled Computational Fluid Dynamics (CFD)-based Simulation Technique: Free Motion

    DTIC Science & Technology

    2015-09-01

    million cells each. These 4 canard meshes were then overset with the 10 background projectile body mesh using the Chimera procedure.29 The final... Chimera -overlapped mesh for each of the 2 (fin cant) models consists of approximately 43 million cells. A circumferential cross section (Fig. 4... Chimera procedure requires proper transfer of information between the background mesh and the canard meshes at every time step. However, the advantage

  15. Constituent Quark and Diquark Properties from Small Angle Proton--Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.

    2007-01-01

    Small momentum transfer elastic proton-proton cross-section at high energies is calculated assuming the nucleon composed of two constituents -- a quark and a diquark. A comparison to data (described very well up to -t approx 2 GeV2/c) allows to determine some properties of the constituents. While quark turns out fairly small, the diquark appears to be rather large, comparable to the size of the proton.

  16. Uncertainty quantification for optical model parameters

    DOE PAGES

    Lovell, A. E.; Nunes, F. M.; Sarich, J.; ...

    2017-02-21

    Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of our work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fitmore » and create corresponding 95% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. Here, we study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u, on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p) 13C transfer angular distributions, using both uncorrelated and correlated χ 2 minimization functions. The general features for all cases are compiled in a systematic manner to identify trends. This work shows that, in many cases, the correlated χ 2 functions (in comparison to the uncorrelated χ 2 functions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader confidence bands. Further optimization may require improvement in the models themselves and/or more information included in the fit.« less

  17. A study of modelling simplifications in ground vibration predictions for railway traffic at grade

    NASA Astrophysics Data System (ADS)

    Germonpré, M.; Degrande, G.; Lombaert, G.

    2017-10-01

    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  18. Point prevalence of mental disorder in unconvicted male prisoners in England and Wales.

    PubMed Central

    Brooke, D.; Taylor, C.; Gunn, J.; Maden, A.

    1996-01-01

    OBJECTIVES: To determine prevalence of mental disorder among male unconvicted prisoners and to assess the treatment needs of this population. DESIGN: Semi-structured interview and case note review of randomly selected cross section of male remand population. Non-attenders were replaced by the next name on prison roll. SETTING: Three young offenders' institutions and 13 adult men's prisons. SUBJECTS: 750 prisoners, representing 9.4% cross sectional sample of male unconvicted population. MAIN OUTCOME MEASURES: Prevalence of ICD-10 diagnoses of mental disorder, and associated treatment needs. RESULTS: Psychiatric disorder was diagnosed in 469 (63%) inmates. The main diagnoses were: substance misuse, 285 (38%); neurotic illness, 192 (26%); personality disorder, 84 (11%); psychosis, 36 (5%); other and uncertain, 36 (0.5%). Subjects could have more than one diagnosis. The average refusal rate was 18%. In total 414 inmates (55%) were judged to have an immediate treatment need: transfer to an NHS bed, 64 (9%); treatment by prison health care services, 131 (17%); motivational interviewing for substance misuse, 115 (15%); and therapeutic community placement, 104 (14%). CONCLUSIONS: Mental disorder was common among male unconvicted prisoners. Psychosis was present at four or five times the level found in the general population. Extrapolation of our results suggests that remand population as a whole probably contains about 680 men who need transfer to hospital for psychiatric treatment, including about 380 prisoners with serious mental illness. PMID:8978228

  19. Atomic and molecular physics in the gas phase

    NASA Astrophysics Data System (ADS)

    Toburen, L. H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets.

  20. Spontaneous Symmetry Breaking Facilitates Metal-to-Ligand Charge Transfer: A Quantitative Two-Photon Absorption Study of Ferrocene-phenyleneethynylene Oligomers.

    PubMed

    Mikhaylov, Alexander; Uudsemaa, Merle; Trummal, Aleksander; Arias, Eduardo; Moggio, Ivana; Ziolo, Ronald; Cooper, Thomas M; Rebane, Aleksander

    2018-04-19

    Change of the permanent molecular electric dipole moment, Δμ, in a series of nominally centrosymmetric and noncentrosymmteric ferrocene-phenyleneethynylene oligomers was estimated by measuring the two-photon absorption cross-section spectra of the lower energy metal-to-ligand charge-transfer transitions using femtosecond nonlinear transmission method and was found to vary in the range up to 12 D, with the highest value corresponding to the most nonsymmetric system. Calculations of the Δμ performed by the TD-DFT method show quantitative agreement with the experimental values and reveal that facile rotation of the ferrocene moieties relative to the organic ligand breaks the ground-state inversion symmetry in the nominally symmetric structures.

