Sample records for transfer fret based

  1. A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging.

    PubMed

    Komatsu, Naoki; Terai, Kenta; Imanishi, Ayako; Kamioka, Yuji; Sumiyama, Kenta; Jin, Takashi; Okada, Yasushi; Nagai, Takeharu; Matsuda, Michiyuki

    2018-06-12

    Genetically encoded biosensors based on the principle of Förster resonance energy transfer comprise two major classes: biosensors based on fluorescence resonance energy transfer (FRET) and those based on bioluminescence energy transfer (BRET). The FRET biosensors visualize signaling-molecule activity in cells or tissues with high resolution. Meanwhile, due to the low background signal, the BRET biosensors are primarily used in drug screening. Here, we report a protocol to transform intramolecular FRET biosensors to BRET-FRET hybrid biosensors called hyBRET biosensors. The hyBRET biosensors retain all properties of the prototype FRET biosensors and also work as BRET biosensors with dynamic ranges comparable to the prototype FRET biosensors. The hyBRET biosensors are compatible with optogenetics, luminescence microplate reader assays, and non-invasive whole-body imaging of xenograft and transgenic mice. This simple protocol will expand the use of FRET biosensors and enable visualization of the multiscale dynamics of cell signaling in live animals.

  2. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.

  3. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  4. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells.

    PubMed

    Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng

    2015-03-01

    Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (R(C)) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD∼nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and R(C) values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.

  5. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    DTIC Science & Technology

    2011-10-12

    Periasamy, A. Fluorescence Resonance Energy Transfer (FRET) microscopy imaging of live cell protein localization. J . Cell. Biol. 2003, 5, 629-633. 4...tissues. Physiol. Rev. 2010, 90, 1103-1163. 10. Woehler, A.; Wlodarczyk, J .; Neher, E. Signal/noise analysis of FRET-based sensors. Biophys. J . 2010...99, 2344-2354. 11. Selvin, P.R. Lanthanide-based resonance energy transfer. IEEE J . Sel. Top. Quant. Electron. 1996, 2, 1077-1087. 12. Van der Meer

  6. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  7. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer

    PubMed Central

    Komatsubara, Akira T.; Matsuda, Michiyuki; Aoki, Kazuhiro

    2015-01-01

    Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002–0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer. PMID:26290434

  8. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    PubMed Central

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  9. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal.

    PubMed

    Poudel, Amrit; Chen, Xin; Ratner, Mark A

    2016-03-17

    The high density of evanescent modes in the vicinity of a metal leads to enhancement of the near-field Förster resonant energy transfer (FRET) rate. We present a classical approach to calculate the FRET rate based on the dyadic Green's function of an arbitrary dielectric environment and consider the nonlocal limit of material permittivity in the case of the metallic half-space and thin film. In a dimer system, we find that the FRET rate is enhanced due to shared evanescent photon modes bridging a donor and an acceptor. Furthermore, a general expression for the FRET rate for multimer systems is derived. The presence of a dielectric environment and the path interference effect enhance the transfer rate, depending on the combination of distance and geometry.

  10. An automated real-time microscopy system for analysis of fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bernardini, André; Wotzlaw, Christoph; Lipinski, Hans-Gerd; Fandrey, Joachim

    2010-05-01

    Molecular imaging based on Fluorescence Resonance Energy Transfer (FRET) is widely used in cellular physiology both for protein-protein interaction analysis and detecting conformational changes of single proteins, e.g. during activation of signaling cascades. However, getting reliable results from FRET measurements is still hampered by methodological problems such as spectral bleed through, chromatic aberration, focal plane shifts and false positive FRET. Particularly false positive FRET signals caused by random interaction of the fluorescent dyes can easily lead to misinterpretation of the data. This work introduces a Nipkow Disc based FRET microscopy system, that is easy to operate without expert knowledge of FRET. The system automatically accounts for all relevant sources of errors and provides various result presentations of two, three and four dimensional FRET data. Two examples are given to demonstrate the scope of application. An interaction analysis of the two subunits of the hypoxia-inducible transcription factor 1 demonstrates the use of the system as a tool for protein-protein interaction analysis. As an example for time lapse observations, the conformational change of the fluorophore labeled heat shock protein 33 in the presence of oxidant stress is shown.

  11. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.

  12. A FRET-Based Ratiometric Chemosensor for in Vitro Cellular Fluorescence Analyses of pH

    PubMed Central

    Zhou, Xianfeng; Su, Fengyu; Lu, Hongguang; Senechal-Willis, Patti; Tian, Yanqing; Johnson, Roger H.; Meldrum, Deirdre R.

    2011-01-01

    Ratiometric fluorescence sensing is an important technique for precise and quantitative analysis of biological events occurring under complex conditions by simultaneously recording fluorescence intensities at two wavelengths and calculating their ratios. Herein, we design a ratiometric chemosensor for pH that is based on photo-induced electron transfer (PET) and binding-induced modulation of fluorescence resonance energy transfer (FRET) mechanisms. This ratiometric chemosensor was constructed by introduction of a pH-insensitive coumarin fluorophore as a FRET donor into a pH-sensitive amino-naphthalimide derivative as the FRET acceptor. The sensor exhibited clear dual-mission signal changes in blue and green spectral windows upon pH changes. The pH sensor was applied for not only measuring cellular pH, but also for visualizing stimulus-responsive changes of intracellular pH values. PMID:21982292

  13. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    NASA Astrophysics Data System (ADS)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-09-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

  14. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    PubMed Central

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-01-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  15. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  16. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    PubMed

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  17. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.

    PubMed

    Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R

    2016-05-01

    Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-12

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  19. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  20. Correlating Calcium Binding, Förster Resonance Energy Transfer, and Conformational Change in the Biosensor TN-XXL

    PubMed Central

    Geiger, Anselm; Russo, Luigi; Gensch, Thomas; Thestrup, Thomas; Becker, Stefan; Hopfner, Karl-Peter; Griesinger, Christian; Witte, Gregor; Griesbeck, Oliver

    2012-01-01

    Genetically encoded calcium indicators have become instrumental in imaging signaling in complex tissues and neuronal circuits in vivo. Despite their importance, structure-function relationships of these sensors often remain largely uncharacterized due to their artificial and multimodular composition. Here, we describe a combination of protein engineering and kinetic, spectroscopic, and biophysical analysis of the Förster resonance energy transfer (FRET)-based calcium biosensor TN-XXL. Using fluorescence spectroscopy of engineered tyrosines, we show that two of the four calcium binding EF-hands dominate the FRET output of TN-XXL and that local conformational changes of these hands match the kinetics of FRET change. Using small-angle x-ray scattering and NMR spectroscopy, we show that TN-XXL changes from a flexible elongated to a rigid globular shape upon binding calcium, thus resulting in FRET signal output. Furthermore, we compare calcium titrations using fluorescence lifetime spectroscopy with the ratiometric approach and investigate potential non-FRET effects that may affect the fluorophores. Thus, our data characterize the biophysics of TN-XXL in detail and may form a basis for further rational engineering of FRET-based biosensors. PMID:22677394

  1. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.

    PubMed

    Yuan, Lin; Lin, Weiying; Zheng, Kaibo; Zhu, Sasa

    2013-07-16

    Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe concentration, probe environment, and excitation intensity may influence the fluorescence intensity measurements. In principle, the use of ratiometric fluorescent probes can alleviate this shortcoming. Förster resonance energy transfer (FRET) is one of the most widely used sensing mechanisms for ratiometric fluorescent probes. However, the development of synthetic FRET probes with favorable photophysical properties that are also suitable for biological imaging applications remains challenging. In this Account, we review the rational design and biological applications of synthetic FRET probes, focusing primarily on studies from our laboratory. To construct useful FRET probes, it is a pre-requisite to develop a FRET platform with favorable photophysical properties. The design criteria of a FRET platform include (1) well-resolved absorption spectra of the donor and acceptor, (2) well-separated emission spectra of the donor and acceptor, (3) donors and acceptors with comparable brightness, (4) rigid linkers, and (5) near-perfect efficiency in energy transfer. With an efficient FRET platform in hand, it is then necessary to modulate the donor-acceptor distance or spectral overlap integral in an analyte-dependent fashion for development of FRET probes. Herein, we emphasize our most recent progress on the development of FRET probes by spectral overlap integral, in particular by changing the molar absorption coefficient of the donor dyes such as rhodamine dyes, which undergo unique changes in the absorption profiles during the ring-opening and -closing processes. Although partial success has been obtained in design of first-generation rhodamine-based FRET probes via modulation of acceptor molar absorption coefficient, further improvements in terms of versatility, sensitivity, and synthetic accessibility are required. To address these issues with the first-generation rhodamine-based FRET probes, we have proposed a strategy for the design of second-generation probes. As a demonstration, we have developed FRET imaging probes for diverse targets including Cu²⁺, NO, HOCl, cysteine, and H₂O₂. This discussion of the methods for successfully designing synthetic FRET probes underscores the rational basis for further development of new FRET probes as a molecular toolbox for probing and manipulating a wide variety of biomolecules in living systems.

  2. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  3. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.

    PubMed

    Lee, Eunwoo; Kim, Chanhoi; Jang, Jyongsik

    2013-07-29

    High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum-dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as-synthesized water-soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high-performance FRET-based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye-sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage

    NASA Astrophysics Data System (ADS)

    de Ruiter, Mark V.; Overeem, Nico J.; Singhai, Gaurav; Cornelissen, Jeroen J. L. M.

    2018-05-01

    Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.

  5. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2013-05-01

    Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated. Electronic supplementary information (ESI) available: Experimental details, Fig. S1 and Table S1-S4. See DOI: 10.1039/c3nr01842c

  6. An in vitro FRET-based assay for the analysis of SUMO conjugation and isopeptidase cleavage.

    PubMed

    Stankovic-Valentin, Nicolas; Kozaczkiewicz, Lukasz; Curth, Katja; Melchior, Frauke

    2009-01-01

    To measure rates of sumoylation and isopeptidase cleavage in vitro, we developed an enzyme assay that is based on fluorescence resonance energy transfer (FRET). FRET is a process by which the excited state energy of a fluorescent donor molecule is transferred to an acceptor molecule. Efficient energy transfer requires very close proximity, and can therefore be used as a read-out for covalent and non-covalent protein interactions. The assay described here uses bacterially expressed and purified YFP-SUMO-1 and CFP-RanGAP1 as model substrates that are covalently coupled in the presence of recombinant SUMO E1 and E2 enzymes and ATP. Reactions of 25 microl volume, set up in 384-wells plates, give sufficient signal for analysis. Consequently, this assay requires very low amounts of recombinant proteins and allows measurement of time courses in high-throughput format.

  7. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    PubMed Central

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-01-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense. PMID:25587406

  8. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    PubMed Central

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  9. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  10. DNA-mediated excitonic upconversion FRET switching

    DOE PAGES

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less

  11. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  12. Plant-based FRET biosensor discriminates enviornmental zinc levels

    USDA-ARS?s Scientific Manuscript database

    Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in r...

  13. Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy.

    PubMed

    Hirata, Eishu; Kiyokawa, Etsuko

    2016-09-20

    Förster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Semiconductor quantum dots as Förster resonance energy transfer donors for intracellularly-based biosensors

    NASA Astrophysics Data System (ADS)

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2017-02-01

    Förster resonance energy transfer (FRET)-based assemblies currently comprise a significant portion of intracellularly based sensors. Although extremely useful, the fluorescent protein pairs typically utilized in such sensors are still plagued by many photophysical issues including significant direct acceptor excitation, small changes in FRET efficiency, and limited photostability. Luminescent semiconductor nanocrystals or quantum dots (QDs) are characterized by many unique optical properties including size-tunable photoluminescence, broad excitation profiles coupled to narrow emission profiles, and resistance to photobleaching, which can cumulatively overcome many of the issues associated with use of fluorescent protein FRET donors. Utilizing QDs for intracellular FRET-based sensing still requires significant development in many areas including materials optimization, bioconjugation, cellular delivery and assay design and implementation. We are currently developing several QD-based FRET sensors for various intracellular applications. These include sensors targeting intracellular proteolytic activity along with those based on theranostic nanodevices for monitoring drug release. The protease sensor is based on a unique design where an intracellularly expressed fluorescent acceptor protein substrate assembles onto a QD donor following microinjection, forming an active complex that can be monitored in live cells over time. In the theranostic configuration, the QD is conjugated to a carrier protein-drug analogue complex to visualize real-time intracellular release of the drug from its carrier in response to an external stimulus. The focus of this talk will be on the design, properties, photophysical characterization and cellular application of these sensor constructs.

  15. FLIM FRET Technology for Drug Discovery: Automated Multiwell-Plate High-Content Analysis, Multiplexed Readouts and Application in Situ**

    PubMed Central

    Kumar, Sunil; Alibhai, Dominic; Margineanu, Anca; Laine, Romain; Kennedy, Gordon; McGinty, James; Warren, Sean; Kelly, Douglas; Alexandrov, Yuriy; Munro, Ian; Talbot, Clifford; Stuckey, Daniel W; Kimberly, Christopher; Viellerobe, Bertrand; Lacombe, Francois; Lam, Eric W-F; Taylor, Harriet; Dallman, Margaret J; Stamp, Gordon; Murray, Edward J; Stuhmeier, Frank; Sardini, Alessandro; Katan, Matilda; Elson, Daniel S; Neil, Mark A A; Dunsby, Chris; French, Paul M W

    2011-01-01

    A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated. PMID:21337485

  16. Pulse-shaping based two-photon FRET stoichiometry

    PubMed Central

    Flynn, Daniel C.; Bhagwat, Amar R.; Brenner, Meredith H.; Núñez, Marcos F.; Mork, Briana E.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2015-01-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor. PMID:25836193

  17. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  18. Pretreatment evaluation of fluorescence resonance energy transfer-based drug sensitivity test for patients with chronic myelogenous leukemia treated with dasatinib.

    PubMed

    Kondo, Takeshi; Fujioka, Mari; Tsuda, Masumi; Murai, Kazunori; Yamaguchi, Kohei; Miyagishima, Takuto; Shindo, Motohiro; Nagashima, Takahiro; Wakasa, Kentaro; Fujimoto, Nozomu; Yamamoto, Satoshi; Yonezumi, Masakatsu; Saito, Souichi; Sato, Shinji; Ogawa, Kazuei; Chou, Takaaki; Watanabe, Reiko; Kato, Yuichi; Takahashi, Shuichiro; Okano, Yoshiaki; Yamamoto, Joji; Ohta, Masatsugu; Iijima, Hiroaki; Oba, Koji; Kishino, Satoshi; Sakamoto, Junichi; Ishida, Yoji; Ohba, Yusuke; Teshima, Takanori

    2018-05-02

    Tyrosine kinase inhibitors (TKI) are used for primary therapy in patients with newly diagnosed CML. However, a reliable method for optimal selection of a TKI from the viewpoint of drug sensitivity of CML cells has not been established. We have developed a FRET-based drug sensitivity test in which a CrkL-derived fluorescent biosensor efficiently quantifies the kinase activity of BCR-ABL of living cells and sensitively evaluates the inhibitory activity of a TKI against BCR-ABL. Here, we validated the utility of the FRET-based drug sensitivity test carried out at diagnosis for predicting the molecular efficacy. Sixty-two patients with newly diagnosed chronic phase CML were enrolled in this study and treated with dasatinib. Bone marrow cells at diagnosis were subjected to FRET analysis. The ΔFRET value was calculated by subtraction of FRET efficiency in the presence of dasatinib from that in the absence of dasatinib. Treatment response was evaluated every 3 months by the BCR-ABL1 International Scale. Based on the ΔFRET value and molecular response, a threshold of the ΔFRET value in the top 10% of FRET efficiency was set to 0.31. Patients with ΔFRET value ≥0.31 had significantly superior molecular responses (MMR at 6 and 9 months and both MR4 and MR4.5 at 6, 9, and 12 months) compared with the responses in patients with ΔFRET value <0.31. These results suggest that the FRET-based drug sensitivity test at diagnosis can predict early and deep molecular responses. This study is registered with UMIN Clinical Trials Registry (UMIN000006358). © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Ligand and membrane-binding behavior of the phosphatidylinositol transfer proteins PITPα and PITPβ.

    PubMed

    Baptist, Matilda; Panagabko, Candace; Cockcroft, Shamshad; Atkinson, Jeffrey

    2016-12-01

    Phosphatidylinositol transfer proteins (PITPs) are believed to be lipid transfer proteins because of their ability to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments, in vitro. However, the detailed mechanism of this transfer process is not fully established. To further understand the transfer mechanism of PITPs we examined the interaction of PITPs with membranes using dual polarization interferometry (DPI), which measures protein binding affinity on a flat immobilized lipid surface. In addition, a fluorescence resonance energy transfer (FRET)-based assay was also employed to monitor how quickly PITPs transfer their ligands to lipid vesicles. DPI analysis revealed that PITPβ had a higher affinity to membranes compared with PITPα. Furthermore, the FRET-based transfer assay revealed that PITPβ has a higher ligand transfer rate compared with PITPα. However, both PITPα and PITPβ demonstrated a preference for highly curved membrane surfaces during ligand transfer. In other words, ligand transfer rate was higher when the accepting vesicles were highly curved.

  20. Förster resonance energy transfer (FRET)-based picosecond lifetime reference for instrument response evaluation

    NASA Astrophysics Data System (ADS)

    Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.

    2009-09-01

    Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.

  1. A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water.

    PubMed

    Liu, Baoyu; Zeng, Fang; Liu, Yan; Wu, Shuizhu

    2012-04-07

    Due to the hazardous nature of mercury ions, the development of a cost effective, sensitive and field-portable sensor is of high significance for both industry and civilian use. In this work, a FRET-based ratiometric sensor for detecting mercury ions in water was fabricated by depositing a multilayered silica structure on a quartz plate. For the preparation of the film-based sensor, a silica support layer was first deposited on the quartz plate by using the sol-gel spin-coating procedure, and three ultrathin functional layers (donor, spacer and receptor) were then deposited on the support layer by dip-coating in a stepwise manner in toluene solution. As the film-based sensor was placed into an aqueous solution of Hg(2+), the non-fluorescent receptor (a spirolactam rhodamine derivative) on the film surface could form a complex with the mercury ion and act as the acceptor of the energy transfer. Upon excitation, the donor (a nitrobenzoxadiazolyl derivative, NBD) could transfer its excited energy from the donor layer to the acceptor on the film surface via the 'through space' energy transfer process, thus realizing the FRET-based ratiometric sensing for mercury ions. The sensor can selectively detect Hg(2+) in water with the detection limit of 1 μM. This solid film sensor is capable of being easily-portable and visualized detection. This strategy may offer new approaches for constructing other FRET-based solid-state devices.

  2. Solid-phase supports for the in situ assembly of quantum dot-FRET hybridization assays in channel microfluidics.

    PubMed

    Tavares, Anthony J; Noor, M Omair; Uddayasankar, Uvaraj; Krull, Ulrich J; Vannoy, Charles H

    2014-01-01

    Semiconductor quantum dots (QDs) have long served as integral components in signal transduction modalities such as Förster resonance energy transfer (FRET). The majority of bioanalytical methods using QDs for FRET-based techniques simply monitor binding-induced conformational changes. In more recent work, QDs have been incorporated into solid-phase support systems, such as microfluidic chips, to serve as physical platforms in the development of functional biosensors and bioprobes. Herein, we describe a simple strategy for the transduction of nucleic acid hybridization that combines a novel design method based on FRET with an electrokinetically controlled microfluidic technology, and that offers further potential for amelioration of sample-handling issues and for simplification of dynamic stringency control.

  3. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins.

    PubMed

    Ivanusic, Daniel; Denner, Joachim; Bannert, Norbert

    2016-08-01

    This unit provides a guide and detailed protocol for studying membrane protein-protein interactions (PPI) using the acceptor-sensitized Förster resonance electron transfer (FRET) method in combination with the proximity ligation assay (PLA). The protocol in this unit is focused on the preparation of FRET-PLA samples and the detection of correlative FRET/PLA signals as well as on the analysis of FRET-PLA data and interpretation of correlative results when using cyan fluorescent protein (CFP) as a FRET donor and yellow fluorescent protein (YFP) as a FRET acceptor. The correlative application of FRET and PLA combines two powerful tools for monitoring PPI, yielding results that are more reliable than with either technique alone. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  4. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.

  5. Kinetics model for the wavelength-dependence of excited-state dynamics of hetero-FRET sensors

    NASA Astrophysics Data System (ADS)

    Schwarz, Jacob; Leighton, Ryan; Leopold, Hannah J.; Currie, Megan; Boersma, Arnold J.; Sheets, Erin D.; Heikal, Ahmed A.

    2017-08-01

    Foerster (or fluorescence) resonance energy transfer (FRET) is a powerful tool for investigating protein-protein interactions, in both living cells and in controlled environments. A typical hetero-FRET pair consists of a donor and acceptor tethered together with a linker. The corresponding energy transfer efficiency of a hetero-FRET pair probe depends upon the donor-acceptor distance, relative dipole orientation, and spectral overlap. Because of the sensitivity of the energy transfer efficiency on the donor-acceptor distance, FRET is often referred to as a "molecular ruler". Time-resolved fluorescence approach for measuring the excited-state lifetime of the donor and acceptor emissions is one of the most reliable approaches for quantitative assessment of the energy transfer efficiency in hetero-FRET pairs. In this contribution, we provide an analytical kinetics model that describes the excited-state depopulation of a FRET probe as a means to predicts the time-resolved fluorescence profile as a function of excitation and detection wavelengths. In addition, we used this developed kinetics model to simulate the time-dependence of the excited-state population of both the donor and acceptor. These results should serve as a guide for our ongoing studies of newly developed hetero-FRET sensors (mCerulean3-linker-mCitrine) that are designed specifically for in vivo studies of macromolecular crowding. The same model is applicable to other FRET pairs with the careful consideration of their steady-state spectroscopy and the experimental design for wavelength- dependence of the fluorescence lifetime measurements.

  6. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.

    PubMed

    Kotresh, M G; Inamdar, L S; Shivkumar, M A; Adarsh, K S; Jagatap, B N; Mulimani, B G; Advirao, G M; Inamdar, S R

    2017-06-01

    In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (k q ) determined at different temperatures and the time-resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van 't Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A fluorescence resonance energy transfer quantum dot explosive nanosensor (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Goldman, Ellen R.; Clapp, Aaron R.; Uyeda, H. T.; Lassman, Michael E.; Hayhurst, Andrew; Mattoussi, Hedi

    2005-04-01

    Quantum dots (QDs) are a versatile synthetic photoluminescent nanomaterial whose chemical and photo-physical properties suggest that they may be superior to conventional organic fluorophores for a variety of biosensing applications. We have previously investigated QD-fluorescence resonance energy transfer (FRET) interactions by using the E. coli bacterial periplasmic binding protein - maltose binding protein (MBP) which was site-specifically dye-labeled and self assembled onto the QD surface and allowed us to monitor FRET between the QD donor and the acceptor dye. FRET efficiency increased as a function of the number of dye-acceptor moieties arrayed around the QD donor. We used this system to further demonstrate a prototype FRET based biosensor that functioned in the chemical/nutrient sensing of maltose. There are a number of potential benefits to using this type of QD-FRET based biosensing strategy. The protein attached to the QDs surface functions as a biosensing and biorecognition element in this configuration while the QD acts as both nanoscaffold and FRET energy donor. In this report, we show that the sensor design can be extended to target a completely unrelated analyte, namely the explosive TNT. The sensor consists of anti-TNT antibody fragments self-assembled onto the QD surface with a dye-labeled analog of TNT (TNB coupled to AlexaFluor 555 dye) prebound in the fragment binding site. The close proximity of dye to QD establishes a baseline level of FRET and addition of TNT displaces the TNB-dye analog, recovering QD photoluminescence in a concentration dependent manner. Potential benefits of this QD sensing strategy are discussed.

  8. Noninvasive Fluorescence Resonance Energy Transfer Imaging of in vivo Premature Drug Release from Polymeric Nanoparticles

    PubMed Central

    Zou, Peng; Chen, Hongwei; Paholak, Hayley J.; Sun, Duxin

    2013-01-01

    Understanding in vivo drug release kinetics is critical for the development of nanoparticle-based delivery systems. In this study, we developed a fluorescence resonance energy transfer (FRET) imaging approach to noninvasively monitor in vitro and in vivo cargo release from polymeric nanoparticles. The FRET donor dye (DiO or DiD) and acceptor dye (DiI or DiR) were individually encapsulated into poly(ethylene oxide)-b-polystyrene (PEO-PS) nanoparticles. When DiO (donor) nanoparticles and DiI (acceptor) nanoparticles were co-incubated with cancer cells for 2 h, increased FRET signals were observed from cell membranes, suggesting rapid release of DiO and DiI to cell membranes. Similarly, increased FRET ratios were detected in nude mice after intravenous co-administration of DiD (donor) nanoparticles and DiR (acceptor) nanoparticles. In contrast, another group of nude mice i.v. administrated with DiD/DiR co-loaded nanoparticles showed decreased FRET ratios. Based on the difference in FRET ratios between the two groups, in vivo DiD/DiR release half-life from PEO-PS nanoparticles was determined to be 9.2 min. In addition, it was observed that the presence of cell membranes facilitated burst release of lipophilic cargos while incorporation of oleic acid-coated iron oxide into PEO-PS nanoparticles slowed the release of DiD/DiR to cell membranes. The developed in vitro and in vivo FRET imaging techniques can be used to screening stable nano-formulations for lipophilic drug delivery. PMID:24033270

  9. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.

    PubMed

    Liu, Yan; Song, Yang; Madahar, Vipul; Liao, Jiayu

    2012-03-01

    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids.

    PubMed

    Rowland, Clare E; Fedin, Igor; Zhang, Hui; Gray, Stephen K; Govorov, Alexander O; Talapin, Dmitri V; Schaller, Richard D

    2015-05-01

    Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs 7-9) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. 10), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

  11. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids

    NASA Astrophysics Data System (ADS)

    Rowland, Clare E.; Fedin, Igor; Zhang, Hui; Gray, Stephen K.; Govorov, Alexander O.; Talapin, Dmitri V.; Schaller, Richard D.

    2015-05-01

    Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs , , ) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. ), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (˜6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

  12. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    NASA Astrophysics Data System (ADS)

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  13. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A., E-mail: nelambert@gru.edu

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domainsmore » in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.« less

  14. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    PubMed

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single-Molecule Three-Color FRET with Both Negligible Spectral Overlap and Long Observation Time

    PubMed Central

    Hohng, Sungchul

    2010-01-01

    Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy. PMID:20808851

  16. High-throughput spectral and lifetime-based FRET screening in living cells to identify small-molecule effectors of SERCA

    PubMed Central

    Schaaf, Tory M.; Peterson, Kurt C.; Grant, Benjamin D.; Bawaskar, Prachi; Yuen, Samantha; Li, Ji; Muretta, Joseph M.; Gillispie, Gregory D.; Thomas, David D.

    2017-01-01

    A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green (GFP, donor) and red (RFP, acceptor) fluorescent proteins fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA’s distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA’s ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS. PMID:27899691

  17. Engineering Genetically Encoded FRET Sensors

    PubMed Central

    Lindenburg, Laurens; Merkx, Maarten

    2014-01-01

    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening. PMID:24991940

  18. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    PubMed

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A fluorescent organic nanoprobe developed for the detection of erythrosine (ETS) food dye in aqueous medium based on fluorescence resonance energy transfer (FRET). The FRET process between donor (nanoparticles) and acceptor (ETS dye) arises due to oppositely charge attraction through hydrophobic interactions. The proposed method was successfully applied to quantitative determination of ETS dye in food stuff sample collected from local market.

  19. Dynamic detection of caspase-3 activation during photosensitization by fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Chen, Qun; Chen, Tongsheng; Tang, Yonghong; Wan, Qingling

    2005-04-01

    Apoptosis is one of the important modes in PDT-induced cell death. Activation of caspase-3 is considered to be the final step in many apoptosis pathways. In this study, we used SCAT3, a fluorescence resonance energy transfer (FRET) probe containing caspase-3 substrate, to study the dynamics of caspase-3 activation in living ASTC-a-1 cells expressing stably SCAT3. The FRET analysis results indicated that caspase-3 activation in response to tumor necrosis factor-α or PDT resulted in cleavage of the linker peptide and subsequent disruption of the FRET signal. The SCAT3 was cleaved immediately after PDT treatment, but that for TNF-a treatment was delayed two hours. Our experimental results suggested that the different apoptotic pathways induced by TNF-α or PDT caused different cleavage kinetics of SCAT3. This study shows that FRET technique based on GFPs could be used to study the mechanism of PDT-induced apoptosis in living cells.

  20. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  1. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    PubMed Central

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-01-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752

  2. Understanding FRET as a Research Tool for Cellular Studies

    PubMed Central

    Shrestha, Dilip; Jenei, Attila; Nagy, Péter; Vereb, György; Szöllősi, János

    2015-01-01

    Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1–10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types. PMID:25815593

  3. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers.

    PubMed

    Patowary, Suparna; Pisterzi, Luca F; Biener, Gabriel; Holz, Jessica D; Oliver, Julie A; Wells, James W; Raicu, Valerică

    2015-04-07

    Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photo-insensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Evaluating the Relationship between FRET Changes and Distance Changes Using DNA Length and Restriction Enzyme Specificity

    ERIC Educational Resources Information Center

    Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.

    2016-01-01

    FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…

  5. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  6. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  7. Assessing FRET using Spectral Techniques

    PubMed Central

    Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.

    2015-01-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. PMID:23929684

  8. Assessing FRET using spectral techniques.

    PubMed

    Leavesley, Silas J; Britain, Andrea L; Cichon, Lauren K; Nikolaev, Viacheslav O; Rich, Thomas C

    2013-10-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein-protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP-Epac-YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  9. Optofluidic FRET Lasers Using Aqueous Quantum Dots as Donors

    PubMed Central

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2015-01-01

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as gain medium. This integration of optofluidic laser and FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in the QD-Cy5 pair when excited at 450 nm where Cy5 has negligible absorption by itself. The threshold was approximately 14 µJ/mm2. The demonstrated capability of QDs as the donor in a FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of QDs in the blue and UV spectral region. The excitation efficiency of the acceptor molecules through FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs plays a significant role in FRET laser performance. PMID:26659274

  10. Optofluidic FRET lasers using aqueous quantum dots as donors.

    PubMed

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2016-01-21

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as a gain medium. This integration of an optofluidic laser and the FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here, we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in a QD-Cy5 pair upon excitation at 450 nm, where Cy5 has negligible absorption by itself. The threshold was approximately 14 μJ mm(-2). The demonstrated capability of QDs as donors in the FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of the QDs in the blue and UV spectral regions. The excitation efficiency of the acceptor molecules through a FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs play a significant role in FRET laser performance.

  11. Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection.

    PubMed

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2017-05-10

    A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices.

  12. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    PubMed

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  13. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    NASA Astrophysics Data System (ADS)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  14. Enhanced Imaging of Specific Cell-Surface Glycosylation Based on Multi-FRET.

    PubMed

    Yuan, Baoyin; Chen, Yuanyuan; Sun, Yuqiong; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Meng, Xiangxian; Yang, Xiaohai; Wen, Xiaohong; Li, Zenghui; Li, Lie; Wang, Kemin

    2018-05-15

    Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.

  15. Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi

    2009-02-01

    Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.

  16. Application of FRET Technology to the In Vivo Evaluation of Therapeutic Nucleic Acids (ANTs)

    NASA Astrophysics Data System (ADS)

    Benítez-Hess, María Luisa; Alvarez-Salas, Luis Marat

    2007-02-01

    Developing applications for therapeutic nucleic acids (TNAs) (i.e. ribozymes, antisense oligodeoxynucleotides (AS-ODNs), siRNA and aptamers) requires a reporter system designed to rapidly evaluate their in vivo effect. To this end we designed a reporter system based on the fluorescence resonance energy transfer (FRET) engineered to release the FRET effect produced by two green fluorescent protein (GFP) variants linked by a TNA target site. Because the FRET effect occurs instantaneously when two fluorophores are very close to each other (>100nm) stimulating emission of the acceptor fluorophore by the excitation of the donor fluorophore it has been widely use to reveal interactions between molecules. The present system (FRET2) correlates the FRET effect with the in vivo activity of distinct types of TNAs based on a model consisting of RNA from human papillomavirus type 16 (HPV-16) previously shown accessible to TNAs. HPV-16 is the most common papillomavirus associated with cervical cancer, the leading cause of death by cancer in México. The FRET2 system was first tested in vitro and then used in bacteria in which transcription is linked to translation allowing controlled expression and rapid evaluation of the FRET2 protein. To assure accessibility of the target mRNA to TNAs, the FRET2 mRNA was probed by RNaseH assays prior FRET testing. The fluorescence features of the FRET2 system was tested with different FRET-producing GFP donor-acceptor pairs leading to selection of green (donor) and yellow (acceptor) variants of GFP as the most efficient. Modifications in aminoacid composition and linker length of the target sequence did not affect FRET efficiency. In vivo AS-ODN-mediated destruction of the chimerical FRET2 reporter mRNA resulted in the recovery of GFP fluorescent spectrum in a concentration and time dependent manner. Reported anti-HPV ribozymes were also tested with similar results. Therefore, we conclude that the FRET effect can be a useful tool in the development of TNAs.

  17. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  18. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  19. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    PubMed Central

    Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  20. Assembling programmable FRET-based photonic networks using designer DNA scaffolds

    PubMed Central

    Buckhout-White, Susan; Spillmann, Christopher M; Algar, W. Russ; Khachatrian, Ani; Melinger, Joseph S.; Goldman, Ellen R.; Ancona, Mario G.; Medintz, Igor L.

    2014-01-01

    DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marshal organic dyes into nanoantennae that focus excitonic energy. We evaluate 36 increasingly complex designs including linear, bifurcated, Holliday junction, 8-arm star and dendrimers involving up to five different dyes engaging in four-consecutive FRET steps, while systematically varying fluorophore spacing by Förster distance (R0). Decreasing R0 while augmenting cross-sectional collection area with multiple donors significantly increases terminal exciton delivery efficiency within dendrimers compared with the first linear constructs. Förster modelling confirms that best results are obtained when there are multiple interacting FRET pathways rather than independent channels by which excitons travel from initial donor(s) to final acceptor. PMID:25504073

  1. Probing Protein Structure in Vivo with FRET

    PubMed Central

    Davis, Trisha; Muller, Eric

    2012-01-01

    Fluorescence resonance energy transfer (FRET) is widely used to construct probes for cellular activities and to complement two-hybrid results that predict protein-protein interactions. The Yeast Resource Center promotes an underutilized potential of FRET as an in vivo tool to position proteins within low resolution structures derived from electron microscopy. The success of this approach using widefield microscopy depends upon the choice of filter sets, standardized image acquisition, a robust metric and controls matched to the structure under investigation. A comparison of various CFP and YFP filter combinations from Chroma and Semrock demonstrated the strength of the Chroma filters when coupled with our FRET metric, termed FretR. Coupling CFP and YFP to a selection of proteins of known structure allowed us to create a standard curve of FretR versus distance. How well other FRET metrics conform was also evaluated. Finally FretR was linked to an approximation of the efficiency of energy transfer. Together this feature set has allowed us to contribute to our understanding of the organization of the yeast spindle pole body, cohesin complex and gamma-tubulin complex.

