Sample records for transfer design tools

  1. Planetary Sample Caching System Design Options

    NASA Technical Reports Server (NTRS)

    Collins, Curtis; Younse, Paulo; Backes, Paul

    2009-01-01

    Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.

  2. Design, development, and fabrication of extravehicular activity tools for support of the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1993-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  3. Design of a Satellite Data Manipulation Tool in a Time and Frequency Transfer System Using Satellites

    DTIC Science & Technology

    1999-12-01

    as an R & D part of the time/frequency transfer system using Koreasat of Korea Telecom. INTRODUCTION The time/frequency transfer system distributes...Satellite Data Manipulation Tool in a Time and Frequency Transfer System Using Satellites 5a . CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...precision and stability. In Korea, research for the time/frequency transfer system using Koreasat is in progress. The time/frequency transfer system using

  4. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  5. The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2016-01-01

    Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described.

  6. The effect of ergonomic laparoscopic tool handle design on performance and efficiency.

    PubMed

    Tung, Kryztopher D; Shorti, Rami M; Downey, Earl C; Bloswick, Donald S; Merryweather, Andrew S

    2015-09-01

    Many factors can affect a surgeon's performance in the operating room; these may include surgeon comfort, ergonomics of tool handle design, and fatigue. A laparoscopic tool handle designed with ergonomic considerations (pistol grip) was tested against a current market tool with a traditional pinch grip handle. The goal of this study is to quantify the impact ergonomic design considerations which have on surgeon performance. We hypothesized that there will be measurable differences between the efficiency while performing FLS surgical trainer tasks when using both tool handle designs in three categories: time to completion, technical skill, and subjective user ratings. The pistol grip incorporates an ergonomic interface intended to reduce contact stress points on the hand and fingers, promote a more neutral operating wrist posture, and reduce hand tremor and fatigue. The traditional pinch grip is a laparoscopic tool developed by Stryker Inc. widely used during minimal invasive surgery. Twenty-three (13 M, 10 F) participants with no existing upper extremity musculoskeletal disorders or experience performing laparoscopic procedures were selected to perform in this study. During a training session prior to testing, participants performed practice trials in a SAGES FLS trainer with both tools. During data collection, participants performed three evaluation tasks using both handle designs (order was randomized, and each trial completed three times). The tasks consisted of FLS peg transfer, cutting, and suturing tasks. Feedback from test participants indicated that they significantly preferred the ergonomic pistol grip in every category (p < 0.05); most notably, participants experienced greater degrees of discomfort in their hands after using the pinch grip tool. Furthermore, participants completed cutting and peg transfer tasks in a shorter time duration (p < 0.05) with the pistol grip than with the pinch grip design; there was no significant difference between completion times for the suturing task. Finally, there was no significant interaction between tool type and errors made during trials. There was a significant preference for as well as lower pain experienced during use of the pistol grip tool as seen from the survey feedback. Both evaluation tasks (cutting and peg transfer) were also completed significantly faster with the pistol grip tool. Finally, due to the high degree of variability in the error data, it was not possible to draw any meaningful conclusions about the effect of tool design on the number or degree of errors made.

  7. Applying Video Game Interaction Design to Business Performance, Round 2.

    ERIC Educational Resources Information Center

    Shirinian, Ara; Dickelman, Erik

    2002-01-01

    Discusses software design for enterprise systems and for video games, and describes difficulties with enterprise tools, including interface complexity, training costs, and user frustration. Examines the world of tools and games from the human perspective and suggests ways in which game design can be successfully transferred to the enterprise tool…

  8. An Architecture Combining IMS-LD and Web Services for Flexible Data-Transfer in CSCL

    ERIC Educational Resources Information Center

    Magnisalis, Ioannis; Demetriadis, Stavros

    2017-01-01

    This article presents evaluation data regarding the MAPIS3 architecture which is proposed as a solution for the data-transfer among various tools to promote flexible collaborative learning designs. We describe the problem that this architecture deals with as "tool orchestration" in collaborative learning settings. This term refers to a…

  9. Mechanical System Analysis/Design Tool (MSAT) Quick Guide

    NASA Technical Reports Server (NTRS)

    Lee, HauHua; Kolb, Mark; Madelone, Jack

    1998-01-01

    MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.

  10. Development of a low-cost, modified resin transfer molding process using elastomeric tooling and automated preform fabrication

    NASA Technical Reports Server (NTRS)

    Doane, William J.; Hall, Ronald G.

    1992-01-01

    This paper describes the design and process development of low-cost structural parts made by a modified resin transfer molding process. Innovative application of elastomeric tooling to increase laminate fiber volume and automated forming of fiber preforms are discussed, as applied to fabrication of a representative section of a cruise missile fuselage.

  11. Factors affecting nursing staff use of a communication tool to reduce potentially preventable acute care transfers in long-term care.

    PubMed

    Ballard, Stephanie A; Peretti, Matteo; Lungu, Ovidiu; Voyer, Philippe; Tabamo, Fruan; Alfonso, Linda; Cetin-Sahin, Deniz; Johnson, Sarasa M A; Wilchesky, Machelle

    Although specialized communication tools can effectively reduce acute care transfers, few studies have assessed the factors that may influence the use of such tools by nursing staff at the individual level. We evaluated the associations between years of experience, tool-related training, nursing attitudes, and intensity of use of a communication tool developed to reduce transfers in a long-term care facility. We employed a mixed methods design using data from medical charts, electronic records, and semi-structured interviews. Experienced nurses used the tool significantly less than inexperienced nurses, and training had a significant positive impact on tool use. Nurses found the purpose of the tool to be confusing. No significant differences in attitude were observed based on years of experience or intensity of use. Project findings indicate that focused efforts to enrich training may increase intervention adherence. Experienced nurses in particular should be made aware of the benefits of utilizing communication tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  13. Risk Management in Biologics Technology Transfer.

    PubMed

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  14. Proposal for the design of a zero gravity tool storage device

    NASA Technical Reports Server (NTRS)

    Stuckwisch, Sue; Carrion, Carlos A.; Phillips, Lee; Laughlin, Julia; Francois, Jason

    1994-01-01

    Astronauts frequently use a variety of hand tools during space missions, especially on repair missions. A toolbox is needed to allow storage and retrieval of tools with minimal difficulties. The toolbox must contain tools during launch, landing, and on-orbit operations. The toolbox will be used in the Shuttle Bay and therefore must withstand the hazardous space environment. The three main functions of the toolbox in space are: to protect the tools from the space environment and from damaging one another, to allow for quick, one-handed access to the tools; and to minimize the heat transfer between the astronaut's hand and the tools. This proposal explores the primary design issues associated with the design of the toolbox. Included are the customer and design specifications, global and refined function structures, possible solution principles, concept variants, and finally design recommendations.

  15. Rapid tooling for functional prototyping of metal mold processes. CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.

    1997-12-01

    The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that wouldmore » coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.« less

  16. Helping coaches apply the principles of representative learning design: validation of a tennis specific practice assessment tool.

    PubMed

    Krause, Lyndon; Farrow, Damian; Reid, Machar; Buszard, Tim; Pinder, Ross

    2018-06-01

    Representative Learning Design (RLD) is a framework for assessing the degree to which experimental or practice tasks simulate key aspects of specific performance environments (i.e. competition). The key premise being that when practice replicates the performance environment, skills are more likely to transfer. In applied situations, however, there is currently no simple or quick method for coaches to assess the key concepts of RLD (e.g. during on-court tasks). The aim of this study was to develop a tool for coaches to efficiently assess practice task design in tennis. A consensus-based tool was developed using a 4-round Delphi process with 10 academic and 13 tennis-coaching experts. Expert consensus was reached for the inclusion of seven items, each consisting of two sub-questions related to (i) the task goal and (ii) the relevance of the task to competition performance. The Representative Practice Assessment Tool (RPAT) is proposed for use in assessing and enhancing practice task designs in tennis to increase the functional coupling between information and movement, and to maximise the potential for skill transfer to competition contexts.

  17. Integrated multidisciplinary CAD/CAE environment for micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Przekwas, Andrzej J.

    1999-03-01

    Computational design of MEMS involves several strongly coupled physical disciplines, including fluid mechanics, heat transfer, stress/deformation dynamics, electronics, electro/magneto statics, calorics, biochemistry and others. CFDRC is developing a new generation multi-disciplinary CAD systems for MEMS using high-fidelity field solvers on unstructured, solution-adaptive grids for a full range of disciplines. The software system, ACE + MEMS, includes all essential CAD tools; geometry/grid generation for multi- discipline, multi-equation solvers, GUI, tightly coupled configurable 3D field solvers for FVM, FEM and BEM and a 3D visualization/animation tool. The flow/heat transfer/calorics/chemistry equations are solved with unstructured adaptive FVM solver, stress/deformation are computed with a FEM STRESS solver and a FAST BEM solver is used to solve linear heat transfer, electro/magnetostatics and elastostatics equations on adaptive polygonal surface grids. Tight multidisciplinary coupling and automatic interoperability between the tools was achieved by designing a comprehensive database structure and APIs for complete model definition. The virtual model definition is implemented in data transfer facility, a publicly available tool described in this paper. The paper presents overall description of the software architecture and MEMS design flow in ACE + MEMS. It describes current status, ongoing effort and future plans for the software. The paper also discusses new concepts of mixed-level and mixed- dimensionality capability in which 1D microfluidic networks are simulated concurrently with 3D high-fidelity models of discrete components.

  18. DDL:Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shival, S. G.

    1980-01-01

    Hardware description languages are valuable tools in such applications as hardware design, system documentation, and logic design training. DDL is convenient medium for inputting design details into hardware-design automation system. It is suitable for describing digital systems at gate, register transfer, and major combinational block level.

  19. The role of benefit transfer in ecosystem service valuation

    USGS Publications Warehouse

    Richardson, Leslie A.; Loomis, John; Kroeger, Timm; Casey, Frank

    2015-01-01

    The demand for timely monetary estimates of the economic value of nonmarket ecosystem goods and services has steadily increased over the last few decades. This article describes the use of benefit transfer to generate monetary value estimates of ecosystem services specifically. The article provides guidance for conducting such benefit transfers and summarizes advancements in benefit transfer methods, databases and analysis tools designed to facilitate its application.

  20. Concurrent Design used in the Design of Space Instruments

    NASA Technical Reports Server (NTRS)

    Oxnevad, Knut I.

    1998-01-01

    At the Project Design Center at the Jet Propulsion Laboratory, a concurrent design environment is under development for supporting development and analyses of space instruments in the early, conceptual design phases. This environment is being utilized by a Team I, a multidisciplinary group of experts. Team I is providing study and proposal support. To provide the required support, the Team I concurrent design environment features effectively interconnected high-end optics, CAD, and thermal design and analysis tools. Innovative approaches for linking tools, and for transferring files between applications have been implemented. These approaches together with effective sharing of geometry between the optics, CAD, and thermal tools are already showing significant timesavings.

  1. National Combustion Code, a Multidisciplinary Combustor Design System, Will Be Transferred to the Commercial Sector

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.

  2. Coupling the Multizone Airflow and Contaminant Transport Software CONTAM with EnergyPlus Using Co-Simulation.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-08-01

    Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.

  3. A General Approach to the Geostationary Transfer Orbit Mission Recovery

    NASA Technical Reports Server (NTRS)

    Faber, Nicolas; Aresini, Andrea; Wauthier, Pascal; Francken, Philippe

    2007-01-01

    This paper discusses recovery scenarios for geosynchronous satellites injected in a non-nominal orbit due to a launcher underperformance. The theory on minimum-fuel orbital transfers is applied to develop an operational tool capable to design a recovery mission. To obtain promising initial guesses for the recovery three complementary techniques are used: p-optimized impulse function contouring, a numerical impulse function minimization and the solutions to the switching equations. The tool evaluates the feasibility of a recovery with the on-board propellant of the spacecraft and performs the complete mission design. This design takes into account for various mission operational constraints such as e.g., the requirement of multiple finite-duration burns, third-body orbital perturbations, spacecraft attitude constraints and ground station visibility. In a final case study, we analyze the consequences of a premature breakdown of an upper rocket stage engine during injection on a geostationary transfer orbit, as well as the possible recovery solution with the satellite on-board propellant.

  4. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  5. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  6. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2007-02-01

    The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.

  7. Impact of design features upon perceived tool usability and safety

    NASA Astrophysics Data System (ADS)

    Wiker, Steven F.; Seol, Mun-Su

    2005-11-01

    While injuries from powered hand tools are caused by a number of factors, this study looks specifically at the impact of the tools design features on perceived tool usability and safety. The tools used in this study are circular saws, power drills and power nailers. Sixty-nine males and thirty-two females completed an anonymous web-based questionnaire that provided orthogonal view photographs of the various tools. Subjects or raters provided: 1) description of the respondents or raters, 2) description of the responses from the raters, and 3) analysis of the interrelationships among respondent ratings of tool safety and usability, physical metrics of the tool, and rater demographic information. The results of the study found that safety and usability were dependent materially upon rater history of use and experience, but not upon training in safety and usability, or quality of design features of the tools (e.g., grip diameters, trigger design, guards, etc.). Thus, positive and negative transfer of prior experience with use of powered hand tools is far more important than any expectancy that may be driven by prior safety and usability training, or from the visual cues that are provided by the engineering design of the tool.

  8. Computational fluid dynamics applications to improve crop production systems

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  9. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    NASA Technical Reports Server (NTRS)

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  10. Development of the electric vehicle analyzer

    NASA Astrophysics Data System (ADS)

    Dickey, Michael R.; Klucz, Raymond S.; Ennix, Kimberly A.; Matuszak, Leo M.

    1990-06-01

    The increasing technological maturity of high power (greater than 20 kW) electric propulsion devices has led to renewed interest in their use as a means of efficiently transferring payloads between earth orbits. Several systems and architecture studies have identified the potential cost benefits of high performance Electric Orbital Transfer Vehicles (EOTVs). These studies led to the initiation of the Electric Insertion Transfer Experiment (ELITE) in 1988. Managed by the Astronautics Laboratory, ELITE is a flight experiment designed to sufficiently demonstrate key technologies and options to pave the way for the full-scale development of an operational EOTV. An important consideration in the development of the ELITE program is the capability of available analytical tools to simulate the orbital mechanics of a low thrust, electric propulsion transfer vehicle. These tools are necessary not only for ELITE mission planning exercises but also for continued, efficient, accurate evaluation of DoD space transportation architectures which include EOTVs. This paper presents such a tool: the Electric Vehicle Analyzer (EVA).

  11. An overview of recent applications of computational modelling in neonatology

    PubMed Central

    Wrobel, Luiz C.; Ginalski, Maciej K.; Nowak, Andrzej J.; Ingham, Derek B.; Fic, Anna M.

    2010-01-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass-transfer mechanisms taking place in medical devices, such as incubators, radiant warmers and oxygen hoods. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and improving the design of medical devices. PMID:20439275

  12. Friendly Extensible Transfer Tool Beta Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William P.; Gutierrez, Kenneth M.; McRee, Susan R.

    2016-04-15

    Often data transfer software is designed to meet specific requirements or apply to specific environments. Frequently, this requires source code integration for added functionality. An extensible data transfer framework is needed to more easily incorporate new capabilities, in modular fashion. Using FrETT framework, functionality may be incorporated (in many cases without need of source code) to handle new platform capabilities: I/O methods (e.g., platform specific data access), network transport methods, data processing (e.g., data compression.).

  13. Assessing the Impact of CAAD Design Tool on Architectural Design Education

    ERIC Educational Resources Information Center

    Al-Matarneh, Rana; Fethi, Ihsan

    2017-01-01

    The current concept of architectural design education in most schools of architecture in Jordan is a blend between manual and digital approaches. However, the disconnection between these two methods has resulted in the students' failure to transfer skills learnt through traditional methods to the digital method of CAAD. The objective of this study…

  14. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  15. Effects of Four Instructional Sequences on Application and Transfer. IDD&E Working Paper No. 12

    ERIC Educational Resources Information Center

    Chao, Chun-I; And Others

    Using the Component Display Theory as an analyzing tool, this study compared the effects of expository and discovery methods of instruction on two learning outcomes, application and transfer. One hundred ninth grade students in each of four earth science classes were randomly assigned to five groups--four experimental groups designed to test four…

  16. Battery Pack Thermal Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep themore » fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.« less

  17. Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Xichun; Tong, Zhen; Liang, Yingchun

    2014-12-01

    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.

  18. Calculation of Coupled Vibroacoustics Response Estimates from a Library of Available Uncoupled Transfer Function Sets

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Fulcher, Clay; Towner, Robert; McDonald, Emmett

    2012-01-01

    The design and theoretical basis of a new database tool that quickly generates vibroacoustic response estimates using a library of transfer functions (TFs) is discussed. During the early stages of a launch vehicle development program, these response estimates can be used to provide vibration environment specification to hardware vendors. The tool accesses TFs from a database, combines the TFs, and multiplies these by input excitations to estimate vibration responses. The database is populated with two sets of uncoupled TFs; the first set representing vibration response of a bare panel, designated as H(sup s), and the second set representing the response of the free-free component equipment by itself, designated as H(sup c). For a particular configuration undergoing analysis, the appropriate H(sup s) and H(sup c) are selected and coupled to generate an integrated TF, designated as H(sup s +c). This integrated TF is then used with the appropriate input excitations to estimate vibration responses. This simple yet powerful tool enables a user to estimate vibration responses without directly using finite element models, so long as suitable H(sup s) and H(sup c) sets are defined in the database libraries. The paper discusses the preparation of the database tool and provides the assumptions and methodologies necessary to combine H(sup s) and H(sup c) sets into an integrated H(sup s + c). An experimental validation of the approach is also presented.

  19. Investigating rate-limiting barriers to nanoscale nonviral gene transfer with nanobiophotonics

    NASA Astrophysics Data System (ADS)

    Chen, Hunter H.

    Nucleic acids are a novel class of therapeutics poised to address many unmet clinical needs. Safe and efficient delivery remains a significant challenge that has delayed the realization of the full therapeutic potential of nucleic acids. Nanoscale nonviral vectors offer an attractive alternative to viral vectors as natural and synthetic polymers or polypeptides may be rationally designed to meet the unique demands of individual applications. A mechanistic understanding of cellular barriers is necessary to develop guidelines for designing custom gene carriers which are expected to greatly impact this delivery challenge. The work herein focused on the relationships among nanocomplex stability, intracellular trafficking and unpacking kinetics, and DNA degradation. Ultrasensitive nanosensors based on QD-FRET were developed to characterize the biophysical properties of nanocomplexes and study these rate-limiting steps. Quantitative image analysis enabled the distributions of the subpopulation of condensed or released DNA to be determined within the major cellular compartments encountered during gene transfer. The steady state stability and unpacking kinetics within these compartments were found to impact transgene expression, elucidating multiple design strategies to achieve efficient gene transfer. To address enzymatic barriers, a novel two-step QD-FRET nanosensor was developed to analyze unpacking and DNA degradation simultaneously, which has not been accomplished previously. Bioresponsive strategies such as disulfide crosslinking and thermosensitivity were evaluated by QD-FRET and quantitative compartmental analysis as case studies to determine appropriate design specifications for thiolated polymers and thermoresponsive polypeptides. Relevant nanobiophotonic tools were developed as a platform to study major rate-limiting barriers to nanomedicine and demonstrated the feasibility of using mechanistic information gained from these tools to guide the rational design of gene carriers and achieve the desired properties that enable efficient gene transfer.

  20. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  1. A Framework for the Design and Integration of Collaborative Classroom Games

    ERIC Educational Resources Information Center

    Echeverria, Alejandro; Garcia-Campo, Cristian; Nussbaum, Miguel; Gil, Francisca; Villalta, Marco; Amestica, Matias; Echeverria, Sebastian

    2011-01-01

    The progress registered in the use of video games as educational tools has not yet been successfully transferred to the classroom. In an attempt to close this gap, a framework was developed that assists in the design and classroom integration of educational games. The framework addresses both the educational dimension and the ludic dimension. The…

  2. Mathematical model of an air-filled alpha stirling refrigerator

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  3. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  4. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  5. Technology Utilization Conference Series, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Proceedings of a series of technology utilization conferences are presented. Commercial applications of space technology, machine tool and metal fabrication, energy and pollution, and mechanical design are among the topics discussed. Emphasis is placed on technology transfer and the minority businessman.

  6. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing. The paper also includes the verification of a medium-fidelity aerodynamic tool used for the aerodynamic database generation with a steady and unsteady high-fidelity CFD analysis tool for a folding wing example.

  7. Front panel engineering with CAD simulation tool

    NASA Astrophysics Data System (ADS)

    Delacour, Jacques; Ungar, Serge; Mathieu, Gilles; Hasna, Guenther; Martinez, Pascal; Roche, Jean-Christophe

    1999-04-01

    THe progress made recently in display technology covers many fields of application. The specification of radiance, colorimetry and lighting efficiency creates some new challenges for designers. Photometric design is limited by the capability of correctly predicting the result of a lighting system, to save on the costs and time taken to build multiple prototypes or bread board benches. The second step of the research carried out by company OPTIS is to propose an optimization method to be applied to the lighting system, developed in the software SPEOS. The main features of the tool requires include the CAD interface, to enable fast and efficient transfer between mechanical and light design software, the source modeling, the light transfer model and an optimization tool. The CAD interface is mainly a prototype of transfer, which is not the subjects here. Photometric simulation is efficiently achieved by using the measured source encoding and a simulation by the Monte Carlo method. Today, the advantages and the limitations of the Monte Carlo method are well known. The noise reduction requires a long calculation time, which increases with the complexity of the display panel. A successful optimization is difficult to achieve, due to the long calculation time required for each optimization pass including a Monte Carlo simulation. The problem was initially defined as an engineering method of study. The experience shows that good understanding and mastering of the phenomenon of light transfer is limited by the complexity of non sequential propagation. The engineer must call for the help of a simulation and optimization tool. The main point needed to be able to perform an efficient optimization is a quick method for simulating light transfer. Much work has been done in this area and some interesting results can be observed. It must be said that the Monte Carlo method wastes time calculating some results and information which are not required for the needs of the simulation. Low efficiency transfer system cost a lot of lost time. More generally, the light transfer simulation can be treated efficiently when the integrated result is composed of elementary sub results that include quick analytical calculated intersections. The first axis of research appear. The quick integration research and the quick calculation of geometric intersections. The first axis of research brings some general solutions also valid for multi-reflection systems. The second axis requires some deep thinking on the intersection calculation. An interesting way is the subdivision of space in VOXELS. This is an adapted method of 3D division of space according to the objects and their location. An experimental software has been developed to provide a validation of the method. The gain is particularly high in complex systems. An important reduction in the calculation time has been achieved.

  8. A tool to convert CAD models for importation into Geant4

    NASA Astrophysics Data System (ADS)

    Vuosalo, C.; Carlsmith, D.; Dasu, S.; Palladino, K.; LUX-ZEPLIN Collaboration

    2017-10-01

    The engineering design of a particle detector is usually performed in a Computer Aided Design (CAD) program, and simulation of the detector’s performance can be done with a Geant4-based program. However, transferring the detector design from the CAD program to Geant4 can be laborious and error-prone. SW2GDML is a tool that reads a design in the popular SOLIDWORKS CAD program and outputs Geometry Description Markup Language (GDML), used by Geant4 for importing and exporting detector geometries. Other methods for outputting CAD designs are available, such as the STEP format, and tools exist to convert these formats into GDML. However, these conversion methods produce very large and unwieldy designs composed of tessellated solids that can reduce Geant4 performance. In contrast, SW2GDML produces compact, human-readable GDML that employs standard geometric shapes rather than tessellated solids. This paper will describe the development and current capabilities of SW2GDML and plans for its enhancement. The aim of this tool is to automate importation of detector engineering models into Geant4-based simulation programs to support rapid, iterative cycles of detector design, simulation, and optimization.

  9. Improvements in Thermal Protection Sizing Capabilities for TCAT: Conceptual Design for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Izon, Stephen James

    2002-01-01

    The Thermal Calculation Analysis Tool (TCAT), originally developed for the Space Systems Design Lab at the Georgia Institute of Technology, is a conceptual design tool capable of integrating aeroheating analysis into conceptual reusable launch vehicle design. It provides Thermal Protection System (TPS) unit thicknesses and acreage percentages based on the geometry of the vehicle and a reference trajectory to be used in calculation of the total cost and weight of the vehicle design. TCAT has proven to be reasonably accurate at calculating the TPS unit weights for in-flight trajectories; however, it does not have the capability of sizing TPS materials above cryogenic fuel tanks for ground hold operations. During ground hold operations, the vehicle is held for a brief period (generally about two hours) during which heat transfer from the TPS materials to the cryogenic fuel occurs. If too much heat is extracted from the TPS material, the surface temperature may fall below the freezing point of water, thereby freezing any condensation that may be present at the surface of the TPS. Condensation or ice on the surface of the vehicle is potentially hazardous to the mission and can also damage the TPS. It is questionable whether or not the TPS thicknesses provided by the aeroheating analysis would be sufficiently thick to insulate the surface of the TPS from the heat transfer to the fuel. Therefore, a design tool has been developed that is capable of sizing TPS materials at these cryogenic fuel tank locations to augment TCAT's TPS sizing capabilities.

  10. A computer simulation of an adaptive noise canceler with a single input

    NASA Astrophysics Data System (ADS)

    Albert, Stuart D.

    1991-06-01

    A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.

  11. Quality engineering tools focused on high power LED driver design using boost power stages in switch mode

    NASA Astrophysics Data System (ADS)

    Ileana, Ioan; Risteiu, Mircea; Marc, Gheorghe

    2016-12-01

    This paper is a part of our research dedicated to high power LED lamps designing. The boost-up selected technology wants to meet driver producers' tendency in the frame of efficiency and disturbances constrains. In our work we used modeling and simulation tools for implementing scenarios of the driver work when some controlling functions are executed (output voltage/ current versus input voltage and fixed switching frequency, input and output electric power transfer versus switching frequency, transient inductor voltage analysis, and transient out capacitor analysis). Some electrical and thermal stress conditions are also analyzed. Based on these aspects, a high reliable power LED driver has been designed.

  12. From Sky to Earth: Data Science Methodology Transfer

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  13. Corps of Engineers National Automation Team (CENAT) Technology Transfer Test Bed (T(3)B) Demonstration of the Design 4D Program

    DTIC Science & Technology

    1989-11-01

    other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training

  14. Plant-mimetic Heat Pipes for Operation with Large Inertial and Gravitational Stresses

    DTIC Science & Technology

    2015-08-07

    Pipes (SHLHP), we developed a set of mathematical models and experimental approaches. Our models provide design rules for heat transfer systems that could...number of fronts: 1) Design concepts and modeling tools: We have proposed a new design for loop heat pipes that operates with superheated liquid...and completed a mathematical model of steady state operation of such superheated loop heat pipes (SHLHP). We have also developed a transport theories

  15. Safety of Rural Nursing Home-to-Emergency Department Transfers: Improving Communication and Patient Information Sharing Across Settings.

    PubMed

    Tupper, Judith B; Gray, Carolyn E; Pearson, Karen B; Coburn, Andrew F

    2015-01-01

    The "siloed" approach to healthcare delivery contributes to communication challenges and to potential patient harm when patients transfer between settings. This article reports on the evaluation of a demonstration in 10 rural communities to improve the safety of nursing facility (NF) transfers to hospital emergency departments by forming interprofessional teams of hospital, emergency medical service, and NF staff to develop and implement tools and protocols for standardizing critical interfacility communication pathways and information sharing. We worked with each of the 10 teams to document current communication processes and information sharing tools and to design, implement, and evaluate strategies/tools to increase effective communication and sharing of patient information across settings. A mixed methods approach was used to evaluate changes from baseline in documentation of patient information shared across settings during the transfer process. Study findings showed significant improvement in key areas across the three settings, including infection status and baseline mental functioning. Improvement strategies and performance varied across settings; however, accurate and consistent information sharing of advance directives and medication lists remains a challenge. Study results demonstrate that with neutral facilitation and technical support, collaborative interfacility teams can assess and effectively address communication and information sharing problems that threaten patient safety.

  16. Identification of factors that affect the adoption of an ergonomic intervention among Emergency Medical Service workers.

    PubMed

    Weiler, Monica R; Lavender, Steven A; Crawford, J Mac; Reichelt, Paul A; Conrad, Karen M; Browne, Michael W

    2012-01-01

    This study explored factors contributing to intervention adoption decisions among Emergency Medical Service (EMS) workers. Emergency Medical Service workers (n = 190), from six different organisations, participated in a two-month longitudinal study following the introduction of a patient transfer-board (also known as slide-board) designed to ease lateral transfers of patients to and from ambulance cots. Surveys administered at baseline, after one month and after two months sampled factors potentially influencing the EMS providers' decision process. 'Ergonomics Advantage' and 'Patient Advantage' entered into a stepwise regression model predicting 'intention to use' at the end of month one (R (2 )= 0.78). After the second month, the stepwise regression indicated only two factors were predictive of intention to use: 'Ergonomics Advantage,' and 'Endorsed by Champions' (R (2 )= 0.58). Actual use was predicted by: 'Ergonomics Advantage' and 'Previous Tool Experience.' These results relate to key concepts identified in the diffusion of innovation literature and have the potential to further ergonomics intervention adoption efforts. Practitioner Summary. This study explored factors that potentially facilitate the adoption of voluntarily used ergonomics interventions. EMS workers were provided with foldable transfer-boards (slideboards) designed to reduce the physical demands when laterally transferring patients. Factors predictive of adoption measures included perceived ergonomics advantage, the endorsement by champions, and prior tool experience.

  17. A coarse-grained model for DNA origami.

    PubMed

    Reshetnikov, Roman V; Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D

    2018-02-16

    Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.

  18. A coarse-grained model for DNA origami

    PubMed Central

    Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D

    2018-01-01

    Abstract Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version. PMID:29267876

  19. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  20. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    NASA Astrophysics Data System (ADS)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT Science Cloud for Earth and space science. In 2003 56 refereed papers were published. At the end, we introduce a couple of successful results of Earth and space sciences using these three techniques carried out on the NICT Sciences Cloud. [1] http://sc-web.nict.go.jp

  1. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  2. Energy efficiency façade design in high-rise apartment buildings using the calculation of solar heat transfer through windows with shading devices

    NASA Astrophysics Data System (ADS)

    Ha, P. T. H.

    2018-04-01

    The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.

  3. Towards a theoretical clarification of biomimetics using conceptual tools from engineering design.

    PubMed

    Drack, M; Limpinsel, M; de Bruyn, G; Nebelsick, J H; Betz, O

    2017-12-13

    Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.

  4. Designing and evaluating a STEM teacher learning opportunity in the research university.

    PubMed

    Hardré, Patricia L; Ling, Chen; Shehab, Randa L; Herron, Jason; Nanny, Mark A; Nollert, Matthias U; Refai, Hazem; Ramseyer, Christopher; Wollega, Ebisa D

    2014-04-01

    This study examines the design and evaluation strategies for a year-long teacher learning and development experience, including their effectiveness, efficiency and recommendations for strategic redesign. Design characteristics include programmatic features and outcomes: cognitive, affective and motivational processes; interpersonal and social development; and performance activities. Program participants were secondary math and science teachers, partnered with engineering faculty mentors, in a research university-based education and support program. Data from multiple sources demonstrated strengths and weaknesses in design of the program's learning environment, including: face-to-face and via digital tools; on-site and distance community interactions; and strategic evaluation tools and systems. Implications are considered for the strategic design and evaluation of similar grant-funded research experiences intended to support teacher learning, development and transfer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  6. Efficient simulation of press hardening process through integrated structural and CFD analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less

  7. STARS 2.0: 2nd-generation open-source archiving and query software

    NASA Astrophysics Data System (ADS)

    Winegar, Tom

    2008-07-01

    The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.

  8. Application of 'Six Sigma{sup TM}' and 'Design of Experiment' for Cementation - Recipe Development for Evaporator Concentrate for NPP Ling AO, Phase II (China) - 12555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehrmann, Henning; Perdue, Robert

    2012-07-01

    Cementation of radioactive waste is a common technology. The waste is mixed with cement and water and forms a stable, solid block. The physical properties like compression strength or low leach ability depends strongly on the cement recipe. Due to the fact that this waste cement mixture has to fulfill special requirements, a recipe development is necessary. The Six Sigma{sup TM}' DMAIC methodology, together with the Design of experiment (DoE) approach, was employed to optimize the process of a recipe development for cementation at the Ling Ao nuclear power plant (NPP) in China. The DMAIC offers a structured, systematical andmore » traceable process to derive test parameters. The DoE test plans and statistical analysis is efficient regarding the amount of test runs and the benefit gain by getting a transfer function. A transfer function enables simulation which is useful to optimize the later process and being responsive to changes. The DoE method was successfully applied for developing a cementation recipe for both evaporator concentrate and resin waste in the plant. The key input parameters were determined, evaluated and the control of these parameters were included into the design. The applied Six Sigma{sup TM} tools can help to organize the thinking during the engineering process. Data are organized and clearly presented. Various variables can be limited to the most important ones. The Six Sigma{sup TM} tools help to make the thinking and decision process trace able. The tools can help to make data driven decisions (e.g. C and E Matrix). But the tools are not the only golden way. Results from scoring tools like the C and E Matrix need close review before using them. The DoE is an effective tool for generating test plans. DoE can be used with a small number of tests runs, but gives a valuable result from an engineering perspective in terms of a transfer function. The DoE prediction results, however, are only valid in the tested area. So a careful selection of input parameter and their limits for setting up a DoE is very important. An extrapolation of results is not recommended because the results are not reliable out of the tested area. (authors)« less

  9. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  10. IP Sample Plan #4 | NCI Technology Transfer Center | TTC

    Cancer.gov

    Sample letter from Research Institutes and their principal investigator and consultants, describing a data and research tool sharing plan and procedures for sharing data, research materials, and patent and licensing of intellectual property. This letter is designed to be included as part of an application.

  11. Turbine Engine Hot Section Technology, 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.

  12. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    PubMed

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  13. Simulation requirements for the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1984-01-01

    Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.

  14. The Seamless Transfer-of-Care Protocol: a randomized controlled trial assessing the efficacy of an electronic transfer-of-care communication tool.

    PubMed

    Okoniewska, Barbara M; Santana, Maria J; Holroyd-Leduc, Jayna; Flemons, Ward; O'Beirne, Maeve; White, Deborah; Clement, Fiona; Forster, Alan; Ghali, William A

    2012-11-21

    The transition between acute care and community care represents a vulnerable period in health care delivery. The vulnerability of this period has been attributed to changes to patients' medication regimens during hospitalization, failure to reconcile discrepancies between admission and discharge and the burdening of patients/families to take over care responsibilities at discharge and to relay important information to the primary care physician. Electronic communication platforms can provide an immediate link between acute care and community care physicians (and other community providers), designed to ensure consistent information transfer. This study examines whether a transfer-of-care (TOC) communication tool is efficacious and cost-effective for reducing hospital readmission, adverse events and adverse drug events as well as reducing death. A randomized controlled trial conducted on the Medical Teaching Unit of a Canadian tertiary care centre will evaluate the efficacy and cost-effectiveness of a TOC communication tool. Medical in-patients admitted to the unit will be considered for this study. Data will be collected upon admission, and a total of 1400 patients will be randomized. The control group's acute care stay will be summarized using a traditional dictated summary, while the intervention group will have a summary generated using the TOC communication tool. The primary outcome will be a composite, at 3 months, of death or readmission to any Alberta acute-care hospital. Secondary outcomes will be the occurrence of post-discharge adverse events and adverse drug events at 1 month post discharge. Patients with adverse outcomes will have their cases reviewed by two Royal College certified internists or College-certified family physicians, blinded to patients' group assignments, to determine the type, severity, preventability and ameliorability of all detected adverse outcomes. An accompanying economic evaluation will assess the cost per life saved, cost per readmission avoided and cost per QALY gained with the TOC communication tool compared to traditional dictation summaries. This paper outlines the study protocol for a randomized controlled trial evaluating an electronic transfer-of-care communication tool, with sufficient statistical power to assess the impact of the tool on the significant outcomes of post-discharge death or readmission. The study findings will inform health systems around the world on the potential benefits of such tools, and the value for money associated with their widespread implementation. ClinicalTrials.gov NCT01402609.