  1. Alpha-capture reaction rates for 22Ne(alpha,n) via sub-Coulomb alpha-transfer

    NASA Astrophysics Data System (ADS)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgen; Goldberg, Vladilen; Bedoor, Shadi; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja

    2016-09-01

    Direct measurements of α-capture reactions at energies relevant to astrophysics is extremely difficult to carry out due to the very small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using (6Li,d) α-transfer reactions at sub-Coulomb energies to reduce the model dependence. The study of the 22Ne(6Li,d) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg will provide constraints for the reaction rate of the 22Ne(α,n) reaction.

  2. Enhanced Flexibility of the O2 + N2 Interaction and Its Effect on Collisional Vibrational Energy Exchange.

    PubMed

    Garcia, E; Laganà, A; Pirani, F; Bartolomei, M; Cacciatore, M; Kurnosov, A

    2016-07-14

    Prompted by a comparison of measured and computed rate coefficients of Vibration-to-Vibration and Vibration-to-Translation energy transfer in O2 + N2 non-reactive collisions, extended semiclassical calculations of the related cross sections were performed to rationalize the role played by attractive and repulsive components of the interaction on two different potential energy surfaces. By exploiting the distributed concurrent scheme of the Grid Empowered Molecular Simulator we extended the computational work to quasiclassical techniques, investigated in this way more in detail the underlying microscopic mechanisms, singled out the interaction components facilitating the energy transfer, improved the formulation of the potential, and performed additional calculations that confirmed the effectiveness of the improvement introduced.

  3. Monte Carlo simulation of neutral-beam injection for mirror fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ronald Lee

    1979-01-01

    Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less

  4. Identification, validation and cross-species transferability of novel Lavandula EST-SSRs.

    PubMed

    Adal, Ayelign M; Demissie, Zerihun A; Mahmoud, Soheil S

    2015-04-01

    We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species. Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50-100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.

  5. NLO properties of ester containing fluorescent carbazole based styryl dyes - Consolidated spectroscopic and DFT approach

    NASA Astrophysics Data System (ADS)

    Rajeshirke, Manali; Sekar, Nagaiyan

    2018-02-01

    The linear and nonlinear optical (NLO) properties of new fluorescent styryl dyes based on anchoring ester containing carbazole as donor appended to different acceptor groups to have a conjugated π-system with push-pull geometry are studied. The NLO properties have been determined using solvatochromic and computational methods. Three different TD-DFT functional are used namely, B3LYP, BHandHLYP, and CAM-B3LYP, with aim of elucidating better functional for NLOphores. Further, the two photon properties (σ2PA) have been described theoretically by two level model considering the dipole moment difference between the ground and the final electronic states and bypassing the intermediated resonance state. The compounds with a high charge transfer from the acceptor group to the carbazole ring have relatively high two-photon absorption cross-sections (60-317 GM). The linear polarizability (αCT), first order hyperpolarizability (β) and second order hyperpolarizability (ɣ) for 4c dye was the highest among the studied dyes which is attributed to the lesser energy gap evident by both the methods. But in contrary, the σ2PA cross-section value was low for dye 4c which is due to the presence of freely rotatable twisted phenyl ring in the conjugation path, pulling the electron density towards itself and thus lead to decrease in σ2PA cross-section. Structure-property relationship is better understood by the correlation of bond length alternation/bond order alternation (BLA/BOA) with NLO properties of dyes. Thus by simple solvatochromic method and computational method, we have screened the carbazole styryls as NLO candidates with good first order hyperpolarizability and good two photon cross-section.

  6. Simulations of fully deformed oscillating flux tubes

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.

    2018-02-01

    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org

  7. Controlled irrigation of a structured packing as a method for increasing the efficiency of liquid mixture separation in the distillation column

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.

    2017-09-01

    The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.

  8. Pseudo-point transport technique: a new method for solving the Boltzmann transport equation in media with highly fluctuating cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhai, B.

    A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less

  9. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are helpful in visualizing the gradual development of uniform contaminant concentration distribution in an aquifer subject to contaminant plume penetration. The method developed in this study can be applied to a variety of problems associated with groundwater quality, such as initial evaluation of field data, design of field data collection, the identification of appropriate boundary conditions for numerical models, selection of appropriate numerical modeling approaches, interpretation and evaluation of field monitoring results, etc.

  10. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, Jeremy

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currentlymore » exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q 2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE event generator, we also report on an unpredicted photon-like process we observe in a similar kinematic regime. The absence of this process from models for neutrino interactions is a potential stumbling block for future on-axis neutrino oscillation experiments. We include kinematic and particle species identi cation characterizations which can be used in building models to help address this shortcoming.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macek, Joseph H; Sternberg, James; Ovchinnikov, Serguei Yurevich

    Deep minima in He(e,2e)He{sup +} triply differential cross sections are traced to vortices in atomic wave functions. Such vortices have been predicted earlier, but the present calculations show that they have also been observed experimentally, although not recognized as vortices. Their observation in (e,2e) measurements shows that vortices play an important role in electron correlations related to the transfer of angular momentum between incident and ejected electrons. The vortices significantly extend the list of known features that summarize the general picture of electron correlations in impact ionization.