  2. On the use of nonfluorescent dye labeled ligands in FRET-based receptor binding studies.

    PubMed

    Tahtaoui, Chouaib; Guillier, Fabrice; Klotz, Philippe; Galzi, Jean-Luc; Hibert, Marcel; Ilien, Brigitte

    2005-12-01

    The efficiency of fluorescence resonance energy transfer (FRET) is dependent upon donor-acceptor proximity and spectral overlap, whether the acceptor partner is fluorescent or not. We report here on the design, synthesis, and characterization of two novel pirenzepine derivatives that were coupled to patent blue VF and pinacyanol dyes. These nonfluorescent compounds, when added to cells stably expressing enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors, promote EGFP fluorescence extinction in a time-, concentration-, and atropine-dependent manner. They display nanomolar affinity for the muscarinic receptor, determined using either FRET or classical radioligand binding conditions. We provide evidence that these compounds behave as potent acceptors of energy from excited EGFP with quenching efficiencies comparable to those of analogous fluorescent bodipy or rhodamine red pirenzepine derivatives. The advantages they offer over fluorescent ligands are illustrated and discussed in terms of reliability, sensitivity, and wider applicability of FRET-based receptor binding assays.

  3. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W

    2017-01-18

    We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.

  4. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Warren, Sean C.; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A.; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Tate, Edward W.; Dunsby, Christopher; French, Paul M. W.

    2017-01-01

    We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set. PMID:28190060

  5. FRET imaging and in silico simulation: analysis of the signaling network of nerve growth factor-induced neuritogenesis.

    PubMed

    Nakamura, Takeshi; Aoki, Kazuhiro; Matsuda, Michiyuki

    2008-08-01

    Genetically encoded probes based on Förster resonance energy transfer (FRET) enable us to decipher spatiotemporal information encoded in complex tissues such as the brain. Firstly, this review focuses on FRET probes wherein both the donor and acceptor are fluorescence proteins and are incorporated into a single molecule, i.e. unimolecular probes. Advantages of these probes lie in their easy loading into cells, the simple acquisition of FRET images, and the clear evaluation of data. Next, we introduce our recent study which encompasses FRET imaging and in silico simulation. In nerve growth factor-induced neurite outgrowth in PC12 cells, we found positive and negative signaling feedback loops. We propose that these feedback loops determine neurite-budding sites. We would like to emphasize that it is now time to accelerate crossover research in neuroscience, optics, and computational biology.

  6. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  7. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity.

    PubMed

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-07-23

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.

  8. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process

    NASA Astrophysics Data System (ADS)

    Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.

    2016-12-01

    A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.

  9. Estimating the distance separating fluorescent protein FRET pairs

    PubMed Central

    van der Meer, B. Wieb; Blank, Paul S.

    2014-01-01

    Förster resonance energy transfer (FRET) describes a physical phenomenon widely applied in biomedical research to estimate separations between biological molecules. Routinely, genetic engineering is used to incorporate spectral variants of the green fluorescent protein (GFPs), into cellular expressed proteins. The transfer efficiency or rate of energy transfer between donor and acceptor FPs is then assayed. As appreciable FRET occurs only when donors and acceptors are in close proximity (1–10 nm), the presence of FRET may indicate that the engineered proteins associate as interacting species. For a homogeneous population of FRET pairs the separations between FRET donors and acceptors can be estimated from a measured FRET efficiency if it is assumed that donors and acceptors are randomly oriented and rotate extensively during their excited state (dynamic regime). Unlike typical organic fluorophores, the rotational correlation-times of FPs are typically much longer than their fluorescence lifetime; accordingly FPs are virtually static during their excited state. Thus, estimating separations between FP FRET pairs is problematic. To overcome this obstacle, we present here a simple method for estimating separations between FPs using the experimentally measured average FRET efficiency. This approach assumes that donor and acceptor fluorophores are randomly oriented, but do not rotate during their excited state (static regime). This approach utilizes a Monte-Carlo simulation generated look-up table that allows one to estimate the separation, normalized to the Förster distance, from the average FRET efficiency. Assuming a dynamic regime overestimates the separation significantly (by 10% near 0.5 and 30% near 0.75 efficiencies) compared to assuming a static regime, which is more appropriate for estimates of separations between FPs. PMID:23811334

  10. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  11. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  12. Interfacial Chemistry and the Design of Solid-Phase Nucleic Acid Hybridization Assays Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer

    PubMed Central

    Algar, W. Russ; Krull, Ulrich J.

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration. PMID:22163951

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Takahiro, E-mail: t-nishimura@ist.osaka-u.ac.jp; Fujii, Ryo; Ogura, Yusuke

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on themore » DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.« less

  14. NaEuF4/Au@Ag2S nanoparticles-based fluorescence resonant transfer DNA sensor for ultrasensitive detection of DNA energy.

    PubMed

    Liu, Yuhong; Zhao, Linlin; Zhang, Jin; Zhang, Jinzha; Zhao, Wenbo; Mao, Chun

    2016-12-01

    The work investigates a new fluorescence resonance energy transfer (FRET) system using NaEuF 4 nanoparticles (NPs) and Au@Ag 2 S NPs as the energy donor-acceptor pair for the first time. The NaEuF 4 /Au@Ag 2 S NPs-based FRET DNA sensor was constructed with NaEuF 4 NPs as the fluorescence (FL) donor and Au@Ag 2 S core-shell NPs as FL acceptor. In order to find the matching energy acceptor, the amount of AgNO 3 and Na 2 S were controlled in the synthesis process to overlap the absorption spectrum of energy acceptor with the emission spectrum of energy donors. The sensitivity of FRET-based DNA sensor can be enhanced and the self-absorption of ligand as well as the background of signals can be decreased because of Eu 3+ which owns large Stokes shifts and narrow emission bands due to f-f electronic transitions of 4f shell. We obtained the efficient FRET system by studying suitable distance between the donor and acceptor. Then the FRET-based DNA sensor was used for the design of specific and sensitive detection of target DNA and the quenching efficiency (ΔFL/F 0 , ΔFL=F-F 0 ) of FL was logarithmically related to the concentration of the target DNA, ranging from 100aM to 100pM. We can realize an ultrasensitive detection of target DNA with a detection limit of 32 aM. This proposed method was feasible to analyse target DNA in real samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection

    PubMed Central

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2017-01-01

    A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices. PMID:28489033

  16. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies.

    PubMed

    Currie, Megan; Leopold, Hannah; Schwarz, Jacob; Boersma, Arnold J; Sheets, Erin D; Heikal, Ahmed A

    2017-06-15

    Living cells are crowded with macromolecules and organelles. As a result, there is an urgent need for molecular sensors for quantitative, site-specific assessment of the macromolecular crowding effects on a myriad of biochemical processes toward quantitative cell biology and biophysics. Here we investigate the excited-state dynamics and translational diffusion of a novel FRET sensor (mCerulean-linker-mCitrine) in a buffer (PBS, pH 7.4) at room temperature. Complementary experiments were carried out on free CFP, YFP, and the cleaved FRET probe as controls. The wavelength-dependent fluorescence lifetime measurements of the donor and acceptor in the FRET probe, using the time-correlated single-photon counting technique, indicate an energy transfer efficiency of 6.8 ± 0.9% in PBS, with distinct excited-state dynamics from the recombinant CFP and YFP. The estimated mCerulean-mCitrine distance in this FRET probe is 7.7 ± 0.2 nm. The energy transfer efficiency increases (11.5 ± 0.9%) as the concentration of Ficoll-70 increases over the range of 0-300 g/L with an estimated mCerulean-mCitrine distance of 6.1 ± 0.2 nm. Complementary time-resolved anisotropy measurements suggest that the rotational diffusion of hetero-FRET in PBS is sensitive to the energy transfer from the donor to the acceptor. The results also suggest that the linker, -(GSG) 6 A(EAAAK) 6 A(GSG) 6 A(EAAAK) 6 A(GSG) 6 -, is rather flexible, and the observed rotational dynamics is likely to be due to a segmental mobility of the FRET pairs rather than an overall tumbling motion of a rigid probe. Comparative studies on a new construct of a FRET probe with a shorter, more flexible linker, mCerulean-(GSG) 18 -mCitrine, reveal enhanced energy transfer efficiency. On the millisecond time scale, fluorescence fluctuation analyses of the acceptor (excited at 488 nm) provide a means to examine the translational diffusion coefficient of the FRET probe. The results also suggest that the linker is flexible in this FRET probe, and the observed diffusion coefficient is faster than predicted as compared to the cleaved FRET probe. Our results serve as a point of reference for this FRET probe in a buffer toward its full potential as a sensor for macromolecular crowding in living cells and tissues.

  17. A Guide to Fluorescent Protein FRET Pairs

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Zhang, Shu; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177

  18. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method

    NASA Astrophysics Data System (ADS)

    Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju

    2015-10-01

    DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers. Electronic supplementary information (ESI) available: Synthesis of CdSe/CdS/ZnS core/shell/shell QDs. Sequences of primers used for amplifying the promoter regions in bisulfate-modified DNA. Comparison of detected methylation levels in different gene promoters using the QD-based FRET method versus bisulfite pyrosequencing. Methylation levels of the RASSF1A gene in one pair of NT and cancer samples as indicated by pyrosequencing. Theoretical calculation of the Förster distance R0. See DOI: 10.1039/c5nr04956c

  19. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  20. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application

    NASA Astrophysics Data System (ADS)

    Ghosh, Swadesh; Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2018-04-01

    Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.

  1. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments

    PubMed Central

    2017-01-01

    Caged organic fluorophores are established tools for localization-based super-resolution imaging. Their use relies on reversible deactivation of standard organic fluorophores by chemical reduction or commercially available caged dyes with ON switching of the fluorescent signal by ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores and caged rhodamine dyes, i.e., chemical deactivation of fluorescence, for single-molecule Förster resonance energy transfer (smFRET) experiments with freely diffusing molecules. They allow temporal separation and sorting of multiple intramolecular donor–acceptor pairs during solution-based smFRET. We use this “caged FRET” methodology for the study of complex biochemical species such as multisubunit proteins or nucleic acids containing more than two fluorescent labels. Proof-of-principle experiments and a characterization of the uncaging process in the confocal volume are presented. These reveal that chemical caging and UV reactivation allow temporal uncoupling of convoluted fluorescence signals from, e.g., multiple spectrally similar donor or acceptor molecules on nucleic acids. We also use caging without UV reactivation to remove unwanted overlabeled species in experiments with the homotrimeric membrane transporter BetP. We finally outline further possible applications of the caged FRET methodology, such as the study of weak biochemical interactions, which are otherwise impossible with diffusion-based smFRET techniques because of the required low concentrations of fluorescently labeled biomolecules. PMID:28362086

  2. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  3. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.

    PubMed

    Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W

    2017-01-01

    Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.

  4. Three-color FRET expands the ability to quantify the interactions of several proteins involved in actin filament nucleation

    NASA Astrophysics Data System (ADS)

    Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George

    2012-03-01

    With traditional 2-color Förster Resonance Energy Transfer (FRET) microscopy, valuable quantitative analyses can be conducted. Correlations of donor (D), acceptor (A) and their ratios (D:A) with energy transfer efficiency (E%) or distance (r) allows measurement of changes between control and experimental samples; also, clustered vs. random assembly of cellular components can be differentiated. Essentially, only the above three parameters D, A and D:A vs. E% are the basis for these deductions. 3-color FRET uses the same basic parameters, but exponentially expands the opportunities to quantify interrelationships among 3 cellular components. We investigated a number of questions based on the results of a triple combination (F1-F2-F3) of TFPNWASP/ Venus-IQGAP1/mCherry-Actin - all involved in the nucleation of actin - to apply the extensive analysis assay possible with 3-color FRET. How do changing N-WASP or IQGAP1 fluorescence levels affect actin fluorescence? What is the effect on E% of NWASP-actin by IQGAP1 or E% of IQGAP1-actin by N-WASP? These and other questions are explored in the context of all proteins of interest being in FRET distance vs. any two in the absence of the third. 4 cases are compared based on bleed-through corrected FRET: (1) all 3 interact, (2) only F1- F3 and F2-F3 [not F1-F2], (3) only F1-F2 and F2-F3 interact [not F1-F3], (4) only F1-F2 and F1-F3 interact [not F2-F3]. Other than describing the methodology in detail, several biologically relevant results are presented showing how E% (i.e. distance), fluorescence levels and ratios are affected in each of the cases. These correlations can only be observed in a 3-fluorophore combination. 3-color FRET will greatly expand the investigative range of quantitative analysis for the life-science researcher.

  5. Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes.

    PubMed

    Heyduk, T; Niedziela-Majka, A

    Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. Copyright 2002 Wiley Periodicals, Inc.

  6. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    NASA Astrophysics Data System (ADS)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  7. Fluorescence Intensity- and Lifetime-Based Glucose Sensing Using Glucose/Galactose-Binding Protein

    PubMed Central

    Pickup, John C.; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J. S.

    2013-01-01

    We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04–4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by obtaining the pixels from the resulting matrix using Matlab image processing functions. We have also studied the in vitro cytotoxicity of the device. The nanostructured FRET sensor may provide an alternative method to help patients manage the disease continuously. PMID:23439161

  8. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Application of fluorescence resonance energy transfer in protein studies

    PubMed Central

    Ma, Linlin; Yang, Fan; Zheng, Jie

    2014-01-01

    Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications. PMID:25368432

  10. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately

    PubMed Central

    2017-01-01

    Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, εD(t), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors. PMID:28709377

  11. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency

    DOE PAGES

    Wallace, Bram; Atzberger, Paul J.; D’Auria, Sabato

    2017-05-19

    Forster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. But, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. Here, we investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion ofmore » fluorophores, separation diffusion of fluorophores, and non-emitting quenching.« less

  12. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency

    PubMed Central

    Wallace, Bram

    2017-01-01

    Förster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching. PMID:28542211

  13. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    PubMed

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  14. 48-spot single-molecule FRET setup with periodic acceptor excitation

    NASA Astrophysics Data System (ADS)

    Ingargiola, Antonino; Segal, Maya; Gulinatti, Angelo; Rech, Ivan; Labanca, Ivan; Maccagnani, Piera; Ghioni, Massimo; Weiss, Shimon; Michalet, Xavier

    2018-03-01

    Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.

  15. Tomographic imaging of flourescence resonance energy transfer in highly light scattering media

    NASA Astrophysics Data System (ADS)

    Soloviev, Vadim Y.; McGinty, James; Tahir, Khadija B.; Laine, Romain; Stuckey, Daniel W.; Mohan, P. Surya; Hajnal, Joseph V.; Sardini, Alessandro; French, Paul M. W.; Arridge, Simon R.

    2010-02-01

    Three-dimensional localization of protein conformation changes in turbid media using Förster Resonance Energy Transfer (FRET) was investigated by tomographic fluorescence lifetime imaging (FLIM). FRET occurs when a donor fluorophore, initially in its electronic excited state, transfers energy to an acceptor fluorophore in close proximity through non-radiative dipole-dipole coupling. An acceptor effectively behaves as a quencher of the donor's fluorescence. The quenching process is accompanied by a reduction in the quantum yield and lifetime of the donor fluorophore. Therefore, FRET can be localized by imaging changes in the quantum yield and the fluorescence lifetime of the donor fluorophore. Extending FRET to diffuse optical tomography has potentially important applications such as in vivo studies in small animal. We show that FRET can be localized by reconstructing the quantum yield and lifetime distribution from time-resolved non-invasive boundary measurements of fluorescence and transmitted excitation radiation. Image reconstruction was obtained by an inverse scattering algorithm. Thus we report, to the best of our knowledge, the first tomographic FLIM-FRET imaging in turbid media. The approach is demonstrated by imaging a highly scattering cylindrical phantom concealing two thin wells containing cytosol preparations of HEK293 cells expressing TN-L15, a cytosolic genetically-encoded calcium FRET sensor. A 10mM calcium chloride solution was added to one of the wells to induce a protein conformation change upon binding to TN-L15, resulting in FRET and a corresponding decrease in the donor fluorescence lifetime. The resulting fluorescence lifetime distribution, the quantum efficiency, absorption and scattering coefficients were reconstructed.

  16. A novel robust quantitative Förster resonance energy transfer assay for protease SENP2 kinetics determination against its all natural substrates.

    PubMed

    Liu, Yan; Shen, Yali; Zheng, Shasha; Liao, Jiayu

    2015-12-01

    SUMOylation (the process of adding the SUMO [small ubiquitin-like modifier] to substrates) is an important post-translational modification of critical proteins in multiple processes. Sentrin/SUMO-specific proteases (SENPs) act as endopeptidases to process the pre-SUMO or as isopeptidases to deconjugate the SUMO from its substrate. Determining the kinetics of SENPs is important for understanding their activities. Förster resonance energy transfer (FRET) technology has been widely used in biomedical research and is a powerful tool for elucidating protein interactions. In this paper we report a novel quantitative FRET-based protease assay for SENP2 endopeptidase activity that accounts for the self-fluorescent emissions of the donor (CyPet) and the acceptor (YPet). The kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP2 toward pre-SUMO1/2/3, were obtained by this novel design. Although we use SENP2 to demonstrate our method, the general principles of this quantitative FRET-based protease kinetic determination can be readily applied to other proteases.

  17. Riboswitch-based sensor in low optical background

    NASA Astrophysics Data System (ADS)

    Harbaugh, Svetlana V.; Davidson, Molly E.; Chushak, Yaroslav G.; Kelley-Loughnane, Nancy; Stone, Morley O.

    2008-08-01

    Riboswitches are a type of natural genetic control element that use untranslated sequence in the RNA to recognize and bind to small molecules that regulate expression of that gene. Creation of synthetic riboswitches to novel ligands depends on the ability to screen for analyte binding sensitivity and specificity. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically-coded fluorescent proteins. Specifically, a theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence, and a FRET-based construct, BFP-eGFP or eGFP-REACh, was linked by a peptide encoding the recognition sequence for TEV protease. Cells expressing the riboswitch showed a marked optical difference in fluorescence emission in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background that reduces the sensitivity of a FRET-based assay. To improve the optical assay, we designed a nonfluorescent yellow fluorescent protein (YFP) mutant called REACh (for Resonance Energy-Accepting Chromoprotein) as the FRET acceptor for eGFP. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence which leads to an improved detection of FRET via better signal-to-noise ratio. The EGFP-REACh fusion protein was constructed with the TEV protease cleavage site; thus upon TEV translation, cleavage occurs diminishing REACh quenching and increasing eGFP emission resulting in a 4.5-fold improvement in assay sensitivity.

  18. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    PubMed

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  19. FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.

  20. Structural mapping of divergent regions in the type 1 ryanodine receptor using fluorescence resonance energy transfer

    PubMed Central

    Mahalingam, Mohana; Girgenrath, Tanya; Svensson, Bengt; Thomas, David D.; Cornea, Razvan L.; Fessenden, James D.

    2014-01-01

    Summary Ryanodine receptors (RyR) release Ca2+ to initiate striated muscle contraction. Three highly divergent regions in the RyR protein sequence (DR1, DR2, DR3) are proposed to confer isoform-specific functional properties to the RyRs. We used cell-based fluorescence resonance energy transfer (FRET) measurements to localize these DRs to the cryo-electron microscopic (EM) map of the skeletal muscle RyR isoform (RyR1). FRET donors were targeted to RyR1 using five different FKBP12.6 variants labeled with Alexa Fluor 488. FRET was then measured to Cy3NTA or Cy5NTA, FRET acceptors targeted to decahistidine tags introduced within the DRs. DR2 and DR3 were localized to separate positions within the “clamp” region of the RyR1 cryo-EM map, which is presumed to interface with Cav1.1. DR1 was localized to the “handle” region, near the regulatory calmodulin binding site on the RyR. These localizations provide new insights into the roles of DRs in RyR allosteric regulation during excitation-contraction coupling. PMID:25132084

  1. Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach

    PubMed Central

    Hoefling, Martin; Lima, Nicola; Haenni, Dominik; Seidel, Claus A. M.; Schuler, Benjamin; Grubmüller, Helmut

    2011-01-01

    Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies. PMID:21629703

  2. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers.

    PubMed

    DiFranco, Marino; Capote, Joana; Quiñonez, Marbella; Vergara, Julio L

    2007-12-01

    Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.

  3. Ligase Detection Reaction Generation of Reverse Molecular Beacons for Near Real-Time Analysis of Bacterial Pathogens Using Single-Pair Fluorescence Resonance Energy Transfer and a Cyclic Olefin Copolymer Microfluidic Chip

    PubMed Central

    Peng, Zhiyong; Soper, Steven A.; Pingle, Maneesh R.; Barany, Francis; Davis, Lloyd M.

    2015-01-01

    Detection of pathogenic bacteria and viruses require strategies that can signal the presence of these targets in near real-time due to the potential threats created by rapid dissemination into water and/or food supplies. In this paper, we report an innovative strategy that can rapidly detect bacterial pathogens using reporter sequences found in their genome without requiring polymerase chain reaction (PCR). A pair of strain-specific primers was designed based on the 16S rRNA gene and were end-labeled with a donor (Cy5) or acceptor (Cy5.5) dye. In the presence of the target bacterium, the primers were joined using a ligase detection reaction (LDR) only when the primers were completely complementary to the target sequence to form a reverse molecular beacon (rMB), thus bringing Cy5 (donor) and Cy5.5 (acceptor) into close proximity to allow fluorescence resonance energy transfer (FRET) to occur. These rMBs were subsequently analyzed using single-molecule detection of the FRET pairs (single-pair FRET; spFRET). The LDR was performed using a continuous flow thermal cycling process configured in a cyclic olefin copolymer (COC) microfluidic device using either 2 or 20 thermal cycles. Single-molecule photon bursts from the resulting rMBs were detected on-chip and registered using a simple laser-induced fluorescence (LIF) instrument. The spFRET signatures from the target pathogens were reported in as little as 2.6 min using spFRET. PMID:21047095

  4. Application of fluorescence resonance energy transfer techniques to the study of lectin-binding site distribution on Paramecium primaurelia (Protista, Ciliophora) cell surface.

    PubMed

    Locatelli, D; Delmonte Corrado, M U; Politi, H; Bottiroli, G

    1998-01-01

    Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon occurring between the molecules of two fluorochromes with suitable spectral characteristics (donor-acceptor dye pair), and consisting in an excitation energy migration through a non-radiative process. Since the efficiency of the process is strictly dependent on the distance and reciprocal orientation of the donor and acceptor molecules, FRET-based techniques can be successfully applied to the study of biomolecules and cell component organisation and distribution. These techniques have been employed in studying Paramecium primaurelia surface membrane for the reciprocal distribution of N-acetylneuraminic acid (NeuAc) and N-acetylglucosamine (GlcNAc) glycosidic residues, which were found to be involved in mating cell pairing. NeuAc and GlcNAc were detected by their specific binding lectins, Limulus polyphemus agglutinin (LPA) and wheat germ agglutinin (WGA), respectively. Microspectrofluorometric analysis afforded the choice of fluorescein isothiocyanate and Texas red conjugated with LPA and WGA, respectively, as a suitable donor-acceptor couple efficiently activating FRET processes. Studies performed both in solution and in cells allowed to define the experimental conditions favourable for a FRET analysis. The comparative study carried out both on the conjugating-region and the non conjugating region of the surface membrane, indicates that FRET distribution appears quite homogeneous in mating-competent mating type (mt) I, whereas, in mating-competent mt II cells, FRET distribution seems to be preferentially localised on the conjugating-region functionally involved in mating cell pairing. This difference in the distribution of lectin-binding sites is suggested to be related to mating-competence acquisition.

  5. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  6. Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes

    NASA Astrophysics Data System (ADS)

    Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.

    2016-06-01

    A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.

  7. In Vivo Fluorescence Resonance Energy Transfer Imaging for Targeted Anti-Cancer Drug Delivery Kinetics

    NASA Astrophysics Data System (ADS)

    Webb, Kevin; Gaind, Vaibhav; Tsai, Hsiaorho; Bentz, Brian; Chelvam, Venkatesh; Low, Philip

    2012-02-01

    We describe an approach for the evaluation of targeted anti-cancer drug delivery in vivo. The method emulates the drug release and activation process through acceptor release from a targeted donor-acceptor pair that exhibits fluorescence resonance energy transfer (FRET). In this case, folate targeting of the cancer cells is used - 40 % of all human cancers, including ovarian, lung, breast, kidney, brain and colon cancer, over-express folate receptors. We demonstrate the reconstruction of the spatially-dependent FRET parameters in a mouse model and in tissue phantoms. The FRET parameterization is incorporated into a source for a diffusion equation model for photon transport in tissue, in a variant of optical diffusion tomography (ODT) called FRET-ODT. In addition to the spatially-dependent tissue parameters in the diffusion model (absorption and diffusion coefficients), the FRET parameters (donor-acceptor distance and yield) are imaged as a function of position. Modulated light measurements are made with various laser excitation positions and a gated camera. More generally, our method provides a new vehicle for studying disease at the molecular level by imaging FRET parameters in deep tissue, and allows the nanometer FRET ruler to be utilized in deep tissue.

  8. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  9. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    PubMed

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  10. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer.

    PubMed

    Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu

    2017-07-19

    This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H 2 O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.

  11. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET.

    PubMed

    Raicu, Valerică

    2018-06-15

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

    NASA Astrophysics Data System (ADS)

    Raicu, Valerică

    2018-06-01

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

  13. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    PubMed Central

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  14. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    PubMed

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    NASA Astrophysics Data System (ADS)

    Rahmanseresht, Sheema; Milas, Peker; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.

    2015-05-01

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  16. Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite.

    PubMed

    Bruno, John G; Carrillo, Maria P; Phillips, Taylor; Vail, Neal K; Hanson, Douglas

    2008-09-01

    Competitive fluorescence resonance energy transfer (FRET)-aptamer-based assay formats are described for one-step detection of methylphosphonic acid (MPA; a metabolite of several organophosphorus (OP) nerve agents). AminoMPA was attached to tosyl-magnetic beads and used for DNA aptamer selection from which one dominant aptamer sequence emerged. Two different FRET approaches were attempted. In one approach, the complementary DNA sequence was used as a template for labeling the aptamer with Alexa Fluor 546 (AF 546)-14-dUTP by asymmetric PCR. Following 3-dimensional (3-D), molecular modeling of the aptamer-MPA complex, a series of three fluoresceinated aptamers labeled at positions 50, 51, and 52 in the putative optimal binding pocket were synthesized. In both FRET formats, aminoMPA was linked to Black Hole Quencher (BHQ-1 or BHQ-2)-succinimides and allowed to bind the fluorescein or AF 546-labeled MPA aptamer. Following gel filtration to purify the labeled MPA aptamer-BHQ-aminoMPA FRET complexes, the complexes were competed against various concentrations of unlabeled MPA, MPA derivatives, and unrelated compounds in titration and cross-reactivity studies. Both approaches yielded low microgram per milliliter detection limits for MPA with generally low levels of cross-reactivity for unrelated compounds. However, the data suggest a pattern of traits that may effect the direction (lights on or off) and intensity of the FRET.

  17. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    PubMed

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-09-01

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  18. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  19. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    PubMed Central

    Ghisaidoobe, Amar B. T.; Chung, Sang J.

    2014-01-01

    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  20. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    PubMed

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    PubMed

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  2. Intensity correlation-based calibration of FRET.

    PubMed

    Bene, László; Ungvári, Tamás; Fedor, Roland; Sasi Szabó, László; Damjanovich, László

    2013-11-05

    Dual-laser flow cytometric resonance energy transfer (FCET) is a statistically efficient and accurate way of determining proximity relationships for molecules of cells even under living conditions. In the framework of this algorithm, absolute fluorescence resonance energy transfer (FRET) efficiency is determined by the simultaneous measurement of donor-quenching and sensitized emission. A crucial point is the determination of the scaling factor α responsible for balancing the different sensitivities of the donor and acceptor signal channels. The determination of α is not simple, requiring preparation of special samples that are generally different from a double-labeled FRET sample, or by the use of sophisticated statistical estimation (least-squares) procedures. We present an alternative, free-from-spectral-constants approach for the determination of α and the absolute FRET efficiency, by an extension of the presented framework of the FCET algorithm with an analysis of the second moments (variances and covariances) of the detected intensity distributions. A quadratic equation for α is formulated with the intensity fluctuations, which is proved sufficiently robust to give accurate α-values on a cell-by-cell basis in a wide system of conditions using the same double-labeled sample from which the FRET efficiency itself is determined. This seemingly new approach is illustrated by FRET measurements between epitopes of the MHCI receptor on the cell surface of two cell lines, FT and LS174T. The figures show that whereas the common way of α determination fails at large dye-per-protein labeling ratios of mAbs, this presented-as-new approach has sufficient ability to give accurate results. Although introduced in a flow cytometer, the new approach can also be straightforwardly used with fluorescence microscopes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes

    PubMed Central

    Ding, Shaowei; Cargill, Allison A.; Das, Suprem R.; Medintz, Igor L.; Claussen, Jonathan C.

    2015-01-01

    Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed. PMID:26110411

  4. Time-Resolved Fluorescence Resonance Energy Transfer Assay for Discovery of Small-Molecule Inhibitors of Methyl-CpG Binding Domain Protein 2.

    PubMed

    Wyhs, Nicolas; Walker, David; Giovinazzo, Hugh; Yegnasubramanian, Srinivasan; Nelson, William G

    2014-08-01

    Methylated DNA binding proteins such as Methyl-CpG Binding Domain Protein 2 (MBD2) can transduce DNA methylation alterations into a repressive signal by recruiting transcriptional co-repressor complexes. Interfering with MBD2 could lead to reactivation of tumor suppressor genes and therefore represents an attractive strategy for epigenetic therapy. We developed and compared fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET)-based high-throughput screening (HTS) assays to identify small-molecule inhibitors of the interaction between the methyl binding domain of MBD2 (MBD2-MBD) and methylated DNA. Although both assays performed well in 96-well format, the TR-FRET assay (Z' factor = 0.58) emerged as a superior screening strategy compared with FP (Z' factor = 0.08) when evaluated in an HTS 384-well plate format. Using TR-FRET, we screened the Sigma LOPAC library for MBD2-MBD inhibitors and identified four compounds that also validated in a dose-response series. This included two known DNA intercalators (mitoxantrone and idarubicin) among two other inhibitory compounds (NF449 and aurintricarboxylic acid). All four compounds also inhibited the binding of SP-1, a transcription factor with a GC-rich binding sequence, to a methylated oligonucleotide, demonstrating that the activity was nonspecific. Our results provide proof of principle for using TR-FRET-based HTS to identify small-molecule inhibitors of MBD2 and other DNA-protein interactions. © 2014 Society for Laboratory Automation and Screening.

  5. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    PubMed

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  6. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  7. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  8. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    PubMed

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  9. Toward automated denoising of single molecular Förster resonance energy transfer data

    NASA Astrophysics Data System (ADS)

    Lee, Hao-Chih; Lin, Bo-Lin; Chang, Wei-Hau; Tu, I.-Ping

    2012-01-01

    A wide-field two-channel fluorescence microscope is a powerful tool as it allows for the study of conformation dynamics of hundreds to thousands of immobilized single molecules by Förster resonance energy transfer (FRET) signals. To date, the data reduction from a movie to a final set containing meaningful single-molecule FRET (smFRET) traces involves human inspection and intervention at several critical steps, greatly hampering the efficiency at the post-imaging stage. To facilitate the data reduction from smFRET movies to smFRET traces and to address the noise-limited issues, we developed a statistical denoising system toward fully automated processing. This data reduction system has embedded several novel approaches. First, as to background subtraction, high-order singular value decomposition (HOSVD) method is employed to extract spatial and temporal features. Second, to register and map the two color channels, the spots representing bleeding through the donor channel to the acceptor channel are used. Finally, correlation analysis and likelihood ratio statistic for the change point detection (CPD) are developed to study the two channels simultaneously, resolve FRET states, and report the dwelling time of each state. The performance of our method has been checked using both simulation and real data.

  10. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.

    PubMed

    Day, Richard N; Davidson, Michael W

    2012-05-01

    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. Copyright © 2012 WILEY Periodicals, Inc.

  11. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.

    PubMed

    Omer, Travis; Intes, Xavier; Hahn, Juergen

    2015-01-01

    Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.

  12. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    PubMed

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  13. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    PubMed

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Protocol for Using Förster Resonance Energy Transfer (FRET)-force Biosensors to Measure Mechanical Forces across the Nuclear LINC Complex.

    PubMed

    Arsenovic, Paul T; Bathula, Kranthidhar; Conway, Daniel E

    2017-04-11

    The LINC complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton to the nucleus. Nesprin-2G is a key component of the LINC complex that connects the actin cytoskeleton to membrane proteins (SUN domain proteins) in the perinuclear space. These membrane proteins connect to lamins inside the nucleus. Recently, a Förster Resonance Energy Transfer (FRET)-force probe was cloned into mini-Nesprin-2G (Nesprin-TS (tension sensor)) and used to measure tension across Nesprin-2G in live NIH3T3 fibroblasts. This paper describes the process of using Nesprin-TS to measure LINC complex forces in NIH3T3 fibroblasts. To extract FRET information from Nesprin-TS, an outline of how to spectrally unmix raw spectral images into acceptor and donor fluorescent channels is also presented. Using open-source software (ImageJ), images are pre-processed and transformed into ratiometric images. Finally, FRET data of Nesprin-TS is presented, along with strategies for how to compare data across different experimental groups.

  15. Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique.

    PubMed

    Jiang, Chao; Yuan, Yuan; Yang, Guang; Jin, Yan; Liu, Libing; Zhao, Yuyang; Huang, Luqi

    2016-10-21

    Inaccurate labeling of materials used in herbal products may compromise the therapeutic efficacy and may pose a threat to medicinal safety. In this paper, a rapid (within 3 h), sensitive and visual colorimetric method for identifying substitutions in terminal market products was developed using cationic conjugated polymer-based fluorescence resonance energy transfer (CCP-based FRET). Chinese medicinal materials with similar morphology and chemical composition were clearly distinguished by the single-nucleotide polymorphism (SNP) genotyping method. Assays using CCP-based FRET technology showed a high frequency of adulterants in Lu-Rong (52.83%) and Chuan-Bei-Mu (67.8%) decoction pieces, and patented Chinese drugs (71.4%, 5/7) containing Chuan-Bei-Mu ingredients were detected in the terminal herbal market. In comparison with DNA sequencing, this protocol simplifies procedures by eliminating the cumbersome workups and sophisticated instruments, and only a trace amount of DNA is required. The CCP-based method is particularly attractive because it can detect adulterants in admixture samples with high sensitivity. Therefore, the CCP-based detection system shows great potential for routine terminal market checks and drug safety controls.