  15. Modeling the Secondary Drying Stage of Freeze Drying: Development and Validation of an Excel-Based Model.

    PubMed

    Sahni, Ekneet K; Pikal, Michael J

    2017-03-01

    Although several mathematical models of primary drying have been developed over the years, with significant impact on the efficiency of process design, models of secondary drying have been confined to highly complex models. The simple-to-use Excel-based model developed here is, in essence, a series of steady state calculations of heat and mass transfer in the 2 halves of the dry layer where drying time is divided into a large number of time steps, where in each time step steady state conditions prevail. Water desorption isotherm and mass transfer coefficient data are required. We use the Excel "Solver" to estimate the parameters that define the mass transfer coefficient by minimizing the deviations in water content between calculation and a calibration drying experiment. This tool allows the user to input the parameters specific to the product, process, container, and equipment. Temporal variations in average moisture contents and product temperatures are outputs and are compared with experiment. We observe good agreement between experiments and calculations, generally well within experimental error, for sucrose at various concentrations, temperatures, and ice nucleation temperatures. We conclude that this model can serve as an important process development tool for process design and manufacturing problem-solving. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Cases in the relation of research on remote sensing to decisionmakers in a state agency

    NASA Technical Reports Server (NTRS)

    Jondrow, J. W.

    1975-01-01

    The use is considered of various management tools in order to assess their effects on the anticipated relevance of the remote sensing research to the needs of government agencies. Among these tools are different organizational structures and ways of functioning, which are applied to the design and management of projects and to the communication of research results. The characteristics of data and information flow, and technology transfer are discussed along with the management of three projects and a remote sensing data center in terms of the use of some tools for influencing these processes.

  17. Got Sheetrock?

    ERIC Educational Resources Information Center

    Sheehan, Diane B.

    2005-01-01

    The author of this article, an art teacher, describes a high school studio lesson about sculptural reliefs using Sheetrock. She describes how students can work with and prepare Sheetrock and how they can create a design and transfer it onto the dry Sheetrock plaster. Making repairs to the surface, coloring and finishing, and the tools required are…

  18. Screen-Capture Instructional Technology: A Cognitive Tool for Designing a Blended Multimedia Curriculum

    ERIC Educational Resources Information Center

    Smith, Jeffrey G.; Smith, Rita L.

    2012-01-01

    Online instruction has been demonstrated to increase the academic achievement for post-secondary students; however, little empirical investigation has been conducted on high school students learning from online multimedia instruction in the traditional classroom. This study investigated the knowledge acquisition, transfer, and favorability of…

  19. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  20. Guided design of copper oxysulfide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Chuck-Hou; Birol, Turan; Kotliar, Gabriel

    2015-07-01

    We describe a framework for designing novel materials, combining modern first-principles electronic-structure tools, materials databases, and evolutionary algorithms capable of exploring large configurational spaces. Guided by the chemical principles introduced by Antipov et al., for the design and synthesis of the Hg-based high-temperature superconductors, we apply our framework to screen 333 proposed compositions to design a new layered copper oxysulfide, Hg(CaS)2CuO2. We evaluate the prospects of superconductivity in this oxysulfide using theories based on charge-transfer energies, orbital distillation and uniaxial strain.

  1. A simplified method of evaluating the stress wave environment of internal equipment

    NASA Technical Reports Server (NTRS)

    Colton, J. D.; Desmond, T. P.

    1979-01-01

    A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.

  2. On-orbit assembly considerations of manned Mars transfer vehicles

    NASA Technical Reports Server (NTRS)

    D'Amara, Mark

    1990-01-01

    Ever since the United States space program started some forty years ago, there have been many ideas on how the U.S. should proceed to explore space. Throughout the years, many innovative designs have surfaced for transfer vehicles, space stations, and surface bases. Usually the difference in designs are due to differences in mission objectives and requirements. The problem for Mars is how to choose an architecture for human travel to Mars and what kind of base construction to design for Mars that will be reliable and cost effective. Eventually, if the Space Exploration Initiative is to become a reality, NASA will have to select and fund a single mission architecture involving manned and unmanned Mars fly-by precursors, a Mars landing vehicle, and, ultimately, the plan for constructing a Mars base. The decision to commit to a single architecture is a vital one and, therefore, the design issues, the decision making process, and the analysis tools must be available to explore all of the options that are available. A large part of any space mission architecture is the Earth-to-Mars transfer vehicle. The decision on the type of transfer vehicle to design is a crucial one. The many options must take into account the constraints encountered when assembling the vehicle in earth orbit such as effective joining methods, test and evaluation methods, preventative maintenance measures, etc. Therefore, the process of trading off various designs must include every facet of that design. The on-orbit assembly/construction constraints will drive designs and architectures. This viewgraph presentation highlights the above critical issues so that designs may be evaluated from these viewpoints. Evaluating designs from the issues contained in this paper will help decision makers detect inadequate designs. Stressing these issues in the evaluation procedure will have a great impact on the decisions of future space mission transfer vehicles and consequent architectures.

  3. The Elimination of Transfer Distances Is an Important Part of Hospital Design.

    PubMed

    Karvonen, Sauli; Nordback, Isto; Elo, Jussi; Havulinna, Jouni; Laine, Heikki-Jussi

    2017-04-01

    The objective of the present study was to describe how a specific patient flow analysis with from-to charts can be used in hospital design and layout planning. As part of a large renewal project at a university hospital, a detailed patient flow analysis was applied to planning the musculoskeletal surgery unit (orthopedics and traumatology, hand surgery, and plastic surgery). First, the main activities of the unit were determined. Next, the routes of all patients treated over the course of 1 year were studied, and their physical movements in the current hospital were calculated. An ideal layout of the new hospital was then generated to minimize transfer distances by placing the main activities with close to each other, according to the patient flow analysis. The actual architectural design was based on the ideal layout plan. Finally, we compared the current transfer distances to the distances patients will move in the new hospital. The methods enabled us to estimate an approximate 50% reduction in transfer distances for inpatients (from 3,100 km/year to 1,600 km/year) and 30% reduction for outpatients (from 2,100 km/year to 1,400 km/year). Patient transfers are nonvalue-added activities. This study demonstrates that a detailed patient flow analysis with from-to charts can substantially shorten transfer distances, thereby minimizing extraneous patient and personnel movements. This reduction supports productivity improvement, cross-professional teamwork, and patient safety by placing all patient flow activities close to each other. Thus, this method is a valuable additional tool in hospital design.

  4. Representing clinical guidelines in UMl: a comparative study.

    PubMed

    Hederman, Lucy; Smutek, Daniel; Wade, Vincent; Knape, Thomas

    2002-01-01

    Clinical guidelines can be represented using models, such as GLIF, specifically designed for healthcare guidelines. This paper demonstrates that they can also be modelled using a mainstream business modelling language such as UML. The paper presents a guideline in GLIF and as UML activity diagrams, and then presents a mapping of GLIF primitives to UML. The potential benefits of using a mainstream modelling language are outlined. These include availability of advanced modelling tools, transfer between modelling tools, and automation via business workflow technology.

  5. Incorporation of Electrical Systems Models Into an Existing Thermodynamic Cycle Code

    NASA Technical Reports Server (NTRS)

    Freeh, Josh

    2003-01-01

    Integration of entire system includes: Fuel cells, motors, propulsors, thermal/power management, compressors, etc. Use of existing, pre-developed NPSS capabilities includes: 1) Optimization tools; 2) Gas turbine models for hybrid systems; 3) Increased interplay between subsystems; 4) Off-design modeling capabilities; 5) Altitude effects; and 6) Existing transient modeling architecture. Other factors inclde: 1) Easier transfer between users and groups of users; 2) General aerospace industry acceptance and familiarity; and 3) Flexible analysis tool that can also be used for ground power applications.

  6. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  7. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald; Stanley, Thomas Troy

    2001-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to all other systems, as is the case with SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA). In particular, the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results in high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately calculate the TPS mass of this type of vehicle several engineering disciplines and analytical tools must be used preferably in an environment that data is easily transferred and multiple iterations are easily facilitated.

  8. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    PubMed Central

    Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  9. Comet sample acquisition for ROSETTA lander mission

    NASA Astrophysics Data System (ADS)

    Marchesi, M.; Campaci, R.; Magnani, P.; Mugnuolo, R.; Nista, A.; Olivier, A.; Re, E.

    2001-09-01

    ROSETTA/Lander is being developed with a combined effort of European countries, coordinated by German institutes. The commitment for such a challenging probe will provide a unique opportunity for in-situ analysis of a comet nucleus. The payload for coring, sampling and investigations of comet materials is called SD2 (Sampling Drilling and Distribution). The paper presents the drill/sampler tool and the sample transfer trough modeling, design and testing phases. Expected drilling parameters are then compared with experimental data; limited torque consumption and axial thrust on the tool constraint the operation and determine the success of tests. Qualification campaign involved the structural part and related vibration test, the auger/bit parts and drilling test, and the coring mechanism with related sampling test. Mechanical check of specimen volume is also reported, with emphasis on the measurement procedure and on the mechanical unit. The drill tool and all parts of the transfer chain were tested in the hypothetical comet environment, charcterized by frozen material at extreme low temperature and high vacuum (-160°C, 10-3 Pa).

  10. CFD analysis of a diaphragm free-piston Stirling cryocooler

    NASA Astrophysics Data System (ADS)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  11. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes

    PubMed Central

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-01-01

    Background With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. PMID:18460173

  12. Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2007-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing.

  13. Transferable Output ASCII Data (TOAD) editor version 1.0 user's guide

    NASA Technical Reports Server (NTRS)

    Bingel, Bradford D.; Shea, Anne L.; Hofler, Alicia S.

    1991-01-01

    The Transferable Output ASCII Data (TOAD) editor is an interactive software tool for manipulating the contents of TOAD files. The TOAD editor is specifically designed to work with tabular data. Selected subsets of data may be displayed to the user's screen, sorted, exchanged, duplicated, removed, replaced, inserted, or transferred to and from external files. It also offers a number of useful features including on-line help, macros, a command history, an 'undo' option, variables, and a full compliment of mathematical functions and conversion factors. Written in ANSI FORTRAN 77 and completely self-contained, the TOAD editor is very portable and has already been installed on SUN, SGI/IRIS, and CONVEX hosts.

  14. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  15. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  16. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.

  17. Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.F. Jr.

    1980-08-01

    The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

  18. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    PubMed

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  19. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training.

    PubMed

    Binder, Julia C; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.

  20. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training

    PubMed Central

    Binder, Julia C.; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F.; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly. PMID:26257643

  1. Effect of Freeze Dryer Design on Heat Transfer Variability Investigated Using a 3D Mathematical Model.

    PubMed

    Scutellà, Bernadette; Bourlès, Erwan; Plana-Fattori, Artemio; Fonseca, Fernanda; Flick, Denis; Trelea, Ioan-Cristian; Passot, Stephanie

    2018-04-14

    During the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates that result in higher product temperatures than vials in the center. This phenomenon, referred to as edge vial effect, can lead to product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze dryer design features on heat transfer variability. A 3D mathematical model previously developed in COMSOL Multiphysics and experimentally validated was used to simulate the heat transfer of a set of vials located at the edge and in the center of the shelf. The design features considered included the vials loading configurations, the thermal characteristics, and some relevant dimensions of the drying chamber geometry. The presence of the rail in the loading configuration and the value of the shelf emissivity strongly impacted the heat flow rates received by the vials. Conversely, the heat transfer was not significantly influenced by modifications of the thermal conductivity of the rail, the emissivity of the walls, or the geometry of the drying chamber. The model developed turned out to be a powerful tool for cycle development and scale-up. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Planning in context: A situated view of children's management of science projects

    NASA Astrophysics Data System (ADS)

    Marshall, Susan Katharine

    This study investigated children's collaborative planning of a complex, long-term software design project. Using sociocultural methods, it examined over time the development of design teams' planning negotiations and tools to document the coconstruction of cultural frameworks to organize teams' shared understanding of what and how to plan. Results indicated that student teams developed frameworks to address a set of common planning functions that included design planning, project metaplanning (things such as division of labor or sharing of computer resources) and team collaboration management planning. There were also some between-team variations in planning frameworks, within a bandwidth of options. Teams engaged in opportunistic planning, which reflected shifts in strategies in response to new circumstances over time. Team members with past design project experience ("oldtimers") demonstrated the transfer of their planning framework to the current design task, and they supported the developing participation of "newcomers." Teams constructed physical tools (e.g. planning boards) that acted as visual representations of teams' planning frameworks, and inscriptions of team thinking. The assigned functions of the tools also shifted over time with changing project circumstances. The discussion reexamines current approaches to the study of planning and discusses their educational implications.

  3. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    NASA Astrophysics Data System (ADS)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  4. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  5. Design and Development of a Clinical Risk Management Tool Using Radio Frequency Identification (RFID)

    PubMed Central

    Pourasghar, Faramarz; Tabrizi, Jafar Sadegh; Yarifard, Khadijeh

    2016-01-01

    Background: Patient safety is one of the most important elements of quality of healthcare. It means preventing any harm to the patients during medical care process. Objective: This paper introduces a cost-effective tool in which the Radio Frequency Identification (RFID) technology is used to identify medical errors in hospital. Methods: The proposed clinical error management system (CEMS) is consisted of a reader device, a transfer/receiver device, a database and managing software. The reader device works using radio waves and is wireless. The reader sends and receives data to/from the database via the transfer/receiver device which is connected to the computer via USB port. The database contains data about patients’ medication orders. Results: The CEMS has the ability to identify the clinical errors before they occur and then warns the care-giver with voice and visual messages to prevent the error. This device reduces the errors and thus improves the patient safety. Conclusion: A new tool including software and hardware was developed in this study. Application of this tool in clinical settings can help the nurses prevent medical errors. It can also be a useful tool for clinical risk management. Using this device can improve the patient safety to a considerable extent and thus improve the quality of healthcare. PMID:27147802

  6. Design and Development of a Clinical Risk Management Tool Using Radio Frequency Identification (RFID).

    PubMed

    Pourasghar, Faramarz; Tabrizi, Jafar Sadegh; Yarifard, Khadijeh

    2016-04-01

    Patient safety is one of the most important elements of quality of healthcare. It means preventing any harm to the patients during medical care process. This paper introduces a cost-effective tool in which the Radio Frequency Identification (RFID) technology is used to identify medical errors in hospital. The proposed clinical error management system (CEMS) is consisted of a reader device, a transfer/receiver device, a database and managing software. The reader device works using radio waves and is wireless. The reader sends and receives data to/from the database via the transfer/receiver device which is connected to the computer via USB port. The database contains data about patients' medication orders. The CEMS has the ability to identify the clinical errors before they occur and then warns the care-giver with voice and visual messages to prevent the error. This device reduces the errors and thus improves the patient safety. A new tool including software and hardware was developed in this study. Application of this tool in clinical settings can help the nurses prevent medical errors. It can also be a useful tool for clinical risk management. Using this device can improve the patient safety to a considerable extent and thus improve the quality of healthcare.

  7. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  8. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    PubMed

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  9. Introductory Tools for Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.

    2006-12-01

    Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.

  10. Tools and Techniques for Simplifying the Analysis of Captured Packet Data

    ERIC Educational Resources Information Center

    Cavaiani, Thomas P.

    2008-01-01

    Students acquire an understanding of the differences between TCP and UDP (connection-oriented vs. connection-less) data transfers as they analyze network packet data collected during one of a series of labs designed for an introductory network essentials course taught at Boise State University. The learning emphasis of the lab is not on the…

  11. Participant Comfort with and Application of Inquiry-Based Learning: Results from 4-H Volunteer Training

    ERIC Educational Resources Information Center

    Haugen, Heidi; Stevenson, Anne; Meyer, Rebecca L.

    2016-01-01

    This article explores how a one-time training designed to support learning transfer affected 4-H volunteers' comfort levels with the training content and how comfort levels, in turn, affected the volunteers' application of tools and techniques learned during the training. Results of a follow-up survey suggest that the training participants…

  12. Interreligious Education: Conceptualising a Needs Assessment Framework for Curriculum Design in Plural Societies (with Special Reference to Mauritius)

    ERIC Educational Resources Information Center

    Maudarbux, Mohammad Belall

    2016-01-01

    The growing debate on intercultural and interreligious dialogue has one major drawback: how to translate academic and theoretical contributions into practical tools for educators and policy makers. This paper aims to fill this gap by presenting a transferable "needs assessment model" based on five criteria and twenty measurable…

  13. The HDF Product Designer - Interoperability in the First Mile

    NASA Astrophysics Data System (ADS)

    Lee, H.; Jelenak, A.; Habermann, T.

    2014-12-01

    Interoperable data have been a long-time goal in many scientific communities. The recent growth in analysis, visualization and mash-up applications that expect data stored in a standardized manner has brought the interoperability issue to the fore. On the other hand, producing interoperable data is often regarded as a sideline task in a typical research team for which resources are not readily available. The HDF Group is developing a software tool aimed at lessening the burden of creating data in standards-compliant, interoperable HDF5 files. The tool, named HDF Product Designer, lowers the threshold needed to design such files by providing a user interface that combines the rich HDF5 feature set with applicable metadata conventions. Users can quickly devise new HDF5 files while at the same time seamlessly incorporating the latest best practices and conventions from their community. That is what the term interoperability in the first mile means: enabling generation of interoperable data in HDF5 files from the onset of their production. The tool also incorporates collaborative features, allowing team approach in the file design, as well as easy transfer of best practices as they are being developed. The current state of the tool and the plans for future development will be presented. Constructive input from interested parties is always welcome.

  14. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  15. Six degree of freedom simulation system for evaluating automated rendezvous and docking spacecraft

    NASA Technical Reports Server (NTRS)

    Rourke, Kenneth H.; Tsugawa, Roy K.

    1991-01-01

    Future logistics supply and servicing vehicles such as cargo transfer vehicles (CTV) must have full 6 degree of freedom (6DOF) capability in order to perform requisite rendezvous, proximity operations, and capture operations. The design and performance issues encountered when developing a 6DOF maneuvering spacecraft are very complex with subtle interactions which are not immediately obvious or easily anticipated. In order to deal with these complexities and develop robust maneuvering spacecraft designs, a simulation system and associated family of tools are used at TRW for generating and validating spacecraft performance requirements and guidance algorithms. An overview of the simulator and tools is provided. These are used by TRW for autonomous rendezvous and docking research projects including CTV studies.

  16. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  17. Future fundamental combustion research for aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1985-01-01

    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  18. Application of the polychromatic defocus transfer function to multifocal lenses.

    PubMed

    Schwiegerling, Jim; Choi, Junoh

    2008-11-01

    To model the performance of multifocal lenses in polychromatic lighting. The defocus transfer function (DTF) is a mathematical technique for illustrating the optical transfer function for all levels of defocus at a given wavelength. A polychromatic version of the DTF is developed that accounts for changes in cutoff frequency, reduction in diffraction efficiency, ocular chromatic aberration, and photoreceptor spectral sensitivity. The differences between the monochromatic and polychromatic DTF are illustrated with a diffractive multifocal intraocular lens. Polychromatic analysis shows an increase in depth of field of diffractive lenses relative to assessment at a single wavelength. The polychromatic DTF is a useful tool for analyzing presbyopia treatments under "white-light" viewing conditions and provides feedback to lens designers on anticipated performance.

  19. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  20. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  1. Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design

    PubMed Central

    Giuntini, Diletta; Olevsky, Eugene A.; Garcia-Cardona, Cristina; Maximenko, Andrey L.; Yurlova, Maria S.; Haines, Christopher D.; Martin, Darold G.; Kapoor, Deepak

    2013-01-01

    The present paper shows the application of a three-dimensional coupled electrical, thermal, mechanical finite element macro-scale modeling framework of Spark Plasma Sintering (SPS) to an actual problem of SPS tooling overheating, encountered during SPS experimentation. The overheating phenomenon is analyzed by varying the geometry of the tooling that exhibits the problem, namely by modeling various tooling configurations involving sequences of disk-shape spacers with step-wise increasing radii. The analysis is conducted by means of finite element simulations, intended to obtain temperature spatial distributions in the graphite press-forms, including punches, dies, and spacers; to identify the temperature peaks and their respective timing, and to propose a more suitable SPS tooling configuration with the avoidance of the overheating as a final aim. Electric currents-based Joule heating, heat transfer, mechanical conditions, and densification are imbedded in the model, utilizing the finite-element software COMSOL™, which possesses a distinguishing ability of coupling multiple physics. Thereby the implementation of a finite element method applicable to a broad range of SPS procedures is carried out, together with the more specific optimization of the SPS tooling design when dealing with excessive heating phenomena. PMID:28811398

  2. Understanding the Sun-Earth Libration Point Orbit Formation Flying Challenges For WFIRST and Starshade

    NASA Technical Reports Server (NTRS)

    Webster, Cassandra M.; Folta, David C.

    2017-01-01

    In order to fly an occulter in formation with a telescope at the Sun-Earth L2 (SEL2) Libration Point, one must have a detailed understanding of the dy-namics that govern the restricted three body system. For initial purposes, a linear approximation is satisfactory, but operations will require a high-fidelity modeling tool along with strategic targeting methods in order to be successful. This paper focuses on the challenging dynamics of the transfer trajectories to achieve the relative positioning of two spacecraft to fly in formation at SEL2, in our case, the Wide-Field Infrared Survey Telescope (WFIRST) and a proposed Starshade. By modeling the formation transfers using a high fidelity tool, an accurate V approximation can be made to as-sist with the development of the subsystem design required for a WFIRST and Starshade formation flight mission.

  3. CFDP: The Revised Standard and Some Handy Lab Tools

    NASA Astrophysics Data System (ADS)

    Montesinos, Juan Antonio; Valverde, Alberto; Taylor, Chris; Magistrati, Giorgio

    2014-08-01

    The original recommendation for the CCSDS File Delivery Protocol (CFDP) was published in 2002 and since then it has been adopted by many NASA missions for transferring files to and from the flight segment. Conversely, ESA missions have tended to rely on adaptation of the ECSS Packet Utilisation Standard. However, there are now ESA missions under design that will be using CFDP as the standard mechanism for file transfer. The first mission that is using CFDP as File Transfer Protocol is Euclid, to be launch in 2020 and destined to orbit the second Lagrange point (L2). The CFDP engine will be integrated in the Euclid mass memory, allowing the large data files produced by the scientific instruments to be directly downloaded on a KA band link. Moreover, it has also been proposed to be used in the JUICE mission, that will study the Jupiter moons. Due to the considerable distance from Earth, Juice has extremely challenging data transfer requirements but due to the flexibility of CFDP the requirements of both missions can be met.This report aims at presenting an overview of CFDP, the new modifications presently proposed to the standard and the tools that in the Data System division at ESTEC are using for simulation, testing and verification.

  4. MOD Tool (Microwave Optics Design Tool)

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.

  5. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  6. How 24-Month-Olds Form and Transfer Knowledge about Tools: The Role of Perceptual, Functional, Causal, and Feedback Information

    ERIC Educational Resources Information Center

    Bechtel, Sabrina; Jeschonek, Susanna; Pauen, Sabina

    2013-01-01

    This study investigated cognitive processes underlying tool use and knowledge transfer in 24-month-olds (N = 123). Following a demonstration, participants chose a tool to reach a reward in a training transfer paradigm. Differing from previous research, various aspects considered to be relevant for children's performance were integrated within the…

  7. How should we assess knowledge translation in research organizations; designing a knowledge translation self-assessment tool for research institutes (SATORI)

    PubMed Central

    2011-01-01

    Background The knowledge translation self-assessment tool for research institutes (SATORI) was designed to assess the status of knowledge translation in research institutes. The objective was, to identify the weaknesses and strengths of knowledge translation in research centres and faculties associated with Tehran University of Medical Sciences (TUMS). Methods The tool, consisting of 50 statements in four main domains, was used in 20 TUMS-affiliated research centres and departments after its reliability was established. It was completed in a group discussion by the members of the research council, researchers and research users' representatives from each centre and/or department. Results The mean score obtained in the four domains of 'The question of research', 'Knowledge production', 'Knowledge transfer' and 'Promoting the use of evidence' were 2.26, 2.92, 2 and 1.89 (out of 5) respectively. Nine out of 12 interventional priorities with the lowest quartile score were related to knowledge transfer resources and strategies, whereas eight of them were in the highest quartile and related to 'The question of research' and 'Knowledge production'. Conclusions The self-assessment tool identifies the gaps in capacity and infrastructure of knowledge translation support within research organizations. Assessment of research institutes using SATORI pointed out that strengthening knowledge translation through provision of financial support for knowledge translation activities, creating supportive and facilitating infrastructures, and facilitating interactions between researchers and target audiences to exchange questions and research findings are among the priorities of research centres and/or departments. PMID:21342517

  8. Cryogenic Propellant Feed System Analytical Tool Development

    NASA Technical Reports Server (NTRS)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  9. Fault diagnosis in orbital refueling operations

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1988-01-01

    Usually, operation manuals are provided for helping astronauts during space operations. These manuals include normal and malfunction procedures. Transferring operation manual knowledge into a computerized form is not a trivial task. This knowledge is generally written by designers or operation engineers and is often quite different from the user logic. The latter is usually a compiled version of the former. Experiments are in progress to assess the user logic. HORSES (Human - Orbital Refueling System - Expert System) is an attempt to include both of these logics in the same tool. It is designed to assist astronauts during monitoring and diagnosis tasks. Basically, HORSES includes a situation recognition level coupled to an analytical diagnoser, and a meta-level working on both of the previous levels. HORSES is a good tool for modeling task models and is also more broadly useful for knowledge design. The presentation is represented by abstract and overhead visuals only.

  10. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  11. A transfer matrix approach to vibration localization in mistuned blade assemblies

    NASA Technical Reports Server (NTRS)

    Ottarson, Gisli; Pierre, Chritophe

    1993-01-01

    A study of mode localization in mistuned bladed disks is performed using transfer matrices. The transfer matrix approach yields the free response of a general, mono-coupled, perfectly cyclic assembly in closed form. A mistuned structure is represented by random transfer matrices, and the expansion of these matrices in terms of the small mistuning parameter leads to the definition of a measure of sensitivity to mistuning. An approximation of the localization factor, the spatially averaged rate of exponential attenuation per blade-disk sector, is obtained through perturbation techniques in the limits of high and low sensitivity. The methodology is applied to a common model of a bladed disk and the results verified by Monte Carlo simulations. The easily calculated sensitivity measure may prove to be a valuable design tool due to its system-independent quantification of mistuning effects such as mode localization.

  12. Selective laser melting in heat exchanger development - experimental investigation of heat transfer and pressure drop characteristics of wavy fins

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2018-04-01

    To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.

  13. Laboratory data manipulation tools basic data handling programs. Volume 2: Detailed software/hardware documentation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The set of computer programs described allows for data definition, data input, and data transfer between the LSI-11 microcomputers and the VAX-11/780 minicomputer. Program VAXCOM allows for a simple method of textual file transfer from the LSI to the VAX. Program LSICOM allows for easy file transfer from the VAX to the LSI. Program TTY changes the LSI-11 operators console to the LSI's printing device. Program DICTIN provides a means for defining a data set for input to either computer. Program DATAIN is a simple to operate data entry program which is capable of building data files on either machine. Program LEDITV is an extremely powerful, easy to use, line oriented text editor. Program COPYSBF is designed to print out textual files on the line printer without character loss from FORTRAN carriage control or wide record transfer.

  14. High fidelity simulation effectiveness in nursing students' transfer of learning.

    PubMed

    Kirkman, Tera R

    2013-07-13

    Members of nursing faculty are utilizing interactive teaching tools to improve nursing student's clinical judgment; one method that has been found to be potentially effective is high fidelity simulation (HFS). The purpose of this time series design study was to determine whether undergraduate nursing students were able to transfer knowledge and skills learned from classroom lecture and a HFS clinical to the traditional clinical setting. Students (n=42) were observed and rated on their ability to perform a respiratory assessment. The observations and ratings took place at the bedside, prior to a respiratory lecture, following the respiratory lecture, and following simulation clinical. The findings indicated that there was a significant difference (p=0.000) in transfer of learning demonstrated over time. Transfer of learning was demonstrated and the use of HFS was found to be an effective learning and teaching method. Implications of results are discussed.

  15. Ninth Thermal and Fluids Analysis Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  16. Cybermaterials: materials by design and accelerated insertion of materials

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  17. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  18. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  19. Ergonomic risk assessment with DesignCheck to evaluate assembly work in different phases of the vehicle development process.

    PubMed

    Winter, Gabriele; Schaub, Karlheinz G; Großmann, Kay; Laun, Gerhard; Landau, Kurt; Bruder, Ralph

    2012-01-01

    Occupational hazards exist, if the design of the work situation is not in accordance with ergonomic design principles. At assembly lines ergonomics is applied to the design of work equipment and tasks and to work organisation. The ignoring of ergonomic principles in planning and design of assembly work leads to unfavourable working posture, action force and material handling. Disorders of the musculoskeletal system are of a common occurrence throughout Europe. Musculoskeletal disorders are a challenge against the background of disabled workers. The changes in a worker's capability have to be regarded in the conception of redesigned and new assembly lines. In this way ergonomics becomes progressively more important in planning and design of vehicles: The objective of ergonomic design in different stages of the vehicles development process is to achieve an optimal adaptation of the assembly work to workers. Hence the ergonomic screening tool "Design Check" (DC) was developed to identify ergonomic deficits in workplace layouts. The screening-tool is based on the current ergonomic state of the art in the design of physical work and relevant EU legal requirements. It was tested within a federal German research project at selected work stations at the assembly lines at Dr.-Ing. h.c. F. Porsche AG / Stuttgart. Meanwhile the application of the screening-tool DC is transferred in other parts of the Porsche AG, Stuttgart. It is also realized as an ergonomic standard method to perform assembly work in different phases of the vehicle development process.

  20. Constrained Aerothermodynamic Design of Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gally, Tom; Campbell, Dick

    2002-01-01

    An investigation was conducted into possible methods of incorporating a hypersonic design capability with aerothermodynamic constraints into the CDISC aerodynamic design tool. The work was divided into two distinct phases: develop relations between surface curvature and hypersonic pressure coefficient which are compatible with CDISC's direct-iterative design method; and explore and implement possible methods of constraining the heat transfer rate over all or portions of the design surface. The main problem in implementing this method has been the weak relationship between surface shape and pressure coefficient at the stagnation point and the need to design around the surface blunt leading edge where there is a slope singularity. The final results show that some success has been achieved, but further improvements are needed.

  1. An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    Crucial to an efficient aircraft simulation-based design is a robust data modeling methodology for both recording the information and providing data transfer readily and reliably. To meet this goal, data modeling issues involved in the aircraft multidisciplinary design are first analyzed in this study. Next, an XML-based. extensible data object model for multidisciplinary aircraft design is constructed and implemented. The implementation of the model through aircraft databinding allows the design applications to access and manipulate any disciplinary data with a lightweight and easy-to-use API. In addition, language independent representation of aircraft disciplinary data in the model fosters interoperability amongst heterogeneous systems thereby facilitating data sharing and exchange between various design tools and systems.

  2. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.

  3. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model

    NASA Astrophysics Data System (ADS)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.

    2017-10-01

    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  4. Managing personal health information in distributed research network environments.

    PubMed

    Bredfeldt, Christine E; Butani, Amy L; Pardee, Roy; Hitz, Paul; Padmanabhan, Sandy; Saylor, Gwyn

    2013-10-08

    Studying rare outcomes, new interventions and diverse populations often requires collaborations across multiple health research partners. However, transferring healthcare research data from one institution to another can increase the risk of data privacy and security breaches. A working group of multi-site research programmers evaluated the need for tools to support data security and data privacy. The group determined that data privacy support tools should: 1) allow for a range of allowable Protected Health Information (PHI); 2) clearly identify what type of data should be protected under the Health Insurance Portability and Accountability Act (HIPAA); and 3) help analysts identify which protected health information data elements are allowable in a given project and how they should be protected during data transfer. Based on these requirements we developed two performance support tools to support data programmers and site analysts in exchanging research data. The first tool, a workplan template, guides the lead programmer through effectively communicating the details of multi-site programming, including how to run the program, what output the program will create, and whether the output is expected to contain protected health information. The second performance support tool is a checklist that site analysts can use to ensure that multi-site program output conforms to expectations and does not contain protected health information beyond what is allowed under the multi-site research agreements. Together the two tools create a formal multi-site programming workflow designed to reduce the chance of accidental PHI disclosure.

  5. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  6. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald A.; Stanley, Thomas Troy

    1999-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. The problem described is an example of the need for collaborative design and analysis. Analysis tools are being developed to facilitate these collaborative efforts. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. The analysis tools mentioned earlier are commonly run on different platforms and are usually run by different people. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, heat rate data, and TPS masses so that the output from each tool is easily transferred to the model input files that need it. This methodology is being applied to solve launch vehicle thermal design problems to shorten the design cycle, and enable the project team to evaluate design options. Results will be presented indicating the effectiveness of this as a collaborative design tool.