  12. Electron capture in collisions of N^+ with H and H^+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2004-05-01

    Charge transfer processes due to collisions of N^+ with atomic hydrogen and H^+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1-500 eV/u will be presented and compared with existing experimental and theoretical data.

  13. Measurement of the Neutron Electric Form Factor GEN at High Q2

    NASA Astrophysics Data System (ADS)

    McCormick, Kathy

    2003-01-01

    Experiment E02-0131 at Thomas Jefferson National Accelerator Facility (Jefferson Lab) will measure the neutron electric form factor GEn at the high four-momentum transfer values of Q2 ≈ 1.3, 2.4 and 3.4 (GeV/c)2 via a measurement of the cross section asymmetry AT in the reaction {}3vec He(vec e, e'n)pp . This measurement was approved for 32 days of running by Jefferson Lab PAC 212 in January 2002.

  14. The pair-production channel in atomic processes

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Sørensen, Allan H.

    2006-06-01

    Assisted by the creation of electron-positron pairs, new channels for ionization, excitation, and charge transfer open in atomic collisions when the energy is raised to relativistic values. At extreme energies these pair-production channels usually dominate the "traditional" contributions to cross sections that involve only "positive-energy" electrons. An extensive body of theoretical and experimental work has been performed over the last two decades to investigate charge-changing processes catalyzed by pair production in relativistic heavy ion collisions. We review some of these studies.

  15. Cancellation Mechanism for Dark-Matter-Nucleon Interaction.

    PubMed

    Gross, Christian; Lebedev, Oleg; Toma, Takashi

    2017-11-10

    We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.

  16. An overview of near-barrier fusion studies with stable beams

    NASA Astrophysics Data System (ADS)

    Trotta, M.; Stefanini, A. M.; Beghini, S.; Behera, B. R.; Corradi, L.; Fioretto, E.; Gadea, A.; Itkis, M. G.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Mărginean, N.; Mason, P.; Montagnoli, G.; Pokrovsky, I. V.; Sagaidak, R. N.; Scarlassara, F.; Silvestri, R.; Szilner, S.

    2007-05-01

    An overview of results in fusion studies with stable beams spanning different mass regions and energy ranges is presented. The advantages offered by studying channel coupling effects, involving low-lying excited states of the colliding nuclei, as well as the difficulties in understanding the influence of transfer couplings on fusion, are firstly remarked. The competition of fusion with quasi-fission in heavy systems and the unexpected steep falloff of fusion cross sections at far sub-barrier energies are finally discussed.

  17. A simple method for computing the relativistic Compton scattering kernel for radiative transfer

    NASA Technical Reports Server (NTRS)

    Prasad, M. K.; Kershaw, D. S.; Beason, J. D.

    1986-01-01

    Correct computation of the Compton scattering kernel (CSK), defined to be the Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution, is reported. The CSK is analytically reduced to a single integral, which can then be rapidly evaluated using a power series expansion, asymptotic series, and rational approximation for sigma(s). The CSK calculation has application to production codes that aim at understanding certain astrophysical, laser fusion, and nuclear weapons effects phenomena.

  18. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    there a one time transfer of prob- ability between Coriolis coupled states. One possible way to answer this question would be to literally create and... time -dependent numerical algorithm was developed using FORTRAN 90 to predict S-Matrix elements for alkali metal - noble gas (MNg) collisions. The...committee and the physics department for their time and effort to see me through the completion of my doctorate degree. Charlton D. Lewis, II v Table of

  19. Nominal SARAL Transfer Function

    NASA Technical Reports Server (NTRS)

    Arnold, David A.; Lemoine, Frank (Editor)

    2015-01-01

    This paper gives a calculation of the range correction and cross section of the SARAL (Satellite with Argos and ALtiKa) Indian/French ocean radar satellite retroreflector array assuming the cube corners are coated and have a dihedral angle offset of about 1.5 arcseconds to account for velocity aberration. The cubes are assumed to all have the same orientation within the mounting. The derived range correction may be applied in precise orbit determination analyses that use Satellite Laser Ranging (SLR) data to SARAL.

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS On control of kinematic parameters of ultracold neutrons in waveguides

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2010-10-01

    The possibility of controlling the kinematic parameters of ultracold neutrons (UCNs) is analysed by the example of a waveguide transfer and transformation of 2D images in ultracold neutrons and by the example of an increase in the concentration and deceleration/acceleration of ultracold neutrons during their transport in the waveguide with a variable cross section. The critical parameters of the problem are estimated, which indicates both consistency of the proposed approach and the emerging experimental limitations.

Top