  16. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    NASA Astrophysics Data System (ADS)

    Ul Hassan, Hafeez; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-09-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm.

  17. Fluorescence Resonance Energy Transfer Glucose Sensor from Site-Specific Dual Labeling of Glucose/Galactose Binding Protein Using Ligand Protection

    PubMed Central

    Hsieh, Helen V.; Sherman, Douglas B.; Andaluz, Sandra A.; Amiss, Terry J.; Pitner, J. Bruce

    2012-01-01

    Background Site-selective modification of proteins at two separate locations using two different reagents is highly desirable for biosensor applications employing fluorescence resonance energy transfer (FRET), but few strategies are available for such modification. To address this challenge, sequential selective modification of two cysteines in glucose/galactose binding protein (GGBP) was demonstrated using a technique we call “ligand protection.” Method In this technique, two cysteines were introduced in GGBP and one cysteine is rendered inaccessible by the presence of glucose, thus allowing sequential attachment of two different thiol-reactive reagents. The mutant E149C/A213C/L238S was first labeled at E149C in the presence of the ligand glucose. Following dialysis and removal of glucose, the protein was labeled with a second dye, either Texas Red (TR) C5 bromoacetamide or TR C2 maleimide, at the second site, A213C. Results Changes in glucose-dependent fluorescence were observed that were consistent with FRET between the nitrobenzoxadiazole and TR fluorophores. Comparison of models and spectroscopic properties of the C2 and C5 TR FRET constructs suggests the greater rigidity of the C2 linker provides more efficient FRET. Conclusions The ligand protection strategy provides a simple method for labeling GGBP with two different fluorophores to construct FRET-based glucose sensors with glucose affinity within the human physiological glucose range (1–30 mM). This general strategy may also have broad utility for other protein-labeling applications. PMID:23294773

  18. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  19. An improved cyan fluorescent protein variant useful for FRET.

    PubMed

    Rizzo, Mark A; Springer, Gerald H; Granada, Butch; Piston, David W

    2004-04-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) between fluorescent proteins to report biochemical phenomena in living cells. Most commonly, the enhanced cyan fluorescent protein (ECFP) is used as the donor fluorophore, coupled with one of several yellow fluorescent protein (YFP) variants as the acceptor. ECFP is used despite several spectroscopic disadvantages, namely a low quantum yield, a low extinction coefficient and a fluorescence lifetime that is best fit by a double exponential. To improve the characteristics of ECFP for FRET measurements, we used a site-directed mutagenesis approach to overcome these disadvantages. The resulting variant, which we named Cerulean (ECFP/S72A/Y145A/H148D), has a greatly improved quantum yield, a higher extinction coefficient and a fluorescence lifetime that is best fit by a single exponential. Cerulean is 2.5-fold brighter than ECFP and replacement of ECFP with Cerulean substantially improves the signal-to-noise ratio of a FRET-based sensor for glucokinase activation.

  20. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane

    PubMed Central

    Senning, Eric N.; Aman, Teresa K.

    2016-01-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane. PMID:26755772

  1. Studying of kinetics of rear earth ion (REI) nanoscale complex formation by resonant energy transfer

    NASA Astrophysics Data System (ADS)

    Ignatova, Tetyana; Pristinski, Denis; Rotkin, Slava V.

    2011-03-01

    We observed formation of nanoscale complexes between multivalent REIs (Tb and Eu) and negatively charged DNA wrapped SWNTs, ionized in the water solution. Foerster Resonance Energy Transfer (FRET) was found to be an ideal method to confirm the complex formation. Because of its high sensitivity and non-destructive characterization approach FRET can be used to trace the kinetics of the complex formation. Strong dependence of SWNT photoluminescence (PL) on the REI concentration was detected and interpreted as a competition between the REI absorption on the SWNTs and subsequent FRET enhanced PL and the SWNT agglomeration followed by PL quenching. We measured the distance between REI and SWNT which appears to be much shorter than the one from their relative concentration in solution. We speculate that Manning condensation of the REIs on the SWNT/DNA surface happens thereby significantly reducing their spacing and making FRET possible.

  2. Fluorescence Polarization and Fluctuation Analysis Monitors Subunit Proximity, Stoichiometry, and Protein Complex Hydrodynamics

    PubMed Central

    Nguyen, Tuan A.; Sarkar, Pabak; Veetil, Jithesh V.; Koushik, Srinagesh V.; Vogel, Steven S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is frequently used to study protein interactions and conformational changes in living cells. The utility of FRET is limited by false positive and negative signals. To overcome these limitations we have developed Fluorescence Polarization and Fluctuation Analysis (FPFA), a hybrid single-molecule based method combining time-resolved fluorescence anisotropy (homo-FRET) and fluorescence correlation spectroscopy. Using FPFA, homo-FRET (a 1–10 nm proximity gauge), brightness (a measure of the number of fluorescent subunits in a complex), and correlation time (an attribute sensitive to the mass and shape of a protein complex) can be simultaneously measured. These measurements together rigorously constrain the interpretation of FRET signals. Venus based control-constructs were used to validate FPFA. The utility of FPFA was demonstrated by measuring in living cells the number of subunits in the α-isoform of Venus-tagged calcium-calmodulin dependent protein kinase-II (CaMKIIα) holoenzyme. Brightness analysis revealed that the holoenzyme has, on average, 11.9±1.2 subunit, but values ranged from 10–14 in individual cells. Homo-FRET analysis simultaneously detected that catalytic domains were arranged as dimers in the dodecameric holoenzyme, and this paired organization was confirmed by quantitative hetero-FRET analysis. In freshly prepared cell homogenates FPFA detected only 10.2±1.3 subunits in the holoenzyme with values ranging from 9–12. Despite the reduction in subunit number, catalytic domains were still arranged as pairs in homogenates. Thus, FPFA suggests that while the absolute number of subunits in an auto-inhibited holoenzyme might vary from cell to cell, the organization of catalytic domains into pairs is preserved. PMID:22666486

  3. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  4. FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami.

    PubMed

    Kattke, Michele D; Gao, Elizabeth J; Sapsford, Kim E; Stephenson, Larry D; Kumar, Ashok

    2011-01-01

    In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD donor. During a detection event, quencher-labeled analytes are displaced by higher affinity target analytes, creating a detectable fluorescence signal increase from the QD donor. Conjugation and the resulting antibody:QD ratios were characterized with UV-Vis spectroscopy and QuantiT protein assay. The sensitivity of initial fluorescence experiments was compromised by inherent autofluorescence of mold spores, which produced low signal-to-noise and inconsistent readings. Therefore, excitation wavelength, QD, and quencher were adjusted to provide optimal signal-to-noise over spore background. Affinities of anti-Aspergillus antibody for different mold species were estimated with sandwich immunoassays, which identified A. fumigatus and A. amstelodami for use as quencher-labeled- and target-analytes, respectively. The optimized displacement immunoassay detected A. amstelodami concentrations as low as 10(3) spores/mL in five minutes or less. Additionally, baseline fluorescence was produced in the presence of 10(5) CFU/mL heat-killed E. coli O157:H7, demonstrating high specificity. This sensing modality may be useful for identification and detection of other biological threat agents, pending identification of suitable antibodies. Overall, these FRET-based QD-antibody biosensors represent a significant advancement in detection capabilities, offering sensitive and reliable detection of targets with applications in areas from biological terrorism defense to clinical analysis.

  5. FRET-Based Quantum Dot Immunoassay for Rapid and Sensitive Detection of Aspergillus amstelodami

    PubMed Central

    Kattke, Michele D.; Gao, Elizabeth J.; Sapsford, Kim E.; Stephenson, Larry D.; Kumar, Ashok

    2011-01-01

    In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD donor. During a detection event, quencher-labeled analytes are displaced by higher affinity target analytes, creating a detectable fluorescence signal increase from the QD donor. Conjugation and the resulting antibody:QD ratios were characterized with UV-Vis spectroscopy and QuantiT protein assay. The sensitivity of initial fluorescence experiments was compromised by inherent autofluorescence of mold spores, which produced low signal-to-noise and inconsistent readings. Therefore, excitation wavelength, QD, and quencher were adjusted to provide optimal signal-to-noise over spore background. Affinities of anti-Aspergillus antibody for different mold species were estimated with sandwich immunoassays, which identified A. fumigatus and A. amstelodami for use as quencher-labeled- and target-analytes, respectively. The optimized displacement immunoassay detected A. amstelodami concentrations as low as 103 spores/mL in five minutes or less. Additionally, baseline fluorescence was produced in the presence of 105 CFU/mL heat-killed E. coli O157:H7, demonstrating high specificity. This sensing modality may be useful for identification and detection of other biological threat agents, pending identification of suitable antibodies. Overall, these FRET-based QD-antibody biosensors represent a significant advancement in detection capabilities, offering sensitive and reliable detection of targets with applications in areas from biological terrorism defense to clinical analysis. PMID:22163961

  6. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  8. Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.

    Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less

  9. Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements

    DOE PAGES

    Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.; ...

    2018-04-19

    Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less

  10. Optical Lock-In Detection of FRET Using Synthetic and Genetically Encoded Optical Switches

    PubMed Central

    Mao, Shu; Benninger, Richard K. P.; Yan, Yuling; Petchprayoon, Chutima; Jackson, David; Easley, Christopher J.; Piston, David W.; Marriott, Gerard

    2008-01-01

    The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins. PMID:18281383

  11. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy.

    PubMed

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-11-19

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.

  12. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    PubMed Central

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  13. Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-assisted Catalyzed Hairpin Assembly and "DD-A" FRET.

    PubMed

    Fang, Hongmei; Xie, Nuli; Ou, Min; Huang, Jin; Li, Wenshan; Wang, Qing; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin

    2018-05-21

    Nucleic acids, as one kind of significant biomarkers, have attracted tremendous attention and exhibited immense value in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and donor donor-acceptor fluorescence resonance energy transfer ("DD-A" FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labelled probe as FRET donor) and H2 (TAMRA-labelled probe as FRET acceptor). Firstly, the Captures immobilized on MMBs bound to targets in complex samples, and the sequences in Captures that could trigger catalyzed hairpin assembly (CHA) were exposed. Then, target-enriched MMBs complexes were separated and resuspended in the reaction buffer containing H1 and H2. As a result, numerous H1-H2 duplexes were formed during CHA process, inducing an obvious FRET signal. In contrast, CHA could not be trigger and the FRET signal was weak while target was absent. With the aid of magnetic separation and "DD-A" FRET, it was demonstrated to effectively eliminate errors from background interference. Importantly, this strategy realized amplified detection in buffer, with detection limits of microRNA as low as 34 pM. Furthermore, this method was successfully applied to detect microRNA-21 in serum and cell culture media. The results showed that our method has the potential for biomedical research and clinical application.

  14. Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer.

    PubMed

    Walter, N G

    2001-09-01

    RNA performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. The reason probably is twofold: (a) Life started as a prebiotic RNA World, in which RNA served as the genetic information carrier and catalyzed all chemical reactions required for its proliferation and (b) some of the RNA World functions were conserved throughout evolution because neither DNA nor protein is as adept in fulfilling them. A particular advantage of RNA is its high propensity to form alternative structures as required in subsequent steps of a reaction pathway. Here I describe fluorescence resonance energy transfer (FRET) as a method to monitor a crucial conformational transition on the reaction pathway of the hairpin ribozyme, a small catalytic RNA motif from a self-replicating plant virus satellite RNA and well-studied paradigm of RNA folding. Steady-state FRET measurements in solution allow one to measure the kinetics and requirements of docking of its two independently folding domains; time-resolved FRET reveals the relative thermodynamic stability of the undocked (extended, inactive) and docked (active) ribozyme conformations; while single-molecule FRET experiments will highlight the dynamics of RNA at the individual molecule level. Similar domain docking events are expected to be at the heart of many biological functions of RNA, and the described FRET techniques promise to be adaptable to most of the involved RNA systems. Copyright 2001 Academic Press.

  15. Switch on or switch off: an optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads.

    PubMed

    Srinivas, Anupama R Gulur; Peng, Hui; Barker, David; Travas-Sejdic, Jadranka

    2012-05-15

    There has been an enormous demand for commercial label-free DNA sensors in a diverse range of fields including pre-emptive medicine, diagnostics, environmental monitoring, and food industry. Addressing the need for sensitive, selective and facile DNA sensors, we demonstrate a novel switch on/off sensor design that utilizes sandwich hybridization between photoluminescent anionic conjugated polyelectrolyte (CPE) bound captureprobe coated onto magnetic beads, target and the signaling probe. The hybridization-readout in our sensor was monitored by either fluorescence resonance energy transfer (FRET, switch-on) or superquenching (switch-off) depending on the type of signaling probe used. Moreover recent designs that utilize beads for sensing DNA have been limited towards using electrostatic interactions or intercalation of dyes to observe FRET. To our knowledge this is the first report of a switch on/off sensor utilizing either FRET or superquenching thus providing flexibility for future development of such rapid, facile and sensitive DNA sensors. The FRET-based sensor was investigated by optimizing the reaction parameters and selectivity. A low detection limit of 240 fmol in 2 mL of SSC buffer was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles.

    PubMed

    Yu, Mengqun; Wang, Hong; Fu, Fei; Li, Linyao; Li, Jing; Li, Gan; Song, Yang; Swihart, Mark T; Song, Erqun

    2017-04-04

    The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 10 8 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.

  17. Microsecond resolved single-molecule FRET time series measurements based on the line confocal optical system combined with hybrid photodetectors.

    PubMed

    Oikawa, Hiroyuki; Takahashi, Takumi; Kamonprasertsuk, Supawich; Takahashi, Satoshi

    2018-01-31

    Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.

  18. Probing protein-lipid interactions by FRET between membrane fluorophores

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  19. Single molecule FRET investigation of pressure-driven unfolding of cold shock protein A

    NASA Astrophysics Data System (ADS)

    Schneider, Sven; Paulsen, Hauke; Reiter, Kim Colin; Hinze, Erik; Schiene-Fischer, Cordelia; Hübner, Christian G.

    2018-03-01

    We demonstrate that fused silica capillaries are suitable for single molecule fluorescence resonance energy transfer (smFRET) measurements at high pressure with an optical quality comparable to the measurement on microscope coverslips. Therefore, we optimized the imaging conditions in a standard square fused silica capillary with an adapted arrangement and evaluated the performance by imaging the focal volume, fluorescence correlation spectroscopy benchmarks, and FRET measurements. We demonstrate single molecule FRET measurements of cold shock protein A unfolding at a pressure up to 2000 bars and show that the unfolded state exhibits an expansion almost independent of pressure.

  20. Automated Selection of Regions of Interest for Intensity-based FRET Analysis of Transferrin Endocytic Trafficking in Normal vs. Cancer Cells

    PubMed Central

    Talati, Ronak; Vanderpoel, Andrew; Eladdadi, Amina; Anderson, Kate; Abe, Ken; Barroso, Margarida

    2013-01-01

    The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells. PMID:23994873

  1. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Samanta, Anirban; Walper, Scott A.; Susumu, Kimihiro; Dwyer, Chris L.; Medintz, Igor L.

    2015-04-01

    The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed.The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed. Electronic supplementary information (ESI) available: This material includes control experimental data and select deconvoluted spectra. See DOI: 10.1039/c5nr00828j

  2. Classic Maximum Entropy Recovery of the Average Joint Distribution of Apparent FRET Efficiency and Fluorescence Photons for Single-molecule Burst Measurements

    PubMed Central

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2012-01-01

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions. PMID:22338694

  3. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells.

    PubMed

    Sustarsic, Marko; Kapanidis, Achillefs N

    2015-10-01

    Single-molecule Förster resonance energy transfer (smFRET) serves as a molecular ruler that is ideally posed to study static and dynamic heterogeneity in living cells. Observing smFRET in cells requires appropriately integrated labeling, internalization and imaging strategies, and significant progress has been made towards that goal. Pioneering studies have demonstrated smFRET detection in both prokaryotic and eukaryotic systems, using both wide-field and confocal microscopies, and have started to answer exciting biological questions. We anticipate that future technical developments will open the door to smFRET for the study of structure, conformational changes and kinetics of biomolecules in living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media

    NASA Astrophysics Data System (ADS)

    Lv, Kun; Chen, Jian; Wang, Hong; Zhang, Peisheng; Yu, Maolin; Long, Yunfei; Yi, Pinggui

    2017-04-01

    The design of effective tools for detecting copper ion (Cu2 +) and sulfide anion (S2 -) is of great importance due to the abnormal level of Cu2 + and S2 - has been associated with an increase in risk of many diseases. Herein, we report on the fabrication of fluorescence resonance energy transfer (FRET) based fluorescent probe PF (PEI-FITC) for detecting Cu2 + and S2 - in 100% aqueous media via a facile one-pot method by covalent linking fluorescein isothiocyanate (FITC) with branched-polyethylenimine (b-PEI). PF could selectively coordinate with Cu2 + among 10 metal ions to form PF-Cu2 + complex, resulting in fluorescence quenching through FRET mechanism. Furthermore, the in situ generated PF-Cu2 + complex can be used to selectively detect S2 - based on the displacement approach, resulting in an off-on type sensing. There is no obvious interference from other anions, such as Cl-, NO3-, ClO4-, SO42 -, HCO3-, CO32 -, Br-, HPO42 -, F- and S2O32 -. In addition, PF was successfully used to determine Cu2 + and S2 - in human serum and tap water samples. Therefore, the FRET-based probe PF may provide a new method for selective detection of multifarious analysts in biological and environmental applications, and even hold promise for application in more complicated systems.

  5. Organic solar cells: understanding the role of Förster resonance energy transfer.

    PubMed

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  6. [Detection of protein-protein interactions by FRET and BRET methods].

    PubMed

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  7. Inferring properties of disordered chains from FRET transfer efficiencies

    NASA Astrophysics Data System (ADS)

    Zheng, Wenwei; Zerze, Gül H.; Borgia, Alessandro; Mittal, Jeetain; Schuler, Benjamin; Best, Robert B.

    2018-03-01

    Förster resonance energy transfer (FRET) is a powerful tool for elucidating both structural and dynamic properties of unfolded or disordered biomolecules, especially in single-molecule experiments. However, the key observables, namely, the mean transfer efficiency and fluorescence lifetimes of the donor and acceptor chromophores, are averaged over a broad distribution of donor-acceptor distances. The inferred average properties of the ensemble therefore depend on the form of the model distribution chosen to describe the distance, as has been widely recognized. In addition, while the distribution for one type of polymer model may be appropriate for a chain under a given set of physico-chemical conditions, it may not be suitable for the same chain in a different environment so that even an apparently consistent application of the same model over all conditions may distort the apparent changes in chain dimensions with variation of temperature or solution composition. Here, we present an alternative and straightforward approach to determining ensemble properties from FRET data, in which the polymer scaling exponent is allowed to vary with solution conditions. In its simplest form, it requires either the mean FRET efficiency or fluorescence lifetime information. In order to test the accuracy of the method, we have utilized both synthetic FRET data from implicit and explicit solvent simulations for 30 different protein sequences, and experimental single-molecule FRET data for an intrinsically disordered and a denatured protein. In all cases, we find that the inferred radii of gyration are within 10% of the true values, thus providing higher accuracy than simpler polymer models. In addition, the scaling exponents obtained by our procedure are in good agreement with those determined directly from the molecular ensemble. Our approach can in principle be generalized to treating other ensemble-averaged functions of intramolecular distances from experimental data.

  8. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.

    PubMed

    Jacob, Maik H; Dsouza, Roy N; Ghosh, Indrajit; Norouzy, Amir; Schwarzlose, Thomas; Nau, Werner M

    2013-01-10

    The structural and dynamic properties of a flexible peptidic chain codetermine its biological activity. These properties are imprinted in intrachain site-to-site distances as well as in diffusion coefficients of mutual site-to-site motion. Both distance distribution and diffusion determine the extent of Förster resonance energy transfer (FRET) between two chain sites labeled with a FRET donor and acceptor. Both could be obtained from time-resolved FRET measurements if their individual contributions to the FRET efficiency could be systematically varied. Because the FRET diffusion enhancement (FDE) depends on the donor-fluorescence lifetime, it has been proposed that the FDE can be reduced by shortening the donor lifetime through an external quencher. Benefiting from the high diffusion sensitivity of short-distance FRET, we tested this concept experimentally on a (Gly-Ser)(6) segment labeled with the donor/acceptor pair naphthylalanine/2,3-diazabicyclo[2.2.2]oct-2-ene (NAla/Dbo). Surprisingly, the very effective quencher potassium iodide (KI) had no effect at all on the average donor-acceptor distance, although the donor lifetime was shortened from ca. 36 ns in the absence of KI to ca. 3 ns in the presence of 30 mM KI. We show that the proposed approach had to fail because it is not the experimentally observed but the radiative donor lifetime that controls the FDE. Because of that, any FRET ensemble measurement can easily underestimate diffusion and might be misleading even if it employs the Haas-Steinberg diffusion equation (HSE). An extension of traditional FRET analysis allowed us to evaluate HSE simulations and to corroborate as well as generalize the experimental results. We demonstrate that diffusion-enhanced FRET depends on the radiative donor lifetime as it depends on the diffusion coefficient, a useful symmetry that can directly be applied to distinguish dynamic and structural effects of viscous cosolvents on the polymer chain. We demonstrate that the effective FRET rate and the recovered donor-acceptor distance depend on the quantum yield, most strongly in the absence of diffusion, which has to be accounted for in the interpretation of distance trends monitored by FRET.

  9. Investigation of energy transfer between semiconducting polymer dot donors and hydrophilic and hydrophobic Cy5 acceptors

    NASA Astrophysics Data System (ADS)

    Lix, Kelsi; Algar, W. Russ

    2016-09-01

    Semiconducting polymer dots (Pdots) are rapidly emerging fluorescent probes for bioanalysis. Pdots have extraordinarily strong absorption and bright emission compared to other commonly used fluorescent probes, making them very attractive for applications involving Förster resonance energy transfer (FRET). Here, we investigated two FRET systems with green-emitting poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) Pdots as donors and two different Cyanine 5 (Cy5) dyes as acceptors. A hydrophilic sulfo-Cy5 dye was directly conjugated to the Pdot surface using carbodiimide chemistry, and a hydrophobic Cy5 dye was observed to spontaneously partition into the core of the Pdot. FRET was observed to depend on the acceptor dye concentration with both systems, and was characterized using a combination of fluorescence emission spectra, excitation spectra, and lifetime measurements. Much stronger quenching of Pdot emission and FRET-sensitized acceptor dye emission were observed for the hydrophobic Cy5 system, and these trends were attributed to reduced donor-acceptor distances in comparison to the hydrophilic sulfo-Cy5 system. Current limitations in the experimental format are discussed. The results show that Pdots are effective FRET donors for acceptor dyes located both within and at the surface of Pdots.

  10. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    NASA Astrophysics Data System (ADS)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  11. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    PubMed

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.

    PubMed

    Briggman, Kevin L; Kristan, William B; González, Jesús E; Kleinfeld, David; Tsien, Roger Y

    2015-01-01

    Pairs of membrane-associated molecules exhibiting fluorescence resonance energy transfer (FRET) provide a sensitive technique to measure changes in a cell's membrane potential. One of the FRET pair binds to one surface of the membrane and the other is a mobile ion that dissolves in the lipid bilayer. The voltage-related signal can be measured as a change in the fluorescence of either the donor or acceptor molecules, but measuring their ratio provides the largest and most noise-free signal. This technology has been used in a variety of ways; three are documented in this chapter: (1) high throughput drug screening, (2) monitoring the activity of many neurons simultaneously during a behavior, and (3) finding synaptic targets of a stimulated neuron. In addition, we provide protocols for using the dyes on both cultured neurons and leech ganglia. We also give an updated description of the mathematical basis for measuring the coherence between electrical and optical signals. Future improvements of this technique include faster and more sensitive dyes that bleach more slowly, and the expression of one of the FRET pair genetically.

  14. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  15. Real-time single cell analysis of molecular mechanism of apoptosis and proliferation using FRET technique

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-09-01

    Bcl-2 family proteins (such as Bid and Bak/Bax) and 14-3-3 proteins play a key role in the mitochondria-mediated cell apoptosis induced by cell death factors such as TNF-α and lower power laser irradiation (LPLI). In this report, fluorescence resonance energy transfer (FRET) has been used to study the molecular mechanism of apoptosis in living cells on a fluorescence scanning confocal microscope. Based on the genetic code technique and the green fluorescent proteins (GFPs), single-cell dynamic analysis of caspase3 activation, caspase8 activation, and PKCs activation are performed during apoptosis induced by laser irradiation in real-time. To investigate the cellular effect and mechanism of laser irradiation, human lung adenocarcinoma cells (ASTC-a-1) transfected with plasmid SCAT3 (pSCAT3)/ CKAR FRET reporter, were irradiated and monitored noninvasively with both FRET imaging. Our results show that high fluence lower power laser irradiation (HFLPLI) can induce an increase of caspase3 activation and a decrease of PKCs activation, and that LPLI induces the ASTC-a-1 cell proliferation by specifically activating PKCs.

  16. Luminescent Quantum Dot Bioconjugates in Fluorescence Resonance Energy Transfer (FRET) Assays

    NASA Astrophysics Data System (ADS)

    Clapp, Aaron; Medintz, Igor; Goldman, Ellen; Anderson, George; Mauro, J. Matthew; Mattoussi, Hedi

    2003-03-01

    Colloidal semiconductor quantum dots (QDs) such as those made of CdSe-ZnS core-shell nanocrystals offer a promising alternative to organic dyes in a variety of biological tagging applications. They exhibit high resistance to chemical and photo-degradations, are highly luminescent, and show unique size-specific optical and spectroscopic properties. We have previously demonstrated a useful method for attaching proteins to CdSe-ZnS QDs using dihydrolipoic acid (DHLA) surface capping groups and electrostatic self-assembly in aqueous environments. We have used this conjugation strategy to build solution-based QD-conjugate sensors based on fluorescence resonance energy transfer (FRET) between QD donors and dye-labeled protein acceptors. Specific binding between the QD-ligand donor and dye-labeled receptor was achieved. In another example, the dye receptor was grafted directly onto the protein, then immobilized onto the QD surface via an electrostatic self-assembly process. The QD-complexes were optically excited in a region where absorption of the dye is negligible compared to that of the nanocrystals. We observed a continuous decrease of the QD emission accompanied by a steady and pronounced increase of the acceptor emission as the ratio of dye to QD was increased. The results of these experiments suggest efficient resonance energy transfer between the QD donor and the dye acceptor upon ligand-receptor binding. We will present these data and discuss other aspects such as donor-acceptor separation distance, degree of overlap between absorption of the acceptor and emission of the QD, and reverse FRET (upon ligand-receptor release) in a reversible assay.

  17. Short-distance probes for protein backbone structure based on energy transfer between bimane and transition metal ions

    PubMed Central

    Taraska, Justin W.; Puljung, Michael C.; Zagotta, William N.

    2009-01-01

    The structure and dynamics of proteins underlies the workings of virtually every biological process. Existing biophysical methods are inadequate to measure protein structure at atomic resolution, on a rapid time scale, with limited amounts of protein, and in the context of a cell or membrane. FRET can measure distances between two probes, but depends on the orientation of the probes and typically works only over long distances comparable with the size of many proteins. Also, common probes used for FRET can be large and have long, flexible attachment linkers that position dyes far from the protein backbone. Here, we improve and extend a fluorescence method called transition metal ion FRET that uses energy transfer to transition metal ions as a reporter of short-range distances in proteins with little orientation dependence. This method uses a very small cysteine-reactive dye monobromobimane, with virtually no linker, and various transition metal ions bound close to the peptide backbone as the acceptor. We show that, unlike larger fluorophores and longer linkers, this donor–acceptor pair accurately reports short-range distances and changes in backbone distances. We further extend the method by using cysteine-reactive metal chelators, which allow the technique to be used in protein regions of unknown secondary structure or when native metal ion binding sites are present. This improved method overcomes several of the key limitations of classical FRET for intramolecular distance measurements. PMID:19805285

  18. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  19. High-Resolution FRET Microscopy of Cholera Toxin B-Subunit and GPI-anchored Proteins in Cell Plasma Membranes

    PubMed Central

    Kenworthy, Anne K.; Petranova, Nadezda; Edidin, Michael

    2000-01-01

    “Lipid rafts” enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface. PMID:10793141

  20. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-05-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  1. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  2. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots.

    PubMed

    Annio, Giacomo; Jennings, Travis; Tagit, Oya; Hildebrandt, Niko

    2018-05-23

    Quantum dots (QDs) are not only advantageous for color-tuning, improved brightness, and high stability, but their nanoparticle surfaces also allow for the attachment of many biomolecules. Because IgG antibodies (ABs) are in the same size range of biocompatible QDs and the AB orientation after conjugation to the QD is often random, it is difficult to predict if few or many ABs per QD will lead to an efficient AB-QD conjugate. This is particularly true for homogeneous Förster resonance energy transfer (FRET) sandwich immunoassays, for which the ABs on the QD must bind a biomarker that needs to bind a second AB-FRET-conjugate. Here, we investigate the performance of Tb-to-QD FRET immunoassays against total prostate specific antigen (TPSA) by changing the number of ABs per QD while leaving all the other assay components unchanged. We first characterize the AB-QD conjugation by various spectroscopic, microscopic, and chromatographic techniques and then quantify the TPSA immunoassay performance regarding sensitivity, limit of detection, and dynamic range. Our results show that an increasing conjugation ratio leads to significantly enhanced FRET immunoassays. These findings will be highly important for developing QD-based immunoassays in which the concentrations of both ABs and QDs can significantly influence the assay performance.

  3. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  4. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor

    NASA Astrophysics Data System (ADS)

    Shojaei, Taha Roodbar; Salleh, Mohamad Amran Mohd; Sijam, Kamaruzaman; Rahim, Raha Abdul; Mohsenifar, Afshin; Safarnejad, Reza; Tabatabaei, Meisam

    2016-12-01

    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13 μg mL- 1 and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.

  5. The Interaction Affinity between Vascular Cell Adhesion Molecule-1 (VCAM-1) and Very Late Antigen-4 (VLA-4) Analyzed by Quantitative FRET

    PubMed Central

    Wu, Shu-Han; Karmenyan, Artashes; Chiou, Arthur

    2015-01-01

    Very late antigen-4 (VLA-4), a member of integrin superfamily, interacts with its major counter ligand vascular cell adhesion molecule-1 (VCAM-1) and plays an important role in leukocyte adhesion to vascular endothelium and immunological synapse formation. However, irregular expressions of these proteins may also lead to several autoimmune diseases and metastasis cancer. Thus, quantifying the interaction affinity of the VCAM-1/VLA-4 interaction is of fundamental importance in further understanding the nature of this interaction and drug discovery. In this study, we report an ‘in solution’ steady state organic fluorophore based quantitative fluorescence resonance energy transfer (FRET) assay to quantify this interaction in terms of the dissociation constant (Kd). We have used, in our FRET assay, the Alexa Fluor 488-VLA-4 conjugate as the donor, and Alexa Fluor 546-VCAM-1 as the acceptor. From the FRET signal analysis, Kd of this interaction was determined to be 41.82 ± 2.36 nM. To further confirm our estimation, we have employed surface plasmon resonance (SPR) technique to obtain Kd = 39.60 ± 1.78 nM, which is in good agreement with the result obtained by FRET. This is the first reported work which applies organic fluorophore based ‘in solution’ simple quantitative FRET assay to obtain the dissociation constant of the VCAM-1/VLA-4 interaction, and is also the first quantification of this interaction. Moreover, the value of Kd can serve as an indicator of abnormal protein-protein interactions; hence, this assay can potentially be further developed into a drug screening platform of VLA-4/VCAM-1 as well as other protein-ligand interactions. PMID:25793408

  6. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2011-11-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.

  7. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2012-03-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.

  8. Diffusion of excitons in materials for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Narayan, Monishka Rita; Ompong, David

    2015-06-01

    The diffusion of singlet excitonsis known to occur through the Förster resonance energy transfer (FRET) mechanism and that of singlet and triplet excitonscan occur through the Dexter carrier transfer mechanism. It is shown here that if a material possesses the strong exciton-spin-orbit-photon interaction then triplet excitonscan also be transported /diffused through a mechanism like FRET. The theory is applicable to the diffusion of excitonsin optoelectronic devices like organic solar cells, organic light emitting devices and inorganic scintillators.

  9. Intravital FRET: Probing Cellular and Tissue Function in Vivo

    PubMed Central

    Radbruch, Helena; Bremer, Daniel; Mothes, Ronja; Günther, Robert; Rinnenthal, Jan Leo; Pohlan, Julian; Ulbricht, Carolin; Hauser, Anja E.; Niesner, Raluca

    2015-01-01

    The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context of neuroinflammation in adult mice. PMID:26006244

  10. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  11. FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors.

    PubMed

    Ziegler, Nicole; Bätz, Julia; Zabel, Ulrike; Lohse, Martin J; Hoffmann, Carsten

    2011-02-01

    Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M(1)-, M(3)-, and M(5)-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M(1)- and M(5)-acetylcholine receptors and the amplitude of these signals was larger at the M(1)-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M(1)-, M(3)- and M(5)-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors.

    PubMed

    Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui

    2017-08-16

    Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.

  13. Three-Dimensional Reconstruction of Three-Way FRET Microscopy Improves Imaging of Multiple Protein-Protein Interactions.

    PubMed

    Scott, Brandon L; Hoppe, Adam D

    2016-01-01

    Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging the interactions between fluorescently tagged proteins in two-dimensions. For FRET microscopy to reach its full potential, it must be able to image more than one pair of interacting molecules and image degradation from out-of-focus light must be reduced. Here we extend our previous work on the application of maximum likelihood methods to the 3-dimensional reconstruction of 3-way FRET interactions within cells. We validated the new method (3D-3Way FRET) by simulation and fluorescent protein test constructs expressed in cells. In addition, we improved the computational methods to create a 2-log reduction in computation time over our previous method (3DFSR). We applied 3D-3Way FRET to image the 3D subcellular distributions of HIV Gag assembly. Gag fused to three different FPs (CFP, YFP, and RFP), assembled into viral-like particles and created punctate FRET signals that become visible on the cell surface when 3D-3Way FRET was applied to the data. Control experiments in which YFP-Gag, RFP-Gag and free CFP were expressed, demonstrated localized FRET between YFP and RFP at sites of viral assembly that were not associated with CFP. 3D-3Way FRET provides the first approach for quantifying multiple FRET interactions while improving the 3D resolution of FRET microscopy data without introducing bias into the reconstructed estimates. This method should allow improvement of widefield, confocal and superresolution FRET microscopy data.