  7. On-line analysis capabilities developed to support the AFW wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort.

  8. EQUIPT: protocol of a comparative effectiveness research study evaluating cross-context transferability of economic evidence on tobacco control

    PubMed Central

    Pokhrel, Subhash; Evers, Silvia; Leidl, Reiner; Trapero-Bertran, Marta; Kalo, Zoltan; de Vries, Hein; Crossfield, Andrea; Andrews, Fiona; Rutter, Ailsa; Coyle, Kathryn; Lester-George, Adam; West, Robert; Owen, Lesley; Jones, Teresa; Vogl, Matthias; Radu-Loghin, Cornel; Voko, Zoltan; Huic, Mirjana; Coyle, Doug

    2014-01-01

    Introduction Tobacco smoking claims 700 000 lives every year in Europe and the cost of tobacco smoking in the EU is estimated between €98 and €130 billion annually; direct medical care costs and indirect costs such as workday losses each represent half of this amount. Policymakers all across Europe are in need of bespoke information on the economic and wider returns of investing in evidence-based tobacco control, including smoking cessation agendas. EQUIPT is designed to test the transferability of one such economic evidence base—the English Tobacco Return on Investment (ROI) tool—to other EU member states. Methods and analysis EQUIPT is a multicentre, interdisciplinary comparative effectiveness research study in public health. The Tobacco ROI tool already developed in England by the National Institute for Health and Care Excellence (NICE) will be adapted to meet the needs of European decision-makers, following transferability criteria. Stakeholders' needs and intention to use ROI tools in sample countries (Germany, Hungary, Spain and the Netherlands) will be analysed through interviews and surveys and complemented by secondary analysis of the contextual and other factors. Informed by this contextual analysis, the next phase will develop country-specific ROI tools in sample countries using a mix of economic modelling and Visual Basic programming. The results from the country-specific ROI models will then be compared to derive policy proposals that are transferable to other EU states, from which a centralised web tool will be developed. This will then be made available to stakeholders to cater for different decision-making contexts across Europe. Ethics and dissemination The Brunel University Ethics Committee and relevant authorities in each of the participating countries approved the protocol. EQUIPT has a dedicated work package on dissemination, focusing on stakeholders’ communication needs. Results will be disseminated via peer-reviewed publications, e-learning resources and policy briefs. PMID:25421342

  9. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  10. A Thermal Management Systems Model for the NASA GTX RBCC Concept

    NASA Technical Reports Server (NTRS)

    Traci, Richard M.; Farr, John L., Jr.; Laganelli, Tony; Walker, James (Technical Monitor)

    2002-01-01

    The Vehicle Integrated Thermal Management Analysis Code (VITMAC) was further developed to aid the analysis, design, and optimization of propellant and thermal management concepts for advanced propulsion systems. The computational tool is based on engineering level principles and models. A graphical user interface (GUI) provides a simple and straightforward method to assess and evaluate multiple concepts before undertaking more rigorous analysis of candidate systems. The tool incorporates the Chemical Equilibrium and Applications (CEA) program and the RJPA code to permit heat transfer analysis of both rocket and air breathing propulsion systems. Key parts of the code have been validated with experimental data. The tool was specifically tailored to analyze rocket-based combined-cycle (RBCC) propulsion systems being considered for space transportation applications. This report describes the computational tool and its development and verification for NASA GTX RBCC propulsion system applications.

  11. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Modeling combined heat transfer in an all solid state optical cryocooler

    NASA Astrophysics Data System (ADS)

    Kuzhiveli, Biju T.

    2017-12-01

    Attaining cooling effect by using laser induced anti-Stokes fluorescence in solids appears to have several advantages over conventional mechanical systems and has been the topic of recent analysis and experimental work. Using anti-Stokes fluorescence phenomenon to remove heat from a glass by pumping it with laser light, stands as a pronouncing physical basis for solid state cooling. Cryocooling by fluorescence is a feasible solution for obtaining compactness and reliability. It has a distinct niche in the family of small capacity cryocoolers and is undergoing a revolutionary advance. In pursuit of developing laser induced anti-Stokes fluorescent cryocooler, it is required to develop numerical tools that support the thermal design which could provide a thorough analysis of combined heat transfer mechanism within the cryocooler. The paper presents the details of numerical model developed for the cryocooler and the subsequent development of a computer program. The program has been used for the understanding of various heat transfer mechanisms and is being used for thermal design of components of an anti-Stokes fluorescent cryocooler.

  13. Integration of EGA secure data access into Galaxy.

    PubMed

    Hoogstrate, Youri; Zhang, Chao; Senf, Alexander; Bijlard, Jochem; Hiltemann, Saskia; van Enckevort, David; Repo, Susanna; Heringa, Jaap; Jenster, Guido; J A Fijneman, Remond; Boiten, Jan-Willem; A Meijer, Gerrit; Stubbs, Andrew; Rambla, Jordi; Spalding, Dylan; Abeln, Sanne

    2016-01-01

    High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study.  The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer.

  14. Integration of EGA secure data access into Galaxy

    PubMed Central

    Hoogstrate, Youri; Zhang, Chao; Senf, Alexander; Bijlard, Jochem; Hiltemann, Saskia; van Enckevort, David; Repo, Susanna; Heringa, Jaap; Jenster, Guido; Fijneman, Remond J.A.; Boiten, Jan-Willem; A. Meijer, Gerrit; Stubbs, Andrew; Rambla, Jordi; Spalding, Dylan; Abeln, Sanne

    2016-01-01

    High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study.  The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer. PMID:28232859

  15. Analyzing Reliability and Performance Trade-Offs of HLS-Based Designs in SRAM-Based FPGAs Under Soft Errors

    NASA Astrophysics Data System (ADS)

    Tambara, Lucas Antunes; Tonfat, Jorge; Santos, André; Kastensmidt, Fernanda Lima; Medina, Nilberto H.; Added, Nemitala; Aguiar, Vitor A. P.; Aguirre, Fernando; Silveira, Marcilei A. G.

    2017-02-01

    The increasing system complexity of FPGA-based hardware designs and shortening of time-to-market have motivated the adoption of new designing methodologies focused on addressing the current need for high-performance circuits. High-Level Synthesis (HLS) tools can generate Register Transfer Level (RTL) designs from high-level software programming languages. These tools have evolved significantly in recent years, providing optimized RTL designs, which can serve the needs of safety-critical applications that require both high performance and high reliability levels. However, a reliability evaluation of HLS-based designs under soft errors has not yet been presented. In this work, the trade-offs of different HLS-based designs in terms of reliability, resource utilization, and performance are investigated by analyzing their behavior under soft errors and comparing them to a standard processor-based implementation in an SRAM-based FPGA. Results obtained from fault injection campaigns and radiation experiments show that it is possible to increase the performance of a processor-based system up to 5,000 times by changing its architecture with a small impact in the cross section (increasing up to 8 times), and still increasing the Mean Workload Between Failures (MWBF) of the system.

  16. Cognitive considerations for helmet-mounted display design

    NASA Astrophysics Data System (ADS)

    Francis, Gregory; Rash, Clarence E.

    2010-04-01

    Helmet-mounted displays (HMDs) are designed as a tool to increase performance. To achieve this, there must be an accurate transfer of information from the HMD to the user. Ideally, an HMD would be designed to accommodate the abilities and limitations of users' cognitive processes. It is not enough for the information (whether visual, auditory, or tactual) to be displayed; the information must be perceived, attended, remembered, and organized in a way that guides appropriate decision-making, judgment, and action. Following a general overview, specific subtopics of cognition, including perception, attention, memory, knowledge, decision-making, and problem solving are explored within the context of HMDs.

  17. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  18. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  19. MDTM: Optimizing Data Transfer using Multicore-Aware I/O Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liang; Demar, Phil; Wu, Wenji

    2017-05-09

    Bulk data transfer is facing significant challenges in the coming era of big data. There are multiple performance bottlenecks along the end-to-end path from the source to destination storage system. The limitations of current generation data transfer tools themselves can have a significant impact on end-to-end data transfer rates. In this paper, we identify the issues that lead to underperformance of these tools, and present a new data transfer tool with an innovative I/O scheduler called MDTM. The MDTM scheduler exploits underlying multicore layouts to optimize throughput by reducing delay and contention for I/O reading and writing operations. With ourmore » evaluations, we show how MDTM successfully avoids NUMA-based congestion and significantly improves end-to-end data transfer rates across high-speed wide area networks.« less

  20. MDTM: Optimizing Data Transfer using Multicore-Aware I/O Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liang; Demar, Phil; Wu, Wenji

    2017-01-01

    Bulk data transfer is facing significant challenges in the coming era of big data. There are multiple performance bottlenecks along the end-to-end path from the source to destination storage system. The limitations of current generation data transfer tools themselves can have a significant impact on end-to-end data transfer rates. In this paper, we identify the issues that lead to underperformance of these tools, and present a new data transfer tool with an innovative I/O scheduler called MDTM. The MDTM scheduler exploits underlying multicore layouts to optimize throughput by reducing delay and contention for I/O reading and writing operations. With ourmore » evaluations, we show how MDTM successfully avoids NUMA-based congestion and significantly improves end-to-end data transfer rates across high-speed wide area networks.« less

  1. Statistical Tools for Designing Initial and Post-Removal UXO Characterization Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulsipher, Brent A.; Gilbert, Richard O.; Wilson, John E.

    2002-09-06

    The Department of Defense (DoD) is in the process of assessing and remediating closed, transferred, and transferring ranges. It is estimated that over 20 million acres of land in the United States potentially contain UXO. The release of DoD sites for public use will require high confidence that UXO is not present. This high confidence may be achieved solely from an extensive knowledge of historical site operations as documented in the conceptual site model or in combination with geophysical sensor surveys designed to have a sufficiently high probability of finding UXO contaminated zones. Many of these sites involve very largemore » geographical areas such that it is often impractical and/or cost prohibitive to perform 100% surveys of the entire site of interest. In that case, it is necessary to be explicit about the performance required of a survey that covers less than 100% of the site.« less

  2. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  3. Communication interface and graphic module for audiometry equipment.

    PubMed

    Gutiérrez Martinez, Josefina; Barraza López, Fernando; Guadarrama Lara, Alberto; Núñez Gaona, Marco Antonio; Delgado Esquerra, Ruth; Gutiérrez Farfán, Ileana

    2009-01-01

    The National Rehabilitation Institute (INR) in Mexico City purchased 12 Madsen Orbiter 922 audiometers in 2006. While this audiometer is excellent for diagnosing the degree and type of hearing loss, it has presented problems in transfering, saving and printing the results of special tests and logoaudiometry from audiometer to workstation with the NOAH-3 system. The data are lost when the audiometer is turned off or a new patient is captured. There is no database storing and, shortly after the results have been printed on the thermal paper, the audiograms are erased. This problem was addressed by designing and implementing the InterAudio (AAMS) communication and graphical interface. The limitations and scope of the Automatic Audiometric Measurement System were analyzed, then a search of technical information was performed that included the resources for designing, developing and implementing the transfer interface, the user's graphical module requirements, and the tools for printing and saving the study.

  4. Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meintz, Andrew; Prohaska, Robert; Konan, Arnaud

    System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles (EVs). This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by NREL called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of chargingmore » locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.« less

  5. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-04-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  6. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  7. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  8. Culture et Gestion d'Etangs a Poissons d'Eau Douce (Freshwater Fish Pond Culture and Management). Appropriate Technologies for Development. Manual Series--M37.

    ERIC Educational Resources Information Center

    Chakroff, Marilyn; Druben, Laurel, Ed.

    This is the French translation of a "how-to" manual, designed as a working and teaching tool for extension agents as they establish and/or maintain local fish pond operations. The manual presents information to facilitate technology transfer and to provide a clear guide for warm water fish pond construction and management. Major topic…

  9. Cultivo y Manejo de Estanques Pesqueros de Agua Fresca (Freshwater Fish Pond Culture and Management). Appropriate Technologies for Development. Manual M-1D.

    ERIC Educational Resources Information Center

    Chakroff, Marilyn; Druben, Laurel, Ed.

    This is the Spanish translation of a "how-to" manual, designed as a working and teaching tool for extension agents as they establish and/or maintain local fish pond operations. The manual presents information to facilitate technology transfer and to provide a clear guide for warm water fish pond construction and management. Major topic…

  10. Quality Assurance System. Volume 1. Report (Technology Transfer Program)

    DTIC Science & Technology

    1980-03-03

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building...192 Room 128-9500 MacArthur Blvd Bethesda, MD 20817-5700 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS...presented herein. TABLE OF CONTENTS VOLUME I - FINDINGS AND CONCLUSIONS SECTION PARAGRAPH TITLE 1 INTRODUCTION 1.1 Purpose and Scope 1.2 Organization of

  11. A global model for steady state and transient S.I. engine heat transfer studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohac, S.V.; Assanis, D.N.; Baker, D.M.

    1996-09-01

    A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less

  12. Technological aspects of hospital communication challenges: an observational study.

    PubMed

    Popovici, Ilinca; Morita, Plinio P; Doran, Diane; Lapinsky, Stephen; Morra, Dante; Shier, Ashleigh; Wu, Robert; Cafazzo, Joseph A

    2015-06-01

    To gain insights into how technological communication tools impact effective communication among clinicians, which is critical for patient safety. This multi-site observational study analyzes inter-clinician communication and interaction with information technology, with a focus on the critical process of patient transfer from the Emergency Department to General Internal Medicine. Mount Sinai Hospital, Sunnybrook Health Sciences Centre and Toronto General Hospital. At least five ED and general internal medicine nurses and physicians directly involved in patient transfers were observed on separate occasions at each institution. N/A. N/A. The study provides insight into clinician workflow, evaluates current hospital communication systems and identifies key issues affecting communication: interruptions, issues with numeric pagers, lack of integrated communication tools, lack of awareness of consultation status, inefficiencies related to the paper chart, unintuitive user interfaces, mixed use of electronic and paper systems and lack of up-to-date contact information. It also identifies design trade-offs to be negotiated: synchronous communication vs. reducing interruptions, notification of patient status vs. reducing interruptions and speed vs. quality of handovers. The issues listed should be considered in the design of new technology for hospital communications. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  13. Smart Markets for Transferable Pumping Rights

    NASA Astrophysics Data System (ADS)

    Brozovic, N.; Young, R.

    2016-12-01

    While no national policy on groundwater use exists in the United States, local groundwater management is emerging across the country in response to concerns and conflicts over declining well yields, land subsidence, and the depletion of hydrologically connected surface waters. Management strategies include well drilling moratoria, pumping restrictions, and restrictions on the expansion of irrigated land. To provide flexibility to groundwater users, local regulatory authorities increasingly have begun to allow the transfer of groundwater rights as a cost-effective management tool. Markets can be a versatile risk management tool, helping communities to cope with scarcity, to meet goals for sustainability, and to grow resilient local economies. For example, active groundwater rights transfers exist in the High Plains region of the United States. Yet, several barriers to trade exist: high search costs for interested parties, complicated requirements for regulatory compliance, and reluctance to share sensitive financial information. Additionally, groundwater pumping leads to several kinds of spatial and intertemporal externalities such as stream depletion. Indeed, groundwater management schemes that reallocate water between alternate pumping locations are often explicitly designed to change the distribution and magnitude of pumping externalities. Reallocation may be designed to minimize unwanted impacts on third parties or to encourage trades that reduce the magnitude of externalities. We discuss how smart markets can deal with complex biophysical constraints while also encouraging active trading, therefore ensuring local goals for aquifer sustainability while growing local economies. Smart markets address these issues by providing a centralized hub for trading, automating the process of regulatory compliance by only matching buyers and sellers eligible to trade as specified in the regulations, and maintaining anonymous, confidential bidding.

  14. Terrestrial quarantine considerations for unmanned sample return missions

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Stavro, W.; Miller, L. W.; Taylor, D. M.

    1973-01-01

    For the purpose of understanding some of the possible implications of a terrestrial quarantine constraint on a mission and for developing a basic approach which can be used to demonstrate compliance beyond that developed for Apollo, a terrestrial quarantine study was performed. It is shown that some of the basic tools developed and used by the planetary quarantine community have applicability to terrestrial quarantine analysis. By using these tools, it is concluded that: (1) the method of biasing the earth aiming point when returning from the planet is necessary but, by itself, may not satisfy terrestrial quarantine constraints; and (2) spacecraft and container design significantly influence contamination transfer.

  15. Theory and experimental validation of SPLASH (Single Panel Lamp and Shroud Helper).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Marvin Elwood; Porter, Jason M.

    2005-06-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly program that allows a designer to describe a test setup in terms of parameters such as lamp number, power, position, and separation distance. Thermal radiation is the dominant mechanism of heat transfer and the SPLASH model solves a radiation enclosure problem to estimate temperature distributions inmore » a shroud providing the boundary condition of interest. Irradiance distribution on a specified viewing plane is also estimated. This document provides the theoretical development for the underlying model. A series of tests were conducted to characterize SPLASH's ability to analyze lamp and shroud systems. The comparison suggests that SPLASH succeeds as a design tool. Simplifications made to keep the model tractable are demonstrated to result in estimates that are only approximately as uncertain as many of the properties and characteristics of the operating environment.« less

  16. A concept ideation framework for medical device design.

    PubMed

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar

    2015-06-01

    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    PubMed

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  18. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  19. Aerodynamics and thermal physics of helicopter ice accretion

    NASA Astrophysics Data System (ADS)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was developed based on a set of 82 experimental measurements and also compared to existing predictions tools. Two reference predictions found in the literature yielded 76% and 54% discrepancy with respect to experimental testing, whereas the proposed ice roughness prediction model resulted in a 31% minimum accuracy in prediction. It must be noted that the accuracy of the proposed model is within the ice shape reproduction uncertainty of icing facilities. Based on the new ice roughness prediction model and the CSR heat transfer scaling method, an icing heat transfer model was developed. The approach achieved high accuracy in heat transfer prediction compared to experiments conducted at the AERTS facility. The discrepancy between predictions and experimental results was within +/-15%, which was within the measurement uncertainty range of the facility. By combining both the ice roughness and heat transfer predictions, and incorporating the modules into an existing ice prediction tool (LEWICE), improved prediction capability was obtained, especially for the glaze regime. With the available ice shapes accreted at the AERTS facility and additional experiments found in the literature, 490 sets of experimental ice shapes and corresponding aerodynamics testing data were available. A physics-based performance degradation empirical tool was developed and achieved a mean absolute deviation of 33% when compared to the entire experimental dataset, whereas 60% to 243% discrepancies were observed using legacy drag penalty prediction tools. Rotor torque predictions coupling Blade Element Momentum Theory and the proposed drag performance degradation tool was conducted on a total of 17 validation cases. The coupled prediction tool achieved a 10% predicting error for clean rotor conditions, and 16% error for iced rotor conditions. It was shown that additional roughness element could affect the measured drag by up to 25% during experimental testing, emphasizing the need of realistic ice structures during aerodynamics modeling and testing for ice accretion.

  20. Improving Escalation of Care: Development and Validation of the Quality of Information Transfer Tool.

    PubMed

    Johnston, Maximilian J; Arora, Sonal; Pucher, Philip H; Reissis, Yannis; Hull, Louise; Huddy, Jeremy R; King, Dominic; Darzi, Ara

    2016-03-01

    To develop and provide validity and feasibility evidence for the QUality of Information Transfer (QUIT) tool. Prompt escalation of care in the setting of patient deterioration can prevent further harm. Escalation and information transfer skills are not currently measured in surgery. This study comprised 3 phases: the development (phase 1), validation (phase 2), and feasibility analysis (phase 3) of the QUIT tool. Phase 1 involved identification of core skills needed for successful escalation of care through literature review and 33 semistructured interviews with stakeholders. Phase 2 involved the generation of validity evidence for the tool using a simulated setting. Thirty surgeons assessed a deteriorating postoperative patient in a simulated ward and escalated their care to a senior colleague. The face and content validity were assessed using a survey. Construct and concurrent validity of the tool were determined by comparing performance scores using the QUIT tool with those measured using the Situation-Background-Assessment-Recommendation (SBAR) tool. Phase 3 was conducted using direct observation of escalation scenarios on surgical wards in 2 hospitals. A 7-category assessment tool was developed from phase 1 consisting of 24 items. Twenty-one of 24 items had excellent content validity (content validity index >0.8). All 7 categories and 18 of 24 (P < 0.05) items demonstrated construct validity. The correlation between the QUIT and SBAR tools used was strong indicating concurrent validity (r = 0.694, P < 0.001). Real-time scoring of escalation referrals was feasible and indicated that doctors currently have better information transfer skills than nurses when faced with a deteriorating patient. A validated tool to assess information transfer for deteriorating surgical patients was developed and tested using simulation and real-time clinical scenarios. It may improve the quality and safety of patient care on the surgical ward.

  1. TOAD Editor

    NASA Technical Reports Server (NTRS)

    Bingle, Bradford D.; Shea, Anne L.; Hofler, Alicia S.

    1993-01-01

    Transferable Output ASCII Data (TOAD) computer program (LAR-13755), implements format designed to facilitate transfer of data across communication networks and dissimilar host computer systems. Any data file conforming to TOAD format standard called TOAD file. TOAD Editor is interactive software tool for manipulating contents of TOAD files. Commonly used to extract filtered subsets of data for visualization of results of computation. Also offers such user-oriented features as on-line help, clear English error messages, startup file, macroinstructions defined by user, command history, user variables, UNDO features, and full complement of mathematical statistical, and conversion functions. Companion program, TOAD Gateway (LAR-14484), converts data files from variety of other file formats to that of TOAD. TOAD Editor written in FORTRAN 77.

  2. Using Teamcenter engineering software for a successive punching tool lifecycle management

    NASA Astrophysics Data System (ADS)

    Blaga, F.; Pele, A.-V.; Stǎnǎşel, I.; Buidoş, T.; Hule, V.

    2015-11-01

    The paper presents studies and researches results of the implementation of Teamcenter (TC) integrated management of a product lifecycle, in a virtual enterprise. The results are able to be implemented also in a real enterprise. The product was considered a successive punching and cutting tool, designed to materialize a metal sheet part. The paper defines the technical documentation flow (flow of information) in the process of constructive computer aided design of the tool. After the design phase is completed a list of parts is generated containing standard or manufactured components (BOM, Bill of Materials). The BOM may be exported to MS Excel (.xls) format and can be transferred to other departments of the company in order to supply the necessary materials and resources to achieve the final product. This paper describes the procedure to modify or change certain dimensions of sheet metal part obtained by punching. After 3D and 2D design, the digital prototype of punching tool moves to following lifecycle phase of the manufacturing process. For each operation of the technological process the corresponding phases are described in detail. Teamcenter enables to describe manufacturing company structure, underlying workstations that carry out various operations of manufacturing process. The paper revealed that the implementation of Teamcenter PDM in a company, improves efficiency of managing product information, eliminating time working with search, verification and correction of documentation, while ensuring the uniqueness and completeness of the product data.

  3. Recent developments in software tools for high-throughput in vitro ADME support with high-resolution MS.

    PubMed

    Paiva, Anthony; Shou, Wilson Z

    2016-08-01

    The last several years have seen the rapid adoption of the high-resolution MS (HRMS) for bioanalytical support of high throughput in vitro ADME profiling. Many capable software tools have been developed and refined to process quantitative HRMS bioanalysis data for ADME samples with excellent performance. Additionally, new software applications specifically designed for quan/qual soft spot identification workflows using HRMS have greatly enhanced the quality and efficiency of the structure elucidation process for high throughput metabolite ID in early in vitro ADME profiling. Finally, novel approaches in data acquisition and compression, as well as tools for transferring, archiving and retrieving HRMS data, are being continuously refined to tackle the issue of large data file size typical for HRMS analyses.

  4. A simple tool for stereological assessment of digital images: the STEPanizer.

    PubMed

    Tschanz, S A; Burri, P H; Weibel, E R

    2011-07-01

    STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  5. In-Space Radiator Shape Optimization using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.

  6. Modeling and Simulation for Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  7. An overview of very high level software design methods

    NASA Technical Reports Server (NTRS)

    Asdjodi, Maryam; Hooper, James W.

    1988-01-01

    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.

  8. Analysis of a mammography teaching program based on an affordance design model.

    PubMed

    Luo, Ping; Eikman, Edward A; Kealy, William; Qian, Wei

    2006-12-01

    The wide use of computer technology in education, particularly in mammogram reading, asks for e-learning evaluation. The existing media comparative studies, learner attitude evaluations, and performance tests are problematic. Based on an affordance design model, this study examined an existing e-learning program on mammogram reading. The selection criteria include content relatedness, representativeness, e-learning orientation, image quality, program completeness, and accessibility. A case study was conducted to examine the affordance features, functions, and presentations of the selected software. Data collection and analysis methods include interviews, protocol-based document analysis, and usability tests and inspection. Also some statistics were calculated. The examination of PBE identified that this educational software designed and programmed some tools. The learner can use these tools in the process of optimizing displays, scanning images, comparing different projections, marking the region of interests, constructing a descriptive report, assessing one's learning outcomes, and comparing one's decisions with the experts' decisions. Further, PBE provides some resources for the learner to construct one's knowledge and skills, including a categorized image library, a term-searching function, and some teaching links. Besides, users found it easy to navigate and carry out tasks. The users also reacted positively toward PBE's navigation system, instructional aids, layout, pace and flow of information, graphics, and other presentation design. The software provides learners with some cognitive tools, supporting their perceptual problem-solving processes and extending their capabilities. Learners can internalize the mental models in mammogram reading through multiple perceptual triangulations, sensitization of related features, semantic description of mammogram findings, and expert-guided semantic report construction. The design of these cognitive tools and the software interface matches the findings and principles in human learning and instructional design. Working with PBE's case-based simulations and categorized gallery, learners can enrich and transfer their experience to their jobs.

  9. Integrating opto-thermo-mechanical design tools: open engineering's project presentation

    NASA Astrophysics Data System (ADS)

    De Vincenzo, P.; Klapka, Igor

    2017-11-01

    An integrated numerical simulation package dedicated to the analysis of the coupled interactions of optical devices is presented. To reduce human interventions during data transfers, it is based on in-memory communications between the structural analysis software OOFELIE and the optical design application ZEMAX. It allows the automated enhancement of the existing optical design with information related to the deformations of optical surfaces due to thermomechanical solicitations. From the knowledge of these deformations, a grid of points or a decomposition based on Zernike polynomials can be generated for each surface. These data are then applied to the optical design. Finally, indicators can be retrieved from ZEMAX in order to compare the optical performances with those of the system in its nominal configuration.

  10. IBES: a tool for creating instructions based on event segmentation

    PubMed Central

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-01-01

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool. PMID:24454296

  11. IBES: a tool for creating instructions based on event segmentation.

    PubMed

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-12-26

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  12. A status of the Turbine Technology Team activities

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    1992-01-01

    The recent activities of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology is presented. The team consists of members from the government, industry, and universities. The goal of this team is to demonstrate the benefits to the turbine design process attainable through the application of CFD. This goal is to be achieved by enhancing and validating turbine design tools for improved loading and flowfield definition and loss prediction, and transferring the advanced technology to the turbine design process. In order to demonstrate the advantages of using CFD early in the design phase, the Space Transportation Main Engine (STME) turbines for the National Launch System (NLS) were chosen on which to focus the team's efforts. The Turbine Team activities run parallel to the STME design work.

  13. New features in the design code Tlie

    NASA Astrophysics Data System (ADS)

    van Zeijts, Johannes

    1993-12-01

    We present features recently installed in the arbitrary-order accelerator design code Tlie. The code uses the MAD input language, and implements programmable extensions modeled after the C language that make it a powerful tool in a wide range of applications: from basic beamline design to high precision-high order design and even control room applications. The basic quantities important in accelerator design are easily accessible from inside the control language. Entities like parameters in elements (strength, current), transfer maps (either in Taylor series or in Lie algebraic form), lines, and beams (either as sets of particles or as distributions) are among the type of variables available. These variables can be set, used as arguments in subroutines, or just typed out. The code is easily extensible with new datatypes.

  14. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  15. Videogame interventions and spatial ability interactions.

    PubMed

    Redick, Thomas S; Webster, Sean B

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one's cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices.

  16. Videogame interventions and spatial ability interactions

    PubMed Central

    Redick, Thomas S.; Webster, Sean B.

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one’s cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices. PMID:24723880

  17. HEMATOPOIETIC STEM CELL GENE THERAPY: ASSESSING THE RELEVANCE OF PRE-CLINICAL MODELS

    PubMed Central

    Larochelle, Andre; Dunbar, Cynthia E.

    2013-01-01

    The modern laboratory mouse has become a central tool for biomedical research with a notable influence in the field of hematopoiesis. Application of retroviral-based gene transfer approaches to mouse hematopoietic stem cells (HSCs) has led to a sophisticated understanding of the hematopoietic hierarchy in this model. However, the assumption that gene transfer methodologies developed in the mouse could be similarly applied to human HSCs for the treatment of human diseases left the field of gene therapy in a decade-long quandary. It is not until more relevant humanized xenograft mouse models and phylogenetically related large animal species were used to optimize gene transfer methodologies that unequivocal clinical successes were achieved. However, the subsequent reporting of severe adverse events in these clinical trials casted doubts on the predictive value of conventional pre-clinical testing, and encouraged the development of new assays for assessing the relative genotoxicity of various vector designs. PMID:24014892

  18. AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system

    NASA Astrophysics Data System (ADS)

    Hamre, Børge; Stamnes, Snorre; Stamnes, Knut; Stamnes, Jakob

    2017-02-01

    Reliable, accurate, and efficient modeling of the transport of electromagnetic radiation in turbid media has important applications in the study of the Earth's climate by remote sensing. For example, such modeling is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol and cloud particles in the atmosphere, the dissolved organic and particulate biogeochemical matter in lakes, rivers, coastal, and open-ocean waters. It is also needed to simulate the performance of remote sensing detectors deployed on aircraft, balloons, and satellites as well as radiometric detectors deployed on buoys, gliders and other aquatic observing systems. Accurate radiative transfer modeling is also required to compute irradiances and scalar irradiances that are used to compute warming/cooling and photolysis rates in the atmosphere and primary production and warming/cooling rates in the water column. AccuRT is a radiative transfer model for the coupled atmosphere-water system that is designed to be a versatile tool for researchers in the ocean optics and remote sensing communities. It addresses the needs of researchers interested in analyzing irradiance and radiance measurements in the field and laboratory as well as those interested in making simulations of the top-of-the-atmosphere radiance in support of remote sensing algorithm development.

  19. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  20. Inverse Coarse-Graining: A New Tool for Molecular Design

    DTIC Science & Technology

    2010-12-16

    simulations. When compared with the more general multiscale coarse-graining (MS-CG) method, the EF-CG method retains the transferable part of the CG...Y.; Yan, T.; Voth, G. A., A Multiscale coarse-graining study of liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of...Energetic Room Temperature Ionic Liquid 1-Hydroxyethyl-4Amino-1, 2, 4-Triazolium Nitrate (HEATN). J. Phys. Chem. B 2008, 112, 3121-3131. 6. Liu, P

  1. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.

  2. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range ofmore » effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.« less

  3. A portal to validated websites on cosmetic surgery: the design of an archetype.

    PubMed

    Parikh, A R; Kok, K; Redfern, B; Clarke, A; Withey, S; Butler, P E M

    2006-09-01

    There has recently been an increase in the usage of the Internet as a source of patient information. It is very difficult for laypersons to establish the accuracy and validity of these medical websites. Although many website assessment tools exist, most of these are not practical.A combination of consumer- and clinician-based website assessment tools was applied to 200 websites on cosmetic surgery. The top-scoring websites were used as links from a portal website that was designed using Microsoft Macromedia Suite.Seventy-one (35.5%) websites were excluded. One hundred fifteen websites (89%) failed to reach an acceptable standard.The provision of new websites has proceeded without quality controls. Patients need to be better educated on the limitations of the Internet. This paper suggests an archetypal model, which makes efficient use of existing resources, validates them, and is easily transferable to different health settings.

  4. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John; Schmitz, Eric; Hoff, William

    1991-01-01

    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.

  5. Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meintz, Andrew; Prohaska, Robert; Konan, Arnaud

    System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles. This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by the National Renewable Energy Laboratory called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variablemore » number of charging locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.« less

  6. How Toddlers Acquire and Transfer Tool Knowledge: Developmental Changes and the Role of Executive Functions.

    PubMed

    Pauen, Sabina; Bechtel-Kuehne, Sabrina

    2016-07-01

    This report investigates tool learning and its relations to executive functions (EFs) in toddlers. In Study 1 (N = 93), 18-, 20-, 22-, and 24-month-old children learned equally well to choose a correct tool from observation, whereas performance based on feedback improved with age. Knowledge transfer showed significant progress after 22 months of age: Older children ignored irrelevant features more easily and adjusted their behavior more flexibly. Study 2 (N = 62) revealed that spontaneous transfer in 22- to 24-month-olds was related to set-shifting skills and response inhibition. Flexible adaptation to feedback correlated with working-memory capacity. These findings suggest that toddlerhood is a highly dynamic phase of tool learning and that EFs are related to transfer performance at this age. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  7. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  8. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin.

    PubMed

    Raji, Grace R; Sruthi, T V; Edatt, Lincy; Haritha, K; Sharath Shankar, S; Sameer Kumar, V B

    2017-10-01

    Recent studies indicate that horizontal transfer of genetic material can act as a communication tool between heterogenous populations of tumour cells, thus altering the chemosensitivity of tumour cells. The present study was designed to check whether the horizontal transfer of miRNAs released by cisplatin resistant (Cp-r) Hepatocarcinoma cells can alter the sensitivity of cervical cancer cells. For this exosomes secreted by cisplatin resistant and cisplatin sensitive HepG2 cells (EXres and EXsen) were isolated and characterised. Cytotoxicity analysis showed that EXres can make Hela cells resistant to cisplatin. Analysis of miR-106a/b levels in EXres and EXsen showed that their levels vary. Mechanistic studies showed that miR-106a/b play an important role in EXsen and EXres mediated change in chemosensitivity of Hela cells to cisplatin. Further SIRT1 was identified as a major target of miR-106a/b using in silico tools and this was proved by experimentation. Also the effect of miR-106a/b in chemosensitivity was seen to be dependent on regulation of SIRT1 by miR-106a/b. In brief, this study brings into light, the SIRT1 dependent mechanism of miR-106a/b mediated regulation of chemosensitivity upon the horizontal transfer from one cell type to another. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Transfer of the epoxidation of soybean oil from batch to flow chemistry guided by cost and environmental issues.

    PubMed

    Kralisch, Dana; Streckmann, Ina; Ott, Denise; Krtschil, Ulich; Santacesaria, Elio; Di Serio, Martino; Russo, Vincenzo; De Carlo, Lucrezia; Linhart, Walter; Christian, Engelbert; Cortese, Bruno; de Croon, Mart H J M; Hessel, Volker

    2012-02-13

    The simple transfer of established chemical production processes from batch to flow chemistry does not automatically result in more sustainable ones. Detailed process understanding and the motivation to scrutinize known process conditions are necessary factors for success. Although the focus is usually "only" on intensifying transport phenomena to operate under intrinsic kinetics, there is also a large intensification potential in chemistry under harsh conditions and in the specific design of flow processes. Such an understanding and proposed processes are required at an early stage of process design because decisions on the best-suited tools and parameters required to convert green engineering concepts into practice-typically with little chance of substantial changes later-are made during this period. Herein, we present a holistic and interdisciplinary process design approach that combines the concept of novel process windows with process modeling, simulation, and simplified cost and lifecycle assessment for the deliberate development of a cost-competitive and environmentally sustainable alternative to an existing production process for epoxidized soybean oil. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  11. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  12. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Cancer.gov

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  13. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed for the mission and the orbit inclination domain. For high inclination orbits near 98 deg, the disposal orbit strategy is more appropriate for short duration missions, while the deorbiting kit strategy ensures a better propellant margin. Conversely, for lower inclination orbits near 65 deg, the deorbiting kit strategy appears to be the only possible with a 10 debris set. We eventually explain the consistency of these results with regards to astrodynamics.