  14. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  15. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  16. Self-Assembled Fluorescent Nanoprobe Based on Forster Resonance Energy Transfer for Carbon Monoxide in Living Cells and Animals via Ligand Exchange.

    PubMed

    Jia, Ruizhen; Song, Pengfei; Wang, Jingjing; Mai, Hengtang; Li, Sixian; Cheng, Yu; Wu, Song

    2018-05-29

    Carbon monoxide (CO) is recognized as a biologically essential gaseous neurotransmitter that modulates many physiological processes in living subjects. Currently reported fluorescent probes for CO imaging in cells basically utilize palladium related chemistry which requires complicated synthetic work. Herein we provide a new strategy to construct a fluorescent nanoprobe, NanoCO-1, based on the Forster resonance energy transfer (FRET) mechanism by entrapping the existing dirhodium complex as the energy acceptor and the CO recognition part, and a commonly used nitrobenzoxadiazole (NBD) dye as energy donor into a micelle formed by self-assembly. The exchange of ligands in the dirhodium complex by CO in the nanoprobe disrupts the FRET and leads to the turn-on of fluorescence. The merits of NanoCO-1 including good biocompatibility, selectivity, photostability, and low cytotoxity, render this nanoprobe ability to track CO in living cells, zebrafish embryo, and larvae. Our straightforward approach can be extended to establish the CO fluorescent probes based on adsorption of CO on a variety of metal derivatives.

  17. Epsilon-near-Zero Metamaterial to break the FRET distance barrier

    NASA Astrophysics Data System (ADS)

    Deshmukh, Rahul; Biehs, Svend-Age; Khwaja, Emaad; Agarwal, Girish; Menon, Vinod

    Forster Resonance Energy Transfer (FRET) in a donor acceptor pair is a tool widely used as a spectroscopic ruler in biology and related fields. The high sensitivity to distance change in this technique comes at the expense of limitation on the spatial range (10nm) that can be measured. Here we present an alternate approach where the epsilon-near-zero (EnZ) regime in a metamaterial is used to break the FRET distance limit. We show long range (160nm) energy transfer in a donor acceptor pair across the EnZ metamaterial as proof-of-principle. This scheme can be implemented for any donor acceptor pair by tailoring the metal fill-fraction in the metamaterial design appropriately. The experimental data includes change in donor lifetimes as well as increase in the steady state emission of the acceptor. We also show theoretical simulations which suggest that the EnZ regime is the most effective in mediating such long-range energy transfer as compared to Hyperbolic/Elliptical regimes in metamaterials. NSF DMR 1410249.

  18. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camuzeaux, Barbara; Spriet, Corentin; Heliot, Laurent

    2005-07-15

    Physical interactions between transcription factors play important roles in modulating gene expression. Previous in vitro studies have shown a transcriptional synergy between Erg protein, an Ets family member, and Jun/Fos heterodimer, members of the bZip family, which requires direct Erg-Jun protein interactions. Visualization of protein interactions in living cells is a new challenge in biology. For this purpose, we generated fusion proteins of Erg, Fos, and Jun with yellow and cyan fluorescent proteins, YFP and CFP, respectively. After transient expression in HeLa cells, interactions of the resulting fusion proteins were explored by fluorescence resonance energy transfer microscopy (FRET) in fixedmore » and living cells. FRET between YFP-Erg and CFP-Jun was monitored by using photobleaching FRET and fluorescence lifetime imaging microscopy. Both techniques revealed the occurrence of intermolecular FRET between YFP-Erg and CFP-Jun. This is stressed by loss of FRET with an YFP-Erg version carrying a point mutation in its ETS domain. These results provide evidence for the interaction of Erg and Jun proteins in living cells as a critical prerequisite of their transcriptional synergy, but also for the essential role of the Y371 residue, conserved in most Ets proteins, in this interaction.« less

  19. Spatio-temporal imaging of EGF-induced activation of protein kinase A by FRET in living cells

    NASA Astrophysics Data System (ADS)

    Wang, Jin Jun; Chen, Xiao-Chuan; Xing, Da

    2004-07-01

    Intracellular molecular interaction is important for the study of cell physiology, yet current relevant methods require fixation or microinjection and lack temporal or spatial resolution. We introduced a new method -- fluorescence resonance energy transfer (FRET) to detect molecular interaction in living cells. On the basis of FRET principle, A-kinase activity reporter (AKAR) protein was designed to consist of the fusions of cyan fluorescent protein (CFP), a phosphoamino acid binding domain, a consensus substrate for protein kinase-A (PKA), and yellow fluorescent protein (YFP). In this study, the designed pAKAR plasmid was used to transfect a human lung cancer cell line (ASTC-a-1). When the AKAR-transfected cells were treated by forskolin (Fsk), we were able to observe the efficient transfer of energy from excited CFP to YFP within the AKAR molecule by fluorescence microcopy, whereas no FRET was detected in the transfected cells without the treatment of Fsk. When the cells were treated by Epidermal growth factor (EGF), the change of FRET was observed at different subcellular locations, reflecting PKA activation inside the cells upon EGF stimulation. The successful design of a fluorescence reporter of PKA activation and its application demonstrated the superiority of this technology in the research of intracellular protein-protein interaction.

  20. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.

    PubMed

    Chen, Longyi; Tse, Wai Hei; Chen, Yi; McDonald, Matthew W; Melling, James; Zhang, Jin

    2017-05-15

    In this paper, a nanostructured biosensor is developed to detect glucose in tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The designed FRET pair, including the donor, CdSe/ZnS quantum dots (QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of glucose, the quenched emission of QDs through the FRET mechanism is restored by displacing the dextran from Con A. To have a dual-modulation sensor for convenient and accurate detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the patterned sensor can be converted to fluorescence spectra with high signal-to-noise ratio and calibrated image pixel value. The photoluminescence intensity of the patterned FRET sensor increases linearly with increasing concentration of glucose from 0.03mmol/L to 3mmol/L, which covers the range of tear glucose levels for both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured by a handhold fluorescence microscope increases with increasing glucose. Four male Sprague-Dawley rats with different blood glucose concentrations were utilized to demonstrate the quick response of the patterned FRET sensor to 2µL of tear samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bram; Atzberger, Paul J.; D’Auria, Sabato

    Forster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. But, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. Here, we investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion ofmore » fluorophores, separation diffusion of fluorophores, and non-emitting quenching.« less

  2. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System

    PubMed Central

    Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution. PMID:28287526

  3. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System.

    PubMed

    Dörfler, Thilo; Eilert, Tobias; Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-02-09

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution.

  4. Action-FRET of a Gaseous Protein

    NASA Astrophysics Data System (ADS)

    Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2017-01-01

    Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.

  5. Characterization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy

    PubMed Central

    Day, Richard N.; Booker, Cynthia F.; Periasamy, Ammasi

    2008-01-01

    The genetically encoded fluorescent proteins (FP), used in combination with Förster resonance energy transfer (FRET) microscopy, provide the tools necessary for the direct visualization of protein interactions inside living cells. Typically, the Cerulean and Venus variants of the cyan and yellow FPs are used for FRET studies, but there are limitations to their use. Here, Cerulean and the newly developed monomeric Teal FP (mTFP) are compared as FRET donors for Venus using spectral and fluorescence lifetime measurements from living cells. The results demonstrate that when compared to Cerulean, mTFP has increased brightness, optimal excitation using the standard 458-nm laser line, increased photostability, and improved spectral overlap with Venus. In addition, the two-photon excitation and fluorescence lifetime characteristics are determined for mTFP. Together, these measurements indicate that mTFP is an excellent donor fluorophore for FRET studies, and that its use may improve the detection of interactions involving proteins that are difficult to express, or that need to be produced at low levels in cells. PMID:18601527

  6. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.

    PubMed

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-15

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.

    PubMed

    Banerjee, Chiranjib; Kundu, Niloy; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-08-15

    In this article we have reported the fluorescence resonance energy transfer (FRET) study in our earlier characterized surface active ionic liquids (SAILs)-containing microemulsion, i.e., N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P13][Tf2N])/[CTA][AOT]/isopropyl myristate ([IPM]) and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N3111][Tf2N])/[CTA][AOT]/[IPM] microemulsions (Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. J. Phys. Chem. B 2013, 117, 3927-3934). The occurrence of effective FRET from the donor, coumarin-153 (C-153) to the acceptor rhodamine 6G (R6G) is evident from the decrease in the steady state fluorescence intensity of the donor with addition of acceptor and subsequent increase in the fluorescence intensity of the acceptor in the presence of donor. The excitation wavelength dependent FRET from C-153 to R6G has also been performed to assess the dynamic heterogeneity of these confined systems. In time-resolved experiments, the significant rise time of the acceptor in the presence of the donor further confirms the occurrence of FRET. The multiple donor-acceptor (D-A) distances, for various microemulsions, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C-153, in the different regions of the microemulsion. Time-resolved measurement reveals that with increasing excitation wavelength from 408 to 440 nm, the contribution of the faster rise component of FRET increases significantly due to the close proximity of the C-153 and R6G in the polar region of the microemulsion where occurrence of FRET is very high. Moreover, we have also studied the FRET with variation of R (R = [room temperature ionic liquids (RTILs)]/[surfactant]) and shown that the effect of excitation wavelength on FRET is similar irrespective of R values.

  9. `Giant' nanocrystal quantum dots (gNQDs) as FRET donors

    NASA Astrophysics Data System (ADS)

    Chern, Margaret; Nguyen, Thuy; Dennis, Allison

    2017-02-01

    High-quality core/shell CdSe/xCdS quantum dots (QDs) ranging from 3 to 20 nm in diameter were synthesized for use as Förster Resonance Energy Transfer (FRET) donors. gNQDs are carefully characterized for size, emission, absorption, QY, and brightness in both organic and aqueous solution. FRET has been verified in optimally designed systems that use short capping ligands and donor-acceptor pairs that have well-matched emission and absorption spectra. The interplay between shell thickness, donor-acceptor distance, and particle brightness is systematically analyzed to optimize our biosensor design.

  10. Combining Structural Probes in the Gas Phase - Ion Mobility- Resolved Action-FRET

    NASA Astrophysics Data System (ADS)

    Daly, Steven; MacAleese, Luke; Dugourd, Philippe; Chirot, Fabien

    2018-01-01

    In the context of native mass spectrometry, the development of gas-phase structural probes sensitive to the different levels of structuration of biomolecular assemblies is necessary to push forward conformational studies. In this paper, we provide the first example of the combination of ion mobility (IM) and Förster resonance energy transfer (FRET) measurements within the same experimental setup. The possibility to obtain mass- and mobility-resolved FRET measurements is demonstrated on a model peptide and applied to monitor the collision-induced unfolding of ubiquitin. [Figure not available: see fulltext.

  11. Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment.

    PubMed

    Mitchell, Joshua A; Zhang, William H; Herde, Michel K; Henneberger, Christian; Janovjak, Harald; O'Mara, Megan L; Jackson, Colin J

    2017-01-01

    Biosensors that exploit Förster resonance energy transfer (FRET) can be used to visualize biological and physiological processes and are capable of providing detailed information in both spatial and temporal dimensions. In a FRET-based biosensor, substrate binding is associated with a change in the relative positions of two fluorophores, leading to a change in FRET efficiency that may be observed in the fluorescence spectrum. As a result, their design requires a ligand-binding protein that exhibits a conformational change upon binding. However, not all ligand-binding proteins produce responsive sensors upon conjugation to fluorescent proteins or dyes, and identifying the optimum locations for the fluorophores often involves labor-intensive iterative design or high-throughput screening. Combining the genetic fusion of a fluorescent protein to the ligand-binding protein with site-specific covalent attachment of a fluorescent dye can allow fine control over the positions of the two fluorophores, allowing the construction of very sensitive sensors. This relies upon the accurate prediction of the locations of the two fluorophores in bound and unbound states. In this chapter, we describe a method for computational identification of dye-attachment sites that allows the use of cysteine modification to attach synthetic dyes that can be paired with a fluorescent protein for the purposes of creating FRET sensors.

  12. High-Throughput Screens to Discover Small-Molecule Modulators of Ryanodine Receptor Calcium Release Channels

    PubMed Central

    Rebbeck, Robyn T.; Essawy, Maram M.; Nitu, Florentin R.; Grant, Benjamin D.; Gillispie, Gregory D.; Thomas, David D.; Bers, Donald M.; Cornea, Razvan L.

    2017-01-01

    Using time-resolved fluorescence resonance energy transfer (FRET), we have developed and validated the first high-throughput screening (HTS) method to discover compounds that modulate an intracellular Ca2+ channel, the ryanodine receptor (RyR), for therapeutic applications. Intracellular Ca2+ regulation is critical for striated muscle function, and RyR is a central player. At resting [Ca2+], increased propensity of channel opening due to RyR dysregulation is associated with severe cardiac and skeletal myopathies, diabetes and neurological disorders. This leaky state of the RyR is an attractive target for pharmacological agents to treat such pathologies. Our FRET-based HTS detects RyR binding of accessory proteins calmodulin or FKBP12.6. Under conditions that mimic a pathological state, we carried out a screen of the 727-compound NIH Clinical Collection, which yielded six compounds that reproducibly changed FRET by >3SD. Dose-response of FRET and [3H]ryanodine binding readouts reveal that five hits reproducibly alter RyR1 structure and activity. One compound increased FRET and inhibited RyR1, which was only significant at nM [Ca2+], and accentuated without CaM present. These properties characterize a compound that could mitigate RyR1 leak. An excellent z′-factor and the tight correlation between structural and functional readouts validate this first HTS method to identify RyR modulators. PMID:27760856

  13. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  14. Application of the FRET method for monitoring the dynamics of caspase-3 activation during apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da

    2005-01-01

    Activation of caspase-3 is a central event in apoptosis. A fluorescence techniques, fluorescence resonance energy transfer (FRET), was used to study the dynamic of caspase-3 activation during apoptosis induced by tumor necrosis factor TNF-α in living cells. The FRET probe consists a CFP (cyan fluorescent protein) and a Venus (YFP mutant, yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD (Luo et al., 2001). Human lung adenocarcinoma cell line (ASTC-a-1) were stably expressed with the FRET probe and then were treated by TNF-α, respectively. Experimental results showed that FRET could monitor more insensitively the dynamic of caspase-3 activation in real-time in vivo, and this technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.

  15. In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse

    PubMed Central

    McGinty, James; Stuckey, Daniel W.; Soloviev, Vadim Y.; Laine, Romain; Wylezinska-Arridge, Marzena; Wells, Dominic J.; Arridge, Simon R.; French, Paul M. W.; Hajnal, Joseph V.; Sardini, Alessandro

    2011-01-01

    Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct. PMID:21750768

  16. Real-Time Quantum Dynamics of Long-Range Electronic Excitation Transfer in Plasmonic Nanoantennas.

    PubMed

    Ilawe, Niranjan V; Oviedo, M Belén; Wong, Bryan M

    2017-08-08

    Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.

  17. A fluorescence resonance energy transfer (FRET)-based redox sensor reveals physiological role of thioredoxin in the yeast Saccharomyces cerevisiae.

    PubMed

    Oku, Masahide; Hoseki, Jun; Ichiki, Yayoi; Sakai, Yasuyoshi

    2013-03-18

    The physiological roles of the thioredoxin isozymes in the yeast Saccharomyces cerevisiae were investigated using a novel FRET-based redox probe, Redoxfluor. After establishing responsiveness of the probe toward thioredoxin, we followed the fluorescence signal of Redoxfluor expressed in the yeast and found that one of the thioredoxin isozymes, Trx2, was required for maintaining the redox status when stationary culture of the organism was exposed to starvation and mild-heat stresses. The failure to maintain redox balance under the tested condition preceded decreased viability of the trx2 mutants, indicating the functional importance of the cytoplasmic thioredoxin in adaptation to environmental changes. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    PubMed Central

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single wavelength; thus, ODFs may be candidates as “universal FRET donors”, thus allowing multicolor FRET of multiple species to be carried out with one excitation. PMID:19916519

  19. FRET Imaging in Three-dimensional Hydrogels

    PubMed Central

    Taboas, Juan M.

    2016-01-01

    Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354

  20. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    PubMed

    Lu, Shaoying; Ouyang, Mingxing; Seong, Jihye; Zhang, Jin; Chien, Shu; Wang, Yingxiao

    2008-07-25

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  1. Investigating rate-limiting barriers to nanoscale nonviral gene transfer with nanobiophotonics

    NASA Astrophysics Data System (ADS)

    Chen, Hunter H.

    Nucleic acids are a novel class of therapeutics poised to address many unmet clinical needs. Safe and efficient delivery remains a significant challenge that has delayed the realization of the full therapeutic potential of nucleic acids. Nanoscale nonviral vectors offer an attractive alternative to viral vectors as natural and synthetic polymers or polypeptides may be rationally designed to meet the unique demands of individual applications. A mechanistic understanding of cellular barriers is necessary to develop guidelines for designing custom gene carriers which are expected to greatly impact this delivery challenge. The work herein focused on the relationships among nanocomplex stability, intracellular trafficking and unpacking kinetics, and DNA degradation. Ultrasensitive nanosensors based on QD-FRET were developed to characterize the biophysical properties of nanocomplexes and study these rate-limiting steps. Quantitative image analysis enabled the distributions of the subpopulation of condensed or released DNA to be determined within the major cellular compartments encountered during gene transfer. The steady state stability and unpacking kinetics within these compartments were found to impact transgene expression, elucidating multiple design strategies to achieve efficient gene transfer. To address enzymatic barriers, a novel two-step QD-FRET nanosensor was developed to analyze unpacking and DNA degradation simultaneously, which has not been accomplished previously. Bioresponsive strategies such as disulfide crosslinking and thermosensitivity were evaluated by QD-FRET and quantitative compartmental analysis as case studies to determine appropriate design specifications for thiolated polymers and thermoresponsive polypeptides. Relevant nanobiophotonic tools were developed as a platform to study major rate-limiting barriers to nanomedicine and demonstrated the feasibility of using mechanistic information gained from these tools to guide the rational design of gene carriers and achieve the desired properties that enable efficient gene transfer.

  2. Noninvasive Evaluation of Heavy Metal Uptake and Storage in Micoralgae Using a Fluorescence Resonance Energy Transfer-Based Heavy Metal Biosensor1[C][W][OPEN

    PubMed Central

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A.; Colepicolo, Pio; Sayre, Richard

    2014-01-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations. PMID:24368336

  3. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor.

    PubMed

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A; Colepicolo, Pio; Sayre, Richard

    2014-02-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+≈Pb2+>Zn2+>Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+>Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations.

  4. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  5. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.

    PubMed

    Ungvári, Tamás; Gogolák, Péter; Bagdány, Miklós; Damjanovich, László; Bene, László

    2016-04-01

    Dual laser flow cytometric energy transfer (FCET)--elaborated by Trón et al. in 1984--is an efficient and rapid way of measuring FRET on large cell populations. FRET efficiency and the donor and acceptor concentrations are determined from one donor and two acceptor signals. In this communication this method is extended towards the domain of receptor dynamics by the detection of polarized components of the three intensities. By enabling a complete description of the proximity and dynamics of FRET-systems, the new measuring scheme allows a more refined description of both the structure and dynamics of cell surface receptor clusters at the nano-scale and beyond. Associated donor fraction, limiting anisotropy and rotational correlation time of the donor, acceptor anisotropy and cell-by-cell estimation of the orientation factor for FRET (κ2) are available in the steady state on a single FRET sample in a very rapid and statistically efficient way offered by flow cytometry. For a more sensitive detection of conformational changes the "polarized FRET indices"--quantities composed from FRET efficiency and anisotropies--are proposed. The method is illustrated by measurements on a FRET system with changing FRET-fraction and on a two donor-one acceptor-system, when the existence of receptor trimers are proven by the detection of "hetero-FRET induced homo-FRET relief", i.e. the diminishing of homo-FRET between the two donors in the presence of a donor quencher. The method also offers higher sensitivity for assessing conformational changes at the nano-scale, due to its capability for the simultaneous detection of changes of proximity and relative orientations of the FRET donor and acceptor. Although the method has been introduced in the context of FRET, it is more general: It can be used for monitoring triple-anisotropy correlations also in those cases when FRET actually does not occur, e.g. for interactions occuring beyond the Förster-distance R0. Interpretation of κ2 has been extended. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.

    PubMed

    Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George S

    2015-06-01

    Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells. © 2015 International Society for Advancement of Cytometry.

  7. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    PubMed

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microspectroscopic Study of Liposome-to-cell Interaction Revealed by Förster Resonance Energy Transfer.

    PubMed

    Yefimova, Svetlana L; Kurilchenko, Irina Yu; Tkacheva, Tatyana N; Kavok, Nataliya S; Todor, Igor N; Lukianova, Nataliya Yu; Chekhun, Vasyl F; Malyukin, Yuriy V

    2014-03-01

    We report the Förster resonance energy transfer (FRET)-labeling of liposomal vesicles as an effective approach to study in dynamics the interaction of liposomes with living cells of different types (rat hepatocytes, rat bone marrow, mouse fibroblast-like cells and human breast cancer cells) and cell organelles (hepatocyte nuclei). The in vitro experiments were performed using fluorescent microspectroscopic technique. Two fluorescent dyes (DiO as the energy donor and DiI as an acceptor) were preloaded in lipid bilayers of phosphatidylcholine liposomes that ensures the necessary distance between the dyes for effective FRET. The change in time of the donor and acceptor relative fluorescence intensities was used to visualize and trace the liposome-to-cell interaction. We show that FRET-labeling of liposome vesicles allows one to reveal the differences in efficiency and dynamics of these interactions, which are associated with composition, fluidity, and metabolic activity of cell plasma membranes.

  9. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.

    PubMed

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-02-09

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.

  10. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes

    PubMed Central

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-01-01

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163

  11. Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.

  12. Improving single-molecule FRET measurements by confining molecules in nanopipettes

    NASA Astrophysics Data System (ADS)

    Vogelsang, J.; Doose, S.; Sauer, M.; Tinnefeld, P.

    2007-07-01

    In recent years Fluorescence Resonance Energy Transfer (FRET) has been widely used to determine distances, observe distance dynamics, and monitor molecular binding at the single-molecule level. A basic constraint of single-molecule FRET studies is the limited distance resolution owing to low photon statistics. We demonstrate that by confining molecules in nanopipettes (50-100 nm diameter) smFRET can be measured with improved photon statistics reducing the width of FRET proximity ratio distributions (PRD). This increase in distance resolution makes it possible to reveal subpopulations and dynamics in biomolecular complexes. Our data indicate that the width of PRD is not only determined by photon statistics (shot noise) and distance distributions between the chromophores but that photoinduced dark states of the acceptor also contribute to the PRD width. Furthermore, acceptor dark states such as triplet states influence the accuracy of determined mean FRET values. In this context, we present a strategy for the correction of the shift of the mean PR that is related to triplet induced blinking of the acceptor using reference FCS measurements.

  13. Real-time optical imaging of the interaction of epidermal growth factor and its receptor in living cells

    NASA Astrophysics Data System (ADS)

    Lin, Qiaoya; Wang, Liang; Zeng, Shaoqun; Zhang, Zhihong; Zheng, Gang

    2009-02-01

    Fluorescence resonance energy transfer (FRET) has been widely used in biology in recent years, and permits high spatial resolution assays of protein-protein interactions in living cells. Here, we first use the FRET technique to real-time observe the binding of EGF to EGFR on the surface of A549 cells and EGFR-GFP-ldlA7 cells, and continuously monitor this reaction for 1 hour. In addition, this is the first direct evidence that FRET occurred between different proteins which are in the intramembrane and extramembrane, respectively.

  14. Using FRET to Measure the Angle at Which a Protein Bends DNA: TBP Binding a TATA Box as a Model System

    ERIC Educational Resources Information Center

    Kugel, Jennifer F.

    2008-01-01

    An undergraduate biochemistry laboratory experiment that will teach the technique of fluorescence resonance energy transfer (FRET) while analyzing protein-induced DNA bending is described. The experiment uses the protein TATA binding protein (TBP), which is a general transcription factor that recognizes and binds specific DNA sequences known as…

  15. FRET detection of lymphocyte function–associated antigen-1 conformational extension

    PubMed Central

    Chigaev, Alexandre; Smagley, Yelena; Haynes, Mark K.; Ursu, Oleg; Bologa, Cristian G.; Halip, Liliana; Oprea, Tudor; Waller, Anna; Carter, Mark B.; Zhang, Yinan; Wang, Wei; Buranda, Tione; Sklar, Larry A.

    2015-01-01

    Lymphocyte function–associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1–specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation. PMID:25378583

  16. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  17. Graphene oxide-DNA based sensors.

    PubMed

    Gao, Li; Lian, Chaoqun; Zhou, Yang; Yan, Lirong; Li, Qin; Zhang, Chunxia; Chen, Liang; Chen, Keping

    2014-10-15

    Since graphene oxide (GO) is readily available and exhibits exceptional optical, electrical, mechanical and chemical properties, it has attracted increasing interests for use in GO-DNA based sensors. This paper reviews the advances in GO-DNA based sensors using DNA as recognition elements. In solution, GO is as an excellent acceptor of fluorescence resonance energy transfer (FRET) to quench the fluorescence in dye labeled DNA sequences. This review discusses the emerging GO-DNA based sensors related to FRET for use in the detection of DNA, proteins, metal ions, cysteine (Cys), and others. The application of the electrochemical GO-DNA based sensors is also summarized because GO possesses exceptional electrochemical properties. The detection mechanisms and the advantages of GO are also revealed and discussed. GO-DNA based sensors perform well at low cost, and high sensitivity, and provide low detection limits. Additionally, GO-DNA based sensors should appear in the near future as scientists explore their usefulness and properties. Finally, future perspectives and possible challenges in this area are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. FRET enhancement in aluminum zero-mode waveguides.

    PubMed

    de Torres, Juan; Ghenuche, Petru; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérôme

    2015-03-16

    Zero-mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single-molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs that diffuse into aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single-molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single-molecule FRET at physiological concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cholesterol-dependent energy transfer between fluorescent proteins-insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick type C disease cells.

    PubMed

    von Einem, Bjoern; Weber, Petra; Wagner, Michael; Malnar, Martina; Kosicek, Marko; Hecimovic, Silva; Arnim, Christine A F von; Schneckenburger, Herbert

    2012-11-26

    Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer's disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1-/-), exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC), were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT) and CHO-NPC1-/- cells (EPI-illumination microscopy), as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM), were performed. Additionally, generalized polarization (GP) measurements of CHO-WT and CHO-NPC1-/- cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1-/- cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1-/-. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.

  20. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer.

    PubMed

    Seong, Jihye; Ouyang, Mingxing; Kim, Taejin; Sun, Jie; Wen, Po-Chao; Lu, Shaoying; Zhuo, Yue; Llewellyn, Nicholas M; Schlaepfer, David D; Guan, Jun-Lin; Chien, Shu; Wang, Yingxiao

    2011-07-26

    Proper subcellular localization of focal adhesion kinase (FAK) is crucial for many cellular processes. It remains, however, unclear how FAK activity is regulated at subcellular compartments. To visualize the FAK activity at different membrane microdomains, we develop a fluorescence resonance energy transfer (FRET)-based FAK biosensor, and target it into or outside of detergent-resistant membrane (DRM) regions at the plasma membrane. Here we show that, on cell adhesion to extracellular matrix proteins or stimulation by platelet-derived growth factor (PDGF), the FRET responses of DRM-targeting FAK biosensor are stronger than that at non-DRM regions, suggesting that FAK activation can occur at DRM microdomains. Further experiments reveal that the PDGF-induced FAK activation is mediated and maintained by Src activity, whereas FAK activation on cell adhesion is independent of, and in fact essential for the Src activation. Therefore, FAK is activated at membrane microdomains with distinct activation mechanisms in response to different physiological stimuli. © 2011 Macmillan Publishers Limited. All rights reserved.

  1. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome.

    PubMed

    Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish

    2015-08-27

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.

  2. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme

    PubMed Central

    Xie, Zheng; Srividya, Narayanan; Sosnick, Tobin R.; Pan, Tao; Scherer, Norbert F.

    2004-01-01

    The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-Ieq-to-N, and focused on the Ieq-to-N transition. The present study focuses on the U-to-Ieq transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5′ end and Cy3 at the 3′ end show that modifications required for labeling do not interfere with folding and help to define the Mg2+ concentration range for the U-to-Ieq transition. Histogram analysis of the Mg2+-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg2+ concentrations on the time scale of seconds. The trajectories at intermediate Mg2+ concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of “nonsudden jump” FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many “local” conformational switches. A free energy contour is constructed to illustrate the complex folding surface. PMID:14704266

  3. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    NASA Astrophysics Data System (ADS)

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  4. Direct interaction of Plin2 with lipids on the surface of lipid droplets: a live cell FRET analysis

    PubMed Central

    McIntosh, Avery L.; Senthivinayagam, Subramanian; Moon, Kenneth C.; Gupta, Shipra; Lwande, Joel S.; Murphy, Cameron C.; Storey, Stephen M.

    2012-01-01

    Despite increasing awareness of the health risks associated with excess lipid storage in cells and tissues, knowledge of events governing lipid exchange at the surface of lipid droplets remains unclear. To address this issue, fluorescence resonance energy transfer (FRET) was performed to examine live cell interactions of Plin2 with lipids involved in maintaining lipid droplet structure and function. FRET efficiencies (E) between CFP-labeled Plin2 and fluorescently labeled phosphatidylcholine, sphingomyelin, stearic acid, and cholesterol were quantitated on a pixel-by-pixel basis to generate FRET image maps that specified areas with high E (>60%) in lipid droplets. The mean E and the distance R between the probes indicated a high yield of energy transfer and demonstrated molecular distances on the order of 44–57 Å, in keeping with direct molecular contact. In contrast, FRET between CFP-Plin2 and Nile red was not detected, indicating that the CFP-Plin2/Nile red interaction was beyond FRET proximity (>100 Å). An examination of the effect of Plin2 on cellular metabolism revealed that triacylglycerol, fatty acid, and cholesteryl ester content increased while diacylglycerol remained constant in CFP-Plin2-overexpressing cells. Total phospholipids also increased, reflecting increased phosphatidylcholine and sphingomyelin. Consistent with these results, expression levels of enzymes involved in triacylglycerol, cholesteryl ester, and phospholipid synthesis were significantly upregulated in CFP-Plin2-expressing cells while those associated with lipolysis either decreased or were unaffected. Taken together, these data show for the first time that Plin2 interacts directly with lipids on the surface of lipid droplets and influences levels of key enzymes and lipids involved in maintaining lipid droplet structure and function. PMID:22744009

  5. Lateral Distribution of NBD-PC Fluorescent Lipid Analogs in Membranes Probed by Molecular Dynamics-Assisted Analysis of Förster Resonance Energy Transfer (FRET) and Fluorescence Quenching

    PubMed Central

    Loura, Luís M. S.

    2012-01-01

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed. PMID:23203080

  6. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster Resonance Energy Transfer (FRET) and fluorescence quenching.

    PubMed

    Loura, Luís M S

    2012-11-08

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.

  7. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.

    PubMed

    Loura, Luís M S

    2012-11-19

    Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor k(2). Different donor/acceptor conformations can lead to k(2) values in the 0 ≤ k(2) ≤ 4 range. Because the characteristic distance for FRET, R(0), is proportional to (k(2))1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of k(2) corresponding to the dynamic isotropic limit ( = 2/3) is used for computation of R(0) and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of k(2) for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs.

  8. Extended Fluorescent Resonant Energy Transfer in DNA Constructs

    NASA Astrophysics Data System (ADS)

    Oh, Taeseok

    This study investigates the use of surfactants and metal cations for the enhancement of long range fluorescent resonant energy transfer (FRET) and the antenna effect in DNA structures with multiple fluorescent dyes. Double-stranded (ds) DNA structures were formed by hybridization of 21mer DNA oligonucleotides with different arrangements of three fluorescent TAMRA donor dyes with two different complementary 21mer oligonucleotides with one fluorescent TexasRed acceptor dye. In such DNA structures, hydrophobic interactions between the fluorescent dyes in close proximity produces dimerization which along with other quenching mechanisms leads to significant reduction of fluorescent emission properties. Addition of the surfactants Triton X-100, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) along with sodium cations (Na+) and divalent magnesium cations (Mg 2+) were tested for their ability to reduce quenching of the fluorescent dyes and improve overall fluorescent emission, the long range FRET and the antenna effect properties. When the neutral (uncharged) surfactant Triton X-100 was added to the FRET ds-DNA hybrid structures with three TAMRA donors and one TexasRed acceptor, dye dimerization and emission quenching remained unaffected. However, for the positively charged CTAB surfactant at concentrations of 100 uM or higher, the neutralization of the negatively charged ds-DNA backbone by the cationic surfactant micelles was found to reduce TAMRA dye dimerization and emission quenching and improve TexasRed quantum yield, resulting in much higher FRET efficiencies and an enhanced antenna effect. This improvement is likely due to the CTAB molecules covering or sheathing the fluorescent donor and acceptor dyes which breaks up the dimerized dye complexes and prevents further quenching from interactions with water molecules and guanine bases in the DNA structure. While the negatively charged SDS surfactant alone was not able to reduce dimerization and emission quenching due to repulsive forces between DNA and SDS micelles, the addition of cations such as sodium ions (Na+) and divalent magnesium ions (Mg2+) did lead to a significant reduction in the dimerization and emission quenching resulting in much higher FRET efficiency and an enhanced antenna effect. It appears that when the repulsive electrostatic forces are screened by the cations (Mg2+ in particular), the SDS micelles can approach the FRET ds-DNA structures thereby sheathing or insulating the TAMRA and TexasRed dyes. Overall, the study provides a viable strategy for using combinations of surfactants and cations to reduce adverse fluorescent dye and other quenching mechanisms and improve the overall long distance FRET efficiency and the antenna effect in DNA structures with multi-donor and single acceptor fluorescent dye groups.