  14. How Toddlers Acquire and Transfer Tool Knowledge: Developmental Changes and the Role of Executive Functions

    ERIC Educational Resources Information Center

    Pauen, Sabina; Bechtel-Kuehne, Sabrina

    2016-01-01

    This report investigates tool learning and its relations to executive functions (EFs) in toddlers. In Study 1 (N = 93), 18-, 20-, 22-, and 24-month-old children learned equally well to choose a correct tool from observation, whereas performance based on feedback improved with age. Knowledge transfer showed significant progress after 22 months of…

  15. A Map-Based Service Supporting Different Types of Geographic Knowledge for the Public

    PubMed Central

    Zhou, Mengjie; Wang, Rui; Tian, Jing; Ye, Ning; Mai, Shumin

    2016-01-01

    The internet enables the rapid and easy creation, storage, and transfer of knowledge; however, services that transfer geographic knowledge and facilitate the public understanding of geographic knowledge are still underdeveloped to date. Existing online maps (or atlases) can support limited types of geographic knowledge. In this study, we propose a framework for map-based services to represent and transfer different types of geographic knowledge to the public. A map-based service provides tools to ensure the effective transfer of geographic knowledge. We discuss the types of geographic knowledge that should be represented and transferred to the public, and we propose guidelines and a method to represent various types of knowledge through a map-based service. To facilitate the effective transfer of geographic knowledge, tools such as auxiliary background knowledge and auxiliary map-reading tools are provided through interactions with maps. An experiment conducted to illustrate our idea and to evaluate the usefulness of the map-based service is described; the results demonstrate that the map-based service is useful for transferring different types of geographic knowledge. PMID:27045314

  16. A Map-Based Service Supporting Different Types of Geographic Knowledge for the Public.

    PubMed

    Zhou, Mengjie; Wang, Rui; Tian, Jing; Ye, Ning; Mai, Shumin

    2016-01-01

    The internet enables the rapid and easy creation, storage, and transfer of knowledge; however, services that transfer geographic knowledge and facilitate the public understanding of geographic knowledge are still underdeveloped to date. Existing online maps (or atlases) can support limited types of geographic knowledge. In this study, we propose a framework for map-based services to represent and transfer different types of geographic knowledge to the public. A map-based service provides tools to ensure the effective transfer of geographic knowledge. We discuss the types of geographic knowledge that should be represented and transferred to the public, and we propose guidelines and a method to represent various types of knowledge through a map-based service. To facilitate the effective transfer of geographic knowledge, tools such as auxiliary background knowledge and auxiliary map-reading tools are provided through interactions with maps. An experiment conducted to illustrate our idea and to evaluate the usefulness of the map-based service is described; the results demonstrate that the map-based service is useful for transferring different types of geographic knowledge.

  17. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    NASA Astrophysics Data System (ADS)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  18. Separation analysis, a tool for analyzing multigrid algorithms

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1995-01-01

    The separation of vectors by multigrid (MG) algorithms is applied to the study of convergence and to the prediction of the performance of MG algorithms. The separation operator for a two level cycle algorithm is derived. It is used to analyze the efficiency of the cycle when mixing of eigenvectors occurs. In particular cases the separation analysis reduces to Fourier type analysis. The separation operator of a two level cycle for a Schridubger eigenvalue problem, is derived and analyzed in a Fourier basis. Separation analysis gives information on how to choose performance relaxations and inter-level transfers. Separation analysis is a tool for analyzing and designing algorithms, and for optimizing their performance.

  19. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2005-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  20. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2006-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  1. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.

  2. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405

  3. Experimental validation of predicted cancer genes using FRET

    NASA Astrophysics Data System (ADS)

    Guala, Dimitri; Bernhem, Kristoffer; Ait Blal, Hammou; Jans, Daniel; Lundberg, Emma; Brismar, Hjalmar; Sonnhammer, Erik L. L.

    2018-07-01

    Huge amounts of data are generated in genome wide experiments, designed to investigate diseases with complex genetic causes. Follow up of all potential leads produced by such experiments is currently cost prohibitive and time consuming. Gene prioritization tools alleviate these constraints by directing further experimental efforts towards the most promising candidate targets. Recently a gene prioritization tool called MaxLink was shown to outperform other widely used state-of-the-art prioritization tools in a large scale in silico benchmark. An experimental validation of predictions made by MaxLink has however been lacking. In this study we used Fluorescence Resonance Energy Transfer, an established experimental technique for detection of protein-protein interactions, to validate potential cancer genes predicted by MaxLink. Our results provide confidence in the use of MaxLink for selection of new targets in the battle with polygenic diseases.

  4. Test Analysis Tools to Ensure Higher Quality of On-Board Real Time Software for Space Applications

    NASA Astrophysics Data System (ADS)

    Boudillet, O.; Mescam, J.-C.; Dalemagne, D.

    2008-08-01

    EADS Astrium Space Transportation, in its Les Mureaux premises, is responsible for the French M51 nuclear deterrent missile onboard SW. There was also developed over 1 million of line of code, mostly in ADA, for the Automated Transfer Vehicle (ATV) onboard SW and the flight control SW of the ARIANE5 launcher which has put it into orbit. As part of the ATV SW, ASTRIUM ST has developed the first Category A SW ever qualified for a European space application. To ensure that all these embedded SW have been developed with the highest quality and reliability level, specific development tools have been designed to cover the steps of source code verification, automated validation test or complete target instruction coverage verification. Three of such dedicated tools are presented here.

  5. Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design.

    PubMed

    Yuan, Shuguang; Chan, H C Stephen; Hu, Zhenquan

    2017-06-01

    Web browsers have long been recognized as potential platforms for remote macromolecule visualization. However, the difficulty in transferring large-scale data to clients and the lack of native support for hardware-accelerated applications in the local browser undermine the feasibility of such utilities. With the introduction of WebGL and HTML5 technologies in recent years, it is now possible to exploit the power of a graphics-processing unit (GPU) from a browser without any third-party plugin. Many new tools have been developed for biological molecule visualization and modern drug discovery. In contrast to traditional offline tools, real-time computing, interactive data analysis, and cross-platform analyses feature WebGL- and HTML5-based tools, facilitating biological research in a more efficient and user-friendly way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.

    PubMed

    Hibler, Susanne; Wagner, Christophe; Gieseler, Henning

    2012-03-01

    In order to optimize a freeze-drying cycle, information regarding the heat transfer characteristics of the container system is imperative. Two most recently developed tubing (TopLyo™) and molded (EasyLyo™) vial designs were compared with a standard serum tubing and molded vial, a polymer vial (TopPac™), and an amber molded EasyLyo™. In addition, the impact of methodology on the determination of reliable vial heat transfer coefficient (K(v) ) data is examined in detail. All K(v) s were gravimetrically determined by sublimation tests with pure water at 50, 100, 200, and 400 mTorr. In contrast to the traditional assumption that molded vials exhibit inefficient heat transfer characteristics, these vials showed a very similar performance compared with their serum tubing counterparts in the relevant pressure range for freeze-drying. At 100 mTorr, the TopLyo™ center vials show only 4% higher K(v) values than the EasyLyo™ center vials. All glass vials outmatch the polymer vial in terms of heat transfer, up to 30% elevated heat transfer for the TopLyo™ center vials at 400 mTorr. Sublimation tests have demonstrated to be a valuable tool to investigate the heat transfer characteristics of vials, but results are dependent on methodology. New developments in molded vial manufacturing lead to improved heat transfer performance. Copyright © 2011 Wiley Periodicals, Inc.

  7. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    NASA Astrophysics Data System (ADS)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  8. CASTEAUR: a simple tool to assess the transfer of radionuclides in waterways.

    PubMed

    Beaugelin-Seiller, K; Boyer, P; Garnier-Laplace, J; Adam, C

    2002-10-01

    The CASTEAUR project proposes a simplified tool to assess the transfer of radionuclides between and in the main biotic and abiotic components of the freshwater ecosystem. Applied to phenomenological modeling, various hypotheses simplify the transfer equations, which, when programmed under Excel, can be readily dispatched and used. CASTEAUR can be used as an assessment tool for impact studies of accidental release as well as "routine" release. This code is currently being tested on the Rhone River, downstream from a nuclear reprocessing plant. The first results are reported to illustrate the possibilities offered by CASTEAUR.

  9. Tools and technologies for expert systems: A human factors perspective

    NASA Technical Reports Server (NTRS)

    Rajaram, Navaratna S.

    1987-01-01

    It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.

  10. How do CARs work?

    PubMed Central

    Davila, Marco L.; Brentjens, Renier; Wang, Xiuyan; Rivière, Isabelle; Sadelain, Michel

    2012-01-01

    Second-generation chimeric antigen receptors (CARs) are powerful tools to redirect antigen-specific T cells independently of HLA-restriction. Recent clinical studies evaluating CD19-targeted T cells in patients with B-cell malignancies demonstrate the potency of CAR-engineered T cells. With results from 28 subjects enrolled by five centers conducting studies in patients with chronic lymphocytic leukemia (CLL) or lymphoma, some insights into the parameters that determine T-cell function and clinical outcome of CAR-based approaches are emerging. These parameters involve CAR design, T-cell production methods, conditioning chemotherapy as well as patient selection. Here, we discuss the potential relevance of these findings and in particular the interplay between the adoptive transfer of T cells and pre-transfer patient conditioning. PMID:23264903

  11. Computer-assisted template-guided custom-designed 3D-printed implant placement with custom-designed 3D-printed surgical tooling: an in-vitro proof of a novel concept.

    PubMed

    Anssari Moin, David; Derksen, Wiebe; Waars, Hugo; Hassan, Bassam; Wismeijer, Daniel

    2017-05-01

    The aim of this study was to introduce a new concept for computer-assisted template-guided placement of a custom 3D-designed/3D-printed implant with congruent custom 3D-designed/3D-printed surgical tooling and to test the feasibility and accuracy of this method in-vitro. One partially edentulous human mandibular cadaver was scanned with a cone-beam computed tomography (CBCT) system and intra-oral scan system. The 3D data of this cadaver were imported in specialized software and used to analyse the region of a missing tooth. Based on the functional and anatomical parameters, an individual implant with congruent surgical tooling and surgical guided template was designed and 3D-printed. The guided osteotomy was performed, and the custom implant inserted. To evaluate the planned implant position in comparison with the placed implant position, the mandible with implant was scanned again with the CBCT system and software matching was applied to measure the accuracy of the procedure. The angular deflection with the planned implant position was 0.40°. When comparing the 3D positions of the shoulder, there is a deviation of 0.72 mm resulting in an apical deviation of 0.72 mm. With the use of currently available technology, it is very well feasible to create in a virtual simulation a custom implant with congruent custom surgical tooling and to transfer this to a clinical setting. However, further research on multiple levels is needed to explore this novel approach. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. NorthStar, a support tool for the design and evaluation of quality improvement interventions in healthcare.

    PubMed

    Akl, Elie A; Treweek, Shaun; Foy, Robbie; Francis, Jill; Oxman, Andrew D

    2007-06-26

    The Research-Based Education and Quality Improvement (ReBEQI) European partnership aims to establish a framework and provide practical tools for the selection, implementation, and evaluation of quality improvement (QI) interventions. We describe the development and preliminary evaluation of the software tool NorthStar, a major product of the ReBEQI project. We focused the content of NorthStar on the design and evaluation of QI interventions. A lead individual from the ReBEQI group drafted each section, and at least two other group members reviewed it. The content is based on published literature, as well as material developed by the ReBEQI group. We developed the software in both a Microsoft Windows HTML help system version and a web-based version. In a preliminary evaluation, we surveyed 33 potential users about the acceptability and perceived utility of NorthStar. NorthStar consists of 18 sections covering the design and evaluation of QI interventions. The major focus of the intervention design sections is on how to identify determinants of practice (factors affecting practice patterns), while the major focus of the intervention evaluation sections is on how to design a cluster randomised trial. The two versions of the software can be transferred by email or CD, and are available for download from the internet. The software offers easy navigation and various functions to access the content. Potential users (55% response rate) reported above-moderate levels of confidence in carrying out QI research related tasks if using NorthStar, particularly when developing a protocol for a cluster randomised trial NorthStar is an integrated, accessible, practical, and acceptable tool to assist developers and evaluators of QI interventions.

  13. NorthStar, a support tool for the design and evaluation of quality improvement interventions in healthcare

    PubMed Central

    Akl, Elie A; Treweek, Shaun; Foy, Robbie; Francis, Jill; Oxman, Andrew D

    2007-01-01

    Background The Research-Based Education and Quality Improvement (ReBEQI) European partnership aims to establish a framework and provide practical tools for the selection, implementation, and evaluation of quality improvement (QI) interventions. We describe the development and preliminary evaluation of the software tool NorthStar, a major product of the ReBEQI project. Methods We focused the content of NorthStar on the design and evaluation of QI interventions. A lead individual from the ReBEQI group drafted each section, and at least two other group members reviewed it. The content is based on published literature, as well as material developed by the ReBEQI group. We developed the software in both a Microsoft Windows HTML help system version and a web-based version. In a preliminary evaluation, we surveyed 33 potential users about the acceptability and perceived utility of NorthStar. Results NorthStar consists of 18 sections covering the design and evaluation of QI interventions. The major focus of the intervention design sections is on how to identify determinants of practice (factors affecting practice patterns), while the major focus of the intervention evaluation sections is on how to design a cluster randomised trial. The two versions of the software can be transferred by email or CD, and are available for download from the internet. The software offers easy navigation and various functions to access the content. Potential users (55% response rate) reported above-moderate levels of confidence in carrying out QI research related tasks if using NorthStar, particularly when developing a protocol for a cluster randomised trial Conclusion NorthStar is an integrated, accessible, practical, and acceptable tool to assist developers and evaluators of QI interventions. PMID:17594495

  14. Design and Control of Hydronic Radiant Cooling Systems

    NASA Astrophysics Data System (ADS)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air system, 61-63% were removed. From a heat transfer perspective, the differences are mainly because the chilled surfaces directly remove part of the radiant heat gains from a zone, thereby bypassing the time-delay effect caused by the interaction of radiant heat gain with non-active thermal mass in air systems. The major conclusions based on these findings are: 1) there are important limitations in the definition of cooling load for a mixing air system described in Chapter 18 of ASHRAE Handbook of Fundamentals when applied to radiant systems; 2) due to the obvious mismatch between how radiant heat transfer is handled in traditional cooling load calculation methods compared to its central role in radiant cooling systems, this dissertation provides improvements for the current cooling load calculation method based on the Heat Balance procedure. The Radiant Time Series method is not appropriate for radiant system applications. The findings also directly apply to the selection of space heat transfer modeling algorithms that are part of all energy modeling software. Cooling capacity estimation is another critical step in a design project. The above mentioned findings and a review of the existing methods indicates that current radiant system cooling capacity estimation methods fail to take into account incident shortwave radiation generated by solar and lighting in the calculation process. This causes a significant underestimation (up to 150% for some instances) of floor cooling capacity when solar load is dominant. Building performance simulations were conducted to verify this hypothesis and quantify the impacts of solar for different design scenarios. A new simplified method was proposed to improve the predictability of the method described in ISO 11855 when solar radiation is present. The dissertation also compares the energy and comfort benefits of the model-based predictive control (MPC) method with a fine-tuned heuristic control method when applied to a heavyweight embedded surface system. A first order dynamic model of a radiant slab system was developed for implementation in model predictive controllers. A calibrated EnergyPlus model of a typical office building in California was used as a testbed for the comparison. The results indicated that MPC is able to reduce the cooling tower energy consumption by 55% and pumping power consumption by 26%, while maintaining equivalent or even better thermal comfort conditions. In summary, the dissertation work has: (1) provided clear evidence that the fundamental heat transfer mechanisms differ between radiant and air systems. These findings have important implications for the development of accurate and reliable design and energy simulation tools; (2) developed practical design methods and guidance to aid practicing engineers who are designing radiant systems; and (3) outlined future research and design tools need to advance the state-of-knowledge and design and operating guidelines for radiant systems.

  15. Advanced space system analysis software. Technical, user, and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Zimbelman, H. F.

    1981-01-01

    The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.

  16. Social marketing for public health.

    PubMed

    Walsh, D C; Rudd, R E; Moeykens, B A; Moloney, T W

    1993-01-01

    Marketing techniques and tools, imported from the private sector, are increasingly being advocated for their potential value in crafting and disseminating effective social change strategies. This paper describes the field of social marketing as it is used to improve the health of the public. A disciplined process of strategic planning can yield promising new insights into consumer behavior and product design. But the "technology" cannot simply be transferred without some translation to reconcile differences between commercial marketing and public health.

  17. Preserving the Family Woods: tools to help guide transfer to the next generation of landowners

    Treesearch

    US FS Northeastern Area State and Private Forestry; John Becker; Michael Jacobson

    2008-01-01

    Hello, Woodland Owner! Looking forward to a nice conversation with your family about estate planning? If so, you're one of a fairly small number. Estate planning may not be a fun or easy topic, but this is an area where failing to plan can mean planning to fail. This guide is designed to help make the process a little easier. If it helps to know, you're not...

  18. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  19. GIS tools, courses, and learning pathways offered by The National Interagency Fuels, Fire, and Vegetation Technology Transfer (NIFTT)

    Treesearch

    Heather Heward; Kathy H. Schon

    2009-01-01

    As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...

  20. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Treesearch

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  1. π Scope: python based scientific workbench with visualization tool for MDSplus data

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.

    2014-10-01

    π Scope is a python based scientific data analysis and visualization tool constructed on wxPython and Matplotlib. Although it is designed to be a generic tool, the primary motivation for developing the new software is 1) to provide an updated tool to browse MDSplus data, with functionalities beyond dwscope and jScope, and 2) to provide a universal foundation to construct interface tools to perform computer simulation and modeling for Alcator C-Mod. It provides many features to visualize MDSplus data during tokamak experiments including overplotting different signals and discharges, various plot types (line, contour, image, etc.), in-panel data analysis using python scripts, and publication quality graphics generation. Additionally, the logic to produce multi-panel plots is designed to be backward compatible with dwscope, enabling smooth migration for dwscope users. πScope uses multi-threading to reduce data transfer latency, and its object-oriented design makes it easy to modify and expand while the open source nature allows portability. A built-in tree data browser allows a user to approach the data structure both from a GUI and a script, enabling relatively complex data analysis workflow to be built quickly. As an example, an IDL-based interface to perform GENRAY/CQL3D simulations was ported on πScope, thus allowing LHCD simulation to be run between-shot using C-Mod experimental profiles. This workflow is being used to generate a large database to develop a LHCD actuator model for the plasma control system. Supported by USDoE Award DE-FC02-99ER54512.

  2. Mobile Health Applications to Assist Patients with Diabetes: Lessons Learned and Design Implications

    PubMed Central

    Årsand, Eirik; Frøisland, Dag Helge; Skrøvseth, Stein Olav; Chomutare, Taridzo; Tatara, Naoe; Hartvigsen, Gunnar; Tufano, James T.

    2012-01-01

    Self-management is critical to achieving diabetes treatment goals. Mobile phones and Bluetooth® can supportself-management and lifestyle changes for chronic diseases such as diabetes. A mobile health (mHealth) research platform—the Few Touch Application (FTA)—is a tool designed to support the self-management of diabetes. The FTA consists of a mobile phone-based diabetes diary, which can be updated both manually from user input and automatically by wireless data transfer, and which provides personalized decision support for the achievement of personal health goals. Studies and applications (apps) based on FTAs have included: (1) automatic transfer of blood glucose (BG) data; (2) short message service (SMS)-based education for type 1diabetes (T1DM); (3) a diabetes diary for type 2 diabetes (T2DM); (4) integrating a patient diabetes diary with health care (HC) providers; (5) a diabetes diary for T1DM; (6) a food picture diary for T1DM; (7) physical activity monitoring for T2DM; (8) nutrition information for T2DM; (9) context sensitivity in mobile self-help tools; and (10) modeling of BG using mobile phones. We have analyzed the performance of these 10 FTA-based apps to identify lessons for designing the most effective mHealth apps. From each of the 10 apps of FTA, respectively, we conclude: (1) automatic BG data transfer is easy to use and provides reassurance; (2) SMS-based education facilitates parent-child communication in T1DM; (3) the T2DM mobile phone diary encourages reflection; (4) the mobile phone diary enhances discussion between patients and HC professionals; (5) the T1DM mobile phone diary is useful and motivational; (6) the T1DM mobile phone picture diary is useful in identifying treatment obstacles; (7) the step counter with automatic data transfer promotes motivation and increases physical activity in T2DM; (8) food information on a phone for T2DM should not be at a detailed level; (9) context sensitivity has good prospects and is possible to implement on today’s phones; and (10) BG modeling on mobile phones is promising for motivated T1DM users. We expect that the following elements will be important in future FTA designs: (A) automatic data transfer when possible; (B) motivational and visual user interfaces; (C) apps with considerable health benefits in relation to the effort required; (D) dynamic usage, e.g., both personal and together with HC personnel, long-/short-term perspective; and (E) inclusion of context sensitivity in apps. We conclude that mHealth apps will empower patients to take a more active role in managing their own health. PMID:23063047

  3. Mobile health applications to assist patients with diabetes: lessons learned and design implications.

    PubMed

    Årsand, Eirik; Frøisland, Dag Helge; Skrøvseth, Stein Olav; Chomutare, Taridzo; Tatara, Naoe; Hartvigsen, Gunnar; Tufano, James T

    2012-09-01

    Self-management is critical to achieving diabetes treatment goals. Mobile phones and Bluetooth® can supportself-management and lifestyle changes for chronic diseases such as diabetes. A mobile health (mHealth) research platform--the Few Touch Application (FTA)--is a tool designed to support the self-management of diabetes. The FTA consists of a mobile phone-based diabetes diary, which can be updated both manually from user input and automatically by wireless data transfer, and which provides personalized decision support for the achievement of personal health goals. Studies and applications (apps) based on FTAs have included: (1) automatic transfer of blood glucose (BG) data; (2) short message service (SMS)-based education for type 1diabetes (T1DM); (3) a diabetes diary for type 2 diabetes (T2DM); (4) integrating a patient diabetes diary with health care (HC) providers; (5) a diabetes diary for T1DM; (6) a food picture diary for T1DM; (7) physical activity monitoring for T2DM; (8) nutrition information for T2DM; (9) context sensitivity in mobile self-help tools; and (10) modeling of BG using mobile phones. We have analyzed the performance of these 10 FTA-based apps to identify lessons for designing the most effective mHealth apps. From each of the 10 apps of FTA, respectively, we conclude: (1) automatic BG data transfer is easy to use and provides reassurance; (2) SMS-based education facilitates parent-child communication in T1DM; (3) the T2DM mobile phone diary encourages reflection; (4) the mobile phone diary enhances discussion between patients and HC professionals; (5) the T1DM mobile phone diary is useful and motivational; (6) the T1DM mobile phone picture diary is useful in identifying treatment obstacles; (7) the step counter with automatic data transfer promotes motivation and increases physical activity in T2DM; (8) food information on a phone for T2DM should not be at a detailed level; (9) context sensitivity has good prospects and is possible to implement on today's phones; and (10) BG modeling on mobile phones is promising for motivated T1DM users. We expect that the following elements will be important in future FTA designs: (A) automatic data transfer when possible; (B) motivational and visual user interfaces; (C) apps with considerable health benefits in relation to the effort required; (D) dynamic usage, e.g., both personal and together with HC personnel, long-/short-term perspective; and (E) inclusion of context sensitivity in apps. We conclude that mHealth apps will empower patients to take a more active role in managing their own health. © 2012 Diabetes Technology Society.

  4. Lunar Extravehicular Activity Program

    NASA Technical Reports Server (NTRS)

    Heartsill, Amy Ellison

    2006-01-01

    Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.

  5. Portable duplex ultrasonography: A diagnostic and decision-making tool in reconstructive microsurgery.

    PubMed

    Gravvanis, Andreas; Karakitsos, Dimitrios; Dimitriou, Vasilios; Zogogiannis, Ioannis; Katsikeris, Nick; Karabinis, Andreas; Tsoutsos, Dimosthenis

    2010-07-01

    Unidirectional Doppler is a common diagnostic tool by the Reconstructive Microsurgeons; however, it may generate false signals and surely provides less imaging data as compared to duplex ultrasonography. We have reviewed the use of Portable Duplex Ultrasonography (PDU) in 16 patients who underwent complex soft-tissue/bone reconstruction, aiming to determine its role in the design and management of free tissue transfer. According to our data, there were modifications either of the surgical plan and/or of patient's management, based on PDU findings, in 10 out of 16 patients (62.5%). The use of ultrasound directed to subtle modifications in three patients (19%), but to significant changes of the surgical plan in four patients (25%). Also, the use of ultrasound improved significantly the postoperative management in three patients (19%). Thus, significant impact of PDU in patient's treatment was recorded in 44% of cases. Portable ultrasound represents generally available method for preoperative, intraoperative, and postoperative diagnosis and decision-making in free tissue transfer, hence could replace in the near future the unidirectional Doppler in the hands of Microsurgeons. (c) 2010 Wiley-Liss, Inc.

  6. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  7. Unconventional Tools for an Unconventional Resource: Community and Landscape Planning for Shale in the Marcellus Region

    NASA Astrophysics Data System (ADS)

    Murtha, T., Jr.; Orland, B.; Goldberg, L.; Hammond, R.

    2014-12-01

    Deep shale natural gas deposits made accessible by new technologies are quickly becoming a considerable share of North America's energy portfolio. Unlike traditional deposits and extraction footprints, shale gas offers dispersed and complex landscape and community challenges. These challenges are both cultural and environmental. This paper describes the development and application of creative geospatial tools as a means to engage communities along the northern tier counties of Pennsylvania, experiencing Marcellus shale drilling in design and planning. Uniquely combining physical landscape models with predictive models of exploration activities, including drilling, pipeline construction and road reconstruction, the tools quantify the potential impacts of drilling activities for communities and landscapes in the commonwealth of Pennsylvania. Dividing the state into 9836 watershed sub-basins, we first describe the current state of Marcellus related activities through 2014. We then describe and report the results of three scaled predictive models designed to investigate probable sub-basins where future activities will be focused. Finally, the core of the paper reports on the second level of tools we have now developed to engage communities in planning for unconventional gas extraction in Pennsylvania. Using a geodesign approach we are working with communities to transfer information for comprehensive landscape planning and informed decision making. These tools not only quantify physical landscape impacts, but also quantify potential visual, aesthetic and cultural resource implications.

  8. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.

    1988-01-01

    The ground-based demonstration of EVA Retriever, a voice-supervised, intelligent, free-flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out, (2) searches for and acquires the target, (3) plans and executes a rendezvous while continuously tracking the target, (4) avoids stationary and moving obstacles, (5) reaches for and grapples the target, (6) returns to transfer the object, and (7) returns to base.

  9. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.; Phinney, Dale E.

    1989-01-01

    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base.

  10. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    PubMed

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  11. Passive Solar still: Recent advancement in design and related Performance.

    PubMed

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  12. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)

    2001-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.

  13. LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Gaugler, Raymond E.

    1999-01-01

    For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.

  14. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugfer, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  15. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  16. Design, development, testing and validation of a Photonics Virtual Laboratory for the study of LEDs

    NASA Astrophysics Data System (ADS)

    Naranjo, Francisco L.; Martínez, Guadalupe; Pérez, Ángel L.; Pardo, Pedro J.

    2014-07-01

    This work presents the design, development, testing and validation of a Photonic Virtual Laboratory, highlighting the study of LEDs. The study was conducted from a conceptual, experimental and didactic standpoint, using e-learning and m-learning platforms. Specifically, teaching tools that help ensure that our students perform significant learning have been developed. It has been brought together the scientific aspect, such as the study of LEDs, with techniques of generation and transfer of knowledge through the selection, hierarchization and structuring of information using concept maps. For the validation of the didactic materials developed, it has been used procedures with various assessment tools for the collection and processing of data, applied in the context of an experimental design. Additionally, it was performed a statistical analysis to determine the validity of the materials developed. The assessment has been designed to validate the contributions of the new materials developed over the traditional method of teaching, and to quantify the learning achieved by students, in order to draw conclusions that serve as a reference for its application in the teaching and learning processes, and comprehensively validate the work carried out.

  17. Laplace Transform Based Radiative Transfer Studies

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.

    2006-12-01

    Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.

  18. Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Shafik, Ramel

    2013-06-01

    The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.

  19. Potential approaches to the management of third-party impacts from groundwater transfers

    NASA Astrophysics Data System (ADS)

    Skurray, James H.; Pannell, David J.

    2012-08-01

    Groundwater extraction can have varied and diffuse effects. Negative external effects may include costs imposed on other groundwater users and on surrounding ecosystems. Environmental damages are commonly not reflected in market transactions. Groundwater transfers have the potential to cause spatial redistribution, concentration, and qualitative transformation of the impacts from pumping. An economically and environmentally sound groundwater transfer scheme would ensure that marginal costs from trades do not exceed marginal benefits, accounting for all third-party impacts, including those of a non-monetary nature as well as delayed effects. This paper proposes a menu of possible management strategies that would help preclude unacceptable impacts by restricting transfers with certain attributes, ideally ensuring that permitted transfers are at least welfare-neutral. Management tools would require that transfers limit or reduce environmental impacts, and provide for the compensation of financial impacts. Three management tools are described. While these tools can limit impacts from a given level of extraction, they cannot substitute for sustainable overall withdrawal limits. Careful implementation of transfer limits and exchange rates, and the strategic use of management area boundaries, may enable a transfer system to restrict negative externalities mainly to monetary costs. Provision for compensation of these costs could be built into the system.

  20. Modeling biofilms with dual extracellular electron transfer mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.

    2013-11-28

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as their terminal electron acceptor for metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce components requisite for both mechanisms. In this study, a generic model is presented that incorporates both diffusion- and conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to Shewanella oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found themore » literature. Our simulation results showed that 1) biofilms having both mechanisms available, especially if they can interact, may have metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of Geobacter sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct measurements and cannot be assumed to have identical values. Finally, we determined that cyclic and squarewave voltammetry are currently not good tools to determine the specific percentage of extracellular electron transfer mechanisms used by biofilms. The developed model will be a critical tool in designing experiments to explain EET mechanisms.« less

  1. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    NASA Astrophysics Data System (ADS)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  2. A Study of Time Constraints Related to Facilities Acquisition in Support of New Weapons Systems Initial Beddowns.

    DTIC Science & Technology

    1981-09-01

    under SPO direction in one of three ways: 1) design definition paper studies, 2) hard- ware prototyping, or 3) some combination of both (17:2...initial tooling and production is accom- plished to bring the system production to the planned peak rate . The second period is concerned with follow-on...pro- duction after the peak rate is achieved (3:5-1). Sometime during this phase, program management 20 responsibility transfer (PMRT) is also

  3. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries

    NASA Astrophysics Data System (ADS)

    Parlak, Zekeriya

    2018-05-01

    Design concept of microchannel heat exchangers is going to plan with new flow microchannel configuration to reduce the pressure drop and improve heat transfer performance. The study aims to find optimum microchannel design providing the best performance of flow and heat transfer characterization in a heat sink. Therefore, three different types of microchannels in which water is used, straight, wavy and zigzag have been studied. The optimization operation has been performed to find optimum geometry with ANSYS's Response Surface Optimization Tool. Primarily, CFD analysis has been performed by parameterizing a wavy microchannel geometry. Optimum wavy microchannel design has been obtained by the response surface created for the range of velocity from 0.5 to 5, the range of amplitude from 0.06 to 0.3, the range of microchannel height from 0.1 to 0.2, the range of microchannel width from 0.1 to 0.2 and range of sinusoidal wave length from 0.25 to 2.0. All simulations have been performed in the laminar regime for Reynolds number ranging from 100 to 900. Results showed that the Reynolds number range corresponding to the industrial pressure drop limits is between 100 and 400. Nu values obtained in this range for optimum wavy geometry were found at a rate of 10% higher than those of the zigzag channel and 40% higher than those of the straight channels. In addition, when the pressure values of the straight channel did not exceed 10 kPa, the inlet pressure data calculated for zigzag and wavy channel data almost coincided with each other.

  4. Standards-Based Procedural Phenotyping: The Arden Syntax on i2b2.

    PubMed

    Mate, Sebastian; Castellanos, Ixchel; Ganslandt, Thomas; Prokosch, Hans-Ulrich; Kraus, Stefan

    2017-01-01

    Phenotyping, or the identification of patient cohorts, is a recurring challenge in medical informatics. While there are open source tools such as i2b2 that address this problem by providing user-friendly querying interfaces, these platforms lack semantic expressiveness to model complex phenotyping algorithms. The Arden Syntax provides procedural programming language construct, designed specifically for medical decision support and knowledge transfer. In this work, we investigate how language constructs of the Arden Syntax can be used for generic phenotyping. We implemented a prototypical tool to integrate i2b2 with an open source Arden execution environment. To demonstrate the applicability of our approach, we used the tool together with an Arden-based phenotyping algorithm to derive statistics about ICU-acquired hypernatremia. Finally, we discuss how the combination of i2b2's user-friendly cohort pre-selection and Arden's procedural expressiveness could benefit phenotyping.

  5. End-to-end network models encompassing terrestrial, wireless, and satellite components

    NASA Astrophysics Data System (ADS)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  6. Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.; Schweiger, Axel J.

    1998-01-01

    Two tools for the solution of radiative transfer problems are presented. Streamer is a highly flexible medium spectral resolution radiative transfer model based on the plane-parallel theory of radiative transfer. Capable of computing either fluxes or radiances, it is suitable for studying radiative processes at the surface or within the atmosphere and for the development of remote-sensing algorithms. FluxNet is a fast neural network-based implementation of Streamer for computing surface fluxes. It allows for a sophisticated treatment of radiative processes in the analysis of large data sets and potential integration into geophysical models where computational efficiency is an issue. Documentation and tools for the development of alternative versions of Fluxnet are available. Collectively, Streamer and FluxNet solve a wide variety of problems related to radiative transfer: Streamer provides the detail and sophistication needed to perform basic research on most aspects of complex radiative processes while the efficiency and simplicity of FluxNet make it ideal for operational use.

  7. Parametric studies and orbital analysis for an electric orbit transfer vehicle space flight demonstration

    NASA Astrophysics Data System (ADS)

    Avila, Edward R.

    The Electric Insertion Transfer Experiment (ELITE) is an Air Force Advanced Technology Transition Demonstration which is being executed as a cooperative Research and Development Agreement between the Phillips Lab and TRW. The objective is to build, test, and fly a solar-electric orbit transfer and orbit maneuvering vehicle, as a precursor to an operational electric orbit transfer vehicle (EOTV). This paper surveys some of the analysis tools used to do parametric studies and discusses the study results. The primary analysis tool was the Electric Vehicle Analyzer (EVA) developed by the Phillips Lab and modified by The Aerospace Corporation. It uses a simple orbit averaging approach to model low-thrust transfer performance, and runs in a PC environment. The assumptions used in deriving the EVA math model are presented. This tool and others surveyed were used to size the solar array power required for the spacecraft, and develop a baseline mission profile that meets the requirements of the ELITE mission.

  8. A knowledge transfer scheme to bridge the gap between science and practice: an integration of existing research frameworks into a tool for practice.

    PubMed

    Verhagen, Evert; Voogt, Nelly; Bruinsma, Anja; Finch, Caroline F

    2014-04-01

    Evidence of effectiveness does not equal successful implementation. To progress the field, practical tools are needed to bridge the gap between research and practice and to truly unite effectiveness and implementation evidence. This paper describes the Knowledge Transfer Scheme integrating existing implementation research frameworks into a tool which has been developed specifically to bridge the gap between knowledge derived from research on the one side and evidence-based usable information and tools for practice on the other.

  9. [Direct electric conduction glove for laparoscopic surgical instruments. Preliminary results of a prototype].

    PubMed

    Gentilli, Sergio; Morgandoa, Andrea; Velardocchia, Mauro; Pessione, Silvia; Pizzorno, Chiara

    2007-01-01

    The authors present their prototype of a system for electrical conduction in direct contact with laparoscopic tools, devised, designed and produced by them at the Politecnico di Torino Department of Mechanical Engineering. The system consists of a two-sided plate, one side being a non-conducting adhesive surface to stick to the surgical glove and the other a thin, flexible conductor shell. The authors used the instrument with surgical tools with metal handles during 4 laparoscopic procedures. Nowadays the method commonly used to electrify laparoscopic tools is by using a wire plugged to a fixed conducting point on the instrument. The prototype described here was devised and produced to avoid some of the awkwardness encountered during the numerous manoeuvres required to connect and disconnect the wire at the time of surgical intervention. This device permits the direct transfer (by contact) of electrical energy from the wire to surgical tools. The advantage is greater rapidity in changing surgical tools, with the possibility of immediately obtaining an electrified instrument in the surgeon's hand.

  10. Participatory design of a collaborative clinical trial protocol writing system.

    PubMed

    Weng, Chunhua; McDonald, David W; Sparks, Dana; McCoy, Jason; Gennari, John H

    2007-06-01

    To explore concrete approaches to socio-technical design of collaborative healthcare information systems and to design a groupware technology for collaborative clinical trial protocol writing. We conducted "quick and dirty ethnography" through semi-structured interviews, observational studies, and work artifacts analysis to understand the group work for protocol development. We used participatory design through evolutionary prototyping to explore the feature space of a collaborative writing system. Our design strategies include role-based user advocacy, formative evaluation, and change management. Quick and dirty ethnography helped us efficiently understand relevant work practice, and participatory design helped us engage users into design and bring out their tacit work knowledge. Our approach that intertwined both techniques helped achieve a "work-informed and user-oriented" design. This research leads to a collaborative writing system that supports in situ communication, group awareness, and effective work progress tracking. The usability evaluation results have been satisfactory. The system design is being transferred to an organizational tool for daily use.

  11. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.

    PubMed

    Zhang, Jing; Zheng, Yujun George

    2016-03-18

    S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.

  12. Industrial production of RHIC magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.

    1996-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the startmore » of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less

  13. Biokinetic modelling development and analysis of arsenic dissolution into the gastrointestinal tract using SAAM II

    NASA Astrophysics Data System (ADS)

    Perama, Yasmin Mohd Idris; Siong, Khoo Kok

    2018-04-01

    A mathematical model comprising 8 compartments were designed to describe the kinetic dissolution of arsenic (As) from water leach purification (WLP) waste samples ingested into the gastrointestinal system. A totally reengineered software system named Simulation, Analysis and Modelling II (SAAM II) was employed to aid in the experimental design and data analysis. As a powerful tool that creates, simulate and analyze data accurately and rapidly, SAAM II computationally creates a system of ordinary differential equations according to the specified compartmental model structure and simulates the solutions based upon the parameter and model inputs provided. The experimental design of in vitro DIN approach was applied to create an artificial gastric and gastrointestinal fluids. These synthetic fluids assay were produced to determine the concentrations of As ingested into the gastrointestinal tract. The model outputs were created based upon the experimental inputs and the recommended fractional transfer rates parameter. As a result, the measured and predicted As concentrations in gastric fluids were much similar against the time of study. In contrast, the concentrations of As in the gastrointestinal fluids were only similar during the first hour and eventually started decreasing until the fifth hours of study between the measured and predicted values. This is due to the loss of As through the fractional transfer rates of q2 compartment to corresponding compartments of q3 and q5 which are involved with excretion and distribution to the whole body, respectively. The model outputs obtained after best fit to the data were influenced significantly by the fractional transfer rates between each compartment. Therefore, a series of compartmental model created with the association of fractional transfer rates parameter with the aid of SAAM II provides better estimation that simulate the kinetic behavior of As ingested into the gastrointestinal system.

  14. The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, S. R.; Wilson, P. P. H.; Pawlowski, R. P.

    2013-07-01

    The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysicsmore » simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)« less

  15. Preserving transfer independence among individuals with spinal cord injury.

    PubMed

    Nyland, J; Quigley, P; Huang, C; Lloyd, J; Harrow, J; Nelson, A

    2000-11-01

    Literature review. Upper extremity (UE) joint degeneration, particularly at the shoulder, detrimentally influences functional independence, quality of life, cardiovascular disease risk, and life expectancy of individuals following spinal cord injury (SCI). This review (1) describes UE use for transfers among individuals with SCI; (2) describes contributing factors associated with UE joint degeneration and loss of transfer independence; (3) summarizes and identifies gaps in existing research; and (4) provides suggestions for future research. Investigations of wheelchair transfer related UE joint and function preservation among individuals with SCI should consider factors including age and length of time from SCI onset, interface between subject-wheelchair, pain, shoulder joint range of motion (ROM) and muscle strength deficiencies or imbalances, exercise capacity and tolerance for the physical strain of activities of daily living (ADL), body mass and composition, previous UE injury or disease history, and transfer techniques. Existing studies of transfers among individuals with SCI have relied on small groups of either asymptomatic or non-impaired subjects, with minimal integration of kinematic, kinetic and electromyographic data. Descriptions of UE joint ROM, forces, and moments produced during transfers are lacking. Biomechanical measurement and computer modeling have provided increasingly accurate tools for acquiring the data needed to guide intervention planning to prevent UE joint degeneration and preserve function among individuals with SCI. The identification of stressful sub-components during transfers will enable intervening clinicians and engineers who design and modify assistive and adaptive devices to better serve individuals with SCI.

  16. Translation table for DOE/OSTI - COSATI bibliographic records to MARC format records

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gursky, K.; Holtkamp, I.; Landenberger, S.

    1985-11-01

    This report contains the recommendations of the committee for the conversion of data in OSTI fields to MARC fields. It is intended as a tool for OSTI to use in developing software that would enable DOE libraries to download OSTI records into MARC-based systems. Goal is to transfer as complete a set of data for each record as possible. No attempt was made to incorporate changes in the use of numerical tags that OSTI has made over the years. In addition, there are a few OSTI fields generated for internal OSTI use only, or that cannot be transferred into anymore » MARC field in the Books format; these OSTI fields have been designated as ''not converted'' in the table.« less

  17. Multidisciplinary analysis of actively controlled large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Young, John W.; Sutter, Thomas R.

    1986-01-01

    The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.

  18. CFD modeling of thermoelectric generators in automotive EGR-coolers

    NASA Astrophysics Data System (ADS)

    Högblom, Olle; Andersson, Ronnie

    2012-06-01

    A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.

  19. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    NASA Astrophysics Data System (ADS)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  20. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  1. Resonance Energy Transfer-Based Molecular Switch Designed Using a Systematic Design Process Based on Monte Carlo Methods and Markov Chains

    NASA Astrophysics Data System (ADS)

    Rallapalli, Arjun

    A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical. In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications. We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.

  2. Fatal hand tool injuries in construction.

    PubMed

    Trent, R B; Wyant, W D

    1990-08-01

    Past research on occupational hand tool injuries has generally focused on nonfatal injuries. Most such injuries occur at the point where energy is transferred to the material being worked, eg, at the edge of a saw blade or the point of a drill. Assuming that hand tool injuries that are fatal will differ from nonfatal injuries, 62 Occupation Safety and Health Administration reports were analyzed. Four patterns emerged when the type of contact with energy was used to classify incidents. Fatal injuries occurred when (1) contact was made with energy that supplies power to the hand tool, (2) energy normally transferred to the material being worked is transferred to the worker, (3) workers or materials fall, and (4) potential energy is encountered in the work environment. Analysis showed that almost all such injuries could be prevented by application of existing safe work practices.

  3. RATT: Rapid Annotation Transfer Tool

    PubMed Central

    Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew

    2011-01-01

    Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991

  4. Programming interfacial energetic offsets and charge transfer in β-Pb 0.33V 2O 5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE PAGES

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda; ...

    2016-12-06

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb 0.33V 2O 5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb 0.33V 2O 5 heterostructures prepared by the samemore » methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb 0.33V 2O 5 heterostructures relative to CdSe/β-Pb 0.33V 2O 5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb 0.33V 2O 5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb 0.33V 2O 5 NWs, along with electron transfer into the conduction band of the β-Pb 0.33V 2O 5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that interfacing semiconductor QDs with transition-metal oxide NWs exhibiting intercalative midgap states yields a versatile platform wherein the thermodynamics and kinetics of charge transfer can be systematically modulated to improve the efficiency of charge separation across interfaces.« less

  5. Programming interfacial energetic offsets and charge transfer in β-Pb 0.33V 2O 5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb 0.33V 2O 5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb 0.33V 2O 5 heterostructures prepared by the samemore » methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb 0.33V 2O 5 heterostructures relative to CdSe/β-Pb 0.33V 2O 5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb 0.33V 2O 5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb 0.33V 2O 5 NWs, along with electron transfer into the conduction band of the β-Pb 0.33V 2O 5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that interfacing semiconductor QDs with transition-metal oxide NWs exhibiting intercalative midgap states yields a versatile platform wherein the thermodynamics and kinetics of charge transfer can be systematically modulated to improve the efficiency of charge separation across interfaces.« less

  6. Epsilon-near-Zero Metamaterial to break the FRET distance barrier

    NASA Astrophysics Data System (ADS)

    Deshmukh, Rahul; Biehs, Svend-Age; Khwaja, Emaad; Agarwal, Girish; Menon, Vinod

    Forster Resonance Energy Transfer (FRET) in a donor acceptor pair is a tool widely used as a spectroscopic ruler in biology and related fields. The high sensitivity to distance change in this technique comes at the expense of limitation on the spatial range (10nm) that can be measured. Here we present an alternate approach where the epsilon-near-zero (EnZ) regime in a metamaterial is used to break the FRET distance limit. We show long range (160nm) energy transfer in a donor acceptor pair across the EnZ metamaterial as proof-of-principle. This scheme can be implemented for any donor acceptor pair by tailoring the metal fill-fraction in the metamaterial design appropriately. The experimental data includes change in donor lifetimes as well as increase in the steady state emission of the acceptor. We also show theoretical simulations which suggest that the EnZ regime is the most effective in mediating such long-range energy transfer as compared to Hyperbolic/Elliptical regimes in metamaterials. NSF DMR 1410249.

  7. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments.

    PubMed

    Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M

    2004-05-01

    The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.

  8. Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study.

    PubMed

    Lyapustin, Alexei

    2002-09-20

    Results of an extensive validation study of the new radiative transfer code SHARM-3D are described. The code is designed for modeling of unpolarized monochromatic radiative transfer in the visible and near-IR spectra in the laterally uniform atmosphere over an arbitrarily inhomogeneous anisotropic surface. The surface boundary condition is periodic. The algorithm is based on an exact solution derived with the Green's function method. Several parameterizations were introduced into the algorithm to achieve superior performance. As a result, SHARM-3D is 2-3 orders of magnitude faster than the rigorous code SHDOM. It can model radiances over large surface scenes for a number of incidence-view geometries simultaneously. Extensive comparisons against SHDOM indicate that SHARM-3D has an average accuracy of better than 1%, which along with the high speed of calculations makes it a unique tool for remote-sensing applications in land surface and related atmospheric radiation studies.

  9. Radiative Transfer Code SHARM-3D for Radiance Simulations over a non-Lambertian Nonhomogeneous Surface: Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Lyapustin, Alexei

    2002-09-01

    Results of an extensive validation study of the new radiative transfer code SHARM-3D are described. The code is designed for modeling of unpolarized monochromatic radiative transfer in the visible and near-IR spectra in the laterally uniform atmosphere over an arbitrarily inhomogeneous anisotropic surface. The surface boundary condition is periodic. The algorithm is based on an exact solution derived with the Green ’s function method. Several parameterizations were introduced into the algorithm to achieve superior performance. As a result, SHARM-3D is 2 -3 orders of magnitude faster than the rigorous code SHDOM. It can model radiances over large surface scenes for a number of incidence-view geometries simultaneously. Extensive comparisons against SHDOM indicate that SHARM-3D has an average accuracy of better than 1%, which along with the high speed of calculations makes it a unique tool for remote-sensing applications in land surface and related atmospheric radiation studies.

  10. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  11. Phenomena Important in Molten Salt Reactor Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David J.; Brown, Nicholas R.; Denning, Richard

    The U.S. Nuclear Regulatory Commission (NRC) is preparing for the future licensing of advanced reactors that will be very different from current light water reactors. Part of the NRC preparation strategy is to identify the simulation tools that will be used for confirmatory safety analysis of normal operation and abnormal situations in those reactors. This report advances that strategy for reactors that will use molten salts (MSRs). This includes reactors with the fuel within the salt as well as reactors using solid fuel. Although both types are discussed in this report, the emphasis is on those reactors with liquid fuelmore » because of the perception that solid-fuel MSRs will be significantly easier to simulate. These liquid-fuel reactors include thermal and fast neutron spectrum alternatives. The specific designs discussed in the report are a subset of many designs being considered in the U.S. and elsewhere but they are considered the most likely to submit information to the NRC in the near future. The objective herein, is to understand the design of proposed molten salt reactors, how they will operate under normal or transient/accident conditions, and what will be the corresponding modeling needs of simulation tools that consider neutronics, heat transfer, fluid dynamics, and material composition changes in the molten salt. These tools will enable the NRC to eventually carry out confirmatory analyses that examine the validity and accuracy of applicant’s calculations and help determine the margin of safety in plant design.« less

  12. Climate-Smart Seedlot Selection Tool: Reforestation and Restoration for the 21st Century

    NASA Astrophysics Data System (ADS)

    Stevenson-Molnar, N.; Howe, G.; St Clair, B.; Bachelet, D. M.; Ward, B. C.

    2017-12-01

    Local populations of trees are generally adapted to their local climates. Historically, this has meant that local seed zones based on geography and elevation have been used to guide restoration and reforestation. In the face of climate change, seeds from local sources will likely be subjected to climates significantly different from those to which they are currently adapted. The Seedlot Selection Tool (SST) offers a new approach for matching seed sources with planting sites based on future climate scenarios. The SST is a mapping program designed for forest managers and researchers. Users can use the tool to to find seedlots for a given planting site, or to find potential planting sites for a given seedlot. Users select a location (seedlot or planting site), climate scenarios (a climate to which seeds are adapted, and a current or future climate scenario), climate variables, and transfer limits (the maximum climatic distance that is considered a suitable match). Transfer limits are provided by the user, or derived from the range of values within a geographically defined seed zone. The tool calculates scores across the landscape based on an area's similarity, in a multivariate climate space, to the input. Users can explore results on an interactive map, and export PDF and PowerPoint reports, including a map of the results along with the inputs used. Planned future improvements include support for non-forest use cases and ability to download results as GeoTIFF data. The Seedlot Selection Tool and its source code are available online at https://seedlotselectiontool.org. It is co-developed by the United States Forest Service, Oregon State University, and the Conservation Biology Institute.

  13. Trajectory Browser Website

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  14. Manipulator interactive design with interconnected flexible elements

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1983-01-01

    This paper describes the development of an analysis tool for the interactive design of control systems for manipulators and similar electro-mechanical systems amenable to representation as structures in a topological chain. The chain consists of a series of elastic bodies subject to small deformations and arbitrary displacements. The bodies are connected by hinges which permit kinematic constraints, control, or relative motion with six degrees of freedom. The equations of motion for the chain configuration are derived via Kane's method, extended for application to interconnected flexible bodies with time-varying boundary conditions. A corresponding set of modal coordinates has been selected. The motion equations are imbedded within a simulation that transforms the vector-dyadic equations into scalar form for numerical integration. The simulation also includes a linear, time-invariant controler specified in transfer function format and a set of sensors and actuators that interface between the structure and controller. The simulation is driven by an interactive set-up program resulting in an easy-to-use analysis tool.

  15. Wireless acceleration sensor of moving elements for condition monitoring of mechanisms

    NASA Astrophysics Data System (ADS)

    Sinitsin, Vladimir V.; Shestakov, Aleksandr L.

    2017-09-01

    Comprehensive analysis of the angular and linear accelerations of moving elements (shafts, gears) allows an increase in the quality of the condition monitoring of mechanisms. However, existing tools and methods measure either linear or angular acceleration with postprocessing. This paper suggests a new construction design of an angular acceleration sensor for moving elements. The sensor is mounted on a moving element and, among other things, the data transfer and electric power supply are carried out wirelessly. In addition, the authors introduce a method for processing the received information which makes it possible to divide the measured acceleration into the angular and linear components. The design has been validated by the results of laboratory tests of an experimental model of the sensor. The study has shown that this method provides a definite separation of the measured acceleration into linear and angular components, even in noise. This research contributes an advance in the range of methods and tools for condition monitoring of mechanisms.

  16. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  17. Kinetics model for the wavelength-dependence of excited-state dynamics of hetero-FRET sensors

    NASA Astrophysics Data System (ADS)

    Schwarz, Jacob; Leighton, Ryan; Leopold, Hannah J.; Currie, Megan; Boersma, Arnold J.; Sheets, Erin D.; Heikal, Ahmed A.

    2017-08-01

    Foerster (or fluorescence) resonance energy transfer (FRET) is a powerful tool for investigating protein-protein interactions, in both living cells and in controlled environments. A typical hetero-FRET pair consists of a donor and acceptor tethered together with a linker. The corresponding energy transfer efficiency of a hetero-FRET pair probe depends upon the donor-acceptor distance, relative dipole orientation, and spectral overlap. Because of the sensitivity of the energy transfer efficiency on the donor-acceptor distance, FRET is often referred to as a "molecular ruler". Time-resolved fluorescence approach for measuring the excited-state lifetime of the donor and acceptor emissions is one of the most reliable approaches for quantitative assessment of the energy transfer efficiency in hetero-FRET pairs. In this contribution, we provide an analytical kinetics model that describes the excited-state depopulation of a FRET probe as a means to predicts the time-resolved fluorescence profile as a function of excitation and detection wavelengths. In addition, we used this developed kinetics model to simulate the time-dependence of the excited-state population of both the donor and acceptor. These results should serve as a guide for our ongoing studies of newly developed hetero-FRET sensors (mCerulean3-linker-mCitrine) that are designed specifically for in vivo studies of macromolecular crowding. The same model is applicable to other FRET pairs with the careful consideration of their steady-state spectroscopy and the experimental design for wavelength- dependence of the fluorescence lifetime measurements.

  18. Skill Transfer and Virtual Training for IND Response Decision-Making: Models for Government-Industry Collaboration for the Development of Game-Based Training Tools

    DTIC Science & Technology

    2016-05-05

    Training for IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based Training Tools R.M. Seater...Skill Transfer and Virtual Training for IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based...unlimited. This page intentionally left blank. iii EXECUTIVE SUMMARY Game -based training tools, sometimes called “serious games ,” are becoming

  19. AORN ergonomic tool 1: Lateral transfer of a patient from a stretcher to an OR bed.

    PubMed

    Waters, Thomas; Baptiste, Andrea; Short, Manon; Plante-Mallon, Lori; Nelson, Audrey

    2011-03-01

    Moving patients can result in injuries to patients and staff members. Lateral patient transfers from a stretcher to an OR bed pose a high risk for musculoskeletal disorders, including lower back, shoulder, and neck injuries for perioperative personnel. AORN Ergonomic Tool 1: Lateral Transfer of a Patient from a Stretcher to an OR Bed helps perioperative staff members determine best practices for safe lateral patient transfers. Safe moving of the patient is determined by the starting and ending position required and the patient's weight. Current ergonomic safety concepts and scientific evidence regarding weight limits help to determine how many caregivers are needed to safely move patients and whether mechanical assistance is needed during lateral transfers. Published by Elsevier Inc.

  20. VLSI 'smart' I/O module development

    NASA Astrophysics Data System (ADS)

    Kirk, Dan

    The developmental history, design, and operation of the MIL-STD-1553A/B discrete and serial module (DSM) for the U.S. Navy AN/AYK-14(V) avionics computer are described and illustrated with diagrams. The ongoing preplanned product improvement for the AN/AYK-14(V) includes five dual-redundant MIL-STD-1553 channels based on DSMs. The DSM is a front-end processor for transferring data to and from a common memory, sharing memory with a host processor to provide improved 'smart' input/output performance. Each DSM comprises three hardware sections: three VLSI-6000 semicustomized CMOS arrays, memory units to support the arrays, and buffers and resynchronization circuits. The DSM hardware module design, VLSI-6000 design tools, controlware and test software, and checkout procedures (using a hardware simulator) are characterized in detail.

  1. CFD Multiphysics Tool

    NASA Technical Reports Server (NTRS)

    Perrell, Eric R.

    2005-01-01

    The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of level-two design tools for PARSEC. The "CFD Multiphysics Tool" will be the propulsive element of the tool set. The name acknowledges that space propulsion performance assessment is primarily a fluid mechanics problem. At the core of the CFD Multiphysics Tool is an open-source CFD code, HYP, under development at ERAU. ERAU is renowned for its undergraduate degree program in Aerospace Engineering the largest in the nation. The strength of the program is its applications-oriented curriculum, which culminates in one of three two-course Engineering Design sequences: Aerospace Propulsion, Spacecraft, or Aircraft. This same philosophy applies to the HYP Project, albeit with fluid physics modeling commensurate with graduate research. HYP s purpose, like the Multiphysics Tool s, is to enable calculations of real (three-dimensional; geometrically complex; intended for hardware development) applications of high speed and propulsive fluid flows.

  2. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  3. Measurement of hand dynamics in a microsurgery environment: Preliminary data in the design of a bimanual telemicro-operation test bed

    NASA Technical Reports Server (NTRS)

    Charles, Steve; Williams, Roy

    1989-01-01

    Data describing the microsurgeon's hand dynamics was recorded and analyzed in order to provide an accurate model for the telemicrosurgery application of the Bimanual Telemicro-operation Test Bed. The model, in turn, will guide the development of algorithms for the control of robotic systems in bimanual telemicro-operation tasks. Measurements were made at the hand-tool interface and include position, acceleration and force between the tool-finger interface. Position information was captured using an orthogonal pulsed magnetic field positioning system resulting in measurements in all six degrees-of-freedom (DOF). Acceleration data at the hands was obtained using accelerometers positioned in a triaxial arrangement on the back of the hand allowing measurements in all three cartesian-coordinate axes. Force data was obtained by using miniature load cells positioned between the tool and the finger and included those forces experienced perpendicular to the tool shaft and those transferred from the tool-tissue site. Position data will provide a minimum/maximum reference frame for the robotic system's work space or envelope. Acceleration data will define the response times needed by the robotic system in order to emulate and subsequently outperform the human operator's tool movements. The force measurements will aid in designing a force-reflective, force-scaling system as well as defining the range of forces the robotic system will encounter. All analog data was acquired by a 16-channel analog-to-digital conversion system residing in a IBM PC/AT-compatible computer at the Center's laboratory. The same system was also used to analyze and present the data.

  4. Highly efficient in vitro and in vivo delivery of functional RNAs using new versatile MS2-chimeric retrovirus-like particles

    PubMed Central

    Prel, Anne; Caval, Vincent; Gayon, Régis; Ravassard, Philippe; Duthoit, Christine; Payen, Emmanuel; Maouche-Chretien, Leila; Creneguy, Alison; Nguyen, Tuan Huy; Martin, Nicolas; Piver, Eric; Sevrain, Raphaël; Lamouroux, Lucille; Leboulch, Philippe; Deschaseaux, Frédéric; Bouillé, Pascale; Sensébé, Luc; Pagès, Jean-Christophe

    2015-01-01

    RNA delivery is an attractive strategy to achieve transient gene expression in research projects and in cell- or gene-based therapies. Despite significant efforts investigating vector-directed RNA transfer, there is still a requirement for better efficiency of delivery to primary cells and in vivo. Retroviral platforms drive RNA delivery, yet retrovirus RNA-packaging constraints limit gene transfer to two genome-molecules per viral particle. To improve retroviral transfer, we designed a dimerization-independent MS2-driven RNA packaging system using MS2-Coat-retrovirus chimeras. The engineered chimeric particles promoted effective packaging of several types of RNAs and enabled efficient transfer of biologically active RNAs in various cell types, including human CD34+ and iPS cells. Systemic injection of high-titer particles led to gene expression in mouse liver and transferring Cre-recombinase mRNA in muscle permitted widespread editing at the ROSA26 locus. We could further show that the VLPs were able to activate an osteoblast differentiation pathway by delivering RUNX2- or DLX5-mRNA into primary human bone-marrow mesenchymal-stem cells. Thus, the novel chimeric MS2-lentiviral particles are a versatile tool for a wide range of applications including cellular-programming or genome-editing. PMID:26528487

  5. Making software get along: integrating optical and mechanical design programs

    NASA Astrophysics Data System (ADS)

    Shackelford, Christie J.; Chinnock, Randal B.

    2001-03-01

    As modern optomechanical engineers, we have the good fortune of having very sophisticated software programs available to us. The current optical design, mechanical design, industrial design, and CAM programs are very powerful tools with some very desirable features. However, no one program can do everything necessary to complete an entire optomechanical system design. Each program has a unique set of features and benefits, and typically two or mo re will be used during the product development process. At a minimum, an optical design program and a mechanical CAD package will be employed. As we strive for efficient, cost-effective, and rapid progress in our development projects, we must use these programs to their full advantage, while keeping redundant tasks to a minimum. Together, these programs offer the promise of a `seamless' flow of data from concept all the way to the download of part designs directly to the machine shop for fabrication. In reality, transferring data from one software package to the next is often frustrating. Overcoming these problems takes some know-how, a bit of creativity, and a lot of persistence. This paper describes a complex optomechanical development effort in which a variety of software tools were used from the concept stage to prototyping. It will describe what software was used for each major design task, how we learned to use them together to best advantage, and how we overcame the frustrations of software that didn't get along.

  6. The Role of Transfer in Designing Games and Simulations for Health: Systematic Review

    PubMed Central

    Terlouw, Gijs; Wartena, Bard O; van 't Veer, Job TB; Prins, Jelle T; Pierie, Jean Pierre EN

    2017-01-01

    Background The usefulness and importance of serious games and simulations in learning and behavior change for health and health-related issues are widely recognized. Studies have addressed games and simulations as interventions, mostly in comparison with their analog counterparts. Numerous complex design choices have to be made with serious games and simulations for health, including choices that directly contribute to the effects of the intervention. One of these decisions is the way an intervention is expected to lead to desirable transfer effects. Most designs adopt a first-class transfer rationale, whereas the second class of transfer types seems a rarity in serious games and simulations for health. Objective This study sought to review the literature specifically on the second class of transfer types in the design of serious games and simulations. Focusing on game-like interventions for health and health care, this study aimed to (1) determine whether the second class of transfer is recognized as a road for transfer in game-like interventions, (2) review the application of the second class of transfer type in designing game-like interventions, and (3) assess studies that include second-class transfer types reporting transfer outcomes. Methods A total of 6 Web-based databases were systematically searched by titles, abstracts, and keywords using the search strategy (video games OR game OR games OR gaming OR computer simulation*) AND (software design OR design) AND (fidelity OR fidelities OR transfer* OR behaviour OR behavior). The databases searched were identified as relevant to health, education, and social science. Results A total of 15 relevant studies were included, covering a range of game-like interventions, all more or less mentioning design parameters aimed at transfer. We found 9 studies where first-class transfer was part of the design of the intervention. In total, 8 studies dealt with transfer concepts and fidelity types in game-like intervention design in general; 3 studies dealt with the concept of second-class transfer types and reported effects, and 2 of those recognized transfer as a design parameter. Conclusions In studies on game-like interventions for health and health care, transfer is regarded as a desirable effect but not as a basic principle for design. None of the studies determined the second class of transfer or instances thereof, although in 3 cases a nonliteral transfer type was present. We also found that studies on game-like interventions for health do not elucidate design choices made and rarely provide design principles for future work. Games and simulations for health abundantly build upon the principles of first-class transfer, but the adoption of second-class transfer types proves scarce. It is likely to be worthwhile to explore the possibilities of second-class transfer types, as they may considerably influence educational objectives in terms of future serious game design for health. PMID:29175812

  7. Low-energy ballistic lunar transfers

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.

    A systematic method is developed that uses dynamical systems theory to model, analyze, and construct low-energy ballistic lunar transfers (BLTs). It has been found that low-energy BLTs may be produced by intersecting the stable manifold of an unstable Earth-Moon three-body orbit with the Earth. A spacecraft following such a trajectory is only required to perform a single maneuver, namely, the Trans-Lunar Injection maneuver, in order to complete the transfer. After the Trans-Lunar Injection maneuver, the spacecraft follows an entirely ballistic trajectory that asymptotically approaches and arrives at the target lunar three-body orbit. Because these orbit transfers require no orbit insertion maneuver at the three-body orbit, the transfers may be used to send spacecraft 25--40% more massive than spacecraft sent to the same orbits via conventional, direct transfers. From the targeted three-body orbits, the spacecraft may transfer to nearly any region within the Earth-Moon system, including any location on the surface of the Moon. The systematic methods developed in this research allow low-energy BLTs to be characterized by six parameters. It has been found that BLTs exist in families, where a family of BLTs consists of transfers whose parameters vary in a continuous fashion from one end of the family to the other. The families are easily identified and studied using a BLT State Space Map (BLT Map). The present research studies BLT Maps and has surveyed a wide variety of BLTs that exist in the observed families. It has been found that many types of BLTs may be constructed between 185-km low Earth parking orbits and lunar three-body orbits that require less than 3.27 km/s and fewer than 120 days of transfer time. Under certain conditions, BLTs may be constructed that require less than 3.2 km/s and fewer than 100 days of transfer time. It has been found that BLTs may implement LEO parking orbits with nearly any combination of altitude and inclination; they may depart from their LEO parking orbits nearly any day of each month; and they may target a variety of different classes of unstable Earth-Moon three-body orbits. Finally, studies are provided that address how low-energy transfers impact the design of spacecraft systems and how BLT Maps may be implemented as pragmatic tools in the design of practical lunar missions.

  8. Playing cards on asthma management: A new interactive method for knowledge transfer to primary care physicians

    PubMed Central

    Boulet, Louis-Philippe; Borduas, Francine; Bouchard, Jacques; Blais, Johanne; Hargreave, Frederick E; Rouleau, Michel

    2007-01-01

    OBJECTIVES: To describe an interactive playing card workshop in the communication of asthma guidelines recommendations, and to assess the initial evaluation of this educational tool by family physicians. DESIGN: Family physicians were invited to participate in the workshop by advertisements or personal contacts. Each physician completed a standardized questionnaire on his or her perception of the rules, content and properties of the card game. SETTING: A university-based continuing medical education initiative. PARTICIPANTS: Primary care physicians. MAIN OUTCOME MEASURES: Physicians’ evaluation of the rules, content and usefulness of the program. RESULTS: The game allowed the communication of relevant asthma-related content, as well as experimentation with a different learning format. It also stimulated interaction in a climate of friendly competition. Participating physicians considered the method to be an innovative tool that facilitated reflection, interaction and learning. It generated relevant discussions on how to apply guideline recommendations to current asthma care. CONCLUSIONS: This new, interactive, educational intervention, integrating play and scientific components, was well received by participants. This method may be of value to help integrate current guidelines into current practice, thus facilitating knowledge transfer to caregivers. PMID:18060093

  9. SynopSIS: integrating physician sign-out with the electronic medical record.

    PubMed

    Sarkar, Urmimala; Carter, Jonathan T; Omachi, Theodore A; Vidyarthi, Arpana R; Cucina, Russell; Bokser, Seth; van Eaton, Erik; Blum, Michael

    2007-09-01

    Safe delivery of care depends on effective communication among all health care providers, especially during transfers of care. The traditional medical chart does not adequately support such communication. We designed a patient-tracking tool that enhances provider communication and supports clinical decision making. To develop a problem-based patient-tracking tool, called Sign-out, Information Retrieval, and Summary (SynopSIS), in order to support patient tracking, transfers of care (ie, sign-outs), and daily rounds. Tertiary-care, university-based teaching hospital. SynopSIS compiles and organizes information from the electronic medical record to support hospital discharge and disposition decisions, daily provider decisions, and overnight or cross-coverage decisions. It reflects the provider's patient-care and daily work-flow needs. We plan to use Web-based surveys, audits of daily use, and interdisciplinary focus groups to evaluate SynopSIS's impact on communication between providers, quality of sign-out, patient continuity of care, and rounding efficiency. We expect SynopSIS to improve care by facilitating communication between care teams, standardizing sign-out, and automating daily review of clinical and laboratory trends. SynopSIS redesigns the clinical chart to better serve provider and patient needs. (c) 2007 Society of Hospital Medicine.

  10. Project SOS: The Science of Sustainability

    NASA Astrophysics Data System (ADS)

    Berven, Christine; Dawes, Kathy; Kern, Anne; Ryan, Kathleen; McNamara, Patricia

    2014-03-01

    Project SOS: Making Connections Using The Science Of Sustainability is an Informal Science Education Pathways Project designed to teach the science of sustainability to middle-school aged youth in rural communities of northern ID and eastern WA. The educational focus is the physics of convection, conduction and radiation and how these exist in nature and specifically in the home of the youth. Our goal is to explore the implementation of a cooperative-learning model in which youth become experts in their area of heat transfer using portable exhibits, teach their fellow team-members about those mechanisms, and apply this knowledge as a team to improve the energy efficiency of a model house. We provide simple tools and instructions so that they may apply their new knowledge to their own homes. We analyze audio and video of the interactions of our facilitators with the youth and among the youth, and use pre- and post-surveys to document the increase in understanding of energy transfer mechanisms in their homes and the environment. The tools and techniques developed to accomplish our goals and our current findings regarding the effectiveness of this approach will be discussed. Work supported by National Science Foundation Award DRL-1223290.

  11. Review of computational fluid dynamics applications in biotechnology processes.

    PubMed

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  12. A gLite FTS based solution for managing user output in CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinquilli, M.; Riahi, H.; Spiga, D.

    2012-01-01

    The CMS distributed data analysis workflow assumes that jobs run in a different location from where their results are finally stored. Typically the user output must be transferred across the network from one site to another, possibly on a different continent or over links not necessarily validated for high bandwidth/high reliability transfer. This step is named stage-out and in CMS was originally implemented as a synchronous step of the analysis job execution. However, our experience showed the weakness of this approach both in terms of low total job execution efficiency and failure rates, wasting precious CPU resources. The nature ofmore » analysis data makes it inappropriate to use PhEDEx, the core data placement system for CMS. As part of the new generation of CMS Workload Management tools, the Asynchronous Stage-Out system (AsyncStageOut) has been developed to enable third party copy of the user output. The AsyncStageOut component manages glite FTS transfers of data from the temporary store at the site where the job ran to the final location of the data on behalf of that data owner. The tool uses python daemons, built using the WMCore framework, and CouchDB, to manage the queue of work and FTS transfers. CouchDB also provides the platform for a dedicated operations monitoring system. In this paper, we present the motivations of the asynchronous stage-out system. We give an insight into the design and the implementation of key features, describing how it is coupled with the CMS workload management system. Finally, we show the results and the commissioning experience.« less

  13. Reach Adaptation: What Determines Whether We Learn an Internal Model of the Tool or Adapt the Model of Our Arm?

    PubMed Central

    Kluzik, JoAnn; Diedrichsen, Jörn; Shadmehr, Reza; Bastian, Amy J.