  9. Depolarized FRET (depolFRET) on the cell surface: FRET control by photoselection.

    PubMed

    Bene, László; Gogolák, Péter; Ungvári, Tamás; Bagdány, Miklós; Nagy, István; Damjanovich, László

    2016-02-01

    Sensitivity of FRET in hetero- and homo-FRET systems on the photoselected orientation distribution of donors has been proven by using polarized and depolarized light for excitation. FRET as well as donor and acceptor anisotropies have been simultaneously measured in a dual emission-polarization scheme realized in a conventional flow cytometer by using single laser excitation and applying fluorophore-conjugated mAbs against the MHCI and MHCII cell surface receptors. Depolarization of the originally polarized light have been achieved by using crystal depolarizers based on Cornu's principle, a quarter-wave plate for circular polarization, and a parallel beam splitter acting as a diagonal-polarizer for dual-polarization excitation. Simultaneous analysis of intensity-based FRET efficiency and acceptor depolarization equivocally report that depolarization of light may increase FRET in an amount depending on the acceptor-to-donor concentration ratio. Acceptor depolarization turned to be more sensitive to FRET than donor hyper-polarization and even than intensity-based FRET efficiency. It can be used as a sensitive tool for monitoring changes in the dynamics of the donor-acceptor pairs. The basic observations of FRET enhancement and increased acceptor depolarization obtained for hetero-FRET are paralleled by analog observations of homo-FRET enhancements under depolarized excitation. In terms of the orientation factor for FRET, the FRET enhancements on depolarization in the condition of the macroscopically isotropic orientation distributions such as those of the cell surface bound fluorophores report on the presence of local orientation mismatches of the donor and acceptor preventing the optimal FRET in the polarized case, which may be eliminated by the excitation depolarization. A theory of fluorescence anisotropy for depolarized excitation is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. FRET based integrated pyrene-AgNPs system for detection of Hg (II) and pyrene dimer: Applications to environmental analysis

    NASA Astrophysics Data System (ADS)

    Walekar, Laxman S.; Hu, Peidong; Vafaei Molamahmood, Hamed; Long, Mingce

    2018-06-01

    The integrated system of pyrene and cetyltrimethyl ammonium bromide (CTAB) capped silver nanoparticles (AgNPs) with a distance (r) of 2.78 nm has been developed for the detection of Hg (II) and pyrene dimer. The interaction between pyrene and AgNPs results in the fluorescence quenching of pyrene due to the energy transfer, whose mechanism can be attributed to the Forster Resonance Energy Transfer (FRET) supported by experimental observation and theoretical calculations. The developed probe shows a highly selective and sensitive response towards Hg (II) probably due to the amalgam formation, which results in the fluorescence recovery (90%) of pyrene and color change of solution from yellowish brown to colorless. The addition of Hg (II) may increase the distance between pyrene and AgNPs undergoes the 'FRET OFF' process. This system gives a selective response towards Hg (II) over other competing metal ions. Under the optimal condition, the system offers good linearity between 0.1 and 0.6 μg mL-1 with a detection limit of 62 ng mL-1. In addition, the system also provides an effective platform for detection of pyrene in its dimer form even at very low concentrations (10 ng mL-1) on the surface of AgNPs. Therefore, it could be used as effective alternatives for the detection of Hg (II) as well as pyrene simultaneously.

  11. Development and experimental testing of an optical micro-spectroscopic technique incorporating true line-scan excitation.

    PubMed

    Biener, Gabriel; Stoneman, Michael R; Acbas, Gheorghe; Holz, Jessica D; Orlova, Marianna; Komarova, Liudmila; Kuchin, Sergei; Raicu, Valerică

    2013-12-27

    Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.

  12. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    PubMed

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  13. Preparation of water soluble L-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, Anupam; Goswami, Nirmal; Lemmens, Peter

    2012-08-15

    Graphical abstract: Förster resonance energy transfer (FRET) studies on the interaction of water soluble arginine-capped CdSe/ZnS QDs with ethidium bromide (EB) labeled synthetic dodecamer DNA. Highlights: ► We have solubilized CdSe/ZnS QD in water replacing their TOPO ligand by L-arginine. ► We have studied arginine@QD–DNA interaction using FRET technique. ► Arginine@QDs act as energy donor and ethidium bromide-DNA acts as energy acceptor. ► We have applied a kinetic model to understand the kinetics of energy transfer. ► Circular dichroism studies revealed negligible perturbation in the DNA B-form in the arg@QD-DNA complex. -- Abstract: We have exchanged TOPO (trioctylphosphine oxide) ligandmore » of CdSe/ZnS core/shell quantum dots (QDs) with an amino acid L-arginine (Arg) at the toluene/water interface and eventually rendered the QDs from toluene to aqueous phase. We have studied the interaction of the water soluble Arg-capped QDs (energy donor) with ethidium (EB) labeled synthetic dodecamer DNA (energy acceptor) using picoseconds resolved Förster resonance energy transfer (FRET) technique. Furthermore, we have applied a model developed by M. Tachiya to understand the kinetics of energy transfer and the distribution of acceptor (EB-DNA) molecules around the donor QDs. Circular dichroism (CD) studies revealed a negligible perturbation in the native B-form structure of the DNA upon interaction with Arg-capped QDs. The melting and the rehybridization pathways of the DNA attached to the QDs have been monitored by the CD which reveals hydrogen bonding is the associative mechanism for interaction between Arg-capped QDs and DNA.« less

  14. Probing the intracellular fate of supramolecular nanocarriers and their cargo with FRET schemes

    NASA Astrophysics Data System (ADS)

    Thapaliya, Ek Raj; Fowley, Colin; Callan, Bridgeen; Tang, Sicheng; Zhang, Yang; Callan, John F.; Raymo, Françisco M.

    2017-02-01

    We designed a strategy to monitor self-assembling supramolecular nanocarriers and their cargo simultaneously in the intracellular space with fluorescence measurements. It is based on Förster resonance energy transfer (FRET) between complementary chromophores covalently integrated in the macromolecular backbone of amphiphilic polymers and/or noncovalently encapsulated in supramolecular assemblies of the amphiphilic components. Indeed, these polymers assemble into a micelles in aqueous phase to bring energy donors and acceptors in close proximity and allow energy transfer. The resulting supramolecular assemblies maintain their integrity after travelling into the intracellular space and do not lose their molecular guests in the process. Furthermore, this mechanism can also be exploited to probe the fate of complementary nanoparticles introduced within cells in consecutive incubation steps. Efficient energy transfer occurs in the intracellular space after the sequential incubation of nanocarriers incorporating donors first and then nanoparticles containing acceptors or vice versa. The two sets of nanostructured assemblies ultimately co-localize in the cell interior to bring donors and acceptors together and enable energy transfer. Thus, this protocol is particularly valuable to monitor the transport properties of supramolecular nanocarriers inside living cells and can eventually contribute to the fundamental understating of the ability of these promising vehicles to deliver contrast agents and/or drugs intracellularly in view of possible diagnostics and/or therapeutic applications.

  15. Evaluation of Ti-48Al-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    An investigation was conducted to examine the fretting behavior of lambda-TiAl (Ti-48Al-2Cr-2Nb) in contact with a nickel-base superalloy (Inconel 718) in air at temperatures from 23 to 550 C. Fretting wear experiments were conducted with 9.4-mm-diameter hemispherical Inconel (IN) 718 pins in contact with Ti-48Al-2Cr-2Nb flats (and the reverse) at loads from 1 to 40 N and fretting frequencies from 50 to 160 Hz with slip amplitudes from 50 to 200 microns for 1 to 20 million fretting cycles. The results were similar for both combinations of pin and flat. Reference fretting wear experiments were also conducted with 9.4-mm-diameter hemispherical Ti-6Al-4V pins in contact with IN718 flats. The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and IN718 in contact were generally stronger than the cohesive bonds in the cohesively weaker Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb subsequently transferred to the IN718 surface at any fretting condition. The wear scars produced on Ti-48Al-2Cr-2Nb contained metallic and oxide wear debris, scratches, plastically deformed asperities, cracks, and fracture pits. Oxide layers readily formed on the Ti-48Al-2Cr-2Nb surface at 550 C, but cracks easily occurred in the oxide layers. Factors including fretting frequency, temperature, slip amplitude, and load influenced the fretting behavior of Ti-48Al-2Cr-2Nb in contact with IN718. The wear volume loss of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures up to 200 C led to a drop in wear volume loss at 200 C. However, the fretting wear increased as the temperature was increased from 200 to 550 C. The highest temperatures of 450 and 550 C resulted in oxide film disruption with generation of cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. The wear volume loss generally increased as the slip amplitude increased. The wear volume loss also generally increased as the load increased. Increasing slip amplitude and increasing load both tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  16. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.

    PubMed

    Tang, Bo; Cao, Lihua; Xu, Kehua; Zhuo, Linhai; Ge, Jiechao; Li, Qingling; Yu, Lijuan

    2008-01-01

    A novel assembled nanobiosensor QDs-ConA-beta-CDs-AuNPs was designed for the direct determination of glucose in serum with high sensitivity and selectivity. The sensing approach is based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) as an energy donor and gold nanoparticles (AuNPs) as an energy acceptor. The specific combination of concanavalin A (ConA)-conjugated QDs and thiolated beta-cyclodextrins (beta-SH-CDs)-modified AuNPs assembles a hyperefficient FRET nanobiosensor. In the presence of glucose, the AuNPs-beta-CDs segment of the nanobiosensor is displaced by glucose which competes with beta-CDs on the binding sites of ConA, resulting in the fluorescence recovery of the quenched QDs. Experimental results show that the increase in fluorescence intensity is proportional to the concentration of glucose within the range of 0.10-50 muM under the optimized experimental conditions. In addition, the nanobiosensor has high sensitivity with a detection limit as low as 50 nM, and has excellent selectivity for glucose over other sugars and most biological species present in serum. The nanobiosensor was applied directly to determine glucose in normal adult human serum, and the recovery and precision of the method were satisfactory. The unique combination of high sensitivity and good selectivity of this biosensor indicates its potential for the clinical determination of glucose directly and simply in serum, and provides the possibility to detect low levels of glucose in single cells or bacterial cultures. Moreover, the designed nanobiosensor achieves direct detection in biological samples, suggesting the use of nanobiotechnology-based assembled sensors for direct analytical applications in vivo or in vitro.

  17. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  18. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    PubMed Central

    Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor. PMID:25006996

  19. In vitro evaluation of fluorescence glucose biosensor response.

    PubMed

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-07-08

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  20. From the Cover: Visualization of maltose uptake in living yeast cells by fluorescent nanosensors

    NASA Astrophysics Data System (ADS)

    Fehr, Marcus; Frommer, Wolf B.; Lalonde, Sylvie

    2002-07-01

    Compartmentation of metabolic reactions and thus transport within and between cells can be understood only if we know subcellular distribution based on nondestructive dynamic monitoring. Currently, methods are not available for in vivo metabolite imaging at cellular or subcellular levels. Limited information derives from methods requiring fixation or fractionation of tissue (1, 2). We thus developed a flexible strategy for designing protein-based nanosensors for a wide spectrum of solutes, allowing analysis of changes in solute concentration in living cells. We made use of bacterial periplasmic binding proteins (PBPs), where we show that, on binding of the substrate, PBPs transform their hinge-bend movement into increased fluorescence resonance energy transfer (FRET) between two coupled green fluorescent proteins. By using the maltose-binding protein as a prototype, nanosensors were constructed allowing in vitro determination of FRET changes in a concentration-dependent fashion. For physiological applications, mutants with different binding affinities were generated, allowing dynamic in vivo imaging of the increase in cytosolic maltose concentration in single yeast cells. Control sensors allow the exclusion of the effect from other cellular or environmental parameters on ratio imaging. Thus the myriad of PBPs recognizing a wide spectrum of different substrates is suitable for FRET-based in vivo detection, providing numerous scientific, medical, and environmental applications.

  1. Demonstration of FRET in solutions

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Gryczynski, Zygmunt; Chib, Rahul; Fudala, Rafal; Baxi, Aatmun; Borejdo, Julian; Synak, Anna; Gryczynski, Ignacy

    2016-03-01

    We measured the Förster resonance energy transfer (FRET) from Uranin (U) donor to Rhodamine 101 (R101) acceptor in propylene glycol. Steady-state fluorescence measurements show a significant difference between mixed and unmixed fluorophore solutions. In the solution with mixed fluorophores, fluorescence intensity of the U donor decreases and intensity of R101 fluorescence increases. This is visualized as a color change from green to orange. Fluorescence anisotropy of the mixture solution increases in the donor emission wavelength region and decreases in the acceptor emission wavelengths; which is consistent with FRET occurrence. Time-resolved (lifetime) measurements show a decrease of the U lifetime in the presence of R101 acceptor. In the intensity decay of R101 acceptor appears a negative component indicating excited state process. All these measurements prove the presence of FRET in U/R101 mixture fluorescence.

  2. Intramolecular fluorescence resonance energy transfer and living cell imaging of novel pyridyltriphenylamine dye

    NASA Astrophysics Data System (ADS)

    Cao, Duojun; Qian, Ying

    2016-07-01

    A novel pyridyltriphenylamine-rhodamine dye PTRh and a pyridyltriphenylamine derivative PTO were synthesized and characterized by 1H NMR and HRMS-MALDI-TOF. PTRh performed typical fluorescence resonance energy transfer (FRET) signal from pyridyltriphenylamine to rhodamine along with notable color change from green to rose when interacting with Hg2+ in EtOH/H2O. And PTRh as a ratiometric probe for Hg2+ based on FRET could achieve a very low detection limit of 32 nM and energy transfer efficiency of 83.7% in aqueous organic system. On the other hand, spectra properties of PTO in its aggregates, THF/H2O mixed solution and silica nanoparticles (Si-NPs) dispersed in water were investigated. And the results indicated PTO exhibited bright green fluorescence in solid state, and PTO was successfully encapsulated in silica matrix (30-40 nm), emitting bright blue fluorescence with 11.7% quantum yield. Additionally, living cell imaging experiments demonstrated that PTRh could effectively response to intracellular Hg2+ and PTO-doped Si-NPs were well uptaken by MCF-7 breast cancer cells. It could be concluded that the chromophores are promising materials used as biosensors.

  3. Fluorescence-based characterization of genetically encoded peptides that fold in live cells: progress toward a generic hairpin scaffold

    NASA Astrophysics Data System (ADS)

    Cheng, Zihao; Campbell, Robert E.

    2007-02-01

    Binding proteins suitable for expression and high affinity molecular recognition in the cytoplasm or nucleus of live cells have numerous applications in the biological sciences. In an effort to add a new minimal motif to the growing repertoire of validated non-immunoglobulin binding proteins, we have undertaken the development of a generic protein scaffold based on a single β-hairpin that can fold efficiently in the cytoplasm. We have developed a method, based on the measurement of fluorescence resonance energy transfer (FRET) between a genetically fused cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), that allows the structural stability of recombinant β-hairpin peptides to be rapidly assessed both in vitro and in vivo. We have previously reported the validation of this method when applied to a 16mer tryptophan zipper β-hairpin. We now describe the use of this method to evaluate the potential of a designed 20mer β-hairpin peptide with a 3rd Trp/Trp cross-strand pair to function as a generic protein scaffold. Quantitative analysis of the FRET efficiency, resistance to proteolysis (assayed by loss of FRET), and circular dichroism spectra revealed that the 20mer peptide is significantly more tolerant of destabilizing mutations than the 16mer peptide. Furthermore, we experimentally demonstrate that the in vitro determined β-hairpin stabilities are well correlated with in vivo β-hairpin stabilities as determined by FRET measurements of colonies of live bacteria expressing the recombinant peptides flanked by CFP and YFP. Finally, we report on our progress to develop highly folded 24mer and 28mer β-hairpin peptides through the use of fluorescence-based library screening.

  4. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    PubMed

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.

  5. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    NASA Astrophysics Data System (ADS)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  6. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs

    NASA Astrophysics Data System (ADS)

    Puchert, Robin P.; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J.; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M.

    2017-07-01

    Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.

  7. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs.

    PubMed

    Puchert, Robin P; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M

    2017-07-01

    Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.

  8. Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain.

    PubMed

    Sahoo, Harekrushna; Roccatano, Danilo; Zacharias, Martin; Nau, Werner M

    2006-06-28

    Fluorescence resonance energy transfer (FRET) between tryptophan (Trp) as donor and 2,3-diazabicyclo[2.2.2]oct-2-ene (Dbo) as acceptor was studied by steady-state and time-resolved fluorescence spectroscopy. The unique feature of this FRET pair is its exceptionally short Förster radius (10 A), which allows one to recover distance distributions in very short structureless peptides. The technique was applied to Trp-(GlySer)n-Dbo-NH2 peptides with n = 0-10, for which the average probe/quencher distance ranged between 8.7 and 13.7 A experimentally (in propylene glycol, analysis according to wormlike chain model) and 8.6-10.2 A theoretically (for n = 0-6, GROMOS96 molecular dynamics simulations). The larger FRET efficiency in steady-state compared to time-resolved fluorescence experiments was attributed to a static quenching component, suggesting that a small but significant part (ca. 10%) of the conformations are already in van der Waals contact when excitation occurs.

  9. Förster resonance energy transfer studies of luminescent gold nanoparticles functionalized with ruthenium(II) and rhenium(I) complexes: modulation via esterase hydrolysis.

    PubMed

    Leung, Frankie Chi-Ming; Tam, Anthony Yiu-Yan; Au, Vonika Ka-Man; Li, Mei-Jin; Yam, Vivian Wing-Wah

    2014-05-14

    A number of ruthenium(II) and rhenium(I) bipyridine complexes functionalized with lipoic acid moieties have been synthesized and characterized. Functionalization of gold nanoparticles with these chromophoric ruthenium(II) and rhenium(I) complexes has resulted in interesting supramolecular assemblies with Förster resonance energy transfer (FRET) properties that could be modulated via esterase hydrolysis. The luminescence of the metal complex chromophores was turned on upon cleavage of the ester bond linkage by esterase to reduce the efficiency of FRET quenching. The prepared nanoassembly conjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy, and emission spectroscopy. The quenching mechanism has also been studied by transient absorption and time-resolved emission decay measurements. The FRET efficiencies were found to vary with the nature of the chromophores and the length of the spacer between the donor (transition metal complexes) and the acceptor (gold nanoparticles).

  10. N-Way FRET Microscopy of Multiple Protein-Protein Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Scott, Brandon L.; Welliver, Timothy P.; Straight, Samuel W.; Swanson, Joel A.

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells. PMID:23762252

  11. Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.

    2017-12-01

    Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.

  12. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes

    PubMed Central

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-01-01

    Abstract The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling. Key points Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. PMID:26096996

  13. Real-time detecting gelatinases activity in living cells by FRET imaging

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming

    2006-01-01

    Degradation of the extracellular matrix by Matrix metalloproteinases (MMPs) not only enhances tumor invasion, but also affects tumor cell behaviour and leads to cancer progression. To monitor gelatinases (contain MMP2 and MMP9) activity in living cells, we constructed a vector that encoded a gelatinases recognition site (GRS) between citrine (mutation of EYFP Q69M) in N terminal and ECFP in C terminal. Because Gelatinases are secretory proteins and act outside of cell, an expressing vector displayed the fusion protein on cellular surface was used for this FRET gene probe. On expression of YFP-GRS-ECFP in MCF-7 cells that expressed no gelatinases, we were able to observe the efficient transfer of energy from excited ECFP to YFP within the YFP-GRS-ECFP molecule. However, the fusion protein YFP-GRS-ECFP was expressed in MDA-MB 453s cell line with high secretory gelatinases, so YFP-GRS-ECFP was cleaved by gelatinases, no such transfer of energy was detected and fluorescence signal disappeared in YFP channel since YFP protein was cut down. Moreover, Doxycycline, a MMP inhibitor, could make FRET signal increase and fluorescence signal appeared in YFP channel. Thus, the FRET probe YFP-GRS-ECFP can sensitively and reliably monitor gelatinases activation in living cells and can be used for screening MMP inhibitors.

  14. Water-soluble, neutral 3,5-diformyl-BODIPY with extended fluorescence lifetime in a self-healable chitosan hydrogel.

    PubMed

    Belali, Simin; Emandi, Ganapathi; Cafolla, Atillio A; O'Connell, Barry; Haffner, Benjamin; Möbius, Matthias E; Karimi, Alireza; Senge, Mathias O

    2017-11-08

    3,5-Diformyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3,5-diformyl-BODIPY) can be used as an efficient biofunctional cross-linker to generate a new class of chitosan-based hydrogels with fluorescence resonance energy transfer (FRET) dynamics and good solubility in water. The hydrogel was fully characterized by FT-IR, UV-vis, fluorescence, FE-SEM, AFM, rheology and picosecond time-resolved spectroscopic techniques. The self-healing ability was demonstrated by rheological recovery and macroscopic and microscopic observations. The fluorescence lifetime was found to increase in aqueous solution of the BODIPY-chitosan hydrogel compared to the 3,5-diformyl-BODIPY monomer. Calculations based on experimental results such as red-shift and decreased intensity of the emission spectrum of highly dye-concentrated hydrogel in comparison to dilute hydrogels, together with changes in the fluorescence lifetime of the hydrogel at different concentration of dyes, suggest that the BDP-CS hydrogels fluorescence dynamics obey the Förster resonance energy transfer (FRET). Improvements in mechanical and photochemical properties and the acceptable values of BODIPY fluorescence lifetime in the hydrogel matrix indicate the utility of the newly synthesized hydrogels for biomedical applications.

  15. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.

    PubMed

    Liang, Junfei; Wei, Ran; He, Shuai; Liu, Yikan; Guo, Lin; Li, Lidong

    2013-03-21

    Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.

  16. Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters.

    PubMed

    Maryu, Gembu; Miura, Haruko; Uda, Youichi; Komatsubara, Akira T; Matsuda, Michiyuki; Aoki, Kazuhiro

    2018-04-25

    Protein kinases play pivotal roles in intracellular signal transduction, and dysregulation of kinases leads to pathological results such as malignant tumors. Kinase activity has hitherto been measured by biochemical methods such as in vitro phosphorylation assay and western blotting. However, these methods are less useful to explore spatial and temporal changes in kinase activity and its cell-to-cell variation. Recent advances in fluorescent proteins and live-cell imaging techniques enable us to visualize kinase activity in living cells with high spatial and temporal resolutions. Several genetically encoded kinase activity reporters, which are based on the modes of action of kinase activation and phosphorylation, are currently available. These reporters are classified into single-fluorophore kinase activity reporters and Förster (or fluorescence) resonance energy transfer (FRET)-based kinase activity reporters. Here, we introduce the principles of genetically encoded kinase activity reporters, and discuss the advantages and disadvantages of these reporters.Key words: kinase, FRET, phosphorylation, KTR.

  17. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor.

    PubMed

    Rana, Subinoy; Elci, S Gokhan; Mout, Rubul; Singla, Arvind K; Yazdani, Mahdieh; Bender, Markus; Bajaj, Avinash; Saha, Krishnendu; Bunz, Uwe H F; Jirik, Frank R; Rotello, Vincent M

    2016-04-06

    Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.

  18. Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors.

    PubMed

    Lindenburg, Laurens H; Malisauskas, Mantas; Sips, Tari; van Oppen, Lisanne; Wijnands, Sjors P W; van de Graaf, Stan F J; Merkx, Maarten

    2014-10-14

    The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Förster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (ΔG0(o-c) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange.linker.mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (ΔG0(o-c) = .0.39 kCal/mol) to relatively stable (ΔG0(o-c) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange.mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategies.

  19. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.

    PubMed

    Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M

    2011-03-02

    In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A detailed analysis of possible orientation effects (κ(2) problem) indicates that, for short linkers and unknown local environments, additional κ(2)-related uncertainties are clearly outweighed by better defined dye positions.

  20. Studying DNA looping by single-molecule FRET.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  1. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  2. Cigarette Smoke Upregulates PDE3 and PDE4 to Decrease cAMP in Airway Cells.

    PubMed

    Zuo, Haoxiao; Han, Bing; Poppinga, Wilfred J; Ringnalda, Lennard; Kistemaker, Loes E M; Halayko, Andrew J; Gosens, Reinoud; Nikolaev, Viacheslav O; Schmidt, Martina

    2018-05-03

    3', 5'-cyclic adenosine monophosphate (cAMP) is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease (COPD), a lung disease primarily provoked by cigarette smoke (CS), the induction of cAMP-dependent pathways, via inhibition of hydrolyzing phosphodiesterases (PDEs), is a prime therapeutic strategy. Mechanisms that disrupt cAMP signaling in airway cells, in particular regulation of endogenous PDEs are poorly understood. We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mouse in vivo, ex vivo precision cut lung slices (PCLS), and in human in vitro cell models to track the effects of CS exposure. Under fenoterol stimulated conditions, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein upregulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed downregulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. We show that CS upregulates expression and activity of both PDE3 and PDE4, which regulate real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology. This article is protected by copyright. All rights reserved.

  3. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude. PMID:26879144

  4. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    PubMed Central

    Morgner, Frank; Stufler, Stefan; Geißler, Daniel; Medintz, Igor L.; Algar, W. Russ; Susumu, Kimihiro; Stewart, Michael H.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Hildebrandt, Niko

    2011-01-01

    Förster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma. PMID:22163719

  5. From force-fields to photons: MD simulations of dye-labeled nucleic acids and Monte Carlo modeling of FRET

    NASA Astrophysics Data System (ADS)

    Milas, Peker; Gamari, Ben; Parrot, Louis; Buckman, Richard; Goldner, Lori

    2011-11-01

    Fluorescence resonance energy transfer (FRET) is a powerful experimental technique for understanding the structural fluctuations and transformations of RNA, DNA and proteins. Molecular dynamics (MD) simulations provide a window into the nature of these fluctuations on a faster time scale inaccessible to experiment. We use Monte Carlo methods to model and compare FRET data from dye-labeled RNA with what might be predicted from the MD simulation. With a few notable exceptions, the contribution of fluorophore and linker dynamics to these FRET measurements has not been investigated. We include the dynamics of the ground state dyes and linkers along with an explicit water solvent in our study of a 16mer double-stranded RNA. Cyanine dyes are attached at either the 3' or 5' ends with a three carbon linker, providing a basis for contrasting the dynamics of similar but not identical molecular structures.

  6. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    PubMed

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.

  7. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET.

    PubMed

    Subach, Fedor V; Zhang, Lijuan; Gadella, Theodorus W J; Gurskaya, Nadya G; Lukyanov, Konstantin A; Verkhusha, Vladislav V

    2010-07-30

    We have developed the first red fluorescent protein, named rsTagRFP, which possesses reversibly photoswitchable absorbance spectra. Illumination with blue and yellow light switches rsTagRFP into a red fluorescent state (ON state) or nonfluorescent state (OFF state), respectively. The ON and OFF states exhibit absorbance maxima at 567 and 440 nm, respectively. Due to the photoswitchable absorbance, rsTagRFP can be used as an acceptor for a photochromic Förster resonance energy transfer (pcFRET). The photochromic acceptor facilitates determination of a protein-protein interaction by providing an internal control for FRET. Using pcFRET with EYFP as a donor, we observed an interaction between epidermal growth factor receptor and growth factor receptor-binding protein 2 in live cells by detecting the modulation of both the fluorescence intensity and lifetime of the EYFP donor upon the ON-OFF photoswitching of the rsTagRFP acceptor. 2010 Elsevier Ltd. All rights reserved.

  8. Distribution of a Glycosylphosphatidylinositol-anchored Protein at the Apical Surface of MDCK Cells Examined at a Resolution of <100 Å Using Imaging Fluorescence Resonance Energy Transfer

    PubMed Central

    Kenworthy, A.K.; Edidin, M.

    1998-01-01

    Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins. PMID:9660864

  9. In silico FRET from simulated dye dynamics

    NASA Astrophysics Data System (ADS)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language: Python, Cython, C (ANSI C99). Computer: Any (see memory requirements). Operating system: Any OS with CPython distribution (e.g. Linux, MacOSX, Windows). Has the code been vectorised or parallelized?: Yes, in Ref. [2], 4 CPU cores were used. RAM: About 700MB per process for the simulation setup in Ref. [2]. Classification: 16.1, 16.7, 23. External routines: Calculation of Rκ2-trajectories from GROMACS [3] MD trajectories requires the GromPy Python module described in Ref. [4] or a GROMACS 4.6 installation. The md2fret program uses a standard Python interpreter (CPython) v2.6+ and < v3.0 as well as the NumPy module. The analysis examples require the Matplotlib Python module. Nature of problem: Simulation and interpretation of single molecule FRET experiments. Solution method: Combination of force-field based molecular dynamics (MD) simulating the dye dynamics and Monte Carlo sampling to obtain photon statistics of FRET kinetics. Additional comments: !!!!! The distribution file for this program is over 50 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: A single run in Ref. [2] takes about 10 min on a Quad Core Intel Xeon CPU W3520 2.67GHz with 6GB physical RAM References: [1] M. Saito, M. Matsumoto, SIMD-oriented fast Mersenne twister: a 128-bit pseudorandom number generator, in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer; Berlin, Heidelberg, 2008, pp. 607-622. [2] M. Hoefling, N. Lima, D. Hänni, B. Schuler, C. A. M. Seidel, H. Grubmüller, Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach, PLoS ONE 6 (5) (2011) e19791. [3] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS: fast, flexible, and free., J Comput Chem 26 (16) (2005) 1701-1718. [4] R. Pool, A. Feenstra, M. Hoefling, R. Schulz, J. C. Smith, J. Heringa, Enabling grand-canonical Monte Carlo: Extending the flexibility of gromacs through the GromPy Python interface module, Journal of Chemical Theory and Computation 33 (12) (2012) 1207-1214.

  10. Fluorescein isothiocyanate and rhodamine B dye encapsulated mesoporous SiO2 for applications of blue LED excited white LED

    NASA Astrophysics Data System (ADS)

    Das, Sourav; Manam, J.

    2018-05-01

    In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.

  11. Rab-NANOPS: FRET biosensors for Rab membrane nanoclustering and prenylation detection in mammalian cells.

    PubMed

    Najumudeen, Arafath Kaja; Guzmán, Camilo; Posada, Itziar M D; Abankwa, Daniel

    2015-01-01

    Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.

  12. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  13. Application of FRET probes in the analysis of neuronal plasticity

    PubMed Central

    Ueda, Yoshibumi; Kwok, Showming; Hayashi, Yasunori

    2013-01-01

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo. PMID:24133415

  14. Kinetic analysis of single molecule FRET transitions without trajectories

    NASA Astrophysics Data System (ADS)

    Schrangl, Lukas; Göhring, Janett; Schütz, Gerhard J.

    2018-03-01

    Single molecule Förster resonance energy transfer (smFRET) is a popular tool to study biological systems that undergo topological transitions on the nanometer scale. smFRET experiments typically require recording of long smFRET trajectories and subsequent statistical analysis to extract parameters such as the states' lifetimes. Alternatively, analysis of probability distributions exploits the shapes of smFRET distributions at well chosen exposure times and hence works without the acquisition of time traces. Here, we describe a variant that utilizes statistical tests to compare experimental datasets with Monte Carlo simulations. For a given model, parameters are varied to cover the full realistic parameter space. As output, the method yields p-values which quantify the likelihood for each parameter setting to be consistent with the experimental data. The method provides suitable results even if the actual lifetimes differ by an order of magnitude. We also demonstrated the robustness of the method to inaccurately determine input parameters. As proof of concept, the new method was applied to the determination of transition rate constants for Holliday junctions.

  15. Homo-FRET imaging as a tool to quantify protein and lipid clustering.

    PubMed

    Bader, Arjen N; Hoetzl, Sandra; Hofman, Erik G; Voortman, Jarno; van Bergen en Henegouwen, Paul M P; van Meer, Gerrit; Gerritsen, Hans C

    2011-02-25

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical proteins and lipids. Homo-FRET imaging has the ability to determine distances between fluorophores. In addition it can be employed to quantify cluster sizes as well as cluster size distributions. The interpretation of homo-FRET signals is complicated by the fact that both the mutual orientations of the fluorophores and the number of fluorophores per cluster affect the fluorescence anisotropy in a similar way. The properties of the fluorescence probes are very important. Taking these properties into account is critical for the correct interpretation of homo-FRET signals in protein- and lipid-clustering studies. This is be exemplified by studies on the clustering of the lipid raft markers GPI and K-ras, as well as for EGF receptor clustering in the plasma membrane. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  17. Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis

    PubMed Central

    Parks, Joseph W.; Kappel, Kalli; Das, Rhiju; Stone, Michael D.

    2017-01-01

    Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein. FRET-guided modeling places the essential pseudoknot fold distal to the active site on a protein surface comprising the C-terminal element, a domain that shares structural homology with canonical polymerase thumb domains. An independently solved medium-resolution structure of Tetrahymena telomerase provides a blind test of our modeling methodology and sheds light on the structural homology of this domain across diverse organisms. Our smFRET-Rosetta models reveal nanometer-scale rearrangements within the RNA core domain during catalysis. Taken together, our FRET data and pseudoatomic molecular models permit us to propose a possible mechanism for how RNA core domain rearrangement is coupled to template hybrid elongation. PMID:28096444

  18. Solvent effect on FRET spectroscopic ruler

    NASA Astrophysics Data System (ADS)

    Qu, Songyuan; Liu, Chuanbo; Liu, Qiong; Wu, Wei; Du, Baoji; Wang, Jin

    2018-03-01

    A discrepancy has emerged in recent years between single-molecule Förster resonance energy transfer (smFRET) measurements and small angle X-ray scattering (SAXS) or small angle neutron scattering experiments in the study of unfolded or intrinsically disordered proteins in denaturing solutions. Despite significant advances that have been made in identifying various factors which may have contributed to the manifestation of the so-called smFRET-SAXS discrepancy, no consensus has been reached so far on its original source or eventual resolution. In this study, we investigate this problem from the perspective of the solvent effect on FRET spectroscopic ruler (SEFSR), a generic term we use to describe various solvent-dependent factors affecting the accuracy of the FRET experimental method that is known as a "spectroscopic ruler." Some factors belonging to SEFSR, such as direct dye-solvent interaction and labeling configuration, seem to have not received due attention regarding their significance in contributing to the discrepancy. We identify SEFSR by measuring a rigid segment of a double-stranded DNA in various solutions using the smFRET method and evaluate its relative importance in smFRET experiments by measuring segments of a single-stranded DNA and polyethylene glycol (PEG) in solutions. We find that SEFSR can produce non-negligible FRET-inferred interdye distance changes in various solutions, with an intensity following the Hofmeister series in ionic solutions and dependent on labeling configurations. SEFSR is found to be significant in GuHCl and urea solutions, which can fully cover the apparent expansion signal of dye-labeled PEG. Our findings suggest that SEFSR may have played an important role in contributing to the smFRET-SAXS discrepancy.

  19. Complex logic functions implemented with quantum dot bionanophotonic circuits.

    PubMed

    Claussen, Jonathan C; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L

    2014-03-26

    We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.

  20. Inactivation of the Carney complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase: a study using genetically encoded FRET-based reporters.