    2008-01-01

    We make errors when learning to use a new tool. However, the cause of error may be ambiguous: is it because we misestimated properties of the tool or of our own arm? We considered a well-studied adaptation task in which people made goal-directed reaching movements while holding the handle of a robotic arm. The robot produced viscous forces that perturbed reach trajectories. As reaching improved with practice, did people recalibrate an internal model of their arm, or did they build an internal model of the novel tool (robot), or both? What factors influenced how the brain solved this credit assignment problem? To investigate these questions, we compared transfer of adaptation between three conditions: catch trials in which robot forces were turned off unannounced, robot-null trials in which subjects were told that forces were turned off, and free-space trials in which subjects still held the handle but watched as it was detached from the robot. Transfer to free space was 40% of that observed in unannounced catch trials. We next hypothesized that transfer to free space might increase if the training field changed gradually, rather than abruptly. Indeed, this method increased transfer to free space from 40 to 60%. Therefore although practice with a novel tool resulted in formation of an internal model of the tool, it also appeared to produce a transient change in the internal model of the subject's arm. Gradual changes in the tool's dynamics increased the extent to which the nervous system recalibrated the model of the subject's own arm. PMID:18596187

  14. An analytical solution for modeling thermal energy transfer in a confined aquifer system

    NASA Astrophysics Data System (ADS)

    Shaw-Yang, Yang; Hund-der, Yeh

    2008-12-01

    A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.

  15. Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics

    NASA Astrophysics Data System (ADS)

    Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.

    2014-10-01

    In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.

  16. Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology

    PubMed Central

    Fischbach, Michael; Voigt, Christopher A.

    2014-01-01

    Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668

  17. The acquisition and transfer of knowledge of electrokinetic-hydrodynamics (EKHD) fundamentals: an introductory graduate-level course

    NASA Astrophysics Data System (ADS)

    Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.

    2017-09-01

    Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.

  18. Defining the next generation munitions handler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassiday, B.K.; Koury, G.J.; Pin, F.G.

    1995-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop-Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start ofmore » the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less

  19. Application of fluorescence resonance energy transfer in protein studies

    PubMed Central

    Ma, Linlin; Yang, Fan; Zheng, Jie

    2014-01-01

    Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications. PMID:25368432

  20. Using social media to facilitate knowledge transfer in complex engineering environments: a primer for educators

    NASA Astrophysics Data System (ADS)

    Murphy, Glen; Salomone, Sonia

    2013-03-01

    While highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Consequently, an essential challenge for engineering organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper acts as a primer for those seeking to gain an understanding of the design, functionality and utility of a suite of software tools generically termed social media technologies in the context of optimising the management of tacit engineering knowledge. Underpinned by knowledge management theory and using detailed case examples, this paper explores how social media technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering environments.

  1. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  2. Low-Thrust Trajectory Optimization with Simplified SQP Algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Scheeres, Daniel J.

    2017-01-01

    The problem of low-thrust trajectory optimization in highly perturbed dynamics is a stressing case for many optimization tools. Highly nonlinear dynamics and continuous thrust are each, separately, non-trivial problems in the field of optimal control, and when combined, the problem is even more difficult. This paper de-scribes a fast, robust method to design a trajectory in the CRTBP (circular restricted three body problem), beginning with no or very little knowledge of the system. The approach is inspired by the SQP (sequential quadratic programming) algorithm, in which a general nonlinear programming problem is solved via a sequence of quadratic problems. A few key simplifications make the algorithm presented fast and robust to initial guess: a quadratic cost function, neglecting the line search step when the solution is known to be far away, judicious use of end-point constraints, and mesh refinement on multiple shooting with fixed-step integration.In comparison to the traditional approach of plugging the problem into a “black-box” NLP solver, the methods shown converge even when given no knowledge of the solution at all. It was found that the only piece of information that the user needs to provide is a rough guess for the time of flight, as the transfer time guess will dictate which set of local solutions the algorithm could converge on. This robustness to initial guess is a compelling feature, as three-body orbit transfers are challenging to design with intuition alone. Of course, if a high-quality initial guess is available, the methods shown are still valid.We have shown that endpoints can be efficiently constrained to lie on 3-body repeating orbits, and that time of flight can be optimized as well. When optimizing the endpoints, we must make a trade between converging quickly on sub-optimal endpoints or converging more slowly on end-points that are arbitrarily close to optimal. It is easy for the mission design engineer to adjust this trade based on the problem at hand.The biggest limitation to the algorithm at this point is that multi-revolution transfers (greater than 2 revolutions) do not work nearly as well. This restriction comes in because the relationship between node 1 and node N becomes increasingly nonlinear as the angular distance grows. Trans-fers with more than about 1.5 complete revolutions generally require the line search to improve convergence. Future work includes: Comparison of this algorithm with other established tools; improvements to how multiple-revolution transfers are handled; parallelization of the Jacobian computation; in-creased efficiency for the line search; and optimization of many more trajectories between a variety of 3-body orbits.

  3. Direct Bio-printing with Heterogeneous Topology Design.

    PubMed

    Ahsan, Amm Nazmul; Xie, Ruinan; Khoda, Bashir

    2017-01-01

    Bio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD environment is difficult and oftentimes inaccurate. Besides, the de facto STL conversion of bio-models introduces loss of information and piles up more errors in each subsequent step (build orientation, slicing, tool-path planning) of the bio-printing process plan. We are proposing a topology based scaffold design methodology to accurately represent the heterogeneous internal architecture of tissues/organs. An image analysis technique is used that digitizes the topology information contained in medical images of tissues/organs. A weighted topology reconstruction algorithm is implemented to represent the heterogeneity with parametric functions. The parametric functions are then used to map the spatial material distribution. The generated information is directly transferred to the 3D bio-printer and heterogeneous porous tissue scaffold structure is manufactured without STL file. The proposed methodology is implemented to verify the effectiveness of the approach and the designed example structure is bio-fabricated with a deposition based bio-additive manufacturing system.

  4. The Role of Transfer in Designing Games and Simulations for Health: Systematic Review.

    PubMed

    Kuipers, Derek A; Terlouw, Gijs; Wartena, Bard O; van 't Veer, Job Tb; Prins, Jelle T; Pierie, Jean Pierre En

    2017-11-24

    The usefulness and importance of serious games and simulations in learning and behavior change for health and health-related issues are widely recognized. Studies have addressed games and simulations as interventions, mostly in comparison with their analog counterparts. Numerous complex design choices have to be made with serious games and simulations for health, including choices that directly contribute to the effects of the intervention. One of these decisions is the way an intervention is expected to lead to desirable transfer effects. Most designs adopt a first-class transfer rationale, whereas the second class of transfer types seems a rarity in serious games and simulations for health. This study sought to review the literature specifically on the second class of transfer types in the design of serious games and simulations. Focusing on game-like interventions for health and health care, this study aimed to (1) determine whether the second class of transfer is recognized as a road for transfer in game-like interventions, (2) review the application of the second class of transfer type in designing game-like interventions, and (3) assess studies that include second-class transfer types reporting transfer outcomes. A total of 6 Web-based databases were systematically searched by titles, abstracts, and keywords using the search strategy (video games OR game OR games OR gaming OR computer simulation*) AND (software design OR design) AND (fidelity OR fidelities OR transfer* OR behaviour OR behavior). The databases searched were identified as relevant to health, education, and social science. A total of 15 relevant studies were included, covering a range of game-like interventions, all more or less mentioning design parameters aimed at transfer. We found 9 studies where first-class transfer was part of the design of the intervention. In total, 8 studies dealt with transfer concepts and fidelity types in game-like intervention design in general; 3 studies dealt with the concept of second-class transfer types and reported effects, and 2 of those recognized transfer as a design parameter. In studies on game-like interventions for health and health care, transfer is regarded as a desirable effect but not as a basic principle for design. None of the studies determined the second class of transfer or instances thereof, although in 3 cases a nonliteral transfer type was present. We also found that studies on game-like interventions for health do not elucidate design choices made and rarely provide design principles for future work. Games and simulations for health abundantly build upon the principles of first-class transfer, but the adoption of second-class transfer types proves scarce. It is likely to be worthwhile to explore the possibilities of second-class transfer types, as they may considerably influence educational objectives in terms of future serious game design for health. ©Derek A Kuipers, Gijs Terlouw, Bard O Wartena, Job TB van 't Veer, Jelle T Prins, Jean Pierre EN Pierie. Originally published in JMIR Serious Games (http://games.jmir.org), 24.11.2017.

  5. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  6. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  7. Textile technology development

    NASA Technical Reports Server (NTRS)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  8. On the Nature of Earth-Mars Porkchop Plots

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.; Whetsel, Charles W.

    2013-01-01

    Porkchop plots are a quick and convenient tool to help mission designers plan ballistic trajectories between two bodies. Parameter contours give rise to the familiar 'porkchop' shape. Each synodic period the pattern repeats, but not exactly, primarily due to differences in inclination and non-zero eccentricity. In this paper we examine the morphological features of Earth-to-Mars porkchop plots and the orbital characteristics that create them. These results are compared to idealistic and optimized transfers. Conclusions are drawn about 'good' opportunities versus 'bad' opportunities for different mission applications.

  9. Development of a nursing handoff tool: a web-based application to enhance patient safety.

    PubMed

    Goldsmith, Denise; Boomhower, Marc; Lancaster, Diane R; Antonelli, Mary; Kenyon, Mary Anne Murphy; Benoit, Angela; Chang, Frank; Dykes, Patricia C

    2010-11-13

    Dynamic and complex clinical environments present many challenges for effective communication among health care providers. The omission of accurate, timely, easily accessible vital information by health care providers significantly increases risk of patient harm and can have devastating consequences for patient care. An effective nursing handoff supports the standardized transfer of accurate, timely, critical patient information, as well as continuity of care and treatment, resulting in enhanced patient safety. The Brigham and Women's/Faulkner Hospital Healthcare Information Technology Innovation Program (HIP) is supporting the development of a web based nursing handoff tool (NHT). The goal of this project is to develop a "proof of concept" handoff application to be evaluated by nurses on the inpatient intermediate care units. The handoff tool would enable nurses to use existing knowledge of evidence-based handoff methodology in their everyday practice to improve patient care and safety. In this paper, we discuss the results of nursing focus groups designed to identify the current state of handoff practice as well as the functional and data element requirements of a web based Nursing Handoff Tool (NHT).

  10. Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    2001-01-01

    The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.

  11. Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance

    PubMed Central

    Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan

    2015-01-01

    Background Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered “at-risk” for musculoskeletal strain. Therefore this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Methods Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle-cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video-analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Results Task performance did not differ among tools. For FLS peg transfer, self-reported physical workload was lower for B than A70, and mean wrist postures showed significantly higher flexion for in-line than pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47%) than pistol-grip (93-94%), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43%) than B (87%). Conclusion The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks for musculoskeletal strain and allow versatility for tasks alternating between the floor and ceiling positions in a surgical trainer without impacting performance. PMID:26541720

  12. Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance.

    PubMed

    Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan

    2016-08-01

    Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered "at risk" for musculoskeletal strain. Therefore, this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Task performance did not differ between tools. For FLS peg transfer, self-reported physical workload was lower for B than for A70, and mean wrist postures showed significantly higher flexion for in-line than for pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47 %) than for pistol-grip (93-94 %), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43 %) than for B (87 %). The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks of musculoskeletal strain and allow versatility for tasks alternating between the floor and ceiling positions in a surgical trainer without impacting performance.

  13. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  14. ASTRID© - Advanced Solar Tubular ReceIver Design: A powerful tool for receiver design and optimization

    NASA Astrophysics Data System (ADS)

    Frantz, Cathy; Fritsch, Andreas; Uhlig, Ralf

    2017-06-01

    In solar tower power plants the receiver is one of the critical components. It converts the solar radiation into heat and must withstand high heat flux densities and high daily or even hourly gradients (due to passage of clouds). For this reason, the challenge during receiver design is to find a reasonable compromise between receiver efficiency, reliability, lifetime and cost. There is a strong interaction between the heliostat field, the receiver and the heat transfer fluid. Therefore, a proper receiver design needs to consider these components within the receiver optimization. There are several design and optimization tools for receivers, but most of them focus only on the receiver, ignoring the heliostat field and other parts of the plant. During the last years DLR developed the ASTRIDcode for tubular receiver concept simulation. The code comprises both a high and a low-detail model. The low-detail model utilizes a number of simplifications which allow the user to screen a high number of receiver concepts for optimization purposes. The high-detail model uses a FE model and is able to compute local absorber and salt temperatures with high accuracy. One key strength of the ASTRIDcode is its interface to a ray tracing software which simulates a realistic heat flux distributions on the receiver surface. The results generated by the ASTRIDcode have been validated by CFD simulations and measurement data.

  15. A computational platform to maintain and migrate manual functional annotations for BioCyc databases.

    PubMed

    Walsh, Jesse R; Sen, Taner Z; Dickerson, Julie A

    2014-10-12

    BioCyc databases are an important resource for information on biological pathways and genomic data. Such databases represent the accumulation of biological data, some of which has been manually curated from literature. An essential feature of these databases is the continuing data integration as new knowledge is discovered. As functional annotations are improved, scalable methods are needed for curators to manage annotations without detailed knowledge of the specific design of the BioCyc database. We have developed CycTools, a software tool which allows curators to maintain functional annotations in a model organism database. This tool builds on existing software to improve and simplify annotation data imports of user provided data into BioCyc databases. Additionally, CycTools automatically resolves synonyms and alternate identifiers contained within the database into the appropriate internal identifiers. Automating steps in the manual data entry process can improve curation efforts for major biological databases. The functionality of CycTools is demonstrated by transferring GO term annotations from MaizeCyc to matching proteins in CornCyc, both maize metabolic pathway databases available at MaizeGDB, and by creating strain specific databases for metabolic engineering.

  16. The Environmental Protection Agency's Community-Focused Exposure and Risk Screening Tool (C-FERST) and its potential use for environmental justice efforts.

    PubMed

    Zartarian, Valerie G; Schultz, Bradley D; Barzyk, Timothy M; Smuts, Marybeth; Hammond, Davyda M; Medina-Vera, Myriam; Geller, Andrew M

    2011-12-01

    Our primary objective was to provide higher quality, more accessible science to address challenges of characterizing local-scale exposures and risks for enhanced community-based assessments and environmental decision-making. After identifying community needs, priority environmental issues, and current tools, we designed and populated the Community-Focused Exposure and Risk Screening Tool (C-FERST) in collaboration with stakeholders, following a set of defined principles, and considered it in the context of environmental justice. C-FERST is a geographic information system and resource access Web tool under development for supporting multimedia community assessments. Community-level exposure and risk research is being conducted to address specific local issues through case studies. C-FERST can be applied to support environmental justice efforts. It incorporates research to develop community-level data and modeled estimates for priority environmental issues, and other relevant information identified by communities. Initial case studies are under way to refine and test the tool to expand its applicability and transferability. Opportunities exist for scientists to address the many research needs in characterizing local cumulative exposures and risks and for community partners to apply and refine C-FERST.

  17. Developpement d'un catalogue de conception des chaussee pour les pays sub-sahariens

    NASA Astrophysics Data System (ADS)

    Koubikana Pambou, Claude Hugo

    Pavement surface evaluation in Sub-Saharan Africa (SSA) reveals severe, premature, and costly damages that require extensive maintenance. This is due to the limitations of tools used for pavement structural design as well as and the lack of the available calibration for the materials used. It is necessary to search for solutions for these failures and: * feed the discussion on durable roads for SSA area to meet the expectations of the trans- African highway projects of the new partnership for Africa (NEPAD); * provide simple and effective tools for pavement design and promote low cost for maintenance of road infrastructures; * provide users with functional and safety and durable road system. This catalogue, object and result of this work, was developed through a new tool for structural design (OCS-Chaussee), computed using Microsoft Excel worksheet. It uses iteration through empirical mechanics (ME) methods, applied to multilayer linear analysis using Odemark - Boussinesq method as a theoretical and conceptual basis for design pavement. The verification of obtained results was done with viscoelasticity assumption according Quijano's data (2010) and the pavement analysis software WINJULEA developed by US Army Corps of Engineers (USACE) and with the backcalculation's data from Varik and al. (2002) and local's data from South-African. The lifetime of each proposed roadway was estimated by using Asphalt Institute's transfer function and the Miner's law. It's hope that thoughtful use of this catalogue and the OCS- Chaussee will help advance reasonable road engineering solutions approaches, and training and make profitable budgets allocated to the construction and to road rehabilitation in Sub-Saharan Africa.

  18. A hydrogen-oxygen rocket engine coolant passage design program (RECOP) for fluid-cooled thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1994-01-01

    The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.

  19. Pinhole occulter experiment

    NASA Technical Reports Server (NTRS)

    Ring, Jeff; Pflug, John

    1987-01-01

    Viewgraphs and charts from a briefing summarize the accomplishments, results, conclusions, and recommendations of a feasibility study using the Pinhole Occulter Facility (POF). Accomplishments for 1986 include: (1) improved IPS Gimbal Model; (2) improved Crew Motion Disturbance Model; (3) use of existing shuttle on-orbit simulation to study the effects of orbiter attitude deadband size on POF performance; (4) increased understanding of maximum performance expected from current actuator/sensor set; (5) use of TREETOPS nonlinear time domain program to obtain system dynamics describing the complex multibody flexible structures; (6) use of HONEY-X design tool to design and evaluate multivariable compensator for stability, robustness, and performance; (7) application of state-of-the-art compensator design methodology Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR); and (8) examination of tolerance required on knowledge of the POF boom flexible mode frequencies to insure stability, using structure uncertainty analysis.

  20. Utilizing Low-Volume Aqueous Acoustic Transfer with the Echo 525 to Enable Miniaturization of qRT-PCR Assay.

    PubMed

    Agrawal, Sony; Cifelli, Steven; Johnstone, Richard; Pechter, David; Barbey, Deborah A; Lin, Karen; Allison, Tim; Agrawal, Shree; Rivera-Gines, Aida; Milligan, James A; Schneeweis, Jonathan; Houle, Kevin; Struck, Alice J; Visconti, Richard; Sills, Matthew; Wildey, Mary Jo

    2016-02-01

    Quantitative reverse transcription PCR (qRT-PCR) is a valuable tool for characterizing the effects of inhibitors on viral replication. The amplification of target viral genes through the use of specifically designed fluorescent probes and primers provides a reliable method for quantifying RNA. Due to reagent costs, use of these assays for compound evaluation is limited. Until recently, the inability to accurately dispense low volumes of qRT-PCR assay reagents precluded the routine use of this PCR assay for compound evaluation in drug discovery. Acoustic dispensing has become an integral part of drug discovery during the past decade; however, acoustic transfer of microliter volumes of aqueous reagents was time consuming. The Labcyte Echo 525 liquid handler was designed to enable rapid aqueous transfers. We compared the accuracy and precision of a qPCR assay using the Labcyte Echo 525 to those of the BioMek FX, a traditional liquid handler, with the goal of reducing the volume and cost of the assay. The data show that the Echo 525 provides higher accuracy and precision compared to the current process using a traditional liquid handler. Comparable data for assay volumes from 500 nL to 12 µL allowed the miniaturization of the assay, resulting in significant cost savings of drug discovery and process streamlining. © 2015 Society for Laboratory Automation and Screening.

  1. Risk-based transfer responses to climate change, simulated through autocorrelated stochastic methods

    NASA Astrophysics Data System (ADS)

    Kirsch, B.; Characklis, G. W.

    2009-12-01

    Maintaining municipal water supply reliability despite growing demands can be achieved through a variety of mechanisms, including supply strategies such as temporary transfers. However, much of the attention on transfers has been focused on market-based transfers in the western United States largely ignoring the potential for transfers in the eastern U.S. The different legal framework of the eastern and western U.S. leads to characteristic differences between their respective transfers. Western transfers tend to be agricultural-to-urban and involve raw, untreated water, with the transfer often involving a simple change in the location and/or timing of withdrawals. Eastern transfers tend to be contractually established urban-to-urban transfers of treated water, thereby requiring the infrastructure to transfer water between utilities. Utilities require the tools to be able to evaluate transfer decision rules and the resulting expected future transfer behavior. Given the long-term planning horizons of utilities, potential changes in hydrologic patterns due to climate change must be considered. In response, this research develops a method for generating a stochastic time series that reproduces the historic autocorrelation and can be adapted to accommodate future climate scenarios. While analogous in operation to an autoregressive model, this method reproduces the seasonal autocorrelation structure, as opposed to assuming the strict stationarity produced by an autoregressive model. Such urban-to-urban transfers are designed to be rare, transient events used primarily during times of severe drought, and incorporating Monte Carlo techniques allows for the development of probability distributions of likely outcomes. This research evaluates a system risk-based, urban-to-urban transfer agreement between three utilities in the Triangle region of North Carolina. Two utilities maintain their own surface water supplies in adjoining watersheds and look to obtain transfers via interconnections to a third utility with access to excess supply. The stochastic generation method is adapted to maintain the cross-correlation of inflows between watersheds. Risk-based decision rules are developed to govern transfers based upon the current level of risk to the water supply. This work determines how expected transfer behavior changes under four future climate scenarios assuming several different risk-thresholds.

  2. NECAP 4.1: NASA's Energy-Cost Analysis Program input manual

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1982-01-01

    The computer program NECAP (NASA's Energy Cost Analysis Program) is described. The program is a versatile building design and energy analysis tool which has embodied within it state of the art techniques for performing thermal load calculations and energy use predictions. With the program, comparisons of building designs and operational alternatives for new or existing buildings can be made. The major feature of the program is the response factor technique for calculating the heat transfer through the building surfaces which accounts for the building's mass. The program expands the response factor technique into a space response factor to account for internal building temperature swings; this is extremely important in determining true building loads and energy consumption when internal temperatures are allowed to swing.

  3. Information transfer satellite concept study. Volume 4: computer manual

    NASA Technical Reports Server (NTRS)

    Bergin, P.; Kincade, C.; Kurpiewski, D.; Leinhaupel, F.; Millican, F.; Onstad, R.

    1971-01-01

    The Satellite Telecommunications Analysis and Modeling Program (STAMP) provides the user with a flexible and comprehensive tool for the analysis of ITS system requirements. While obtaining minimum cost design points, the program enables the user to perform studies over a wide range of user requirements and parametric demands. The program utilizes a total system approach wherein the ground uplink and downlink, the spacecraft, and the launch vehicle are simultaneously synthesized. A steepest descent algorithm is employed to determine the minimum total system cost design subject to the fixed user requirements and imposed constraints. In the process of converging to the solution, the pertinent subsystem tradeoffs are resolved. This report documents STAMP through a technical analysis and a description of the principal techniques employed in the program.

  4. An Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubleday, Kate; Meintz, Andrew; Markel, Tony

    System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less

  5. Development of an e-VLBI Data Transport Software Suite with VDIF

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Takefuji, Kazuhiro; Kimura, Moritaka; Hobiger, Thomas; Kokado, Kensuke; Nozawa, Kentarou; Kurihara, Shinobu; Shinno, Takuya; Takahashi, Fujinobu

    2010-01-01

    We have developed a software library (KVTP-lib) for VLBI data transmission over the network with the VDIF (VLBI Data Interchange Format), which is the newly proposed standard VLBI data format designed for electronic data transfer over the network. The software package keeps the application layer (VDIF frame) and the transmission layer separate, so that each layer can be developed efficiently. The real-time VLBI data transmission tool sudp-send is an application tool based on the KVTP-lib library. sudp-send captures the VLBI data stream from the VSI-H interface with the K5/VSI PC-board and writes the data to file in standard Linux file format or transmits it to the network using the simple- UDP (SUDP) protocol. Another tool, sudp-recv , receives the data stream from the network and writes the data to file in a specific VLBI format (K5/VSSP, VDIF, or Mark 5B). This software system has been implemented on the Wettzell Tsukuba baseline; evaluation before operational employment is under way.

  6. Compressing Aviation Data in XML Format

    NASA Technical Reports Server (NTRS)

    Patel, Hemil; Lau, Derek; Kulkarni, Deepak

    2003-01-01

    Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. XML provides a standardized language for describing the contents of an information stream, performing the same kind of definitional role for Web content as a database schema performs for relational databases. XML data can be easily customized for display using Extensible Style Sheets (XSL). While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. Therefore, transfemng a dataset in XML form can decrease throughput and increase data transfer time significantly. It also increases storage requirements significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. This, in turn, depends on the nature of data used. Manual disc0ver.y of optimal setting can require an engineer to experiment for weeks. We have devised an XML compression advisory tool that can analyze sample data files and recommend what compression tool would work the best for this data and what are the optimal settings to be used with a XML compression tool.

  7. Heat convection in a micro impinging jet system

    NASA Astrophysics Data System (ADS)

    Mai, John Dzung Hoang

    2000-10-01

    This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.

  8. Turbomachinery

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Strazisar, Anthony J.; Sockol, Peter M.; Reid, Lonnie; Adamczyk, John J.

    1987-01-01

    The discipline research in turbomachinery, which is directed toward building the tools needed to understand such a complex flow phenomenon, is based on the fact that flow in turbomachinery is fundamentally unsteady or time dependent. Success in building a reliable inventory of analytic and experimental tools will depend on how the time and time-averages are treated, as well as on who the space and space-averages are treated. The raw tools at disposal (both experimentally and computational) are truly powerful and their numbers are growing at a staggering pace. As a result of this power, a case can be made that a situation exists where information is outstripping understanding. The challenge is to develop a set of computational and experimental tools which genuinely increase understanding of the fluid flow and heat transfer in a turbomachine. Viewgraphs outline a philosophy based on working on a stairstep hierarchy of mathematical and experimental complexity to build a system of tools, which enable one to aggressively design the turbomachinery of the next century. Examples of the types of computational and experimental tools under current development at Lewis, with progress to date, are examined. The examples include work in both the time-resolved and time-averaged domains. Finally, an attempt is made to identify the proper place for Lewis in this continuum of research.

  9. Seeing in a different light—using an infrared camera to teach heat transfer and optical phenomena

    NASA Astrophysics Data System (ADS)

    Pei Wong, Choun; Subramaniam, R.

    2018-05-01

    The infrared camera is a useful tool in physics education to ‘see’ in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.

  10. Seeing in a Different Light--Using an Infrared Camera to Teach Heat Transfer and Optical Phenomena

    ERIC Educational Resources Information Center

    Wong, Choun Pei; Subramaniam, R.

    2018-01-01

    The infrared camera is a useful tool in physics education to 'see' in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.

  11. Multiplexed Sequence Encoding: A Framework for DNA Communication.

    PubMed

    Zakeri, Bijan; Carr, Peter A; Lu, Timothy K

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.

  12. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  13. Introduction of the identification, situation, background, assessment, recommendations tool to improve the quality of information transfer during medical handover in intensive care.

    PubMed

    Ramasubbu, Benjamin; Stewart, Emma; Spiritoso, Rosalba

    2017-02-01

    To audit the quality and safety of the current doctor-to-doctor handover of patient information in our Cardiothoracic Intensive Care Unit. If deficient, to implement a validated handover tool to improve the quality of the handover process. In Cycle 1 we observed the verbal handover and reviewed the written handover information transferred for 50 consecutive patients in St George's Hospital Cardiothoracic Intensive Care Unit. For each patient's handover, we assessed whether each section of the Identification, Situation, Background, Assessment, Recommendations tool was used on a scale of 0-2. Zero if no information in that category was transferred, one if the information was partially transferred and two if all relevant information was transferred. Each patient's handover received a score from 0 to 10 and thus, each cycle a total score of 0-500. Following the implementation of the Identification, Situation, Background, Assessment, Recommendations handover tool in our Intensive Care Unit in Cycle 2, we re-observed the handover process for another 50 consecutive patients hence, completing the audit cycle. There was a significant difference between the total scores from Cycle 1 and 2 (263/500 versus 457/500, p < 0.001). The median handover score for Cycle 1 was 5/10 (interquartile range 4-6). The median handover score for Cycle 2 was 9/10 (interquartile range 9-10). Patient handover scores increased significantly between Cycle 1 and 2, U = 13.5, p < 0.001. The introduction of a standardised handover template (Identification, Situation, Background, Assessment, Recommendations tool) has improved the quality and safety of the doctor-to-doctor handover of patient information in our Intensive Care Unit.

  14. Robust retention and transfer of tool construction techniques in chimpanzees (Pan troglodytes).

    PubMed

    Vale, Gill L; Flynn, Emma G; Pender, Lydia; Price, Elizabeth; Whiten, Andrew; Lambeth, Susan P; Schapiro, Steven J; Kendal, Rachel L

    2016-02-01

    Long-term memory can be critical to a species' survival in environments with seasonal and even longer-term cycles of resource availability. The present, longitudinal study investigated whether complex tool behaviors used to gain an out-of-reach reward, following a hiatus of about 3 years and 7 months since initial experiences with a tool use task, were retained and subsequently executed more quickly by experienced than by naïve chimpanzees. Ten of the 11 retested chimpanzees displayed impressive long-term procedural memory, creating elongated tools using the same methods employed years previously, either combining 2 tools or extending a single tool. The complex tool behaviors were also transferred to a different task context, showing behavioral flexibility. This represents some of the first evidence for appreciable long-term procedural memory, and improvements in the utility of complex tool manufacture in chimpanzees. Such long-term procedural memory and behavioral flexibility have important implications for the longevity and transmission of behavioral traditions. (c) 2016 APA, all rights reserved).

  15. Robust Retention and Transfer of Tool Construction Techniques in Chimpanzees (Pan troglodytes)

    PubMed Central

    Vale, Gill L.; Flynn, Emma G.; Pender, Lydia; Price, Elizabeth; Whiten, Andrew; Lambeth, Susan P.; Schapiro, Steven J.; Kendal, Rachel L.

    2016-01-01

    Long-term memory can be critical to a species’ survival in environments with seasonal and even longer-term cycles of resource availability. The present, longitudinal study investigated whether complex tool behaviors used to gain an out-of-reach reward, following a hiatus of about 3 years and 7 months since initial experiences with a tool use task, were retained and subsequently executed more quickly by experienced than by naïve chimpanzees. Ten of the 11 retested chimpanzees displayed impressive long-term procedural memory, creating elongated tools using the same methods employed years previously, either combining 2 tools or extending a single tool. The complex tool behaviors were also transferred to a different task context, showing behavioral flexibility. This represents some of the first evidence for appreciable long-term procedural memory, and improvements in the utility of complex tool manufacture in chimpanzees. Such long-term procedural memory and behavioral flexibility have important implications for the longevity and transmission of behavioral traditions. PMID:26881941

  16. New technologies for supporting real-time on-board software development

    NASA Astrophysics Data System (ADS)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  17. Supercharged end-to-side anterior interosseous to ulnar motor nerve transfer for intrinsic musculature reinnervation.

    PubMed

    Barbour, John; Yee, Andrew; Kahn, Lorna C; Mackinnon, Susan E

    2012-10-01

    Functional motor recovery after peripheral nerve injury is predominantly determined by the time to motor end plate reinnervation and the absolute number of regenerated motor axons that reach target. Experimental models have shown that axonal regeneration occurs across a supercharged end-to-side (SETS) nerve coaptation. In patients with a recovering proximal ulnar nerve injury, a SETS nerve transfer conceptually is useful to protect and preserve distal motor end plates until the native axons fully regenerate. In addition, for nerve injuries in which incomplete regeneration is anticipated, a SETS nerve transfer may be useful to augment the regenerating nerve with additional axons and to more quickly reinnervate target muscle. We describe our technique for a SETS nerve transfer of the terminal anterior interosseous nerve (AIN) to the pronator quadratus muscle (PQ) end-to-side to the deep motor fascicle of the ulnar nerve in the distal forearm. In addition, we describe our postoperative therapy regimen for these transfers and an evaluation tool for monitoring progressive muscle reinnervation. Although the AIN-to-ulnar motor group SETS nerve transfer was specifically designed for ulnar nerve injuries, we believe that the SETS procedure might have broad clinical utility for second- and third-degree axonotmetic nerve injuries, to augment partial recovery and/or "babysit" motor end plates until the native parent axons regenerate to target. We would consider all donor nerves currently utilized in end-to-end nerve transfers for neurotmetic injuries as candidates for this SETS technique. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Space station interior noise analysis program

    NASA Technical Reports Server (NTRS)

    Stusnick, E.; Burn, M.

    1987-01-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  19. Three-dimensional anthropometric techniques applied to the fabrication of burn masks and the quantification of wound healing

    NASA Astrophysics Data System (ADS)

    Whitestone, Jennifer J.; Geisen, Glen R.; McQuiston, Barbara K.

    1997-03-01

    Anthropometric surveys conducted by the military provide comprehensive human body measurement data that are human interface requirements for successful mission performance of weapon systems, including cockpits, protective equipment, and clothing. The application of human body dimensions to model humans and human-machine performance begins with engineering anthropometry. There are two critical elements to engineering anthropometry: data acquisition and data analysis. First, the human body is captured dimensionally with either traditional anthropometric tools, such as calipers and tape measures, or with advanced image acquisition systems, such as a laser scanner. Next, numerous statistical analysis tools, such as multivariate modeling and feature envelopes, are used to effectively transition these data for design and evaluation of equipment and work environments. Recently, Air Force technology transfer allowed researchers at the Computerized Anthropometric Research and Design (CARD) Laboratory at Wright-Patterson Air Force Base to work with the Dayton, Ohio area medical community in assessing the rate of wound healing and improving the fit of total contract burn masks. This paper describes the successful application of CARD Lab engineering anthropometry to two medically oriented human interface problems.

  20. Turnarounds to Transfer: Design beyond the Modes

    ERIC Educational Resources Information Center

    Eddy, Jennifer

    2014-01-01

    In "Turnarounds to Transfer," teachers design a collection of tasks toward the summative performance goal but go beyond the Communicative mode criteria: they must assess for transfer. Transfer design criteria must include a complexity or variation that make learners engage critical thinking skills and call upon a repertoire of knowledge…

  1. Effect of atmospheric scattering and surface reflection on upwelling solar radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Barkstrom, B. R.; Tiwari, S. N.

    1981-01-01

    A study is presented of the solar radiation transfer in the complete earth-atmosphere system, and numerical results are compared with satellite data obtained during the Earth Radiation Budget Experiment on Nimbus 6, in August, 1975. Emphasis is placed on the upwelling radiance distribution at the top of the atmosphere, assumed to be at 50 km. The numerical technique is based on the finite difference method, which includes azimuth and spectral variations for the entire solar wavelength range. Detailed solar properties, atmospheric physical properties, and optical properties are used. However, since the property descriptions are based on a trade-off between accuracy and computational realities, aerosol and cloud optical properties are treated with simple approximations. The radiative transfer model is in good agreement with the satellite radiance observations. The method provides a valuable tool in analyzing satellite- and ground-based radiation budget measurements and in designing instrumentation.

  2. Expanding the mind's workspace: training and transfer effects with a complex working memory span task.

    PubMed

    Chein, Jason M; Morrison, Alexandra B

    2010-04-01

    In the present study, a novel working memory (WM) training paradigm was used to test the malleability of WM capacity and to determine the extent to which the benefits of this training could be transferred to other cognitive skills. Training involved verbal and spatial versions of a complex WM span task designed to emphasize simultaneous storage and processing requirements. Participants who completed 4 weeks of WM training demonstrated significant improvements on measures of temporary memory. These WM training benefits generalized to performance on the Stroop task and, in a novel finding, promoted significant increases in reading comprehension. The results are discussed in relation to the hypothesis that WM training affects domain-general attention control mechanisms and can thereby elicit far-reaching cognitive benefits. Implications include the use of WM training as a general tool for enhancing important cognitive skills.

  3. In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Brown, I. G.; Seprom, C.; Vilaithong, T.

    2007-04-01

    A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar+ ions at energy 25 keV and fluence1-2 × 1015 ions/cm2, revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work.

  4. Phase-coherent engineering of electronic heat currents with a Josephson modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  5. Development, validation and testing of a nursing home to emergency room transfer checklist.