    PubMed

    Cazabat, Laure; Ragazzon, Bruno; Varin, Audrey; Potier-Cartereau, Marie; Vandier, Christophe; Vezzosi, Delphine; Risk-Rabin, Marthe; Guellich, Aziz; Schittl, Julia; Lechêne, Patrick; Richter, Wito; Nikolaev, Viacheslav O; Zhang, Jin; Bertherat, Jérôme; Vandecasteele, Grégoire

    2014-03-01

    Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.

  1. Determining Protein Complex Structures Based on a Bayesian Model of in Vivo Förster Resonance Energy Transfer (FRET) Data*

    PubMed Central

    Bonomi, Massimiliano; Pellarin, Riccardo; Kim, Seung Joong; Russel, Daniel; Sundin, Bryan A.; Riffle, Michael; Jaschob, Daniel; Ramsden, Richard; Davis, Trisha N.; Muller, Eric G. D.; Sali, Andrej

    2014-01-01

    The use of in vivo Förster resonance energy transfer (FRET) data to determine the molecular architecture of a protein complex in living cells is challenging due to data sparseness, sample heterogeneity, signal contributions from multiple donors and acceptors, unequal fluorophore brightness, photobleaching, flexibility of the linker connecting the fluorophore to the tagged protein, and spectral cross-talk. We addressed these challenges by using a Bayesian approach that produces the posterior probability of a model, given the input data. The posterior probability is defined as a function of the dependence of our FRET metric FRETR on a structure (forward model), a model of noise in the data, as well as prior information about the structure, relative populations of distinct states in the sample, forward model parameters, and data noise. The forward model was validated against kinetic Monte Carlo simulations and in vivo experimental data collected on nine systems of known structure. In addition, our Bayesian approach was validated by a benchmark of 16 protein complexes of known structure. Given the structures of each subunit of the complexes, models were computed from synthetic FRETR data with a distance root-mean-squared deviation error of 14 to 17 Å. The approach is implemented in the open-source Integrative Modeling Platform, allowing us to determine macromolecular structures through a combination of in vivo FRETR data and data from other sources, such as electron microscopy and chemical cross-linking. PMID:25139910

  2. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.

    PubMed

    Karasawa, Satoshi; Araki, Toshio; Nagai, Takeharu; Mizuno, Hideaki; Miyawaki, Atsushi

    2004-07-01

    GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.

  3. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    PubMed

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.

  4. Application of phasor plot and autofluorescence correction for study of heterogeneous cell population

    PubMed Central

    Szmacinski, Henryk; Toshchakov, Vladimir; Lakowicz, Joseph R.

    2014-01-01

    Abstract. Protein-protein interactions in cells are often studied using fluorescence resonance energy transfer (FRET) phenomenon by fluorescence lifetime imaging microscopy (FLIM). Here, we demonstrate approaches to the quantitative analysis of FRET in cell population in a case complicated by a highly heterogeneous donor expression, multiexponential donor lifetime, large contribution of cell autofluorescence, and significant presence of unquenched donor molecules that do not interact with the acceptor due to low affinity of donor-acceptor binding. We applied a multifrequency phasor plot to visualize FRET FLIM data, developed a method for lifetime background correction, and performed a detailed time-resolved analysis using a biexponential model. These approaches were applied to study the interaction between the Toll Interleukin-1 receptor (TIR) domain of Toll-like receptor 4 (TLR4) and the decoy peptide 4BB. TLR4 was fused to Cerulean fluorescent protein (Cer) and 4BB peptide was labeled with Bodipy TMRX (BTX). Phasor displays for multifrequency FLIM data are presented. The analytical procedure for lifetime background correction is described and the effect of correction on FLIM data is demonstrated. The absolute FRET efficiency was determined based on the phasor plot display and multifrequency FLIM data analysis. The binding affinity between TLR4-Cer (donor) and decoy peptide 4BB-BTX (acceptor) was estimated in a heterogeneous HeLa cell population. PMID:24770662

  5. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    PubMed

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles.

    PubMed

    Gravier, Julien; Sancey, Lucie; Hirsjärvi, Samuli; Rustique, Emilie; Passirani, Catherine; Benoît, Jean-Pierre; Coll, Jean-Luc; Texier, Isabelle

    2014-09-02

    DiI and DiD, two fluorophores able to interact by FRET (Förster resonance energy transfer), were coencapsulated in the core of lipid nanocapsules (LNCs) and nanoemulsions (LNEs), lipophilic reservoirs for the delivery of drugs. The ability of FRET imaging to provide information on the kinetics of dissociation of the nanoparticles in the presence of bovine serum albumin (BSA) or whole serum, or after incubation with cancer cells, and after systemic administration in tumor-bearing mice, was studied. Both microscopic and macroscopic imaging was performed to determine the behavior of the nanostructures in a biological environment. When 2 mg/mL FRET LNEs or LNCs were dispersed in buffer, in the presence of unloaded nanoparticles, BSA, or in whole serum, the presence of serum was the most active in destroying the particles. This occurred immediately with a diminution of 20% of FRET, then slowly, ending up with still 30% intact nanoparticles at 24 h. LNCs were internalized rapidly in cultured cells with the FRET signal decreasing within the first minutes of incubation, and then a plateau was reached and LNCs remained intact during 3 h. In contrast, LNEs were poorly internalized and were rapidly dissociated after internalization. Following their iv injection, LNCs appeared very stable in subcutaneous tumors implanted in mice. Intact particles were found using microscopic FRET determination on tumor sections 24 h after injection, that correlated well with the 8% calculated noninvasively on live animals. FRET investigations showed the potential to determine valid and reliable information about in vitro and in vivo behavior of nanoparticles.

  7. Lipid-Coated Gold Nanoparticles and FRET Allow Sensitive Monitoring of Liposome Clustering Mediated by the Synaptotagmin-7 C2A Domain.

    PubMed

    Hamilton, Desmond J; Coffman, Matthew D; Knight, Jefferson D; Reed, Scott M

    2017-09-12

    Synaptotagmin (Syt) family proteins contain tandem C2 domains, C2A and C2B, which insert into anionic membranes in response to increased cytosolic Ca 2+ concentration and facilitate exocytosis in neuronal and endocrine cells. The C2A domain from Syt7 binds lipid membranes much more tightly than the corresponding domain from Syt1, but the implications of this difference for protein function are not yet clear. In particular, the ability of the isolated Syt7 C2A domain to initiate membrane apposition and/or aggregation has been previously unexplored. Here, we demonstrate that Syt7 C2A induces apposition and aggregation of liposomes using Förster resonance energy transfer (FRET) assays, dynamic light scattering, and spectroscopic techniques involving lipid-coated gold nanoparticles (LCAuNPs). Protein-membrane binding, membrane apposition, and macroscopic aggregation are three separate phenomena with distinct Ca 2+ requirements: the threshold Ca 2+ concentration for membrane binding is lowest, followed by apposition and aggregation. However, aggregation is highly sensitive to protein concentration and can occur even at submicromolar Syt7 C2A; thus, highly sensitive assays are needed for measuring apposition without complications arising from aggregation. Notably, the localized surface plasmon resonance of the LCAuNP is sensitive to ≤10 nM Syt7 C2A concentrations. Furthermore, when the LCAuNPs were added into a FRET-based liposome apposition assay, the resultant energy transfer increased; possible explanations are discussed. Overall, LCAuNP-based methods allow for highly sensitive detection of protein-induced membrane apposition under conditions that miminize large-scale aggregation.

  8. Dimerization and conformation-related free energy landscapes of dye-tagged amyloid-β12-28 linked to FRET experiments.

    PubMed

    Kulesza, Alexander; Daly, Steven; Dugourd, Philippe

    2017-04-05

    We have investigated the free energy landscape of Aβ-peptide dimer models in connection to gas-phase FRET experiments. We use a FRET-related distance coordinate and one conformation-related coordinate per monomer for accelerated structural exploration with well-tempered metadynamics in solvent and in vacuo. The free energy profiles indicate that FRET under equilibrium conditions should be significantly affected by the de-solvation upon the transfer of ions to the gas-phase. In contrast, a change in the protonation state is found to be less impacting once de-solvated. Comparing F19P and WT alloforms, for which we measure different FRET efficiencies in the gas-phase, we predict only the relevant structural differences in the solution populations, not under gas-phase equilibrium conditions. This finding supports the hypothesis that the gas-phase action-FRET measurement after ESI operates under non-equilibrium conditions, with a memory of the solution conditions - even for the dimer of this relatively short peptide. The structural differences in solution are rationalized in terms of conformational propensities around residue 19, which show a transition to a poly-proline type of pattern upon mutation to F19P - a difference that gets lost in the gas-phase.

  9. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE.

    PubMed

    Wang, Xuelin; Li, Juanjuan; Yan, Qi; Chen, Yanrui; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-03-01

    Redox-responsive micelles are versatile nanoplatforms for on-demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation-caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation-induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self-assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2-carboxyethyl)phosphine) trigger (10 × 10 -3 m), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF-7 cells. The FRET-AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli-responsive nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of fluorogenic probe-based PCR assays for the detection and quantification of bovine piroplasmids.

    PubMed

    Criado-Fornelio, A; Buling, A; Asenzo, G; Benitez, D; Florin-Christensen, M; Gonzalez-Oliva, A; Henriques, G; Silva, M; Alongi, A; Agnone, A; Torina, A; Madruga, C R

    2009-06-10

    This paper reports two new quantitative PCR (qPCR) assays, developed in an attempt to improve the detection of bovine piroplasmids. The first of these techniques is a duplex TaqMan assay for the simultaneous diagnosis of Babesia bovis and B. bigemina. This technique is ideal for use in South America where bovids harbour no theilerids. The second technique, which is suitable for the diagnosis of both babesiosis and theileriosis worldwide, involves fluorescence resonance energy transfer (FRET) probes. In FRET assays, Babesia bovis, B. divergens, Babesia sp. (B. major or B. bigemina), Theileria annae and Theileria sp. were all identifiable based on the melting temperatures of their amplified fragments. Both techniques provided linear calibration curves over the 0.1fg/microl to 0.01ng/microl DNA range. The assays showed good sensitivity and specificity. To assess their performance, both procedures were compared in two separate studies: the first was intended to monitor the experimental infection of calves with B. bovis and the second was a survey where 200 bovid/equine DNA samples from different countries were screened for piroplasmids. Comparative studies showed that duplex TaqMan qPCR was more sensitive than FRET qPCR in the detection of babesids.

  11. FRET-based system for probing protein-protein interactions between σR and RsrA from Streptomyces coelicolor in response to the redox environment.

    PubMed

    Wei, Zi-Han; Chen, Huan; Zhang, Chang; Ye, Bang-Ce

    2014-01-01

    Protein-protein interactions between sigma factor σ(R) and its corresponding zinc-binding anti-sigma (ZAS) protein RsrA trigger the thioredoxin system for maintaining cellular redox homeostasis in S. coelicolor. RsrA bound to zinc associates with σ(R), inhibiting its transcriptional activity in a reducing environment. During disulfide stress it forms intramolecular disulfide bonds, leading to zinc release and dissociation from σ(R), which initiates transcription to produce reductase and thioredoxin. We designed a fluorescence resonance energy transfer (FRET) based system for monitoring protein-protein interactions between σ(R) and RsrA to further understand how this redox switch regulates the thioredoxin system in S. coelicolor in response to its redox environment, especially various reactive oxygen species (ROS) derived from different metabolic pathways, and clarify the different response mechanisms between Zn-RsrA and apo-RsrA. By the use of the FRET approach described here, we showed that zinc protected thiols in RsrA and causes the σ(R)-RsrA complex to form a more compact structure. This system was also utilized to detect changes in redox status induced by ROS and diamide in real time in E. coli cells.

  12. FRET-Based System for Probing Protein-Protein Interactions between σR and RsrA from Streptomyces Coelicolor in Response to the Redox Environment

    PubMed Central

    Wei, Zi-Han; Chen, Huan; Zhang, Chang; Ye, Bang-Ce

    2014-01-01

    Protein-protein interactions between sigma factor σR and its corresponding zinc-binding anti-sigma (ZAS) protein RsrA trigger the thioredoxin system for maintaining cellular redox homeostasis in S. coelicolor. RsrA bound to zinc associates with σR, inhibiting its transcriptional activity in a reducing environment. During disulfide stress it forms intramolecular disulfide bonds, leading to zinc release and dissociation from σR, which initiates transcription to produce reductase and thioredoxin. We designed a fluorescence resonance energy transfer (FRET) based system for monitoring protein-protein interactions between σR and RsrA to further understand how this redox switch regulates the thioredoxin system in S. coelicolor in response to its redox environment, especially various reactive oxygen species (ROS) derived from different metabolic pathways, and clarify the different response mechanisms between Zn-RsrA and apo-RsrA. By the use of the FRET approach described here, we showed that zinc protected thiols in RsrA and causes the σR-RsrA complex to form a more compact structure. This system was also utilized to detect changes in redox status induced by ROS and diamide in real time in E. coli cells. PMID:24651617

  13. Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids

    PubMed Central

    Iqbal, Asif; Arslan, Sinan; Okumus, Burak; Wilson, Timothy J.; Giraud, Gerard; Norman, David G.; Ha, Taekjip; Lilley, David M. J.

    2008-01-01

    We have found that the efficiency of fluorescence resonance energy transfer between Cy3 and Cy5 terminally attached to the 5′ ends of a DNA duplex is significantly affected by the relative orientation of the two fluorophores. The cyanine fluorophores are predominantly stacked on the ends of the helix in the manner of an additional base pair, and thus their relative orientation depends on the length of the helix. Observed fluorescence resonance energy transfer (FRET) efficiency depends on the length of the helix, as well as its helical periodicity. By changing the helical geometry from B form double-stranded DNA to A form hybrid RNA/DNA, a marked phase shift occurs in the modulation of FRET efficiency with helix length. Both curves are well explained by the standard geometry of B and A form helices. The observed modulation for both polymers is less than that calculated for a fully rigid attachment of the fluorophores. However, a model involving lateral mobility of the fluorophores on the ends of the helix explains the observed experimental data. This has been further modified to take account of a minor fraction of unstacked fluorophore observed by fluorescent lifetime measurements. Our data unequivocally establish that Förster transfer obeys the orientation dependence as expected for a dipole–dipole interaction. PMID:18676615

  14. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    NASA Astrophysics Data System (ADS)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  15. Visualization of the activation of the histamine H3 receptor (H3R) using novel fluorescence resonance energy transfer biosensors and their potential application to the study of H3R pharmacology.

    PubMed

    Liu, Ying; Zeng, Hong; Pediani, John D; Ward, Richard J; Chen, Lu-Yao; Wu, Nan; Ma, Li; Tang, Mei; Yang, Yang; An, Su; Guo, Xiao-Xi; Hao, Qian; Xu, Tian-Rui

    2018-06-01

    Activation of the histamine-3 receptor (H3R) is involved in memory processes and cognitive action, while blocking H3R activation can slow the progression of neurological disorders, such as Alzheimer's disease, schizophrenia and narcolepsy. To date, however, no direct way to examine the activation of H3R has been utilized. Here, we describe a novel biosensor that can visualize the activation of H3R through an intramolecular fluorescence resonance energy transfer (FRET) signal. To achieve this, we constructed an intramolecular H3R FRET sensor with cyan fluorescent protein (CFP) attached at the C terminus and yellow fluorescent protein (YFP) inserted into the third intracellular loop. The sensor was found to internalize normally on agonist treatment. We measured FRET signals between the donor CFP and the acceptor YFP in living cells in real time, the results of which indicated that H3R agonist treatment (imetit or histamine) increases the FRET signal in a time- and concentration-dependent manner with Kon and Koff values consistent with published data and which maybe correlated with decreasing cAMP levels and the promotion of ERK1/2 phosphorylation. The FRET signal was inhibited by H3R antagonists, and the introduction of mutations at F419A, F423A, L426A and L427A, once again, the promotion of ERK1/2 phosphorylation, was diminished. Thus, we have built a H3R biosensor which can visualize the activation of receptor through real-time structure changes and which can obtain pharmacological kinetic data at the same time. The FRET signals may allow the sensor to become a useful tool for screening compounds and optimizing useful ligands. © 2018 Federation of European Biochemical Societies.

  16. Quaternary structure assessment of ICln by fluorescence resonance energy transfer (FRET) in vivo.

    PubMed

    Schmidt, Sabine; Jakab, Martin; Costa, Ivano; Fürst, Johannes; Ravasio, Andrea; Paulmichl, Markus; Botta, Guido; Ritter, Markus

    2009-01-01

    ICln is a ubiquitously expressed multifunctional protein that plays a critical role in regulatory volume decrease after cell swelling. The majority of ICln is localized in the cytosol and a small fraction of ICln associates with the plasma membrane. In artificial lipid bilayers ICln forms ion channels, and a putative channel model predicts the association of at least two ICln molecules to form a functional ion-conducting pore. Oligomers of ICln have been demonstrated in cytosolic fractions of different cells by native PAGE and gel filtration analysis, but these data have not yet been verified in vivo, and the basis of ICln homooligomerization is unknown. In silico prediction of the quaternary structure of ICln from its primary structure predicts that ICln forms a dimer, and that the C-terminus of ICln may be essential for the intermolecular interaction. To explore the quaternary structure of ICln in living NIH3T3 fibroblasts, we performed fluorescence resonance energy transfer (FRET) experiments using eCFP (donor) and eYFP (acceptor) fused to the C- and/or N-termini of both full length wild type ICln and of C-terminal truncation mutants thereof (ICln(159) and ICln(134)). FRET was assessed by the acceptor photobleaching technique. Here we show that ICln forms oligomers in vivo, and demonstrate intermolecular FRET between the C-, but not the N-termini of full length ICln. In the truncation mutant ICln(159) oligomerization occurs and intermolecular FRET between N-termini can be detected, which indicates that the C-terminus of ICln sterically interferes with interactions between N-termini in full length ICln oligomers. In cells expressing the truncation mutant ICln(134) no FRET between C- and/or N-termini could be measured, suggesting the absence of interaction and a role of amino acids P135-Q159 in the oligomerization of ICln. Copyright 2009 S. Karger AG, Basel.

  17. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  18. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.

    PubMed

    Narayanan, Remya; Das, Amrita; Deepa, Melepurath; Srivastava, Avanish Kumar

    2013-12-02

    A new design for a quasi-solid-state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2 ) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor-acceptor architecture (TiO2 /CdS/CdSe/ZnS-LY/S(2-)-multi-walled carbon nanotubes) show a maximum incident photon-to-current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru-dye free FRET-enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor-only cells. The FRET-enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of Cyan Fluorescent Proteins at YFP-Excitation

    PubMed Central

    Malkani, Naila; Schmid, Johannes A.

    2011-01-01

    Background The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins. Methodology/Principal Findings When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor. Conclusions/Significance Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions. PMID:21490932

  20. Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation.

    PubMed

    Malkani, Naila; Schmid, Johannes A

    2011-04-07

    The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins. When we applied a commonly used FRET microscopy technique--the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10-15% after illumination at the YFP-excitation wavelength--a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor. Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions.

  1. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    PubMed

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective strategy for developing FRET probes for bioassays.

  2. Development of Fluorescent Substrates and Assays for the Key Autophagy-Related Cysteine Protease Enzyme, ATG4B

    PubMed Central

    Nguyen, Thanh G.; Honson, Nicolette S.; Arns, Steven; Davis, Tara L.; Dhe-Paganon, Sirano; Kovacic, Suzana; Kumar, Nag S.; Pfeifer, Tom A.

    2014-01-01

    Abstract The cysteine protease ATG4B plays a role in key steps of the autophagy process and is of interest as a potential therapeutic target. At an early step, ATG4B cleaves proLC3 isoforms to form LC3-I for subsequent lipidation to form LC3-II and autophagosome membrane insertion. ATG4B also cleaves phosphatidylethanolamine (PE) from LC3-II to regenerate LC3-I, enabling its recycling for further membrane biogenesis. Here, we report several novel assays for monitoring the enzymatic activity of ATG4B. An assay based on mass spectrometric analysis and quantification of cleavage of the substrate protein LC3-B was developed and, while useful for mechanistic studies, was not suitable for high throughput screening (HTS). A doubly fluorescent fluorescence resonance energy transfer (FRET) ligand YFP-LC3B-EmGFP (FRET-LC3) was constructed and shown to be an excellent substrate for ATG4B with rates of cleavage similar to that for LC3B itself. A HTS assay to identify candidate inhibitors of ATG4B utilizing FRET-LC3 as a substrate was developed and validated with a satisfactory Z′ factor and high signal-to-noise ratio suitable for screening small molecule libraries. Pilot screens of the 1,280-member library of pharmacologically active compounds (LOPAC™) and a 3,481-member library of known drugs (KD2) gave hit rates of 0.6% and 0.5% respectively, and subsequent titrations confirmed ATG4B inhibitory activity for three compounds, both in the FRET and mass spectrometry assays. The FRET- and mass spectrometry–based assays we have developed will allow for both HTS for inhibitors of ATG4B and mechanistic approaches to study inhibition of a major component of the autophagy pathway. PMID:24735444

  3. Enhanced Charge Separation and FRET at Heterojunctions between Semiconductor Nanoparticles and Conducting Polymer Nanofibers for Efficient Solar Light Harvesting

    PubMed Central

    Sardar, Samim; Kar, Prasenjit; Remita, Hynd; Liu, Bo; Lemmens, Peter; Kumar Pal, Samir; Ghosh, Srabanti

    2015-01-01

    Energy harvesting from solar light employing nanostructured materials offer an economic way to resolve energy and environmental issues. We have developed an efficient light harvesting heterostructure based on poly(diphenylbutadiyne) (PDPB) nanofibers and ZnO nanoparticles (NPs) via a solution phase synthetic route. ZnO NPs (~20 nm) were homogeneously loaded onto the PDPB nanofibers as evident from several analytical and spectroscopic techniques. The photoinduced electron transfer from PDPB nanofibers to ZnO NPs has been confirmed by steady state and picosecond-resolved photoluminescence studies. The co-sensitization for multiple photon harvesting (with different energies) at the heterojunction has been achieved via a systematic extension of conjugation from monomeric to polymeric diphenyl butadiyne moiety in the proximity of the ZnO NPs. On the other hand, energy transfer from the surface defects of ZnO NPs (~5 nm) to PDPB nanofibers through Förster Resonance Energy Transfer (FRET) confirms the close proximity with molecular resolution. The manifestation of efficient charge separation has been realized with ~5 fold increase in photocatalytic degradation of organic pollutants in comparison to polymer nanofibers counterpart under visible light irradiation. Our results provide a novel approach for the development of nanoheterojunctions for efficient light harvesting which will be helpful in designing future solar devices. PMID:26611253

  4. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer.

    PubMed Central

    Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S

    2001-01-01

    We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432

  5. Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET

    PubMed Central

    Madeira, Catarina; Loura, Luís MS; Prieto, Manuel; Fedorov, Aleksander; Aires-Barros, M Raquel

    2008-01-01

    Background Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo. Results In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium. Conclusion The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications. PMID:18302788

  6. Ultrafast dynamics in co-sensitized photocatalysts under visible and NIR light irradiation.

    PubMed

    Patwari, Jayita; Chatterjee, Arka; Sardar, Samim; Lemmens, Peter; Pal, Samir Kumar

    2018-04-18

    Co-sensitization to achieve a broad absorption window is a widely accepted technique in light harvesting nanohybrid synthesis. Protoporphyrin (PPIX) and squaraine (SQ2) are two organic sensitizers absorbing in the visible and NIR wavelength regions of the solar spectrum, respectively. In the present study, we have sensitized zinc oxide (ZnO) nanoparticles using PPIX and SQ2 simultaneously for their potential use in broad-band solar light harvesting in photocatalysis. Förster resonance energy transfer (FRET) from PPIX to SQ2 in close proximity to the ZnO surface has been found to enhance visible light photocatalysis. In order to confirm the effect of intermolecular FRET in photocatalysis, the excited state lifetime of the energy donor dye PPIX has been modulated by inserting d10 (ZnII) and d7 (CoII) metal ions in the central position of the dye (PP(Zn) and PP(Co)). In the case of PP(Co)-SQ2, extensive photo-induced ligand to metal charge transfer counteracts the FRET efficiency while efficient FRET has been observed for the PP(Zn)-SQ2 pair. This observation has been justified by the comparison of the visible light photocatalysis of the respective nanohybrids with several control studies. We have also investigated the NIR photocatalysis of the co-sensitized nanohybrids which reveals that reduced aggregation of SQ2 due to co-sensitization of PPIX increases the NIR photocatalysis. However, core-metalation of PPIX reduces the NIR photocatalytic efficacy, most probably due to excited state charge transfer from SQ2 to the metal centre of PP(Co)/PP(Zn) through the conduction band of the host ZnO nanoparticles.

  7. Dynamic imaging of protein-protein interactions by MP-FLIM

    NASA Astrophysics Data System (ADS)

    Ameer-Beg, Simon M.; Peter, Marion; Keppler, Melanie D.; Prag, Soren; Barber, Paul R.; Ng, Tony C.; Vojnovic, Borivoj

    2005-03-01

    The spatio-temporal localization of molecular interactions within cells in situ is of great importance in elucidating the key mechanisms in regulation of fundamental process within the cell. Measurements of such near-field localization of protein complexes may be achieved by the detection of fluorescence (or Forster) resonance energy transfer (FRET) between protein-conjugated fluorophores. We demonstrate the applicability of time-correlated single photon counting multiphoton microscopy to the spatio-temporal localization of protein-protein interactions in live and fixed cell populations. Intramolecular interactions between protein hetero-dimers are investigated using green fluorescent protein variants. We present an improved monomeric form of the red fluorescent protein, mRFP1, as the acceptor in biological fluorescence resonance energy transfer (FRET) experiments using the enhanced green fluorescent protein as donor. We find particular advantage in using this fluorophore pair for quantitative measurements of FRET. The technique was exploited to demonstrate a novel receptor-kinase interaction between the chemokine receptor (CXCR4) and protein kinase C (PKC) α in carcinoma cells for both live and fixed cell experiments.

  8. Dimerization between aequorea fluorescent proteins does not affect interaction between tagged estrogen receptors in living cells

    PubMed Central

    Kofoed, Eric M.; Guerbadot, Martin; Schaufele, Fred

    2008-01-01

    Förster resonance energy transfer (FRET) detection of protein interaction in living cells is commonly measured following the expression of interacting proteins genetically fused to the cyan (CFP) and yellow (YFP) derivatives of the Aequorea victoria fluorescent protein (FP). These FPs can dimerize at mM concentrations, which may introduce artifacts into the measurement of interaction between proteins that are fused with the FPs. Here, FRET analysis of the interaction between estrogen receptors (alpha isoform, ERα) labeled with “wild-type” CFP and YFP is compared with that of ERα labeled with “monomeric” A206K mutants of CFP and YFP. The intracellular equilibrium dissociation constant for the hormone-induced ERα-ERα interaction is similar for ERα labeled with wild-type or monomeric FPs. However, the measurement of energy transfer measured for ERα-ERα interaction in each cell is less consistent with the monomeric FPs. Thus, dimerization of the FPs does not affect the kinetics of ERα-ERα interaction but, when brought close together via ERα-ERα interaction, FP dimerization modestly improves FRET measurement. PMID:18601531

  9. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1

    PubMed Central

    David, Pamela S.; Tanveer, Rasheeda; Port, J. David

    2007-01-01

    A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3′ UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein–protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover. PMID:17626845

  10. Correlative FRET: new method improves rigor and reproducibility in determining distances within synaptic nanoscale architecture

    NASA Astrophysics Data System (ADS)

    Shinogle-Decker, Heather; Martinez-Rivera, Noraida; O'Brien, John; Powell, Richard D.; Joshi, Vishwas N.; Connell, Samuel; Rosa-Molinar, Eduardo

    2018-02-01

    A new correlative Förster Resonance Energy Transfer (FRET) microscopy method using FluoroNanogold™, a fluorescent immunoprobe with a covalently attached Nanogold® particle (1.4nm Au), overcomes resolution limitations in determining distances within synaptic nanoscale architecture. FRET by acceptor photobleaching has long been used as a method to increase fluorescence resolution. The transfer of energy from a donor to an acceptor generally occurs between 10-100Å, which is the relative distance between the donor molecule and the acceptor molecule. For the correlative FRET microscopy method using FluoroNanogold™, we immuno-labeled GFP-tagged-HeLa-expressing Connexin 35 (Cx35) with anti-GFP and with anti-Cx35/36 antibodies, and then photo-bleached the Cx before processing the sample for electron microscopic imaging. Preliminary studies reveal the use of Alexa Fluor® 594 FluoroNanogold™ slightly increases FRET distance to 70Å, in contrast to the 62.5Å using AlexaFluor 594®. Preliminary studies also show that using a FluoroNanogold™ probe inhibits photobleaching. After one photobleaching session, Alexa Fluor 594® fluorescence dropped to 19% of its original fluorescence; in contrast, after one photobleaching session, Alexa Fluor 594® FluoroNanogold™ fluorescence dropped to 53% of its original intensity. This result confirms that Alexa Fluor 594® FluoroNanogold™ is a much better donor probe than is Alexa Fluor 594®. The new method (a) creates a double confirmation method in determining structure and orientation of synaptic architecture, (b) allows development of a two-dimensional in vitro model to be used for precise testing of multiple parameters, and (c) increases throughput. Future work will include development of FluoroNanogold™ probes with different sizes of gold for additional correlative microscopy studies.

  11. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.

    PubMed

    Xia, Hongyan; Xie, Kang; Zou, Gang

    2017-12-18

    Studies on the following were reviewed: (1) the structure of spiropyrans and spirooxazines (two kinds of spiro compounds) under external stimuli and (2) the construction and applications of composite systems based on fluorescence resonance energy transfer (FRET) with fluorescent materials. When treated with different stimuli (light, acids and bases, solvents, metal ions, temperature, redox potential, and so on), spiropyrans/spirooxazines undergo transformations between the ring-closed form (SP), the ring-opened merocyanine (MC) form, and the protonated ring-opened form (MCH). This is due to the breakage of the spiro C-O bond and the protonation of MC, along with a color change. Various novel, multifunctional materials based on photochromic spiropyrans and spirooxazines have been successfully developed because of the vastly differently physiochemical properties posssed by the SP, MC and MCH forms. Among the three different structural forms, the MC form has been studied most extensively. The MC form not only gives complexes with various inorganic particles, biological molecules, and organic chemicals but also acts as the energy acceptor (of energy from fluorescent molecules) during energy transfer processes that take place under proper conditions. Furthermore, spiropyran and spirooxazine compounds exhibit reversible physicochemical property changes under proper stimuli; this provides more advantages compared with other photochromic compounds. Additionally, the molecular structures of spiropyrans and spirooxazines can be easily modified and extended, so better compounds can be obtained to expand the scope of already known applications. Described in detail are: (1) the structural properties of spiropyrans and spirooxazines and related photochromic mechanisms; (2) composite systems based on spiropyrans and spirooxazines, and (3) fluorescent materials which have potential applications in sensing, probing, and a variety of optical elements.

  12. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is notmore » a hindrance for this design.« less

  13. Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy

    NASA Astrophysics Data System (ADS)

    Jyothikumar, Vinod; Sun, Yuansheng; Periasamy, Ammasi

    2013-06-01

    A method to investigate the metabolic activity of intracellular tryptophan (TRP) and coenzyme-NADH using three-photon (3P) fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) is presented. Through systematic analysis of FLIM data from tumorigenic and nontumorigenic cells, a statistically significant decrease in the fluorescence lifetime of TRP was observed in response to the increase in protein-bound NADH as cells were treated with glucose. The results demonstrate the potential use of 3P-FLIM-FRET as a tool for label-free screening of the change in metabolic flux occurring in human diseases or other clinical conditions.

  14. FRET-FLIM microscopy

    NASA Astrophysics Data System (ADS)

    Elangovan, Masilamani; Day, Richard N.; Periasamy, Ammasi

    2002-06-01

    Visualizing and quantifying protein-protein interactions is a recent trend in biomedical imaging. The current advances in fluorescence microscopy coupled with the development of new fluorescent probes provide the tools to study protein interactions in living specimens. Spectral bleed-through or cross talk is a problem in one- and two-photon microscopy to recognize whether one is observing the sensitized emission or the bleed-through signals. In contrast, FLIM (fluorescence lifetime imaging microscopy) or lifetime measurements are independent of excitation intensity or fluorophore concentration. The combination of FLIM and FRET will provide high spatial (nanometer) and temporal (nanoseconds) resolution when compared to steady state FRET imaging. Importantly, spectral bleed-through is not an issue in FLIM imaging because only the donor fluorophore lifetime is measured. The presence of acceptor molecules within the local environment of the donor that permit energy transfer will influence the fluorescence lifetime of the donor. By measuring the donor lifetime in the presence and the absence of acceptor one can accurately calculate the FRET efficiency and the distance between donor- and acceptor-labeled proteins. Moreover, the FRET-FLIM technique allows monitoring more than one pair of protein interactions in a single living cell.

  15. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria.

    PubMed

    Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc

    2013-12-23

    Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.

  16. From force-fields to photons: MD simulations of dye-labeled nucleic acids and Monte Carlo modeling of FRET

    NASA Astrophysics Data System (ADS)

    Goldner, Lori

    2012-02-01

    Fluorescence resonance energy transfer (FRET) is a powerful technique for understanding the structural fluctuations and transformations of RNA, DNA and proteins. Molecular dynamics (MD) simulations provide a window into the nature of these fluctuations on a different, faster, time scale. We use Monte Carlo methods to model and compare FRET data from dye-labeled RNA with what might be predicted from the MD simulation. With a few notable exceptions, the contribution of fluorophore and linker dynamics to these FRET measurements has not been investigated. We include the dynamics of the ground state dyes and linkers in our study of a 16mer double-stranded RNA. Water is included explicitly in the simulation. Cyanine dyes are attached at either the 3' or 5' ends with a 3 carbon linker, and differences in labeling schemes are discussed.[4pt] Work done in collaboration with Peker Milas, Benjamin D. Gamari, and Louis Parrot.

  17. Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane

    PubMed Central

    Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.

    2014-01-01

    We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776

  18. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET.

    PubMed

    Khadria, Ambalika S; Senes, Alessandro

    2015-07-01

    Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations. © 2015 Wiley Periodicals, Inc.

  19. FRET analysis of CP12 structural interplay by GAPDH and PRK.

    PubMed

    Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme

    2015-03-13

    CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Handheld Fluorescence Resonance Energy Transfer (FRET)-Aptamer Sensor for Bone Markers

    NASA Technical Reports Server (NTRS)

    Bruno, John G.

    2015-01-01

    Astronauts lose significant bone mass during lengthy space flights. NASA wishes to monitor this bone loss in order to develop nutritional and exercise countermeasures. Operational Technologies Corporation (OpTech) has developed a handheld device that quantifies bone loss in a spacecraft environment. The innovation works by adding fluorescent dyes and quenchers to aptamers to enable pushbutton, one-step bind-and-detect FRET assays that can be freeze-dried, rehydrated with body fluids, and used to quantify bone loss.

  1. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  2. Thermo- and light-regulated formation and disintegration of double hydrophilic block copolymer assemblies with tunable fluorescence emissions.

    PubMed

    Wu, Yonghao; Hu, Huamin; Hu, Jinming; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2013-03-19

    We report on thermo- and light-regulated formation and disintegration of double hydrophilic block copolymer (DHBC) micelles associated with tunable fluorescence emissions by employing two types of DHBCs covalently labeled with fluorescence resonance energy transfer (FRET) donor and acceptor moieties, respectively, within the light and temperature dually responsive block. Both DHBCs are molecularly soluble at room temperature in their aqueous mixture, whereas, upon heating to above the critical micellization temperature (CMT, ~31 °C), they coassemble into mixed micelles possessing hydrophilic coronas and mixed cores containing FRET donors and acceptors. Accordingly, the closer spatial proximity between the FRET pair (NBDAE and RhBEA moieties) within micellar cores leads to substantially enhanced FRET efficiency, compared to that in the non-aggregated unimer state. Moreover, upon UV irradiation, the light-reactive moieties undergo light-cleavage reaction and transform into negatively charged carboxylate residues, leading to elevated CMT (∼46 °C). Thus, thermo-induced mixed micelles in the intermediate temperature range (31 °C < T < 46 °C) undergo light-triggered disintegration into unimers, accompanied with the decrease of FRET efficiency. Overall, the coassembly and disassembly occurring in the mixed DHBC solution can be dually regulated by temperature and UV irradiation, and most importantly, these processes can be facilely monitored via changes in FRET efficiency and distinct emission colors.

  3. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Chen, Lu; Algar, W Russ; Tavares, Anthony J; Krull, Ulrich J

    2011-01-01

    The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.

  4. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells.

    PubMed

    Hertel, Fabian; Switalski, Agathe; Mintert-Jancke, Elisa; Karavassilidou, Katharina; Bender, Kirsten; Pott, Lutz; Kienitz, Marie-Cécile

    2011-01-01

    Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P(2) in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane(.) For controlled and reversible depletion of PtdIns(4,5)P(2), voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Expression and correct targeting of ECFP-PH-PLCδ1(,) EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P(2) in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K(+) (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P(2) was identified. Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral constructs containing self-cleaving 2A-peptide sequences are highly suited for simultaneous transfer of multiple genes in adult cardiac myocytes.

  5. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome.

    PubMed

    Rohlman, C E; Blanco, M R; Walter, N G

    2016-01-01

    The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly. © 2016 Elsevier Inc. All rights reserved.

  6. Application of quantum-dots for analysis of nanosystems by either utilizing or preventing FRET

    NASA Astrophysics Data System (ADS)

    Kim, Joong H.; Chaudhary, Sumit; Stephens, Jared P.; Singh, Krishna V.; Ozkan, Mihrimah

    2005-04-01

    We have developed conjugates with quantum-dots (QDs) for the purpose of analysis of nanosystems that are organic or inorganic in nature such as DNA and carbon nanotubes. First, by employing Florescence Resonant Energy Transfer (FRET) principles, a hybrid molecular beacon conjugates are synthesized. For water- solubilization of QDs, we modified the surface of CdSe-ZnS core-shell QD by using mercaptoacetic acid ligand. This modification does not affect the size of QDs from that of unmodified QDs. After linking molecular beacons to the carboxyl groups of the modified QDs using 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, hybrid molecular beacons are prepared as a DNA probe. After hybridization with specific target DNA and non-specific target DNA, the hybrid conjugates show high specificity to the target DNA with 5-fold increase in the intensity of fluorescence. By developing atomic model of the conjugates, we calculated with 8 numbers of molecular beacons on a single quantum dots, we could increase the efficiency of FRET up to 90%. In other hands, for application of quantum dots to the carbon nanotubes, FRET is a barrier. Thus, after employing 1 % sodium-dodecyl-sulfonate (SDS), single-walled carbon nanotubes are decorated with QDs at their outer surface. This enables fluorescent microscopy imaging of single-walled carbon nanotubes which is a more common technique than electron microscopy. In summary, QDs can be used for analysis or detection of both organic and inorganic based nanosystems.

  7. Rapid detection of Wuchereria bancrofti and Brugia malayi in mosquito vectors (Diptera: Culicidae) using a real-time fluorescence resonance energy transfer multiplex PCR and melting curve analysis.

    PubMed

    Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Maleewong, Wanchai

    2009-01-01

    We developed a single-step real-time fluorescence resonance energy transfer (FRET) multiplex polymerase chain reaction (PCR) merged with melting curve analysis for the detection of Wuchereria bancrofti and Brugia malayi DNA in blood-fed mosquitoes. Real-time FRET multiplex PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two families of repeated DNA elements: the 188 bp SspI repeated sequence, specific to W. bancrofti, and the 153-bp HhaI repeated sequence, specific to the genus Brugia and two pairs of specific fluorophore-labeled probes. Both W. bancrofti and B. malayi can be differentially detected in infected vectors by this process through their different fluorescence channel and melting temperatures. The assay could distinguish both human filarial DNAs in infected vectors from the DNAs of Dirofilaria immitis- and Plasmodium falciparum-infected human red blood cells and noninfected mosquitoes and human leukocytes. The technique showed 100% sensitivity and specificity and offers a rapid and reliable procedure for differentially identifying lymphatic filariasis. The introduced real-time FRET multiplex PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The test can be used to screen mosquito vectors in endemic areas and therefore should be a useful diagnostic tool for the evaluation of infection rate of the mosquito populations and for xenomonitoring in the community after eradication programs such as the Global Program to Eliminate Lymphatic Filariasis.

  8. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations

    PubMed Central

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E.; Schuler, Benjamin

    2017-01-01

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques. PMID:28223518

  9. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations.

    PubMed

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E; Schuler, Benjamin

    2017-03-07

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.

  10. The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study

    NASA Astrophysics Data System (ADS)

    Manz, Christoph; Kobitski, Andrei Yu.; Samanta, Ayan; Jäschke, Andres; Nienhaus, G. Ulrich

    2018-03-01

    RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs to explore how the expression platform is oriented with respect to the aptamer.

  11. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes.

    PubMed

    Thestrup, Thomas; Litzlbauer, Julia; Bartholomäus, Ingo; Mues, Marsilius; Russo, Luigi; Dana, Hod; Kovalchuk, Yuri; Liang, Yajie; Kalamakis, Georgios; Laukat, Yvonne; Becker, Stefan; Witte, Gregor; Geiger, Anselm; Allen, Taylor; Rome, Lawrence C; Chen, Tsai-Wen; Kim, Douglas S; Garaschuk, Olga; Griesinger, Christian; Griesbeck, Oliver

    2014-02-01

    The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.

  12. Study of fluorescence resonance energy transfer in zwitterionic micelle: ionic-liquid-induced changes in FRET parameters.

    PubMed

    Rao, Vishal Govind; Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Sarkar, Nilmoni

    2012-10-04

    The fluorescence resonance energy transfer (FRET) using Coumarin-153 (C-153) as the donor and Rhodamine 6G (R6G) as the acceptor is studied in an aqueous solution of N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16) micelles by steady-state and picosecond time-resolved fluorescence spectroscopy. We have determined the rate of FRET (k(FRET)) from the rise of the acceptor (R6G) emission. In the absence of donor (C-153), the acceptor (R6G) displays a single-exponential decay with average lifetime of 4.77 ns, whereas in presence of donor (C-153), the acceptor (R6G) exhibits a biexponential fluorescence transient having a distinct rise component of 0.94 ns and decay component of 5.16 ns. We have carried out a comparative study of changes in FRET parameters upon addition of three different ionic liquids (ILs), 1-ethyl-3-methylimidazolium ethylsulfate [C(2)mim][C(2)SO(4)], 1-ethyl-3-methylimidazolium n-butylsulfate [C(2)mim][C(4)SO(4)], and 1-ethyl-3-methylimidazolium n-hexylsulfate [C(2)mim][C(6)SO(4)], where each ionic liquid bears the same cationic part and the anionic parts differ in the alkyl chain length only. It has been observed that with gradual addition of the ILs [C(2)mim][C(2)SO(4)], [C(2)mim][C(4)SO(4)], and [C(2)mim][C(6)SO(4)], the rise component gradually decreases and the rate of FRET (k(FRET)) gradually increases. The k(FRET) was found to be 1.06 × 10(9) s(-1) in 28 mM aqueous SB-16 micelles. With the addition of 100 mM [C(2)mim][C(2)SO(4)], the k(FRET) increases by a factor of 1.33 (1.41 × 10(9) s(-1)), whereas with the addition of 100 mM [C(2)mim][C(6)SO(4)] it increases by a factor of 3.25 (3.45 × 10(9) s(-1)). This rapid increase in k(FRET) in the case of [C(2)mim][C(6)SO(4)] can be explained by our earlier observation ( Rao, V. G.; Ghatak, C.; Ghosh, S.; Mandal, S.; Sarkar, N. J. Phys. Chem. B2012, 116, 3690-3698 ), where we have shown that with the addition of [C(2)mim][C(6)SO(4)], C-153 moves toward the outer surface of the micelle. This movement of C-153 causes reduction in donor-acceptor distance and enhancement in FRET rate (k(FRET)). This is well-supported by the reduced donor-acceptor distance (R(DA)) observed with the addition of [C(2)mim][C(6)SO(4)]. The R(DA) was found to be 29.1 Å in 28 mM aqueous SB-16 micelles. With the addition of 100 mM [C(2)mim][C(6)SO(4)], the R(DA) decreases to 24.8 Å. With further increase in the concentration of [C(2)mim][C(6)SO(4)], the R(DA) decreases, but the time constant for the rise of acceptor emission decreases to such an extent that we are unable to observe it by our instrumental setup.

  13. Robust and specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Feng, Guoqiang; Guo, Yuan; Zhou, Dejian

    2013-10-01

    We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate.We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate. Electronic supplementary information (ESI) available: Details on the synthesis, purification and characterisation of the DHLA-PEG600-N3, cyclooctyne-DNA, and QD-TBA20 conjugates as well as all supporting figures and tables. See DOI: 10.1039/c3nr02897f

  14. The bright future of single-molecule fluorescence imaging

    PubMed Central

    Juette, Manuel F.; Terry, Daniel S.; Wasserman, Michael R.; Zhou, Zhou; Altman, Roger B.; Zheng, Qinsi; Blanchard, Scott C.

    2014-01-01

    Single-molecule Förster resonance energy transfer (smFRET) is an essential and maturing tool to probe biomolecular interactions and conformational dynamics in vitro and, increasingly, in living cells. Multi-color smFRET enables the correlation of multiple such events and the precise dissection of their order and timing. However, the requirements for good spectral separation, high time resolution, and extended observation times place extraordinary demands on the fluorescent labels used in such experiments. Together with advanced experimental designs and data analysis, the development of long-lasting, non-fluctuating fluorophores is therefore proving key to progress in the field. Recently developed strategies for obtaining ultra-stable organic fluorophores spanning the visible spectrum are underway that will enable multi-color smFRET studies to deliver on their promise of previously unachievable biological insights. PMID:24956235

  15. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor.

    PubMed

    Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila

    2017-05-08

    In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7  M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10  M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    NASA Astrophysics Data System (ADS)

    Jung, Yun Kyung; Lee, Taemin; Shin, Eeseul; Kim, Byeong-Su

    2013-11-01

    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 μM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.

  17. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    NASA Astrophysics Data System (ADS)

    Schmid, Sonja; Hugel, Thorsten

    2018-03-01

    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  18. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-11-01

    Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.

  19. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays.

    PubMed

    Claussen, Jonathan C; Algar, W Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L

    2013-12-21

    Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.

  20. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Tavares, Anthony J; Noor, M Omair; Vannoy, Charles H; Algar, W Russ; Krull, Ulrich J

    2012-01-03

    The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1. © 2011 American Chemical Society

  1. Conformational fluctuation of Synaptotagmin-1 observed with single molecule fluorescence resonance energy transfer (smFRET)

    NASA Astrophysics Data System (ADS)

    Choi, Ucheor; Weninger, Keith

    2008-10-01

    Calcium dependent neurotransmitter release at the synapses involves a synaptic vesicle protein synaptotagmin-1, a calcium sensor, to regulate exocytosis. It has been known that Synaptotagmin-1 interacts with assembled SNARE complexes, but it is unclear how their molecular mechanisms are coupled. X-ray studies in the absence of calcium revealed a closed conformation of synaptotagmin-1 and with calcium bound to the C2 domains of synaptotagmin-3 found extensive interactions holding the domains open. Suggesting the two conformations can be the key to the two functions of synaptotagmin in regulating neurotransmission. Here we use single molecule fluorescence resonance energy transfer (smFRET) to study synaptotagmin interactions with SNARE complexes and the spontaneous conformational changes of synaptotagmin-1 when calcium is induced.

  2. Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z.

    PubMed

    Hoch, Duane A; Stratton, Jessica J; Gloss, Lisa M

    2007-08-24

    A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, compared to previous NCP FRET fluorophores, they: (1) are smaller and less hydrophobic, which should minimize perturbations of histone and NCP structure; and (2) have an R0 of 20 A, which is much less than the dimensions of the NCP (approximately 50 A width and approximately 100 A diameter). Equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 DNA positioning element. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation relative to weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of individual H2A-H2B dimers, confirming cooperativity as suggested previously; these data allow quantitative description of the cooperativity. The FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity of the dimer dissociations. Thus, the utility of this protein-protein FRET system to monitor the effects of histone variants on NCP dynamics has been demonstrated, and the system appears equally well-suited for dissection of the kinetic processes of dimer association and dissociation from the NCP.

  3. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time.

    PubMed

    Peng, Zhiyong; Young, Brandon; Baird, Alison E; Soper, Steven A

    2013-08-20

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with online single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10-10,000 copies) with an R(2) = 0.9995 for RT-LDR/spFRET and R(2) = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a two thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time-sensitive therapeutics.

  4. Förster resonance energy transfer as a tool to study photoreceptor biology

    PubMed Central

    Hovan, Stephanie C.; Howell, Scott; Park, Paul S.-H.

    2010-01-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context. PMID:21198205

  5. Evaluation of RSRM case hardware fretting concerns

    NASA Technical Reports Server (NTRS)

    Swauger, Thomas R.

    1990-01-01

    Fretting corrosion was first noted on Shuttle flight STS-26. This flight was the first usage of the Redesigned Solid Rocket Motor (RSRM). The occurrence of fretting has since been observed on both the field and factory joints of the RSRM. Fretting is a form of corrosion that occurs at the interface between contacting, highly loaded, metal surfaces when exposed to slight relative vibratory motions. The engineering effort performed to evaluate the effect of fretting on the RSRM case hardware is summarized. Based on the results of this evaluation, several conclusions were made concerning flight safety. Also, recommendations were made concerning trending the effects of multiple generations of fretting damage.

  6. FRET analysis of transmembrane flipping of FM4-64 in plant cells: is FM4-64 a robust marker for endocytosis?

    PubMed

    Griffing, L R

    2008-08-01

    Although the styryl dye FM4-64 is now used routinely to monitor endocytosis in plants, the argument about its potential to cytoplasmically and non-endocytically relocate into a selective set of vesicular compartments persists. To address this question, we determined whether fluorescence resonance energy transfer (FRET) could occur between a cytoplasmically expressed, short-wavelength excitation green fluorescent protein (GFP) and FM4-64 in Nicotiana benthaminana. After exposure to FM4-64, the root hair plasma membrane and internal organelles became labelled. Under these conditions, no FRET with cytoplasmic GFP was seen. However, if the cells were treated with a low concentration of quillajasaponin, a membrane permeabilization agent, the cells continued to stream and FRET was detected. Thereby, we demonstrate that under conditions that do not severely compromise cell viability, the FM4-64 dye becomes a suitable FRET partner for the cytoplasmically localized GFP. Under normal conditions, FM4-64 does not significantly enter the cytosolic side of the membrane, but remains at the plasma membrane or trapped in the organelles of the endocytic pathway. Hence, when the structure or permeability of the plasma membrane is unaltered, FM4-64 dye is a robust marker for endocytosis.

  7. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an important framework for the integration of QD-FRET methods with digital imaging for a ratiometric transduction of nucleic acid hybridization on a paper-based platform.

  8. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation.

    PubMed

    Meng, Fanjie; Bellaiche, Mathias M J; Kim, Jae-Yeol; Zerze, Gül H; Best, Robert B; Chung, Hoi Sung

    2018-02-27

    Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ∼35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies. Published by Elsevier Inc.

  9. Detection of influenza A virus from live-bird market poultry swab samples in China by a pan-IAV, one-step reverse-transcription FRET-PCR.

    PubMed

    Luan, Lu; Sun, Zhihao; Kaltenboeck, Bernhard; Huang, Ke; Li, Min; Peng, Daxin; Xu, Xiulong; Ye, Jianqiang; Li, Jing; Guo, Weina; Wang, Chengming

    2016-07-22

    The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources.

  10. Detection of influenza A virus from live-bird market poultry swab samples in China by a pan-IAV, one-step reverse-transcription FRET-PCR

    PubMed Central

    Luan, Lu; Sun, Zhihao; Kaltenboeck, Bernhard; Huang, Ke; Li, Min; Peng, Daxin; Xu, Xiulong; Ye, Jianqiang; Li, Jing; Guo, Weina; Wang, Chengming

    2016-01-01

    The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources. PMID:27445010

  11. Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells.

    PubMed

    Biener, Eva; Charlier, Madia; Ramanujan, V Krishnan; Daniel, Nathalie; Eisenberg, Avital; Bjørbaek, Christian; Herman, Brian; Gertler, Arieh; Djiane, Jean

    2005-12-01

    Leptin, an adipocyte-secreted hormone, signals through activation of its membrane-embedded receptor (LEPR). To study the leptin-induced events occurring in short (LEPRa) and long (LEPRb) LEPRs in the cell membrane, by FRET (fluorescence resonance energy transfer) methodology, the respective receptors, tagged at their C-terminal with CFP (cyan fluorescent protein) or YFP (yellow fluorescent protein), were prepared. The constructs encoding mLEPRa (mouse LEPRa)-YFP and mLEPRa-CFP, mLEPRb-YFP and mLEPRb-CFP were tested for biological activity in transiently transfected CHO cells (Chinese-hamster ovary cells) and HEK-293T cells (human embryonic kidney 293 T cells) for activation of STAT3 (signal transduction and activators of transcription 3)-mediated LUC (luciferase) activity and binding of radiolabelled leptin. All four constructs were biologically active and were as potent as their untagged counterparts. The localization pattern of the fused protein appeared to be confined almost entirely to the cell membrane. The leptin-dependent interaction between various types of receptors in fixed cells were studied by measuring FRET, using fluorescence lifetime imaging microscopy and acceptor photobleaching methods. Both methods yielded similar results, indicating that (1) leptin receptors expressed in the cell membrane exist mostly as preformed LEPRa/LEPRa or LEPRb/LEPRb homo-oligomers but not as LEPRb/LEPRa hetero-oligomers; (2) the appearance of transient leptin-induced FRET in cells transfected with LEPRb/LEPRb reflects both a conformational change that leads to closer interaction in the cytosolic part and a higher FRET signal, as well as de novo homo-oligomerization; (3) in LEPRa/LEPRa, exposure to leptin does not lead to any increase in FRET signalling as the proximity of CFP and YFP fluorophores in space already gives maximal FRET efficiency of the preoligomerized receptors.

  12. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    PubMed

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic single amino acid mutations that cause skeletal and cranial dysplasias, as well as cancer, we also study the effects of these mutations on dimerization. First, we show that the A391E mutation, linked to Crouzon syndrome with acanthosis nigricans and to bladder cancer, significantly enhances FGFR3 dimerization in the absence of ligand and thus induces aberrant receptor interactions. Second, we present results about the effect of three cysteine mutations that cause thanatophoric dysplasia, a lethal phenotype. Such cysteine mutations have been hypothesized previously to cause constitutive dimerization, but we find instead that they have a surprisingly modest effect on dimerization. Most of the studied pathogenic mutations also altered FGFR3 dimer structure, suggesting that both increases in dimerization propensities and changes in dimer structure contribute to the pathological phenotypes. The results acquired with the QI-FRET method further our understanding of the interactions between FGFR3 molecules and RTK molecules in general. Since RTK dimerization regulates RTK signaling, our findings advance our knowledge of RTK activity in health and disease. The utility of the QI-FRET method is not restricted to RTKs, and we thus hope that in the future the QI-FRET method will be applied to other classes of membrane proteins, such as channels and G protein-coupled receptors.

  13. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots.

    PubMed

    Rakovich, Aliaksandra; Sukhanova, Alyona; Bouchonville, Nicolas; Lukashev, Evgeniy; Oleinikov, Vladimir; Artemyev, Mikhail; Lesnyak, Vladimir; Gaponik, Nikolai; Molinari, Michael; Troyon, Michel; Rakovich, Yury P; Donegan, John F; Nabiev, Igor

    2010-07-14

    Purple membrane (PM) from bacteria Halobacterium salinarum contains a photochromic protein bacteriorhodopsin (bR) arranged in a 2D hexagonal nanocrystalline lattice (Figure 1 ). Absorption of light by the protein-bound chromophore retinal results in pumping the protons through the PM creating an electrochemical gradient which is then used by the ATPases to energize the cellular processes. Energy conversion, photochromism, and photoelectrism are the inherent effects which are employed in many bR technical applications. bR, along with the other photosensitive proteins, is not able to deal with the excess energy of photons in UV and blue spectral region and utilizes less than 0.5% of the energy from the available incident solar light for its biological function. Here, we proceed with optimization of bR functions through the engineering of a "nanoconverter" of solar energy based on semiconductor quantum dots (QDs) tagged with the PM. These nanoconverters are able to harvest light from deep-UV to the visible region and to transfer this additionally collected energy to bR via Förster resonance energy transfer (FRET). We show that specific nanobio-optical and spatial coupling of QDs (donor) and bR retinal (acceptor) provide a means to achieve FRET with efficiency approaching 100%. We have finally demonstrated that the integration of QDs within PM significantly increases the efficiency of light-driven transmembrane proton pumping, which is the main bR biological function. This new QD-PM hybrid material will have numerous optoelectronic, photonic, and photovoltaic applications based on its energy conversion, photochromism, and photoelectrism properties.

  14. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements

    PubMed Central

    Fuertes, Gustavo; Banterle, Niccolò; Ruff, Kiersten M.; Chowdhury, Aritra; Mercadante, Davide; Koehler, Christine; Kachala, Michael; Estrada Girona, Gemma; Milles, Sigrid; Mishra, Ankur; Onck, Patrick R.; Gräter, Frauke; Esteban-Martín, Santiago; Pappu, Rohit V.; Svergun, Dmitri I.; Lemke, Edward A.

    2017-01-01

    Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration (RG), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance (RE) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values RG and RE. For chemically denatured proteins we obtain mutual consistency in our inferences based on RG and RE, whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between RE and RG that is amplified in the absence of denaturants. Therefore, joint assessments of RG and RE combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles. PMID:28716919

  15. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  16. Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains.

    PubMed

    Liu, Yihua; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    To add novel functionality to quantum dots (QDs), we synthesized water-soluble and pH-responsive block-type polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were composed of cytocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer segments, which contain a small fraction of active ester groups and can be used to conjugate biologically active compounds to the polymer, and pH-responsive poly(2-(N,N-diethylamino) ethyl methacrylate (DEAEMA)) segments. One terminal of the polymer chain had a hydrophobic alkyl group that originated from the RAFT initiator. This hydrophobic group can bind to the hydrophobic layer on the QD surface. A fluorescent dye was conjugated to the polymer chains via the active ester group. The block-type polymers have an amphiphilic nature in aqueous medium. The polymers were thus easily bound to the QD surface upon evaporation of the solvent from a solution containing the block-type polymer and QDs, yielding QD/fluorescence dye-conjugated polymer hybrid nanoparticles. Fluorescence resonance energy transfer (FRET) between the QDs (donors) and the fluorescent dye molecules (acceptors) was used to obtain information on the conformational dynamics of the immobilized polymers. Higher FRET efficiency of the QD/fluorescent dye-conjugated polymer hybrid nanoparticles was observed at pH 7.4 as compared to pH 5.0 due to a stretching-shrinking conformational motion of the poly(DEAEMA) segments in response to changes in pH. We concluded that the block-type MPC polymer-modified nanoparticles could be used to evaluate the pH of cells via FRET fluorescence based on the cytocompatibility of the MPC polymer. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET.

    PubMed

    Shaheen, Sharif M; Akita, Hidetaka; Yamashita, Atsushi; Katoono, Ryo; Yui, Nobuhiko; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Harashima, Hideyoshi

    2011-04-01

    Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser.

  18. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET

    PubMed Central

    Shaheen, Sharif M.; Akita, Hidetaka; Yamashita, Atsushi; Katoono, Ryo; Yui, Nobuhiko; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Harashima, Hideyoshi

    2011-01-01

    Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser. PMID:21288880

  19. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET

    PubMed Central

    Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to customize the analysis for their own needs. By bundling analysis description, code and results in a single document, FRETBursts allows to seamless share analysis workflows and results, encourages reproducibility and facilitates collaboration among researchers in the single-molecule community. PMID:27532626

  20. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    PubMed

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  1. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    PubMed

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  2. Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment. PMID:23940626

  3. Green fluorescence protein-based content-mixing assay of SNARE-driven membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Paul; Kong, Byoungjae; Jung, Young-Hun

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion by forming a ternary SNARE complex. A minimalist approach utilizing proteoliposomes with reconstituted SNARE proteins yielded a wealth of information pinpointing the molecular mechanism of SNARE-mediated fusion and its regulation by accessory proteins. Two important attributes of a membrane fusion are lipid-mixing and the formation of an aqueous passage between apposing membranes. These two attributes are typically observed by using various fluorescent dyes. Currently available in vitro assay systems for observing fusion pore opening have several weaknesses such as cargo-bleeding, incomplete removal of unencapsulated dyes, and inadequate information regardingmore » the size of the fusion pore, limiting measurements of the final stage of membrane fusion. In the present study, we used a biotinylated green fluorescence protein and streptavidin conjugated with Dylight 594 (DyStrp) as a Föster resonance energy transfer (FRET) donor and acceptor, respectively. This FRET pair encapsulated in each v-vesicle containing synaptobrevin and t-vesicle containing a binary acceptor complex of syntaxin 1a and synaptosomal-associated protein 25 revealed the opening of a large fusion pore of more than 5 nm, without the unwanted signals from unencapsulated dyes or leakage. This system enabled determination of the stoichiometry of the merging vesicles because the FRET efficiency of the FRET pair depended on the molar ratio between dyes. Here, we report a robust and informative assay for SNARE-mediated fusion pore opening. - Highlights: • SNARE proteins drive membrane fusion and open a pore for cargo release. • Biotinylated GFP and DyStrp was used as the reporter pair of fusion pore opening. • Procedure for efficient SNARE reconstitution and reporter encapsulation was established. • The FRET pair reported opening of a large fusion pore bigger than 5 nm. • The assay was robust and provided information of stoichiometry of vesicle fusion.« less

  4. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  5. Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.

    PubMed

    Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J

    2017-01-25

    Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.

  6. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme

    PubMed Central

    de Silva, Chamaree; Walter, Nils G.

    2009-01-01

    Engineered “aptazymes” fuse in vitro selected aptamers with ribozymes to create allosteric enzymes as biosensing components and artificial gene regulatory switches through ligand-induced conformational rearrangement and activation. By contrast, activating ligand is employed as an enzymatic cofactor in the only known natural aptazyme, the glmS ribozyme, which is devoid of any detectable conformational rearrangements. To better understand this difference in biosensing strategy, we monitored by single molecule fluorescence resonance energy transfer (FRET) and 2-aminopurine (AP) fluorescence the global conformational dynamics and local base (un)stacking, respectively, of a prototypical drug-sensing aptazyme, built from a theophylline aptamer and the hammerhead ribozyme. Single molecule FRET reveals that a catalytically active state with distal Stems I and III of the hammerhead ribozyme is accessed both in the theophylline-bound and, if less frequently, in the ligand-free state. The resultant residual activity (leakage) in the absence of theophylline contributes to a limited dynamic range of the aptazyme. In addition, site-specific AP labeling shows that rapid local theophylline binding to the aptamer domain leads to only slow allosteric signal transduction into the ribozyme core. Our findings allow us to rationalize the suboptimal biosensing performance of the engineered compared to the natural aptazyme and to suggest improvement strategies. Our single molecule FRET approach also monitors in real time the previously elusive equilibrium docking dynamics of the hammerhead ribozyme between several inactive conformations and the active, long-lived, Y-shaped conformer. PMID:19029309

  7. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics.

    PubMed

    Wang, Ye; Gan, Ning; Zhou, You; Li, Tianhua; Cao, Yuting; Chen, Yinji

    2017-01-15

    Herein, a smart single-stranded DNA binding protein (SSB)-assisted fluorescence aptamer switch based on fluorescence resonance energy transfer (FRET) was designed. The FRET switch was synthesized by connecting SSB labeled quantum dots (QDs@SSB) as donor with aptamer (apt) labeled gold nanoparticles (AuNPs@apt) as acceptor, and it was employed for detecting chloramphenicol (CAP) in a homogenous solution. In the assay, the interaction between core-shell QDs@SSB and AuNPs@apt leads to a dramatic quenching (turning off). After adding CAP in the detection system, AuNPs@apt can bind the target specifically then separate QDs@SSB with AuNPs@apt-target, resulting in restoring the fluorescence intensity of QDs (turning on). Consequently, the fluorescence intensity recovers and the recovery extent can be used for detection of CAP in homogenous phase via optical responses. Under optimal conditions, the fluorescence intensity increased linearly with increasing concentrations of CAP from 0.005 to 100ngmL -1 . The limit of this fluorescence aptamer switch was around 3pgmL -1 for CAP detection. When the analyte is changed, the assay can be applied to detect other targets only by changing relative aptamer in AuNPs@apt probe. Furthermore, it has potential to be served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lv; Yi, Long; Song, Fanbo; Wei, Chao; Wang, Bai-Fan; Xi, Zhen

    2014-04-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signalling molecule with multiple biological functions. In order to visualize and quantify the endogenous in situ production of H2S in living cells, here we developed two new sulphide ratiometric probes (SR400 and SR550) based on fluorescence resonance energy transfer (FRET) strategy for live capture of H2S. The FRET-based probes show excellent selectivity toward H2S in a high thiol background under physiological buffer. The probe can be used to in situ visualize cysteine-dependent H2S production in a chiral-sensitive manner in living cells. The ratiometric imaging studies indicated that D-Cys induces more H2S production than that of L-Cys in mitochondria of human embryonic kidney 293 cells (HEK293). The cysteine mimics propargylglycine (PPG) has also been found to inhibit the cysteine-dependent endogenous H2S production in a chiral-sensitive manner in living cells. D-PPG inhibited D-Cys-dependent H2S production more efficiently than L-PPG, while, L-PPG inhibited L-Cys-dependent H2S production more efficiently than D-PPG. Our bioimaging studies support Kimura's discovery of H2S production from D-cysteine in mammalian cells and further highlight the potential of D-cysteine and its derivatives as an alternative strategy for classical H2S-releasing drugs.

  9. Color control through FRET efficiency modulation using CDI (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wolowelsky, Karni; Guyes, Eric; Rubin, Shimon; Suss, Matthew; Bercovici, Moran; Rotschild, Carmel

    2017-02-01

    Although much progress was made in light emitting devices, the ability to electrically control their spectral emission remains limited. We will present a novel approach and experimental results for dynamic color control, by electrically modulating the non-radiative Forster resonance energy transfer (FRET) efficiency between donor and acceptor dyes in a solution. FRET efficiency depends on the 6th power of the distance between donor and acceptor dye molecules, and thus, it is sensitive to variations in acceptor's concentration. Controlled acceptor concentrations could be achieved by attracting or repelling ionic dyes from the electrodes using a capacitive deionization (CDI) cell, with high surface area porous electrodes. This approach to dynamic color control may open new directions in 100% fill-factor displays, and can be expanded to energy saving applications such as controlling building's external wall emissivity. We studied the modulation of a single dye emission using a CDI cell with negatively charged Fluorescein Sodium Salt in aquatic solution. Photoluminescence was measured along few charging-discharging CDI cycles and showed the ability to control extensive optical response through CDI. We experimented with two types of FRET-pair dyes: a) anion-cation, where the acceptor and the donor ions are oppositely charged, and b) zwitterion and ion, where the donor is neutral. We found that electrical control on FRET in aquatic solution is weak, due to hydrophobic attractive interaction between the acceptor and the donor. In order to avoid this effect, we are experimenting FRET control in organic solvents. These results will be presented in the talk.

  10. Parallel multispot smFRET analysis using an 8-pixel SPAD array

    NASA Astrophysics Data System (ADS)

    Ingargiola, A.; Colyer, R. A.; Kim, D.; Panzeri, F.; Lin, R.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X.

    2012-02-01

    Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for extracting distance information between two fluorophores (a donor and acceptor dye) on a nanometer scale. This method is commonly used to monitor binding interactions or intra- and intermolecular conformations in biomolecules freely diffusing through a focal volume or immobilized on a surface. The diffusing geometry has the advantage to not interfere with the molecules and to give access to fast time scales. However, separating photon bursts from individual molecules requires low sample concentrations. This results in long acquisition time (several minutes to an hour) to obtain sufficient statistics. It also prevents studying dynamic phenomena happening on time scales larger than the burst duration and smaller than the acquisition time. Parallelization of acquisition overcomes this limit by increasing the acquisition rate using the same low concentrations required for individual molecule burst identification. In this work we present a new two-color smFRET approach using multispot excitation and detection. The donor excitation pattern is composed of 4 spots arranged in a linear pattern. The fluorescent emission of donor and acceptor dyes is then collected and refocused on two separate areas of a custom 8-pixel SPAD array. We report smFRET measurements performed on various DNA samples synthesized with various distances between the donor and acceptor fluorophores. We demonstrate that our approach provides identical FRET efficiency values to a conventional single-spot acquisition approach, but with a reduced acquisition time. Our work thus opens the way to high-throughput smFRET analysis on freely diffusing molecules.