    PubMed

    Tsai, Hsiu-Hsin; Tsai, Yun-Fang

    2018-01-01

    To develop and test the feasibility of an instrument to support patients' nursing home to emergency room transfer. Transfers from a nursing home care facility to an acute care facility such as a hospital emergency room are common. However, the prevalence of an information gap for transferring residents' health data to acute care facility is high. An evidence-based transfer instrument, which could fill this gap, is lacking. Development of a nursing home to emergency room transfer checklist, validation of items using the Delphi method and testing the feasibility and benefits of using the nursing home to emergency room transfer checklist. Items were developed based on qualitative data from previous research. Delphi validation, retrospective chart review (baseline data) and a 6-month prospective study design were applied to test the feasibility of using the checklist. Variables for testing the feasibility of the checklist included residents' 30-day readmission rate and length of hospital stay. Development of the nursing home to emergency room transfer checklist resulted in four main parts: (i) demographic data of the nursing home resident; (ii) critical data for nursing home to emergency room transfer; (iii) contact information and (iv) critical data for emergency room to nursing home transfer. Two rounds of Delphi validation resulted in a mean score (standard deviation) ranging from 4.39 (1.13)-4.98 (.15). Time required to complete the checklist was 3-5 min. Use of the nursing home to emergency room transfer checklist resulted in a 30-day readmission rate of 13.4%, which was lower than the baseline rate of 15.9%. The nursing home to emergency room transfer checklist was developed for transferring nursing home residents to an emergency room. The instrument was found to be an effective tool for this process. Use of the nursing home to emergency room transfer checklist for nursing home transfers could fill the information gap that exists when transferring older adults between facilities such as nursing homes and hospitals. © 2017 John Wiley & Sons Ltd.

  6. Fastener starter tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Arnett, Michael C. (Inventor); Garton, Harry L. (Inventor); Valentino, William D. (Inventor)

    2003-01-01

    A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.

  7. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  8. Tool calibration system for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  9. Preliminary Analysis of Low-Thrust Gravity Assist Trajectories by An Inverse Method and a Global Optimization Technique.

    NASA Astrophysics Data System (ADS)

    de Pascale, P.; Vasile, M.; Casotto, S.

    The design of interplanetary trajectories requires the solution of an optimization problem, which has been traditionally solved by resorting to various local optimization techniques. All such approaches, apart from the specific method employed (direct or indirect), require an initial guess, which deeply influences the convergence to the optimal solution. The recent developments in low-thrust propulsion have widened the perspectives of exploration of the Solar System, while they have at the same time increased the difficulty related to the trajectory design process. Continuous thrust transfers, typically characterized by multiple spiraling arcs, have a broad number of design parameters and thanks to the flexibility offered by such engines, they typically turn out to be characterized by a multi-modal domain, with a consequent larger number of optimal solutions. Thus the definition of the first guesses is even more challenging, particularly for a broad search over the design parameters, and it requires an extensive investigation of the domain in order to locate the largest number of optimal candidate solutions and possibly the global optimal one. In this paper a tool for the preliminary definition of interplanetary transfers with coast-thrust arcs and multiple swing-bys is presented. Such goal is achieved combining a novel methodology for the description of low-thrust arcs, with a global optimization algorithm based on a hybridization of an evolutionary step and a deterministic step. Low thrust arcs are described in a 3D model in order to account the beneficial effects of low-thrust propulsion for a change of inclination, resorting to a new methodology based on an inverse method. The two-point boundary values problem (TPBVP) associated with a thrust arc is solved by imposing a proper parameterized evolution of the orbital parameters, by which, the acceleration required to follow the given trajectory with respect to the constraints set is obtained simply through algebraic computation. By this method a low-thrust transfer satisfying the boundary conditions on position and velocity can be quickly assessed, with low computational effort since no numerical propagation is required. The hybrid global optimization algorithm is made of a double step. Through the evolutionary search a large number of optima, and eventually the global one, are located, while the deterministic step consists of a branching process that exhaustively partitions the domain in order to have an extensive characterization of such a complex space of solutions. Furthermore, the approach implements a novel direct constraint-handling technique allowing the treatment of mixed-integer nonlinear programming problems (MINLP) typical of multiple swingby trajectories. A low-thrust transfer to Mars is studied as a test bed for the low-thrust model, thus presenting the main characteristics of the different shapes proposed and the features of the possible sub-arcs segmentations between two planets with respect to different objective functions: minimum time and minimum fuel consumption transfers. Other various test cases are also shown and further optimized, proving the effective capability of the proposed tool.

  10. Enhancement and Extension of Porosity Model in the FDNS-500 Code to Provide Enhanced Simulations of Rocket Engine Components

    NASA Technical Reports Server (NTRS)

    Cheng, Gary

    2003-01-01

    In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes which are most widely used by research engineers at NASA Marshall Space Flight Center (MSFC) to simulate various flow problems related to rocket engines. The objective of this research work during the 10-week summer faculty fellowship program was to 1) debug the framework of the porosity model in the current FDNS code, and 2) validate the porosity model by simulating flows through various porous media such as tube banks and porous plate.

  11. 45 CFR 2530.70 - Is a designated individual required to accept a transferred education award?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transferred education award? 2530.70 Section 2530.70 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE TRANSFER OF EDUCATION AWARDS § 2530.70 Is a designated individual required to accept a transferred education award? (a) General Rule. A designated...

  12. 45 CFR 2530.70 - Is a designated individual required to accept a transferred education award?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transferred education award? 2530.70 Section 2530.70 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE TRANSFER OF EDUCATION AWARDS § 2530.70 Is a designated individual required to accept a transferred education award? (a) General Rule. A designated...

  13. 45 CFR 2530.70 - Is a designated individual required to accept a transferred education award?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transferred education award? 2530.70 Section 2530.70 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE TRANSFER OF EDUCATION AWARDS § 2530.70 Is a designated individual required to accept a transferred education award? (a) General Rule. A designated...

  14. 45 CFR 2530.70 - Is a designated individual required to accept a transferred education award?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transferred education award? 2530.70 Section 2530.70 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE TRANSFER OF EDUCATION AWARDS § 2530.70 Is a designated individual required to accept a transferred education award? (a) General Rule. A designated...

  15. 45 CFR 2530.70 - Is a designated individual required to accept a transferred education award?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transferred education award? 2530.70 Section 2530.70 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE TRANSFER OF EDUCATION AWARDS § 2530.70 Is a designated individual required to accept a transferred education award? (a) General Rule. A designated...

  16. Design of optimal impulse transfers from the Sun-Earth libration point to asteroid

    NASA Astrophysics Data System (ADS)

    Wang, Yamin; Qiao, Dong; Cui, Pingyuan

    2015-07-01

    The lunar probe, Chang'E-2, is the first one to successfully achieve both the transfer to Sun-Earth libration point orbit and the flyby of near-Earth asteroid Toutatis. This paper, taking the Chang'E-2's asteroid flyby mission as an example, provides a method to design low-energy transfers from the libration point orbit to an asteroid. The method includes the analysis of transfer families and the design of optimal impulse transfers. Firstly, the one-impulse transfers are constructed by correcting the initial guesses, which are obtained by perturbing in the direction of unstable eigenvector. Secondly, the optimality of one-impulse transfers is analyzed and the optimal impulse transfers are built by using the primer vector theory. After optimization, the transfer families, including the slow and the fast transfers, are refined to be continuous and lower-cost transfers. The method proposed in this paper can be also used for designing transfers from an arbitrary Sun-Earth libration point orbit to a near-Earth asteroid in the Sun-Earth-Moon system.

  17. Simple, Script-Based Science Processing Archive

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Hegde, Mahabaleshwara; Barth, C. Wrandle

    2007-01-01

    The Simple, Scalable, Script-based Science Processing (S4P) Archive (S4PA) is a disk-based archival system for remote sensing data. It is based on the data-driven framework of S4P and is used for data transfer, data preprocessing, metadata generation, data archive, and data distribution. New data are automatically detected by the system. S4P provides services such as data access control, data subscription, metadata publication, data replication, and data recovery. It comprises scripts that control the data flow. The system detects the availability of data on an FTP (file transfer protocol) server, initiates data transfer, preprocesses data if necessary, and archives it on readily available disk drives with FTP and HTTP (Hypertext Transfer Protocol) access, allowing instantaneous data access. There are options for plug-ins for data preprocessing before storage. Publication of metadata to external applications such as the Earth Observing System Clearinghouse (ECHO) is also supported. S4PA includes a graphical user interface for monitoring the system operation and a tool for deploying the system. To ensure reliability, S4P continuously checks stored data for integrity, Further reliability is provided by tape backups of disks made once a disk partition is full and closed. The system is designed for low maintenance, requiring minimal operator oversight.

  18. The utility of the Historical Clinical Risk-20 Scale as a predictor of outcomes in decisions to transfer patients from high to lower levels of security--a UK perspective.

    PubMed

    Dolan, Mairead; Blattner, Regine

    2010-09-29

    Structured Professional Judgment (SPJ) approaches to violence risk assessment are increasingly being adopted into clinical practice in international forensic settings. The aim of this study was to examine the predictive validity of the Historical Clinical Risk -20 (HCR-20) violence risk assessment scale for outcome following transfers from high to medium security in a United Kingdom setting. The sample was predominately male and mentally ill and the majority of cases were detained under the criminal section of the Mental Health Act (1986). The HCR-20 was rated based on detailed case file information on 72 cases transferred from high to medium security. Outcomes were examined, independent of risk score, and cases were classed as "success or failure" based on established criteria. The mean length of follow up was 6 years. The total HCR-20 score was a robust predictor of failure at lower levels of security and return to high security. The Clinical and Risk management items contributed most to predictive accuracy. Although the HCR-20 was designed as a violence risk prediction tool our findings suggest it has potential utility in decisions to transfer patients from high to lower levels of security.

  19. Vaporization inside a mini microfin tube: experimental results and modeling

    NASA Astrophysics Data System (ADS)

    Diani, A.; Rossetto, L.

    2015-11-01

    This paper proposes a comparison among the common R134a and the extremely low GWP refrigerant R1234yf during vaporization inside a mini microfin tube. This microfin tube has an internal diameter of 2.4 mm, it has 40 fins, with a fin height of 0.12 mm. Due to the high heat transfer coefficients shown by this tube, this technology can lead to a refrigerant charge reduction. Tests were run in the Heat Transfer in Micro Geometries Lab of the Dipartimento di Ingegneria Industriale of the Università di Padova. Mass velocities range between 375 and 940 kg m-2 s-1, heat fluxes from 10 to 50 kW m-2, vapour qualities from 0.10 to 0.99, at a saturation temperature of 30°C. The comparison among the two fluids is proposed at the same operating conditions, in order to highlight the heat transfer and pressure drop differences among the two refrigerants. In addition, two correlations are proposed to estimate the heat transfer coefficient and frictional pressure drop during refrigerant flow boiling inside mini microfin tubes. These correlations well predict the experimental values, and thus they can be used as a useful tool to design evaporators based on these mini microfin tubes.

  20. EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Greene, Nate; Xu, Hua

    2004-01-01

    The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.

  1. Repeatability Evaluation of a Contrast Sensitivity System for Transfer to the Eye Clinic

    NASA Astrophysics Data System (ADS)

    Alcalde, N. G.; Castillo, L. R.; Filgueira, C. Paz; Colombo, E. M.

    2016-04-01

    The Contrast Sensitivity Function (CSF) is a valuable tool which can be used to characterize functional vision and also for the diagnosis and management of patients with different eye diseases. In spite of its usefulness, the CSF is currently hardly ever used in clinical practice. The aim of this study was to validate the use of the system called FVC-100 (Tecnovinc-UNT-CONICET, Argentina), which calculates the CSF, in order to transfer this important tool to ophthalmological clinics. The validation was carried out through the design of a repeatability test and the subsequent analysis of the results. Furthermore, we evaluated the impact of different factors influencing the repeatability of the measurements such as age and previous training. The tests were based on the discrimination of sinusoidal gratings for different spatial frequencies (1, 4 and 12 c/°) in both eyes of 12 people, aged between 20 and 70. The results show that the calculated values of SC of each subject have a high repeatability and are not dependent on age or training. These results allow us to conclude positively regarding the effectiveness of the FVC-100, and to validate its use in clinics for the calculation of the FSC as a standard measure of functional vision quality.

  2. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR

    PubMed Central

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs. PMID:28640824

  3. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR.

    PubMed

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam; Lucchi, Naomi W

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.

  4. Navigating financial and supply reliability tradeoffs in regional drought management portfolios

    NASA Astrophysics Data System (ADS)

    Zeff, Harrison B.; Kasprzyk, Joseph R.; Herman, Jonathan D.; Reed, Patrick M.; Characklis, Gregory W.

    2014-06-01

    Rising development costs and growing concerns over environmental impacts have led many communities to explore more diversified water management strategies. These "portfolio"-style approaches integrate existing supply infrastructure with other options such as conservation measures or water transfers. Diversified water supply portfolios have been shown to reduce the capacity and costs required to meet demand, while also providing greater adaptability to changing hydrologic conditions. However, this additional flexibility can also cause unexpected reductions in revenue (from conservation) or increased costs (from transfers). The resulting financial instability can act as a substantial disincentive to utilities seeking to implement more innovative water management techniques. This study seeks to design portfolios that employ financial tools (e.g., contingency funds and index insurance) to reduce fluctuations in revenues and costs, allowing these strategies to achieve improved performance without sacrificing financial stability. This analysis is applied to the development of coordinated regional supply portfolios in the "Research Triangle" region of North Carolina, an area comprising four rapidly growing municipalities. The actions of each independent utility become interconnected when shared infrastructure is utilized to enable interutility transfers, requiring the evaluation of regional tradeoffs in up to five performance and financial objectives. Diversified strategies introduce significant tradeoffs between achieving reliability goals and introducing burdensome variability in annual revenues and/or costs. Financial mitigation tools can mitigate the impacts of this variability, allowing for an alternative suite of improved solutions. This analysis provides a general template for utilities seeking to navigate the tradeoffs associated with more flexible, portfolio-style management approaches.

  5. Web Tools: The Second Generation

    ERIC Educational Resources Information Center

    Pascopella, Angela

    2008-01-01

    Web 2.0 tools and technologies, or second generation tools, help districts to save time and money, and eliminate the need to transfer or move files back and forth across computers. Many Web 2.0 tools help students think critically and solve problems, which falls under the 21st-century skills. The second-generation tools are growing in popularity…

  6. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  7. DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines

    NASA Technical Reports Server (NTRS)

    vonTerzi, Dominic; Bauer, H.-J.

    2010-01-01

    DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.

  8. When pliers become fingers in the monkey motor system

    PubMed Central

    Umiltà, M. A.; Escola, L.; Intskirveli, I.; Grammont, F.; Rochat, M.; Caruana, F.; Jezzini, A.; Gallese, V.; Rizzolatti, G.

    2008-01-01

    The capacity to use tools is a fundamental evolutionary achievement. Its essence stands in the capacity to transfer a proximal goal (grasp a tool) to a distal goal (e.g., grasp food). Where and how does this goal transfer occur? Here, we show that, in monkeys trained to use tools, cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for “reverse pliers,” an implement that requires finger opening, instead of their closing, to grasp an object. We conclude that the capacity to use tools is based on an inherently goal-centered functional organization of primate cortical motor areas. PMID:18238904

  9. Rethinking Transfer: Learning from CALL Teacher Education as Consequential Transition

    ERIC Educational Resources Information Center

    Chao, Chin-chi

    2015-01-01

    Behind CALL teacher education (CTE) there is an unproblematized consensus of transfer, which suggests a positivist and tool-centered view of learning gains that differs from the sociocultural focus of recent teacher education research. Drawing on Beach's (2003) conceptualization of transfer as "consequential transition," this qualitative…

  10. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell

    NASA Technical Reports Server (NTRS)

    Savinell, Robert F.; Fritts, S. D.

    1987-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  11. FLUSH: A tool for the design of slush hydrogen flow systems

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1990-01-01

    As part of the National Aerospace Plane Project an analytical model was developed to perform calculations for in-line transfer of solid-liquid mixtures of hydrogen. This code, called FLUSH, calculates pressure drop and solid fraction loss for the flow of slush hydrogen through pipe systems. The model solves the steady-state, one-dimensional equation of energy to obtain slush loss estimates. A description of the code is provided as well as a guide for users of the program. Preliminary results are also presented showing the anticipated degradation of slush hydrogen solid content for various piping systems.

  12. Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis

    NASA Technical Reports Server (NTRS)

    Stampfl, E.; Landsbaum, E. M.

    1973-01-01

    The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.

  13. Plastic Surgery Applications Using Three-Dimensional Planning and Computer-Assisted Design and Manufacturing.

    PubMed

    Pfaff, Miles J; Steinbacher, Derek M

    2016-03-01

    Three-dimensional analysis and planning is a powerful tool in plastic and reconstructive surgery, enabling improved diagnosis, patient education and communication, and intraoperative transfer to achieve the best possible results. Three-dimensional planning can increase efficiency and accuracy, and entails five core components: (1) analysis, (2) planning, (3) virtual surgery, (4) three-dimensional printing, and (5) comparison of planned to actual results. The purpose of this article is to provide an overview of three-dimensional virtual planning and to provide a framework for applying these systems to clinical practice. Therapeutic, V.

  14. Exploring engagement in a virtual community of practice in pediatric rehabilitation: who are non-users, lurkers, and posters?

    PubMed

    Hurtubise, Karen; Pratte, Gabrielle; Rivard, Lisa; Berbari, Jade; Héguy, Léa; Camden, Chantal

    2017-12-20

    Communities of practice are increasingly recognized in rehabilitation as useful knowledge transfer tools; however, little is known about their users. This exploratory study describes the characteristics of participants and non-participants invited to engage in a pediatric rehabilitation virtual community of practice. In addition, we explored virtual community of practice utilization behaviors, engagement predictors, and the impact of strategies designed to foster engagement. Participants' demographics including information-seeking style and organization e-readiness, as well as online platform frequency of use data were collected and analyzed using descriptive, comparative, and predictive statistics. Seventy-four percent of those invited used the virtual community of practice. Users had less years of experience in pediatric rehabilitation than non-users. Among the users, 71% were classified as "lurkers," who engaged through reading content only; while 29% were classified as "posters," editing online content. Predictive factors were not uncovered, however an increased number of forum visits correlated with being a poster, a non-information seeker, an employee of an organization demonstrating e-readiness, and regularly working with children with the virtual community of practice specific condition. User-engagement strategies increased visits to the forum. These findings will assist rehabilitation leaders in leveraging rehabilitation-specific virtual community of practice to improve knowledge transfer and practice in pediatric rehabilitation and disability management. Implications for Rehabilitation Communities of practice are increasingly recognized as useful knowledge transfer tools for rehabilitation professionals and are made more accessible thanks to virtual technologies. Our virtual community of practice was found to be optimized in health care organizations with an electronic culture, when the topic area had daily relevance to its target audience, and was particularly beneficial for those who have limited years of experience in pediatric rehabilitation. A strongly committed, selected leadership team with the technological skills, content expertise, and designated time to maintain the site and to nurture discussion was deemed vital in fostering knowledge exchange in this context. User-focused engagement strategies showed promise in increasing visits to the virtual community of practice. Our study supports the importance of multi-pronged approaches in enhancing health care professional knowledge and skills Findings from this study will assist rehabilitation leaders in optimally leveraging rehabilitation-specific virtual community of practice to improve knowledge transfer in pediatric rehabilitation and disability management.

  15. The Design and Transfer of Advanced Command and Control (C2) Computer-Based Systems

    DTIC Science & Technology

    1980-03-31

    TECHNICAL REPORT 80-02 QUARTERLY TECHNICAL REPORT: THE DESIGN AND TRANSFER OF ADVANCED COMMAND AND CONTROL (C 2 ) COMPUTER-BASED SYSTEMS ARPA...The Tasks/Objectives and/or Purposes of the overall project are connected with the design , development, demonstration and transfer of advanced...command and control (C2 ) computer-based systems; this report covers work in the computer-based design and transfer areas only. The Technical Problems thus

  16. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

  17. Transfer of infrared thermography predictive maintenance technologies to Soviet-designed nuclear power plants: experience at Chernobyl

    NASA Astrophysics Data System (ADS)

    Pugh, Ray; Huff, Roy

    1999-03-01

    The importance of infrared (IR) technology and analysis in today's world of predictive maintenance and reliability- centered maintenance cannot be understated. The use of infrared is especially important in facilities that are required to maintain a high degree of equipment reliability because of plant or public safety concerns. As with all maintenance tools, particularly those used in predictive maintenance approaches, training plays a key role in their effectiveness and the benefit gained from their use. This paper details an effort to transfer IR technology to Soviet- designed nuclear power plants in Russia, Ukraine, and Lithuania. Delivery of this technology and post-delivery training activities have been completed recently at the Chornobyl nuclear power plant in Ukraine. Many interesting challenges were encountered during this effort. Hardware procurement and delivery of IR technology to a sensitive country were complicated by United States regulations. Freight and shipping infrastructure and host-country customs policies complicated hardware transport. Training activities were complicated by special hardware, software and training material translation needs, limited communication opportunities, and site logistical concerns. These challenges and others encountered while supplying the Chornobyl plant with state-of-the-art IR technology are described in this paper.

  18. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Cousineau, J.; Lustbader, J.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents,more » which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.« less

  19. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  20. Utilization of a CRT display light pen in the design of feedback control systems

    NASA Technical Reports Server (NTRS)

    Thompson, J. G.; Young, K. R.

    1972-01-01

    A hierarchical structure of the interlinked programs was developed to provide a flexible computer-aided design tool. A graphical input technique and a data structure are considered which provide the capability of entering the control system model description into the computer in block diagram form. An information storage and retrieval system was developed to keep track of the system description, and analysis and simulation results, and to provide them to the correct routines for further manipulation or display. Error analysis and diagnostic capabilities are discussed, and a technique was developed to reduce a transfer function to a set of nested integrals suitable for digital simulation. A general, automated block diagram reduction procedure was set up to prepare the system description for the analysis routines.

  1. DESTINY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-10

    DESTINY is a comprehensive tool for modeling 3D and 2D cache designs using SRAM,embedded DRAM (eDRAM), spin transfer torque RAM (STT-RAM), resistive RAM (ReRAM), and phase change RAM (PCN). In its purpose, it is similar to CACTI, CACTI-3DD or NVSim. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g. latency, area or energy-delay product) for agiven memory technology, choosing the suitable memory technology or fabrication method (i.e. 2D v/s 3D) for a given optimization target, etc. DESTINY has been validated against several cache prototypes. DESTINY is expected to boost studies ofmore » next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers.« less

  2. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  3. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    PubMed

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.

  4. Can surgical simulation be used to train detection and classification of neural networks?

    PubMed

    Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail

    2017-10-01

    Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.

  5. Air Data Report Improves Flight Safety

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.

  6. Policy Transfer Among Regional-Level Organizations: Insights from Source Water Protection in Ontario.

    PubMed

    de Loë, R C; Murray, D; Michaels, S; Plummer, R

    2016-07-01

    Organizations at the local and regional scales often face the challenge of developing policy mechanisms rapidly and concurrently, whether in response to expanding mandates, newly identified threats, or changes in the political environment. In the Canadian Province of Ontario, rapid, concurrent policy development was considered desirable by 19 regional organizations tasked with developing policies for protection of drinking water sources under very tight and highly prescribed mandates. An explicit policy transfer approach was used by these organizations. Policy transfer refers to using knowledge of policies, programs, and institutions in one context in the development of policies, programs, and institutions in another. This paper assesses three online mechanisms developed to facilitate policy transfer for source water protection in Ontario. Insights are based on a survey of policy planners from the 19 regional organizations who used the three policy transfer tools, supplemented by an analysis of three policies created and transferred among the 19 regional source water protection organizations. Policy planners in the study indicated they had used policy transfer to develop source protection policies for their regions-a finding confirmed by analysis of the text of policies. While the online policy transfer tools clearly facilitated systematic policy transfer, participants still preferred informal, direct exchanges with their peers in other regions over the use of the internet-based policy transfer mechanisms created on their behalf.

  7. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  8. Optimization of a vacuum chamber for vibration measurements.

    PubMed

    Danyluk, Mike; Dhingra, Anoop

    2011-10-01

    A 200 °C high vacuum chamber has been built to improve vibration measurement sensitivity. The optimized design addresses two significant issues: (i) vibration measurements under high vacuum conditions and (ii) use of design optimization tools to reduce operating costs. A test rig consisting of a cylindrical vessel with one access port has been constructed with a welded-bellows assembly used to seal the vessel and enable vibration measurements in high vacuum that are comparable with measurements in air. The welded-bellows assembly provides a force transmissibility of 0.1 or better at 15 Hz excitation under high vacuum conditions. Numerical results based on design optimization of a larger diameter chamber are presented. The general constraints on the new design include material yield stress, chamber first natural frequency, vibration isolation performance, and forced convection heat transfer capabilities over the exterior of the vessel access ports. Operating costs of the new chamber are reduced by 50% compared to a preexisting chamber of similar size and function.

  9. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  10. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches.

    PubMed

    Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele

    2008-11-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.

  11. Smooth Transfer: A Once Mundane Administrative Issue Re-Emerges as a Key Tool for Equity

    ERIC Educational Resources Information Center

    Purcell, Francesca B.

    2006-01-01

    Undergraduate transfer is a messy and too-often frustrating part of college for faculty, staff and, above all, the students themselves. Students are discouraged by unclear and complicated curriculum requirements. Faculty are reluctant to accept courses from another institution and question the preparedness of transfer students. Advisors are…

  12. Data Storage and Transfer | High-Performance Computing | NREL

    Science.gov Websites

    High-Performance Computing (HPC) systems. Photo of computer server wiring and lights, blurred to show data. WinSCP for Windows File Transfers Use to transfer files from a local computer to a remote computer. Robinhood for File Management Use this tool to manage your data files on Peregrine. Best

  13. Integrated tools for control-system analysis

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  14. Development of a component design tool for metal hydride heat pumps

    NASA Astrophysics Data System (ADS)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for use in this application. The metal hydride component design tool developed in this work selects between metal hydride materials on an unprecedented scale. It can be easily applied to other hydrogen-based thermal systems, making it a powerful and versatile tool.

  15. Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system

    NASA Astrophysics Data System (ADS)

    Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU

    2018-03-01

    The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.

  16. 28 CFR 570.35 - Transfer furlough eligibility requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility based on the inmate's security designation and custody classification at the time of transfer. (d... security designation and custody classification at the time of transfer. ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Transfer furlough eligibility...

  17. 28 CFR 570.35 - Transfer furlough eligibility requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility based on the inmate's security designation and custody classification at the time of transfer. (d... security designation and custody classification at the time of transfer. ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Transfer furlough eligibility...

  18. 28 CFR 570.35 - Transfer furlough eligibility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility based on the inmate's security designation and custody classification at the time of transfer. (d... security designation and custody classification at the time of transfer. ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Transfer furlough eligibility...

  19. 28 CFR 570.35 - Transfer furlough eligibility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility based on the inmate's security designation and custody classification at the time of transfer. (d... security designation and custody classification at the time of transfer. ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Transfer furlough eligibility...

  20. The use of technology enhanced learning in health research capacity development: lessons from a cross country research partnership.

    PubMed

    Byrne, E; Donaldson, L; Manda-Taylor, L; Brugha, R; Matthews, A; MacDonald, S; Mwapasa, V; Petersen, M; Walsh, A

    2016-05-10

    With the recognition of the need for research capacity strengthening for advancing health and development, this research capacity article explores the use of technology enhanced learning in the delivery of a collaborative postgraduate blended Master's degree in Malawi. Two research questions are addressed: (i) Can technology enhanced learning be used to develop health research capacity?, and: (ii) How can learning content be designed that is transferrable across different contexts? An explanatory sequential mixed methods design was adopted for the evaluation of technology enhanced learning in the Masters programme. A number of online surveys were administered, student participation in online activities monitored and an independent evaluation of the programme conducted. Remote collaboration and engagement are paramount in the design of a blended learning programme and support was needed for selecting the most appropriate technical tools. Internet access proved problematic despite developing the content around low bandwidth availability and training was required for students and teachers/trainers on the tools used. Varying degrees of engagement with the tools used was recorded, and the support of a learning technologist was needed to navigate through challenges faced. Capacity can be built in health research through blended learning programmes. In relation to transferability, the support required institutionally for technology enhanced learning needs to be conceptualised differently from support for face-to-face teaching. Additionally, differences in pedagogical approaches and styles between institutions, as well as existing social norms and values around communication, need to be embedded in the content development if the material is to be used beyond the pilot resource-intensive phase of a project.

  1. Laser cladding: repairing and manufacturing metal parts and tools

    NASA Astrophysics Data System (ADS)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  2. [Non-viral gene therapy approach for regenerative recovery of skin wounds in mammals].

    PubMed

    Efremov, A M; Dukhovlinov, I V; Dizhe, E B; Burov, S V; Leko, M V; Akif'ev, B N; Mogilenko, D A; Ivanov, I A; Perevozchikov, A P; Orlov, S V

    2010-01-01

    The rate and character of skin tissue regeneration after wounds, burns and other traumas depend on the cell proliferation within damaged area. Acceleration of healing by stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment consisting in the transfer of genes encoding mitogenic growth factors to wound area. The most important step in the development of gene therapy approaches is the design of gene delivery tools. In spite of high efficacy of viral vectors, the non-viral means have some preferences (low toxicity, low immunogenity, safety and the absence of backside effects). Among non-viral gene delivery tools, molecular conjugates are the most popular because of their efficacy, simplicity, and the capacity to the targeted gene transfer. In the present work we have developed two molecular conjugates--NLS-TSF7 and NLS-TSF12 consisting of the modified signal of nuclear localization of T-antigen of SV40 virus (cationic part) and the peptide ligands of mammalian transferrin receptor (ligand part). These conjugates bind to plasmid DNA with formation of polyelectrolytic complexes and are capable to deliver plasmid DNA into cells expressing transferrin receptors by receptor-mediated endocytosis. Transfer of the expression vector of luciferase gene in the complex with molecular conjugate NLS-TSF7 to murine surface tissues led to about 100 fold increasing of luciferase activity in comparison with the transfer of free expression vector. Treatment of slash wounds in mice with the complexes of expression vector of synthetic human gene encoding insulin-like growth factor 1 with molecular conjugates NLS-TSF7 led to acceleration of healing in comparison with mice treated with free expression vector. The results obtained confirm the high efficiency of the developed regenerative gene therapy approach for the treatment of damaged skin tissues in mammals.

  3. Micro-intestinal robot with wireless power transmission: design, analysis and experiment.

    PubMed

    Shi, Yu; Yan, Guozheng; Chen, Wenwen; Zhu, Bingquan

    2015-11-01

    Video capsule endoscopy is a useful tool for noninvasive intestinal detection, but it is not capable of active movement; wireless power is an effective solution to this problem. The research in this paper consists of two parts: the mechanical structure which enables the robot to move smoothly inside the intestinal tract, and the wireless power supply which ensures efficiency. First, an intestinal robot with leg architectures was developed based on the Archimedes spiral, which mimics the movement of an inchworm. The spiral legs were capable of unfolding to an angle of approximately 155°, which guaranteed stability of clamping, consistency of surface pressure, and avoided the risk of puncturing the intestinal tract. Secondly, the necessary power to operate the robot was far beyond the capacity of button batteries, so a wireless power transmission (WPT) platform was developed. The design of the platform focused on power transfer efficiency and frequency stability. In addition, the safety of human tissue in the alternating electromagnetic field was also taken into consideration. Finally, the assembled robot was tested and verified with the use of the WPT platform. In the isolated intestine, the robot system successfully traveled along the intestine with an average speed of 23 mm per minute. The obtained videos displayed a resolution of 320 × 240 and a transmission rate of 30 frames per second. The WPT platform supplied up to 500 mW of energy to the robot, and achieved a power transfer efficiency of 12%. It has been experimentally verified that the intestinal robot is safe and effective as an endoscopy tool, for which wireless power is feasible. Proposals for further improving the robot and wireless power supply are provided later in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  5. Tools and Strategies for Engaging the Supervisor in Technology-Supported Work-Based Learning, Evaluation Research

    ERIC Educational Resources Information Center

    Bianco, Manuela; Collis, Betty

    2004-01-01

    This study reports the results of the formative evaluations of two computer-supported tools and the associated strategies for their use. Tools and strategies embedded in web-based courses can increase a supervisor's involvement in helping employees transfer learning onto the workplace. Issues relating to characteristics of the tools and strategies…

  6. Improving Transfer of Training with Transfer Design: Does Supervisor Support Moderate the Relationship?

    ERIC Educational Resources Information Center

    Chauhan, Ragini; Ghosh, Piyali; Rai, Alka; Kapoor, Sanchita

    2017-01-01

    Purpose: In response to a perceived need for research investigating the relatively less-explored role of supervisor support as a moderator in the transfer mechanism, this paper aims to empirically examine the influence of transfer design on transfer of training and also the moderating role of supervisor support between these constructs.…

  7. Optimization of design and production strategies for novel adeno-associated viral display peptide libraries.

    PubMed

    Körbelin, J; Hunger, A; Alawi, M; Sieber, T; Binder, M; Trepel, M

    2017-08-01

    Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.

  8. Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions.

    PubMed

    Hacisuleyman, Aysima; Erman, Burak

    2017-06-01

    A fast and approximate method of generating allosteric communication landscapes in proteins is presented by using Schreiber's entropy transfer concept in combination with the Gaussian Network Model of proteins. Predictions of the model and the allosteric communication landscapes generated show that information transfer in proteins does not necessarily take place along a single path, but an ensemble of pathways is possible. The model emphasizes that knowledge of entropy only is not sufficient for determining allosteric communication and additional information based on time delayed correlations should be introduced, which leads to the presence of causality in proteins. The model provides a simple tool for mapping entropy sink-source relations into pairs of residues. By this approach, residues that should be manipulated to control protein activity may be determined. This should be of great importance for allosteric drug design and for understanding the effects of mutations on function. The model is applied to determine allosteric communication in three proteins, Ubiquitin, Pyruvate Kinase, and the PDZ domain. Predictions are in agreement with molecular dynamics simulations and experimental evidence. Proteins 2017; 85:1056-1064. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Multiplexed Sequence Encoding: A Framework for DNA Communication

    PubMed Central

    Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  10. Integral Method for the Assessment of U-RANS Effectiveness in Non-Equilibrium Flows and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher

    2015-11-01

    Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).

  11. The recalibration of tactile perception during tool use is body-part specific

    PubMed Central

    Cawley-Bennett, Andrew; Longo, Matthew R.; Saygin, Ayse P.

    2018-01-01

    Two decades of research have demonstrated that using a tool modulates spatial representations of the body. Whether this embodiment is specific to representations of the tool-using limb or extends to representations of other body parts has received little attention. Several studies of other perceptual phenomena have found that modulations to the primary somatosensory representation of the hand transfers to the face, due in part to their close proximity in primary somatosensory cortex. In the present study, we investigated whether tool-induced recalibration of tactile perception on the hand transfers to the cheek. Participants verbally estimated the distance between two tactile points applied to either their hand or face, before and after using a hand-shaped tool. Tool use recalibrated tactile distance perception on the hand—in line with previous findings—but left perception on the cheek unchanged. This finding provides support for the idea that embodiment is body-part specific. Furthermore, it suggests that tool-induced perceptual recalibration occurs at a level of somatosensory processing, where representations of the hand and face have become functionally disentangled. PMID:28702834

  12. Guidebook for analysis of tether applications

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1985-01-01

    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.

  13. The Writer's Individualized Transfer Tool: A Freeware Innovation for Fostering and Researching Transfer of Writing Skills and Knowledge

    ERIC Educational Resources Information Center

    Khost, Peter H.

    2015-01-01

    Most higher education institutions lack a program that promotes students' transfer--that is, reapplication or repurposing--of writing skills and knowledge across the curriculum, a phenomenon that research shows does not tend to happen without deliberate sustained support. This article introduces an online instrument, the Writer's Individualized…

  14. A Practical Tool for Evaluating the Potential of ESOL Textbooks to Promote Learning Transfer

    ERIC Educational Resources Information Center

    James, Mark A.

    2017-01-01

    For teaching English to speakers of other languages (ESOL) to be seen as having substantial impact, learning that occurs in the classroom must transfer to situations outside the classroom. Unfortunately, education research shows that transfer can be difficult to promote. Therefore, ESOL teachers may want to ensure that their classes are as…

  15. The Governance of University Knowledge Transfer: A Critical Review of the Literature

    ERIC Educational Resources Information Center

    Geuna, Aldo; Muscio, Alessandro

    2009-01-01

    Universities have long been involved in knowledge transfer activities. Yet the last 30 years have seen major changes in the governance of university-industry interactions. Knowledge transfer has become a strategic issue: as a source of funding for university research and (rightly or wrongly) as a policy tool for economic development. Universities…

  16. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  17. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  19. mdtmFTP and its evaluation on ESNET SDN testbed

    DOE PAGES

    Zhang, Liang; Wu, Wenji; DeMar, Phil; ...

    2017-04-21

    In this paper, to address the high-performance challenges of data transfer in the big data era, we are developing and implementing mdtmFTP: a high-performance data transfer tool for big data. mdtmFTP has four salient features. First, it adopts an I/O centric architecture to execute data transfer tasks. Second, it more efficiently utilizes the underlying multicore platform through optimized thread scheduling. Third, it implements a large virtual file mechanism to address the lots-of-small-files (LOSF) problem. In conclusion, mdtmFTP integrates multiple optimization mechanisms, including–zero copy, asynchronous I/O, pipelining, batch processing, and pre-allocated buffer pools–to enhance performance. mdtmFTP has been extensively tested andmore » evaluated within the ESNET 100G testbed. Evaluations show that mdtmFTP can achieve higher performance than existing data transfer tools, such as GridFTP, FDT, and BBCP.« less

  20. Nucleon transfer reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  1. Chirped frequency transfer: a tool for synchronization and time transfer.

    PubMed

    Raupach, Sebastian M F; Grosche, Gesine

    2014-06-01

    We propose and demonstrate the phase-stabilized transfer of a chirped frequency as a tool for synchronization and time transfer. Technically, this is done by evaluating remote measurements of the transferred, chirped frequency. The gates of the frequency counters, here driven by a 10-MHz oscillation derived from a hydrogen maser, play a role analogous to the 1-pulse per second (PPS) signals usually employed for time transfer. In general, for time transfer, the gates consequently must be related to the external clock. Synchronizing observations based on frequency measurements, on the other hand, only requires a stable oscillator driving the frequency counters. In a proof of principle, we demonstrate the suppression of symmetrical delays, such as the geometrical path delay. We transfer an optical frequency chirped by around 240 kHz/s over a fiber link of around 149 km. We observe an accuracy and simultaneity, as well as a precision (Allan deviation, 18,000 s averaging interval) of the transferred frequency of around 2 × 10(-19). We apply chirped frequency transfer to remote measurements of the synchronization between two counters' gate intervals. Here, we find a precision of around 200 ps at an estimated overall uncertainty of around 500 ps. The measurement results agree with those obtained from reference measurements, being well within the uncertainty. In the present setup, timing offsets up to 4 min can be measured unambiguously. We indicate how this range can be extended further.

  2. Priority design parameters of industrialized optical fiber sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  3. Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD): Data and Tools for Dynamic Management and Decision Support

    NASA Technical Reports Server (NTRS)

    Humphries, G. R. W.; Naveen, R.; Schwaller, M.; Che-Castaldo, C.; McDowall, P.; Schrimpf, M.; Schrimpf, Michael; Lynch, H. J.

    2017-01-01

    The Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD) is a web-based, open access, decision-support tool designed to assist scientists, non-governmental organizations and policy-makers working to meet the management objectives as set forth by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and other components of the Antarctic Treaty System (ATS) (that is, Consultative Meetings and the ATS Committee on Environmental Protection). MAPPPD was designed specifically to complement existing efforts such as the CCAMLR Ecosystem Monitoring Program (CEMP) and the ATS site guidelines for visitors. The database underlying MAPPPD includes all publicly available (published and unpublished) count data on emperor, gentoo, Adelie) and chinstrap penguins in Antarctica. Penguin population models are used to assimilate available data into estimates of abundance for each site and year.Results are easily aggregated across multiple sites to obtain abundance estimates over any user-defined area of interest. A front end web interface located at www.penguinmap.com provides free and ready access to the most recent count and modelled data, and can act as a facilitator for data transfer between scientists and Antarctic stakeholders to help inform management decisions for the continent.

  4. Computer-Aided Sensor Development Focused on Security Issues.

    PubMed

    Bialas, Andrzej

    2016-05-26

    The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research.

  5. Computer-Aided Sensor Development Focused on Security Issues

    PubMed Central

    Bialas, Andrzej

    2016-01-01

    The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research. PMID:27240360

  6. Care coordination gaps due to lack of interoperability in the United States: a qualitative study and literature review.

    PubMed

    Samal, Lipika; Dykes, Patricia C; Greenberg, Jeffrey O; Hasan, Omar; Venkatesh, Arjun K; Volk, Lynn A; Bates, David W

    2016-04-22

    Health information technology (HIT) could improve care coordination by providing clinicians remote access to information, improving legibility, and allowing asynchronous communication, among other mechanisms. We sought to determine, from a clinician perspective, how care is coordinated and to what extent HIT is involved when transitioning patients between emergency departments, acute care hospitals, skilled nursing facilities, and home health agencies in settings across the United States. We performed a qualitative study with clinicians and information technology professionals from six regions of the U.S. which were chosen as national leaders in HIT. We analyzed data through a two person consensus approach, assigning responses to each of nine care coordination activities. We also conducted a literature review of MEDLINE®, CINAHL®, and Embase, analyzing results of studies that examined interventions to improve information transfer during transitions of care. We enrolled 29 respondents from 17 organizations and conducted six focus groups. Respondents reported how HIT is currently used for care coordination activities. HIT is currently used to monitor patients and to align systems-level resources with population needs. However, we identified multiple areas where the lack of interoperability leads to inefficient processes and missing data. Additionally, the literature review identified ten intervention studies that address information transfer, seven of which employed HIT and three of which utilized other communication methods such as telephone calls, faxed records, and nurse case management. Significant care coordination gaps exist due to the lack of interoperability across the United States. We must design, evaluate, and incentivize the use of HIT for care coordination. We should focus on the domains where we found the largest gaps: information transfer, systems to monitor patients, tools to support patients' self-management goals, and tools to link patients and their caregivers with community resources.

  7. NATIONAL CONFERENCE ON TOOLS FOR URBAN WATER RESOURCE MANAGEMENT AND PROTECTION: PROCEEDINGS, CHICAGO, IL, FEBRUARY 7-10, 2000

    EPA Science Inventory

    A wide array of effective water quality management and protection tools have been developed for urban environments, but implementation is hindered by a shortage of technology transfer opportunities. This National Conference on Tools for Urban Water Resource Management and Protec...

  8. Improving 130nm node patterning using inverse lithography techniques for an analog process

    NASA Astrophysics Data System (ADS)

    Duan, Can; Jessen, Scott; Ziger, David; Watanabe, Mizuki; Prins, Steve; Ho, Chi-Chien; Shu, Jing

    2018-03-01

    Developing a new lithographic process routinely involves usage of lithographic toolsets and much engineering time to perform data analysis. Process transfers between fabs occur quite often. One of the key assumptions made is that lithographic settings are equivalent from one fab to another and that the transfer is fluid. In some cases, that is far from the truth. Differences in tools can change the proximity effect seen in low k1 imaging processes. If you use model based optical proximity correction (MBOPC), then a model built in one fab will not work under the same conditions at another fab. This results in many wafers being patterned to try and match a baseline response. Even if matching is achieved, there is no guarantee that optimal lithographic responses are met. In this paper, we discuss the approach used to transfer and develop new lithographic processes and define MBOPC builds for the new lithographic process in Fab B which was transferred from a similar lithographic process in Fab A. By using PROLITHTM simulations to match OPC models for each level, minimal downtime in wafer processing was observed. Source Mask Optimization (SMO) was also used to optimize lithographic processes using novel inverse lithography techniques (ILT) to simultaneously optimize mask bias, depth of focus (DOF), exposure latitude (EL) and mask error enhancement factor (MEEF) for critical designs for each level.

  9. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  10. 1.5 nm fabrication of test patterns for characterization of metrological systems

    DOE PAGES

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less

  11. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    NASA Astrophysics Data System (ADS)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  12. Workshop on Two-Phase Fluid Behavior in a Space Environment

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  13. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  14. Laser Powered Launch Vehicle Performance Analyses

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)

    2001-01-01

    The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.

  15. Program Model Checking as a New Trend

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper introduces a special section of STTT (International Journal on Software Tools for Technology Transfer) containing a selection of papers that were presented at the 7th International SPIN workshop, Stanford, August 30 - September 1, 2000. The workshop was named SPIN Model Checking and Software Verification, with an emphasis on model checking of programs. The paper outlines the motivation for stressing software verification, rather than only design and model verification, by presenting the work done in the Automated Software Engineering group at NASA Ames Research Center within the last 5 years. This includes work in software model checking, testing like technologies and static analysis.

  16. Recent advances in fluidized bed drying

    NASA Astrophysics Data System (ADS)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  17. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  18. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Injector Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci-CHEM CFD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid was used and then locally refined to demonstrate grid convergence. Solutions were obtained with three variations of the k-omega turbulence model.

  19. Manual for Transference Work Scale; a micro-analytical tool for therapy process analyses.

    PubMed

    Ulberg, Randi; Amlo, Svein; Høglend, Per

    2014-11-18

    The present paper is a manual for the Transference Work Scale (TWS). The inter-rater agreement on the 26 TWS items was good to excellent and previously published. TWS is a therapy process rating scale focusing on Transference Work (TW) (i.e. analysis of the patient-therapist relationship). TW is considered a core active ingredient in dynamic psychotherapy. Adequate process scales are needed to identify and analyze in-session effects of therapist techniques in psychodynamic psychotherapy and empirically establish their links to outcome. TWS was constructed to identify and categorize relational (transference) interventions, and explore the in-session impact of analysis of the patient-therapist relationship (transference work). TWS has sub scales that rate timing, content, and valence of the transference interventions, as well as response from the patient. Descriptions and elaborations of the items in TWS are provided. Clinical examples of transference work from the First Experimental Study of Transference Interpretations (FEST) are included and followed by examples of how to rate transcripts from therapy sessions with TWS. The present manual describes in detail the rating procedure when using Transference Work Scale. Ratings are illustrated with clinical examples from FEST. TWS might be a potentially useful tool to explore the interaction of timing, category, and valence of transference work in predicting in-session patient response as well as treatment outcome. TWS might prove especially suitable for intensive case studies combining quantitative and narrative data. First Experimental Study of Transference-interpretations (FEST307/95). ClinicalTrials.gov Identifier: NCT00423462. URL: http://clinicaltrials.gov/ct2/show/NCT00423462?term=FEST&rank=2.

  20. Development of emergency response tools for accidental radiological contamination of French coastal areas.

    PubMed

    Duffa, Céline; Bailly du Bois, Pascal; Caillaud, Matthieu; Charmasson, Sabine; Couvez, Céline; Didier, Damien; Dumas, Franck; Fievet, Bruno; Morillon, Mehdi; Renaud, Philippe; Thébault, Hervé

    2016-01-01

    The Fukushima nuclear accident resulted in the largest ever accidental release of artificial radionuclides in coastal waters. This accident has shown the importance of marine assessment capabilities for emergency response and the need to develop tools for adequately predicting the evolution and potential impact of radioactive releases to the marine environment. The French Institute for Radiological Protection and Nuclear Safety (IRSN) equips its emergency response centre with operational tools to assist experts and decision makers in the event of accidental atmospheric releases and contamination of the terrestrial environment. The on-going project aims to develop tools for the management of marine contamination events in French coastal areas. This should allow us to evaluate and anticipate post-accident conditions, including potential contamination sites, contamination levels and potential consequences. In order to achieve this goal, two complementary tools are developed: site-specific marine data sheets and a dedicated simulation tool (STERNE, Simulation du Transport et du transfert d'Eléments Radioactifs dans l'environNEment marin). Marine data sheets are used to summarize the marine environment characteristics of the various sites considered, and to identify vulnerable areas requiring implementation of population protection measures, such as aquaculture areas, beaches or industrial water intakes, as well as areas of major ecological interest. Local climatological data (dominant sea currents as a function of meteorological or tidal conditions) serving as the basis for an initial environmental sampling strategy is provided whenever possible, along with a list of possible local contacts for operational management purposes. The STERNE simulation tool is designed to predict radionuclide dispersion and contamination in seawater and marine species by incorporating spatio-temporal data. 3D hydrodynamic forecasts are used as input data. Direct discharge points or atmospheric deposition source terms can be taken into account. STERNE calculates Eulerian radionuclide dispersion using advection and diffusion equations established offline from hydrodynamic calculations. A radioecological model based on dynamic transfer equations is implemented to evaluate activity concentrations in aquatic organisms. Essential radioecological parameters (concentration factors and single or multicomponent biological half-lives) have been compiled for main radionuclides and generic marine species (fish, molluscs, crustaceans and algae). Dispersion and transfer calculations are performed simultaneously on a 3D grid. Results can be plotted on maps, with possible tracking of spatio-temporal evolution. Post-processing and visualization can then be performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. MHDL CAD tool with fault circuit handling

    NASA Astrophysics Data System (ADS)

    Espinosa Flores-Verdad, Guillermo; Altamirano Robles, Leopoldo; Osorio Roque, Leticia

    2003-04-01

    Behavioral modeling and simulation, with Analog Hardware and Mixed Signal Description High Level Languages (MHDLs), have generated the development of diverse simulation tools that allow handling the requirements of the modern designs. These systems have million of transistors embedded and they are radically diverse between them. This tendency of simulation tools is exemplified by the development of languages for modeling and simulation, whose applications are the re-use of complete systems, construction of virtual prototypes, realization of test and synthesis. This paper presents the general architecture of a Mixed Hardware Description Language, based on the standard 1076.1-1999 IEEE VHDL Analog and Mixed-Signal Extensions known as VHDL-AMS. This architecture is novel by consider the modeling and simulation of faults. The main modules of the CAD tool are briefly described in order to establish the information flow and its transformations, starting from the description of a circuit model, going throw the lexical analysis, mathematical models generation and the simulation core, ending at the collection of the circuit behavior as simulation"s data. In addition, the incorporated mechanisms to the simulation core are explained in order to realize the handling of faults into the circuit models. Currently, the CAD tool works with algebraic and differential descriptions for the circuit models, nevertheless the language design is open to be able to handle different model types: Fuzzy Models, Differentials Equations, Transfer Functions and Tables. This applies for fault models too, in this sense the CAD tool considers the inclusion of mutants and saboteurs. To exemplified the results obtained until now, the simulated behavior of a circuit is shown when it is fault free and when it has been modified by the inclusion of a fault as a mutant or a saboteur. The obtained results allow the realization of a virtual diagnosis for mixed circuits. This language works in a UNIX system; it was developed with an object-oriented methodology and programmed in C++.

  2. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  3. A translational platform for prototyping closed-loop neuromodulation systems.

    PubMed

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2012-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.

  4. Using CASE to Exploit Process Modeling in Technology Transfer

    NASA Technical Reports Server (NTRS)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  5. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  6. Understanding blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Crane, Brian

    Blue-light sensing proteins coordinate many biological processes that include phototropism, photomorphism, stress responses, virulence and the entrainment of circadian clocks. Three major types of blue-light sensors all bind flavin nucleotides as chromophores, but the photochemistry employed and conformational responses invoked differ considerably among the classes. Nevertheless, photoinduced electron transfer reactions play a key role in many mechanisms. How such reactivity leads to conformational signaling will be discussed for both cryptochromes (CRYs) and light- oxygen- voltage (LOV) domains. In CRYs, blue-light mediated flavin reduction promotes proton transfer within the active center that then leads to displacement of a key signaling element. For LOV proteins, blue light causes formation of a covalent cysteinyl-flavin adduct, which rearranges hydrogen bonding and restructures the N-terminal region of the protein. Interestingly, a new class of LOV-like sensor does not undergo adduct formation and instead can operate by flavin photoreduction, like CRY. Conserved aspects of reactivity in these proteins provide lessons for the design of new photosensors, which may find use as tools in optogenetics Supported by NIH GM079679.

  7. Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

    PubMed Central

    Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan

    2014-01-01

    Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617

  8. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  9. Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14

    PubMed Central

    Cottell, Jennifer L.; Webber, Mark A.; Coldham, Nick G.; Taylor, Dafydd L.; Cerdeño-Tárraga, Anna M.; Hauser, Heidi; Thomson, Nicholas R.; Woodward, Martin J.

    2011-01-01

    Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to β-lactam antimicrobial drugs, mediated by production of extended-spectrum β-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals. PMID:21470454

  10. Design-based science and the transfer of science knowledge and real-world problem-solving skills

    NASA Astrophysics Data System (ADS)

    Fortus, David Leon

    Design-Based Science (DBS) helps students develop new scientific knowledge and problem-solving skills in the context of designing artifacts. This pedagogy was developed as a response to the potential problem of transfer of knowledge from academic settings to extra classroom environments. This dissertation describes DBS in detail and attempts to answer three questions: (1) Do DBS curricula support students' efforts to transfer newly constructed science knowledge and 'designerly' skills (Baynes, 1994) to the solution of new real-world design problems in an extra-classroom setting? (2) Do DBS curricula support students' efforts to construct new scientific knowledge? (3) Do DBS curricula support students' efforts to develop 'designerly' problem-solving skills? Ninety-two students attending a public high school serving a working class community participated in the consecutive enactments of three different DBS units over one school year. The analysis of pre- and posttests and of artifacts created by the students demonstrated that substantial knowledge was constructed during each of the enactments, with the tests leading to effect sizes of 2.1 on the first unit, 1.9 on the second, and 2.7 on the third. After each enactment the students solved a new design problem as a transfer task. The transfer tasks were unsequestered, unsupported by the teacher, lasted three days, were done in the school's library, required new learning, and were solved in groups of four. In order to generate an individual measure of transfer, the students responded to an individual post-transfer written test after each transfer task was completed, that assessed their understanding and recollection of the solution their group submitted. For all three units there was a stronger correlation between the individual transfer scores and posttests scores than with pretest scores, indicating that the knowledge and skills that were constructed during the enactments supported the solution of the transfer tasks. The correlations with the posttests increased from one enactment to the next, demonstrating that the students' transfer performance improved as they gained more experience in DBS classrooms. Potential threats to the study's internal validity that were identified and discussed were improved teacher proficiency, the nature of the transfer tasks, the difficulty of the science content covered by the units, the similarity between the units and the transfer tasks, and the similarity between the transfer tasks. This dissertation demonstrates that: (a) appropriate learning environments can foster transfer, (b) transfer performance can improve over time, and (c) that it may be necessary to rethink and redefine the procedures for identifying and assessing real-world transfer.

  11. A Design Rationale Capture Tool to Support Design Verification and Re-use

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Da Silva, Jonny C.; Foyle, David C.

    2012-01-01

    A design rationale tool (DR tool) was developed to capture design knowledge to support design verification and design knowledge re-use. The design rationale tool captures design drivers and requirements, and documents the design solution including: intent (why it is included in the overall design); features (why it is designed the way it is); information about how the design components support design drivers and requirements; and, design alternatives considered but rejected. For design verification purposes, the tool identifies how specific design requirements were met and instantiated within the final design, and which requirements have not been met. To support design re-use, the tool identifies which design decisions are affected when design drivers and requirements are modified. To validate the design tool, the design knowledge from the Taxiway Navigation and Situation Awareness (T-NASA; Foyle et al., 1996) system was captured and the DR tool was exercised to demonstrate its utility for validation and re-use.

  12. Direct write fabrication of waveguides and interconnects for optical printed wiring boards

    NASA Astrophysics Data System (ADS)

    Dingeldein, Joseph C.

    Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.

  13. Iterative optimization method for design of quantitative magnetization transfer imaging experiments.

    PubMed

    Levesque, Ives R; Sled, John G; Pike, G Bruce

    2011-09-01

    Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.

  14. Designing Tasks to Promote and Assess Mathematical Transfer in Primary School Children

    ERIC Educational Resources Information Center

    Clark, Julie; Page, Shaileigh; Thornton, Steve

    2013-01-01

    This study aims to design learning situations and tasks that promote and assess the capacity of primary school children to transfer mathematical knowledge to new contexts. We discuss previous studies investigating mathematical transfer, and particularly the strengths and limitations of tasks used to assess transfer in these studies. We describe…

  15. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  16. Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver

    Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less

  17. Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique

    DOE PAGES

    Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver

    2018-01-09

    Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less

  18. A new method to measure and model dynamic oxygen microdistributions in moving biofilms.

    PubMed

    Wang, Jian-Hui; Chen, You-Peng; Dong, Yang; Wang, Xi-Xi; Guo, Jin-Song; Shen, Yu; Yan, Peng; Ma, Teng-Fei; Sun, Xiu-Qian; Fang, Fang; Wang, Jing

    2017-10-01

    Biofilms in natural environments offer a superior solution to mitigate water pollution. Artificially intensified biofilm reactors represented by rotating biological contactors (RBCs) are widely applied and studied. Understanding the oxygen transfer process in biofilms is an important aspect of these studies, and describing this process in moving biofilms (such as biofilms in RBCs) is a particular challenge. Oxygen transfer in RBCs behaves differently than in other biological reactors due to the special oxygen supply mode that results from alternate exposure of the biofilm to wastewater and air. The study of oxygen transfer in biofilms is indispensable for understanding biodegradation in RBCs. However, the mechanisms are still not well known due to a lack of effective tools to dynamically analyze oxygen diffusion, reaction, and microdistribution in biofilms. A new experimental device, the Oxygen Transfer Modeling Device (OTMD), was designed and manufactured for this purpose, and a mathematical model was developed to model oxygen transfer in biofilm produced by an RBC. This device allowed the simulation of the local environment around the biofilm during normal RBC operation, and oxygen concentrations varying with time and depth in biofilm were measured using an oxygen microelectrode. The experimental data conformed well to the model description, indicating that the OTMD and the model were stable and reliable. Moreover, the OTMD offered a flexible approach to study the impact of a single-factor on oxygen transfer in moving biofilms. In situ environment of biofilm in an RBC was simulated, and dynamic oxygen microdistributions in the biofilm were measured and well fitted to the built model description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of Anthropometric Analogous Headforms. Phase 1.

    DTIC Science & Technology

    1994-10-31

    shown in figure 5. This surface mesh can then be transformed into polygon faces that are able to be rendered by the AutoCAD rendering tools . Rendering of...computer-generated surfaces. The material removal techniques require the programming of the tool path of the cutter and in some cases requires specialized... tooling . Tool path programs are available to transfer the computer-generated surface into actual paths of the cutting tool . In cases where the

  20. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  1. Transit Operator Guidelines for Transfer Policy Design

    DOT National Transportation Integrated Search

    1980-06-01

    This report provides guidelines to aid transit operators in the design of policies to accomodate bus and/or rail transfers policy may range from a complete set of operator actions involving vehicle routing and scheduling, transfer charges, passenger ...

  2. The Perennial and the Particular Challenges of Design Education

    ERIC Educational Resources Information Center

    Ruecker, Stan

    2012-01-01

    Education in design shares with other disciplines a number of perennial challenges, including the need to transfer human culture, the choice of what parts of human culture to transfer and the decision as to what approaches work best in accomplishing that transfer. Design education also faces particular challenges, which are shared with only a few…

  3. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH.

    PubMed

    Chen, Jian; Tang, Ying; Wang, Hong; Zhang, Peisheng; Li, Ya; Jiang, Jianhui

    2016-12-15

    The design of effective tools capable of sensing lysosome pH is highly desirable for better understanding its biological functions in cellular behaviors and various diseases. Herein, a lysosome-targetable ratiometric fluorescent polymer nanoparticle pH sensor (RFPNS) was synthesized via incorporation of miniemulsion polymerization and surface modification technique. In this system, the donor: 4-ethoxy-9-allyl-1,8-naphthalimide (EANI) and the acceptor: fluorescein isothiocyanate (FITC) were covalently linked to the polymer nanoparticle to construct pH-responsive fluorescence resonance energy transfer (FRET) system. The FITC moieties on the surface of RFPNS underwent structural and spectral transformation as the presence of pH changes, resulting in ratiometric fluorescent sensing of pH. The as-prepared RFPNS displayed favorable water dispersibility, good pH-induced spectral reversibility and so on. Following the living cell uptake, the as-prepared RFPNS with good cell-membrane permeability can mainly stain in the lysosomes; and it can facilitate visualization of the intracellular lysosomal pH changes. This nanosensor platform offers a novel method for future development of ratiometric fluorescent probes for targeting other analytes, like ions, metabolites,and other biomolecules in biosamples. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prediction methodologies for target scene generation in the aerothermal targets analysis program (ATAP)

    NASA Astrophysics Data System (ADS)

    Hudson, Douglas J.; Torres, Manuel; Dougherty, Catherine; Rajendran, Natesan; Thompson, Rhoe A.

    2003-09-01

    The Air Force Research Laboratory (AFRL) Aerothermal Targets Analysis Program (ATAP) is a user-friendly, engineering-level computational tool that features integrated aerodynamics, six-degree-of-freedom (6-DoF) trajectory/motion, convective and radiative heat transfer, and thermal/material response to provide an optimal blend of accuracy and speed for design and analysis applications. ATAP is sponsored by the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, where it is used with the CHAMP (Composite Hardbody and Missile Plume) technique for rapid infrared (IR) signature and imagery predictions. ATAP capabilities include an integrated 1-D conduction model for up to 5 in-depth material layers (with options for gaps/voids with radiative heat transfer), fin modeling, several surface ablation modeling options, a materials library with over 250 materials, options for user-defined materials, selectable/definable atmosphere and earth models, multiple trajectory options, and an array of aerodynamic prediction methods. All major code modeling features have been validated with ground-test data from wind tunnels, shock tubes, and ballistics ranges, and flight-test data for both U.S. and foreign strategic and theater systems. Numerous applications include the design and analysis of interceptors, booster and shroud configurations, window environments, tactical missiles, and reentry vehicles.

  5. Text-fading based training leads to transfer effects on children's sentence reading fluency

    PubMed Central

    Nagler, Telse; Korinth, Sebastian P.; Linkersdörfer, Janosch; Lonnemann, Jan; Rump, Björn; Hasselhorn, Marcus; Lindberg, Sven

    2015-01-01

    Previous studies used a text-fading procedure as a training tool with the goal to increase silent reading fluency (i.e., proficient reading rate and comprehension). In recently published studies, this procedure resulted in lasting reading enhancements for adult and adolescent research samples. However, studies working with children reported mixed results. While reading rate improvements were observable for Dutch reading children in a text-fading training study, reading fluency improvements in standardized reading tests post-training attributable to the fading manipulation were not detectable. These results raise the question of whether text-fading training is not effective for children or whether research design issues have concealed possible transfer effects. Hence, the present study sought to investigate possible transfer effects resulting from a text-fading based reading training program, using a modified research design. Over a period of 3 weeks, two groups of German third-graders read sentences either with an adaptive text-fading procedure or at their self-paced reading rate. A standardized test measuring reading fluency at the word, sentence, and text level was conducted pre- and post-training. Text level reading fluency improved for both groups equally. Post-training gains at the word level were found for the text-fading group, however, no significant interaction between groups was revealed for word reading fluency. Sentence level reading fluency gains were found for the text-fading group, which significantly differed from the group of children reading at their self-paced reading routine. These findings provide evidence for the efficacy of text-fading as a training method for sentence reading fluency improvement also for children. PMID:25713554

  6. A consumer guide: tools to manage vegetation and fuels.

    Treesearch

    David L. Peterson; Louisa Evers; Rebecca A. Gravenmier; Ellen Eberhardt

    2007-01-01

    Current efforts to improve the scientific basis for fire management on public lands will benefit from more efficient transfer of technical information and tools that support planning, implementation, and effectiveness of vegetation and hazardous fuel treatments. The technical scope, complexity, and relevant spatial scale of analytical and decision support tools differ...

  7. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  8. Social Values for Ecosystem Services, version 3.0 (SolVES 3.0): documentation and user manual

    USGS Publications Warehouse

    Sherrouse, Ben C.; Semmens, Darius J.

    2015-01-01

    The geographic information system (GIS) tool, Social Values for Ecosystem Services (SolVES), was developed to incorporate quantified and spatially explicit measures of social values into ecosystem service assessments. SolVES 3.0 continues to extend the functionality of SolVES, which was designed to assess, map, and quantify the social values of ecosystem services. Social values—the perceived, nonmarket values the public ascribes to ecosystem services, particularly cultural services, such as aesthetics and recreation—can be evaluated for various stakeholder groups. These groups are distinguishable by their attitudes and preferences regarding public uses, such as motorized recreation and logging. As with previous versions, SolVES 3.0 derives a quantitative 10-point, social-values metric—the value index—from a combination of spatial and nonspatial responses to public value and preference surveys. The tool also calculates metrics characterizing the underlying environment, such as average distance to water and dominant landcover. SolVES 3.0 is integrated with Maxent maximum entropy modeling software to generate more complete social-value maps and offer robust statistical models describing the relationship between the value index and explanatory environmental variables. A model’s goodness of fit to a primary study area and its potential performance in transferring social values to similar areas using value-transfer methodology can be evaluated. SolVES 3.0 provides an improved public-domain tool for decision makers and researchers to evaluate the social values of ecosystem services and to facilitate discussions among diverse stakeholders regarding the tradeoffs among ecosystem services in a variety of physical and social contexts ranging from forest and rangeland to coastal and marine.

  9. REACT Real-Time Emergency Action Coordination Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.

  10. Design and performance evaluation of the imaging payload for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush

    2012-11-01

    In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.

  11. Gene gymnastics

    PubMed Central

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  12. Highly Directive Reflect Array Antenna Design for Wireless Power Transfer

    DTIC Science & Technology

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4076 5c.  PROGRAM ELEMENT NUMBER...Antenna Design for Wireless Power Principal Investigator: SP Duttagupta Email: sdgupta@ee.iitb.ac.in Institution: Indian Institute of Technology

  13. TRANSFERENCE BEFORE TRANSFERENCE.

    PubMed

    Bonaminio, Vincenzo

    2017-10-01

    This paper is predominantly a clinical presentation that describes the transmigration of one patient's transference to another, with the analyst functioning as a sort of transponder. It involves an apparently accidental episode in which there was an unconscious intersection between two patients. The author's aim is to show how transference from one case may affect transference in another, a phenomenon the author calls transference before transference. The author believes that this idea may serve as a tool for understanding the unconscious work that takes place in the clinical situation. In a clinical example, the analyst finds himself caught up in an enactment involving two patients in which he becomes the medium of what happens in session. © 2017 The Psychoanalytic Quarterly, Inc.

  14. Chimpanzees (Pan troglodytes) instrumentally help but do not communicate in a mutualistic cooperative task.

    PubMed

    Bullinger, Anke F; Melis, Alicia P; Tomasello, Michael

    2014-08-01

    Chimpanzees cooperate in a variety of contexts, but communicating to influence and regulate cooperative activities is rare. It is unclear whether this reflects chimpanzees' general inability or whether they have found other means to coordinate cooperative activities. In the present study chimpanzees could help a partner play her role in a mutually beneficial food-retrieval task either by transferring a needed tool (transfer condition) or by visually or acoustically communicating the hiding-location of the needed tool (communication condition). Overall, chimpanzees readily helped their partner by delivering the needed tool, but none of them communicated the hiding location of the tool to their partner reliably across trials. These results demonstrate that although chimpanzees can coordinate their cooperative activities by instrumentally helping their partner in her role, they do not readily use communication with their partner for this same end.

  15. Knowing How and Knowing Why: Testing the Effect of Instruction Designed for Cognitive Integration on Procedural Skills Transfer

    ERIC Educational Resources Information Center

    Cheung, Jeffrey J. H.; Kulasegaram, Kulamakan M.; Woods, Nicole N.; Moulton, Carol-anne; Ringsted, Charlotte V.; Brydges, Ryan

    2018-01-01

    Transfer is a desired outcome of simulation-based training, yet evidence for how instructional design features promote transfer is lacking. In clinical reasoning, transfer is improved when trainees experience instruction integrating basic science explanations with clinical signs and symptoms. To test whether integrated instruction has similar…

  16. Teaching Thinking Skills in Context-Based Learning: Teachers' Challenges and Assessment Knowledge

    NASA Astrophysics Data System (ADS)

    Avargil, Shirly; Herscovitz, Orit; Dori, Yehudit Judy

    2012-04-01

    For an educational reform to succeed, teachers need to adjust their perceptions to the reform's new curricula and strategies and cope with new content, as well as new teaching and assessment strategies. Developing students' scientific literacy through context-based chemistry and higher order thinking skills was the framework for establishing a new chemistry curriculum for Israeli high school students. As part of this endeavor, we developed the Taste of Chemistry module, which focuses on context-based chemistry, chemical understanding, and higher order thinking skills. Our research objectives were (a) to identify the challenges and difficulties chemistry teachers faced, as well as the advantages they found, while teaching and assessing the Taste of Chemistry module; and (b) to investigate how they coped with teaching and assessing thinking skills that include analyzing data from graphs and tables, transferring between multiple representations and, transferring between chemistry understanding levels. Research participants included eight teachers who taught the module. Research tools included interviews, classroom observations, teachers-designed students' assignments, and developers-designed students' assignments. We documented different challenges teachers had faced while teaching the module and found that the teachers developed different ways of coping with these challenges. Developing teachers' assessment knowledge (AK) was found to be the highest stage in teachers' professional growth, building on teachers' content knowledge (CK), pedagogy knowledge (PK), and pedagogical-content knowledge (PCK). We propose the use of assignments designed by teachers as an instrument for determining their professional growth.

  17. Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.

    PubMed

    La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel

    2017-12-15

    Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane

    2016-10-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modelling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ˜ 10^4 galaxies at redshifts 0.1 ≲ z ≲ 8. We find that the constraints derived on photometric redshifts using this multipurpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

  19. TEMPEST. Transient 3-D Thermal-Hydraulic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L.L.

    TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence ismore » treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.« less

  20. Visualizing railroad operations : a tool for planning and monitoring railroad traffic

    DOT National Transportation Integrated Search

    2009-01-01

    This report provides an overview of the development and technology transfer of the Railroad Traffic Planner application, a visualization tool with string line diagrams that show train positions over time. The Railroad Traffic Planner provides support...

Top