  11. In situ temperature monitoring in single-molecule FRET experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Berndt, Frederic; Ollmann, Simon; Krainer, Georg; Schlierf, Michael

    2018-03-01

    Thermodynamic properties of single molecules including enthalpic and entropic contributions are often determined from experiments by a direct control and precise measurement of the local temperature. However, common temperature monitoring techniques using, for example, ultrafine temperature probes can lead to uncertainties as the probe cannot be placed in the vicinity of the molecule of interest. Here, we devised an approach to measure the local temperature in freely diffusing confocal single-molecule Förster Resonance Energy Transfer (smFRET) experiments in situ by directly adding the temperature-sensitive fluorescent dye Rhodamine B, whose fluorescence lifetime serves as a probe of the local temperature in the confocal volume. We demonstrate that the temperature and FRET efficiencies of static and dynamic molecules can be extracted within one measurement simultaneously, without the need of a reference chamber. We anticipate this technique to be particularly useful in the physicochemical analyses of temperature-dependent biomolecular processes from single-molecule measurements.

  12. A Signature of Spatial Correlations between rare earth ions and single-wall nanotubes wrapped with DNA in their mixed solution

    NASA Astrophysics Data System (ADS)

    Ignatova, Tetyana; Rotkin, Slava V.

    2012-02-01

    We propose that the fluorescence resonance energy transfer (FRET) between the rare earth ions (REI) and single-wall nanotubes (SWNT) can be used to measure their Coulomb correlation in solution. As a calibration experiment the FRET between two different REIs, being the energy donor and the acceptor, in their mixed solution has been used. From the photoluminescence decay time we were able to extract the characteristic distance between unlike REIs. Our study revealed negative correlation (the repulsion) for Tb-Eu solution. In the case of the solution containing the REI and the SWNTs wrapped with DNA we observed a significant positive correlation (the attraction and the complex formation). The data is in a good agreement with the theoretical estimates and allows to propose REIs and their FRET as a sensitive tool for detecting kinetics of interaction of SWNTs in aqueous solutions.

  13. Accurate high-throughput structure mapping and prediction with transition metal ion FRET

    PubMed Central

    Yu, Xiaozhen; Wu, Xiongwu; Bermejo, Guillermo A.; Brooks, Bernard R.; Taraska, Justin W.

    2013-01-01

    Mapping the landscape of a protein’s conformational space is essential to understanding its functions and regulation. The limitations of many structural methods have made this process challenging for most proteins. Here, we report that transition metal ion FRET (tmFRET) can be used in a rapid, highly parallel screen, to determine distances from multiple locations within a protein at extremely low concentrations. The distances generated through this screen for the protein Maltose Binding Protein (MBP) match distances from the crystal structure to within a few angstroms. Furthermore, energy transfer accurately detects structural changes during ligand binding. Finally, fluorescence-derived distances can be used to guide molecular simulations to find low energy states. Our results open the door to rapid, accurate mapping and prediction of protein structures at low concentrations, in large complex systems, and in living cells. PMID:23273426

  14. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  15. Observation of an angular change in the structure of an RNA complex using Fluorescence Resonance Energy Transfer

    NASA Astrophysics Data System (ADS)

    Rahmanseresht, Sheema; Milas, Peker; Parrot, Louis; Goldner, Lori S.

    Single-molecular-pair FRET is often used to study distance fluctuations of single molecules. It is harder to capture angular changes using FRET, because rotational motion of the dyes tends to wash out the angular sensitivity. Using a dye labeling scheme that minimizes the rotational motion of the dyes with respect to the RNA, we use spFRET to measure an angular change in structure of an RNA kissing complex upon protein binding. The model system studied here, R1inv-R2inv, is derived from the RNAI-RNAII complex in E.coli. RNA II is a primer for replication of the ColE1 plasmid; its function is modulated by interaction with RNA I, Rop protein is known to stabilize the bent R1inv-R2inv kissing complex against dissociation. The effect, if any, of Rop protein on the conformation of the kissing complex is not known. The eight minimized-energy NMR structures reported for R1inv-R2inv show a small difference in end-to-end distances and much larger differences in twist and bend angles. We compare a first-principles model with spFRET data to determine if the observed change in FRET is consistent with an angular change in structure, as suggested by the model. Grant Number: NSF DBI-1152386.

  16. FRET study of G-quadruplex forming fluorescent oligonucleotide probes at the lipid monolayer interface.

    PubMed

    Swiatkowska, Angelika; Kosman, Joanna; Juskowiak, Bernard

    2016-01-05

    Spectral properties and G-quadruplex folding ability of fluorescent oligonucleotide probes at the cationic dioctadecyldimethylammonium bromide (DODAB) monolayer interface are reported. Two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence and a 21-mer with human telomeric sequence, were end-labeled with fluorescent groups (FAM and TAMRA) to give FRET probes F19T and F21T, respectively. The probes exhibited abilities to fold into a quadruplex structure and to bind metal cations (Na(+) and K(+)). Fluorescence spectra of G-quadruplex FRET probes at the monolayer interface are reported for the first time. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. The effect of the presence of DODAB monolayer, metal cations and the surface pressure of monolayer on spectral behavior of FRET probes were examined. Adsorption of probe at the cationic monolayer interface resulted in the FRET signal enhancement even in the absence of metal cations. Variation in the monolayer surface pressure exerted rather modest effect on the spectral properties of probes. The fluorescence energy transfer efficiency of monolayer adsorbed probes increased significantly in the presence of sodium or potassium ion in subphase, which indicated that the probes retained their cation binding properties when adsorbed at the monolayer interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. E. coli derived Von Willebrand Factor-A2 domain FRET proteins that quantify ADAMTS13 activity

    PubMed Central

    Dayananda, Kannayakanahalli M.; Gogia, Shobhit; Neelamegham, Sriram

    2010-01-01

    The cleavage of the A2-domain of Von Willebrand Factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET proteins’, where variants of YFP (Venus) and CFP (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, 77 amino acids) of this domain. These proteins were expressed in E. coli in soluble form, and they exhibited Fluorescence/Förster Resonance Energy Transfer (FRET) properties. Results show that introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13 mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, upon increasing urea concentration. While proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity, and as a tool to study VWF-A2 conformation dynamics. PMID:21146487

  18. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.

    PubMed

    Kemmerich, Felix E; Swoboda, Marko; Kauert, Dominik J; Grieb, M Svea; Hahn, Steffen; Schwarz, Friedrich W; Seidel, Ralf; Schlierf, Michael

    2016-01-13

    We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.

  19. Protease sensing using nontoxic silicon quantum dots.

    PubMed

    Cheng, Xiaoyu; McVey, Benjamin F P; Robinson, Andrew B; Longatte, Guillaume; O'Mara, Peter B; Tan, Vincent T G; Thordarson, Pall; Tilley, Richard D; Gaus, Katharina; Justin Gooding, John

    2017-08-01

    Herein is presented a proof-of-concept study of protease sensing that combines nontoxic silicon quantum dots (SiQDs) with Förster resonance energy transfer (FRET). The SiQDs serve as the donor and an organic dye as the acceptor. The dye is covalently attached to the SiQDs using a peptide linker. Enzymatic cleavage of the peptide leads to changes in FRET efficiency. The combination of interfacial design and optical imaging presented in this work opens opportunities for use of nontoxic SiQDs relevant to intracellular sensing and imaging. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Fluorescent material concentration dependency: Förster resonance energy transfer in quasi-solid state DSSCs

    NASA Astrophysics Data System (ADS)

    Kim, Dong Woo; Jo, Hyun-Jun; Thogiti, Suresh; Yang, Weon Ki; Cheruku, Rajesh; Kim, Jae Hong

    2017-05-01

    Förster resonance energy transfer (FRET) is critical for wide spectral absorption, an increased dye loading, and photocurrent generation of dye-sensitized solar cells (DSSCs). This process consists of organic fluorescent materials (as an energy donor), and an organic dye (as an energy acceptor on TiO2 surfaces) with quasi-solid electrolyte. The judicious choice of the energy donor and acceptor facilitates a strong spectral overlap between the emission and absorption regions of the fluorescent materials and dye. This FRET process enhances the light-harvesting characteristics of quasi-solid state DSSCs. In this study, DSSCs containing different concentrations (0, 1, and 1.5 wt%) of a fluorescent material (FM) as the energy donor are investigated using FRET. The power conversion efficiency of DSSCs containing FMs in a quasi-solid electrolyte increased by 33% over a pristine cell. The optimized cell fabricated with the quasi-solid state DSSC containing 1.0 wt% FM shows a maximum efficiency of 3.38%, with a short-circuit current density ( J SC ) of 4.32 mA/cm-2, and an open-circuit voltage ( V OC ) of 0.68 V under illumination of simulated solar light (AM 1.5G, 100 mW/cm-2). [Figure not available: see fulltext.

  1. In Vitro Reconstitution of Autophagosome-Lysosome Fusion.

    PubMed

    Diao, J; Li, L; Lai, Y; Zhong, Q

    2017-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are a highly regulated class of membrane proteins lying in the center of membrane fusion. In conjunction with accessory proteins, SNAREs drive efficient merger of two distinct lipid bilayers into one interconnected structure. This chapter describes our fluorescence resonance energy transfer (FRET)-based proteoliposome fusion assays for the roles of various SNARE proteins, accessory proteins, and effects of different lipid compositions on membrane fusion involved in autophagy. © 2017 Elsevier Inc. All rights reserved.

  2. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.

    PubMed

    Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie

    2017-05-15

    A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hydrogen Bonding Stabilized Self-Assembly of Inorganic Nanoparticles: Mechanism and Collective Properties.

    PubMed

    Yue, Mingli; Li, Yanchun; Hou, Ying; Cao, Wenxin; Zhu, Jiaqi; Han, Jiecai; Lu, Zhongyuan; Yang, Ming

    2015-06-23

    Developing a simple and efficient method to organize nanoscale building blocks into ordered superstructures, understanding the mechanism for self-assembly and revealing the essential collective properties are crucial steps toward the practical use of nanostructures in nanotechnology-based applications. In this study, we showed that the high-yield formation of ZnO nanoparticle chains with micrometer length can be readily achieved by the variation of solvents from methanol to water. Spectroscopic studies confirmed the solvent effect on the surface properties of ZnO nanoparticles, which were found to be critical for the formation of anisotropic assemblies. Quantum mechanical calculations and all atom molecular dynamic simulations indicated the contribution of hydrogen bonding for stabilizing the structure in water. Dissipative particle dynamics further revealed the importance of solvent-nanoparticle interactions for promoting one-dimensional self-assembly. The branching of chains was found upon aging, resulting in the size increase of the ensembles and network formation. Steady-state and time-resolved luminescent spectroscopes, which probed the variation of defect-related emission, revealed stronger Forster resonance energy transfer (FRET) between nanoparticles when the chain networks were formed. The high efficiency of FRET quenching can be ascribed to the presence of multiple energy transfer channels, as well as the short internanoparticle distances and the dipole alignment.

  5. Protein-Protein Förster Resonance Energy Transfer Analysis of Nucleosome Core Particles Containing H2A and H2A.Z

    PubMed Central

    Hoch, Duane A.; Stratton, Jessica J.; Gloss, Lisa M.

    2007-01-01

    A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, in comparison to fluorophores used in previous NCP FRET studies, they: 1) are smaller and less hydrophobic which should minimize perturbations of histone and NCP structure; and 2) have an R0 of 20 Å, which is much less than the dimensions of the NCP (~50 Å width and ~100 Å diameter). CD and FL equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 artificial positioning DNA sequence. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation as compared to previous studies using weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of each H2A-H2B dimer, confirming cooperativity in dimer dissociation. While cooperativity in the association/dissociation of the H2A-H2B dimers has been suggested previously, these data allow its quantitative description. The protein-protein FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. Comparison of the H2A and H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity for dimer dissociation from H2A.Z NCPs. Thus, the utility of this protein-protein FRET system to monitor the effects of histone variants on NCP dynamics has been demonstrated, and the system appears equally well-suited for dissection of the kinetic processes of dimer association and dissociation from the NCP. PMID:17597150

  6. Development of a sensor to study the DNA conformation using molecular logic gates

    NASA Astrophysics Data System (ADS)

    Roy, Arpan Datta; Dey, Dibyendu; Saha, Jaba; Chakraborty, Santanu; Bhattacharjee, D.; Hussain, Syed Arshad

    2015-02-01

    This communication reports our investigations on the Fluorescence Resonance Energy Transfer (FRET) between two laser dyes Acriflavine and Rhodamine B in absence and presence of DNA at different pH. It has been observed that energy transfer efficiency is largely affected by the presence of DNA as well as the pH of the system. It is well known that with increase in pH, DNA conformation changes from double stranded to single stranded (denaturation) and finally form random coil. Based on our experimental results two different types of molecular logic gates namely, XOR and OR logic have been demonstrated which can be used to have an idea about DNA conformation in solution.

  7. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.

    PubMed

    Tshangana, Charmaine; Nyokong, Tebello

    2015-01-01

    L-Glutathione (GSH) capped core CdSe (2.3 nm) and core shell CdSe@ZnS quantum dots (QDs) (3.0 nm and 3.5 nm) were coordinated to gallium octacarboxy phthalocyanine (ClGaPc(COOH)8) to form ClGaPc(COOH)8-QDs conjugates. An efficient transfer of energy from the QDs to the Pcs was demonstrated through Förster resonance energy transfer (FRET), the FRET efficiencies in all cases was above 50%. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were also determined for the conjugates. There was a decrease in the fluorescence lifetimes of ClGaPc(COOH)8 in the presence of all the QDs, due to the heavy atom effect. The triplet quantum yields increased in the conjugates. The lifetimes also became longer for the conjugates compared to Pc alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development and testing of a fluorescence biosensor for glucose sensing

    NASA Astrophysics Data System (ADS)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  9. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.

    PubMed

    Fuertes, Gustavo; Banterle, Niccolò; Ruff, Kiersten M; Chowdhury, Aritra; Mercadante, Davide; Koehler, Christine; Kachala, Michael; Estrada Girona, Gemma; Milles, Sigrid; Mishra, Ankur; Onck, Patrick R; Gräter, Frauke; Esteban-Martín, Santiago; Pappu, Rohit V; Svergun, Dmitri I; Lemke, Edward A

    2017-08-01

    Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration ( R G ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance ( R E ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values R G and R E For chemically denatured proteins we obtain mutual consistency in our inferences based on R G and R E , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between R E and R G that is amplified in the absence of denaturants. Therefore, joint assessments of R G and R E combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.

  10. FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots.

    PubMed

    Zhu, Qingdong; Wang, Li; Dong, Qianli; Chang, Shu; Wen, Kexin; Jia, Shenghua; Chu, Zhilin; Wang, Hanmeng; Gao, Ping; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2017-08-01

    Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu-2μ∆13 and FLIPglu-600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K 0.5 value for FLIPglu-2μΔ13 was approximately 10.05μM, and that for FLIPglu-600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu-2μΔ13 in a stimulus-specific manner, but not in FLIPglu-600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2-20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

    PubMed

    Rodrigues, Ana Rita O; Gomes, I T; Almeida, Bernardo G; Araújo, J P; Castanheira, Elisabete M S; Coutinho, Paulo J G

    2015-07-21

    Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of the lipid bilayer in DMLs was confirmed by FRET (Förster Resonance Energy Transfer) measurements between the fluorescent-labeled lipids NBD-C12-HPC (NBD acting as a donor) included in the second lipid layer and rhodamine B-DOPE (acceptor) in the first lipid layer. An average donor-acceptor distance of 3 nm was estimated. Assays of the non-specific interactions of magnetoliposomes with biological membranes (modeled using giant unilamellar vesicles, GUVs) were performed. Membrane fusion between both aqueous and dry magnetoliposomes and GUVs was confirmed by FRET, which is an important result regarding applications of these systems both as hyperthermia agents and antitumor drug nanocarriers.

  12. Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor.

    PubMed

    Nakanishi, Yoichi; Iida, Syuntaro; Ueoka-Nakanishi, Hanayo; Niimi, Tomoaki; Tomioka, Rie; Maeshima, Masayoshi

    2013-01-01

    Molybdenum (Mo) is an essential trace element for almost all living organisms including animals. Mo is used as a catalytic center of molybdo-enzymes for oxidation/reduction reactions of carbon, nitrogen, and sulfur metabolism. Whilst living cells are known to import inorganic molybdate oxyanion from the surrounding environment, the in vivo dynamics of cytosolic molybdate remain poorly understood as no appropriate indicator is available for this trace anion. We here describe a genetically encoded Förester-resonance-energy-transfer (FRET)-based nanosensor composed of CFP, YFP and the bacterial molybdate-sensor protein ModE. The nanosensor MolyProbe containing an optimized peptide-linker responded to nanomolar-range molybdate selectively, and increased YFP:CFP fluorescence intensity ratio by up to 109%. By introduction of the nanosensor, we have been able to successfully demonstrate the real-time dynamics of molybdate in living animal cells. Furthermore, time course analyses of the dynamics suggest that novel oxalate-sensitive- and sulfate-resistant- transporter(s) uptake molybdate in a model culture cell.

  13. New LightCycler PCR for Rapid and Sensitive Quantification of Parvovirus B19 DNA Guides Therapeutic Decision-Making in Relapsing Infections

    PubMed Central

    Harder, Timm C.; Hufnagel, Markus; Zahn, Katrin; Beutel, Karin; Schmitt, Heinz-Josef; Ullmann, Uwe; Rautenberg, Peter

    2001-01-01

    Detection of parvovirus B19 DNA offers diagnostic advantages over serology, particularly in persistent infections of immunocompromised patients. A rapid, novel method of B19 DNA detection and quantification is introduced. This method, a quantitative PCR assay, is based on real-time glass capillary thermocycling (LightCycler [LC]) and fluorescence resonance energy transfer (FRET). The PCR assay allowed quantification over a dynamic range of over 7 logs and could quantify as little as 250 B19 genome equivalents (geq) per ml as calculated for plasmid DNA (i.e., theoretically ≥5 geq per assay). Interrater agreement analysis demonstrated equivalence of LC-FRET PCR and conventional nested PCR in the diagnosis of an active B19 infection (kappa coefficient = 0.83). The benefit of the new method was demonstrated in an immunocompromised child with a relapsing infection, who required an attenuation of the immunosuppressive therapy in addition to repeated doses of immunoglobulin to eliminate the virus. PMID:11724854

  14. Apollo-NADP(+): a spectrally tunable family of genetically encoded sensors for NADP(+).

    PubMed

    Cameron, William D; Bui, Cindy V; Hutchinson, Ashley; Loppnau, Peter; Gräslund, Susanne; Rocheleau, Jonathan V

    2016-04-01

    NADPH-dependent antioxidant pathways have a critical role in scavenging hydrogen peroxide (H2O2) produced by oxidative phosphorylation. Inadequate scavenging results in H2O2 accumulation and can cause disease. To measure NADPH/NADP(+) redox states, we explored genetically encoded sensors based on steady-state fluorescence anisotropy due to FRET (fluorescence resonance energy transfer) between homologous fluorescent proteins (homoFRET); we refer to these sensors as Apollo sensors. We created an Apollo sensor for NADP(+) (Apollo-NADP(+)) that exploits NADP(+)-dependent homodimerization of enzymatically inactive glucose-6-phosphate dehydrogenase (G6PD). This sensor is reversible, responsive to glucose-stimulated metabolism and spectrally tunable for compatibility with many other sensors. We used Apollo-NADP(+) to study beta cells responding to oxidative stress and demonstrated that NADPH is significantly depleted before H2O2 accumulation by imaging a Cerulean-tagged version of Apollo-NADP(+) with the H2O2 sensor HyPer.

  15. The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods

    PubMed Central

    Bhat, Riyaz A; Lahaye, Thomas; Panstruga, Ralph

    2006-01-01

    Non-invasive fluorophore-based protein interaction assays like fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC, also referred to as "split YFP") have been proven invaluable tools to study protein-protein interactions in living cells. Both methods are now frequently used in the plant sciences and are likely to develop into standard techniques for the identification, verification and in-depth analysis of polypeptide interactions. In this review, we address the individual strengths and weaknesses of both approaches and provide an outlook about new directions and possible future developments for both techniques. PMID:16800872

  16. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor.

    PubMed

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; Abdalla, Said

    2011-06-10

    Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of co-enriched receptor proteins immobilized on agarose beads also detected a high FRET efficiency of 24.0%. Taken together confocal FRET imaging revealed efficient heterodimerization of co-enriched and cellular AT1/B2R, and GRK-dependent co-internalization of the AT1/B2R heterodimer. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Phospholamban mutants compete with wild type for SERCA binding in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Simon J.; Haydon, Suzanne; Thomas, David D., E-mail: ddt@umn.edu

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCAmore » activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.« less

  18. Förster resonance energy transfer between pyrene and bovine serum albumin: effect of the hydrophobic pockets of cyclodextrins.

    PubMed

    Maity, Arnab; Mukherjee, Puspal; Das, Tarasankar; Ghosh, Prasun; Purkayastha, Pradipta

    2012-06-15

    The phenomenon of Förster resonance energy transfer (FRET) between pyrene and bovine serum albumin (BSA) protein in presence of cyclodextrins (CDs) is explored in the present work. CDs provide hydrophobic environment and thus the aromatic molecules get encapsulated in them depending on the relative size and space. In this work we revealed that along with pyrene monomer, the side chains of amino acids in BSA can get trapped partly in the hydrophobic cavities of CDs if space permits. While being encapsulated by β-CD as pyrene monomer, it can interact with the BSA tryptophan moiety exposed toward the aqueous environment to form a dimer through π-π interaction. This, in turn, affects the energy transfer process by reducing the efficiency. On the other hand, pyrene excimer gets encapsulated in a γ-CD molecule due to availability of enough space. The excimer shows a new band at a higher wavelength. This further reduces FRET efficiency due to scarcity of acceptor for the tryptophan moieties in BSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.

    PubMed

    Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten

    2018-01-30

    Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.

  20. Nanoscale Ultrasound-Switchable FRET-Based Liposomes for Near-Infrared Fluorescence Imaging in Optically Turbid Media.

    PubMed

    Zhang, Qimei; Morgan, Stephen P; Mather, Melissa L

    2017-09-01

    A new approach for fluorescence imaging in optically turbid media centered on the use of nanoscale ultrasound-switchable FRET-based liposome contrast agents is reported. Liposomes containing lipophilic carbocyanine dyes as FRET pairs with emission wavelengths located in the near-infrared window are prepared. The efficacy of FRET and self-quenching for liposomes with a range of fluorophore concentrations is first calculated from measurement of the liposome emission spectra. Exposure of the liposomes to ultrasound results in changes in the detected fluorescent signal, the nature of which depends on the fluorophores used, detection wavelength, and the fluorophore concentration. Line scanning of a tube containing the contrast agents with 1 mm inner diameter buried at a depth of 1 cm in a heavily scattering tissue phantom demonstrates an improvement in image spatial resolution by a factor of 6.3 as compared with images obtained in the absence of ultrasound. Improvements are also seen in image contrast with the highest obtained being 9% for a liposome system containing FRET pairs. Overall the results obtained provide evidence of the potential the nanoscale ultrasound-switchable FRET-based liposomes studied here have for in vivo fluorescence imaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A 10-A spectroscopic ruler applied to short polyprolines.

    PubMed

    Sahoo, Harekrushna; Roccatano, Danilo; Hennig, Andreas; Nau, Werner M

    2007-08-08

    Fluorescence resonance energy transfer (FRET) from the amino acid tryptophan (Trp) as donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as acceptor in peptides of the general structure Trp-(Pro)n-Dbo-NH2 (n = 1-6) was investigated by steady-state and time-resolved fluorescence, CD, and NMR spectroscopy as well as by molecular dynamics (MD) simulations (GROMOS96 force field). The Trp/Dbo FRET pair is characterized by a very short Förster radius (R0 ca. 9 A), which allowed distance determinations in such short peptides. Water and propylene glycol were investigated as solvents. The peptides were designed to show an early nucleation of the poly(Pro)II (PPII) secondary helix structure for n > or = 2, which was confirmed by their CD spectra. The shortest peptide (n = 1) adopts preferentially the trans conformation about the Trp-Pro bond, as confirmed by NMR spectra. The FRET efficiencies ranged 2-72% and were found to depend sensitively on the peptide length, i.e., the number of intervening proline residues. The analysis of the FRET data at different levels of theory (assuming either a fixed distance or distance distributions according to a wormlike chain or Gaussian model) afforded donor-acceptor distances between ca. 8 A (n = 1) and ca. 16 A (n = 6) in water, which were found to be similar or slightly higher in propylene glycol. The distances afforded by the Trp/Dbo FRET pair were found to be reasonable in comparison to literature data, expectations from the PPII helix structure, and the results from MD simulations. The persistence lengths for the longer peptides were found to lie at 30-70 A in water and 220 +/- 40 A in propylene glycol, suggesting a more rigid PPII helical structure in propylene glycol. A detailed comparison with literature data on FRET in polyprolines demonstrates that the donor-acceptor distances extracted by FRET are correlated with the Förster radii of the employed FRET pairs. This demonstrates the limitations of using FRET as a spectroscopic ruler for short polyprolines, which is presumably due to the breakdown of the point dipole approximation in Förster theory, when the size of the chromophores becomes comparable or larger than the distances under investigation.

  2. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer.

    PubMed

    Gholami, Somayeh; Kompany-Zareh, Mohsen

    2013-07-01

    Actinomycin D (Act D), an oncogenic c-Myc promoter binder, interferes with the action of RNA polymerase. There is great demand for high-throughput technology able to monitor the activity of DNA-binding drugs. To this end, binding of 7-aminoactinomycin D (7AAD) to the duplex c-Myc promoter was investigated by use of 2D-photoluminescence emission (2D-PLE), and the resulting data were subjected to analysis by use of convenient and powerful multi-way approaches. Fluorescence measurements were performed by use of the quantum dot (QD)-conjugated c-Myc promoter. Intercalation of 7AAD within duplex base pairs resulted in efficient energy transfer from drug to QD via fluorescence resonance energy transfer (FRET). Multi-way analysis of the three-way data array obtained from titration experiments was performed by use of restricted Tucker3 and hard trilinear decomposition (HTD). These techniques enable analysis of high-dimensional and complex data from nanobiological systems which include several spectrally overlapped structures. It was almost impossible to obtain robust and meaningful information about the FRET process for such high overlap data by use of classical analysis. The soft approach had the important advantage over univariate classical methods of enabling us to investigate the source of variance in the fluorescence signal of the DNA-drug complex. It was established that hard trilinear decomposition analysis of FRET-measured data overcomes the problem of rank deficiency, enabling calculation of concentration profiles and pure spectra for all species, including non-fluorophores. The hard modeling approach was also used for determination of equilibrium constants for the hybridization and intercalation equilibria, using nonlinear fit data analysis. The intercalation constant 3.6 × 10(6) mol(-1) L and hybridization stability 1.0 × 10(8) mol(-1) L obtained were in good agreement with values reported in the literature. The analytical concentration of the QD-labeled DNA was determined by use of nonlinear fitting, without using external standard calibration samples. This study was a successful application of multi-way chemometric methods to investigation of nano-biotechnological systems where several overlapped species coexist in solution.

  3. Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae Yeon; Meisburger, Steve P.; Hinshaw, James

    2012-10-10

    The results of more than a dozen single-molecule Foerster resonance energy transfer (smFRET) experiments suggest that chemically unfolded polypeptides invariably collapse from an expanded random coil to more compact dimensions as the denaturant concentration is reduced. In sharp contrast, small-angle X-ray scattering (SAXS) studies suggest that, at least for single-domain proteins at non-zero denaturant concentrations, such compaction may be rare. Here, we explore this discrepancy by studying protein L, a protein previously studied by SAXS (at 5 C), which suggested fixed unfolded-state dimensions from 1.4 to 5 M guanidine hydrochloride (GuHCl), and by smFRET (at 25 C), which suggested that,more » in contrast, the chain contracts by 15-30% over this same denaturant range. Repeating the earlier SAXS study under the same conditions employed in the smFRET studies, we observe little, if any, evidence that the unfolded state of protein L contracts as the concentration of GuHCl is reduced. For example, scattering profiles (and thus the shape and dimensions) collected within {approx} 4 ms after dilution to as low as 0.67 M GuHCl are effectively indistinguishable from those observed at equilibrium at higher denaturant. Our results thus argue that the disagreement between SAXS and smFRET is statistically significant and that the experimental evidence in favor of obligate polypeptide collapse at low denaturant cannot be considered conclusive yet.« less

  4. FRET excited ratiometric oxygen sensing in living tissue

    PubMed Central

    Ingram, Justin M.; Zhang, Chunfeng; Xu, Jian; Schiff, Steven J.

    2013-01-01

    Dynamic analysis of oxygen (O2) has been limited by the lack of a real-time, quantitative, and biocompatible sensor. To address these demands, we designed a ratiometric optode matrix consisting of the phosphorescence quenching dye platinum (II) octaethylporphine ketone (PtOEPK) and nanocystal quantum dots (NQDs), which when embedded within an inert polymer matrix allows long-term pre-designed excitation through fluorescence resonance energy transfer (FRET). Depositing this matrix on various glass substrates allowed the development of a series of optical sensors able to measure interstitial oxygen concentration [O2] with several hundred millisecond temporal resolution in varying biological microdomains of active brain tissue. PMID:23333398

  5. Association of a Model Transmembrane Peptide Containing Gly in a Heptad Sequence Motif

    PubMed Central

    Lear, James D.; Stouffer, Amanda L.; Gratkowski, Holly; Nanda, Vikas; DeGrado, William F.

    2004-01-01

    A peptide containing glycine at a and d positions of a heptad motif was synthesized to investigate the possibility that membrane-soluble peptides with a Gly-based, left-handed helical packing motif would associate. Based on analytical ultracentrifugation in C14-betaine detergent micelles, the peptide did associate in a monomer-dimer equilibrium, although the association constant was significantly less than that reported for the right-handed dimer of the glycophorin A transmembrane peptide in similar detergents. Fluorescence resonance energy transfer (FRET) experiments conducted on peptides labeled at their N-termini with either tetramethylrhodamine (TMR) or 7-nitrobenz-2-oxa-1,3-diazole (NBD) also indicated association. However, analysis of the FRET data using the usual assumption of complete quenching for NBD-TMR pairs in the dimer could not be quantitatively reconciled with the analytical ultracentrifugation-measured dimerization constant. This led us to develop a general treatment for the association of helices to either parallel or antiparallel structures of any aggregation state. Applying this treatment to the FRET data, constraining the dimerization constant to be within experimental uncertainty of that measured by analytical ultracentrifugation, we found the data could be well described by a monomer-dimer equilibrium with only partial quenching of the dimer, suggesting that the helices are most probably antiparallel. These results also suggest that a left-handed Gly heptad repeat motif can drive membrane helix association, but the affinity is likely to be less strong than the previously reported right-handed motif described for glycophorin A. PMID:15315956

  6. RGB-Switchable Porous Electrospun Nanofiber Chemoprobe-Filter Prepared from Multifunctional Copolymers for Versatile Sensing of pH and Heavy Metals.

    PubMed

    Liang, Fang-Cheng; Kuo, Chi-Ching; Chen, Bo-Yu; Cho, Chia-Jung; Hung, Chih-Chien; Chen, Wen-Chang; Borsali, Redouane

    2017-05-17

    Novel red-green-blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg 2+ ) were prepared with one type of copolymer (poly(methyl methacrylatete-co-1,8-naphthalimide derivatives-co-rhodamine derivative); poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg 2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg 2+ . The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg 2+ -concentration combination of the solution. The porous ES nanofibers with 30 nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance. The present study demonstrated that the FRET-based full-color-fluorescence porous nanofibrous membranes, which exhibit on-off switching and can be used as naked eye probes, have potential for application in water purification sensing filters.

  7. Recent patents on self-quenching DNA probes.

    PubMed

    Knemeyer, Jens-Peter; Marmé, Nicole

    2007-01-01

    In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.

  8. Studies on the interaction between 7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one and cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Kuriakose, Alina C.; Pradeep, C.; Nampoori, V. P. N.; Thomas, Sheenu

    2018-04-01

    Quantum dots (QDs) are well known for their optical properties which differ from those of bulk semiconductors. Herein, we have created an energy transfer platform that combines CdS QDs with a coumarin based dye C485 [7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one]. Spectroscopic studies of energy transfer between the dye donor and CdS QDs as acceptors reveal the occurrence of dynamic quenching. Analysis of the steady-state and time resolved fluorescence measurements of C485 in the presence of CdS QDs infers fluorescence resonance (Förster type) energy transfer (FRET) as responsible for the quenching phenomena. The energy transfer efficiency as well as energy transfer distance for the donor-acceptor pair is calculated using steady-state fluorescence method. Luminescence enhancement of CdS QDs play a critical role in device performance for solar applications and also in the field of biological applications.

  9. Studying Nuclear Receptor Complexes in the Cellular Environment.

    PubMed

    Schaufele, Fred

    2016-01-01

    The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.

  10. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.

    PubMed

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M

    2018-04-26

    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  11. Simulation of FRET dyes allows quantitative comparison against experimental data

    NASA Astrophysics Data System (ADS)

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  12. Intraparticle FRET for Enhanced Efficiency of Two-Photon Activated Photodynamic Therapy.

    PubMed

    Cao, Hongqian; Yang, Yang; Qi, Yanfei; Li, Yue; Sun, Bingbing; Li, Ying; Cui, Wei; Li, Juan; Li, Junbai

    2018-06-01

    Photodynamic therapy (PDT) still faces two main problems on cancer therapy. One is how to improve PDT efficiency against hypoxic environment of tumors. The other one is how to overcome the limit of short wavelength light to increase PDT treatment depth. In this work, an intraparticle fluorescence resonance energy transfer (FRET) platform is designed to address these problems together. The nanoparticles are doped with multicomponents, such as catalase, two-photon dyes, and traditional photosensitizers, with a simple "one-pot" and green method. On the one hand, catalase can catalyze intracellular H 2 O 2 into O 2 and promote PDT efficiency. One the other hand, photosensitizers can be excited indirectly by two-photon lasers through an intraparticle FRET mechanism, which results in deeper tissue penetration for PDT. These properties are verified through the material induced cytotoxicity in light or in dark and in vivo blocking blood-vessel experiment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Towards monitoring conformational changes of the GPCR neurotensin receptor 1 by single-molecule FRET

    NASA Astrophysics Data System (ADS)

    Heitkamp, Thomas; Grisshammer, Reinhard; Börsch, Michael

    2018-02-01

    Neurotensin receptor 1 (NTSR1) is a G protein-coupled receptor that is important for signaling in the brain and the gut. Its agonist ligand neurotensin (NTS), a 13-amino-acid peptide, binds with nanomolar affinity from the extracellular side to NTSR1 and induces conformational changes that trigger intracellular signaling processes. Our goal is to monitor the conformational dynamics of single fluorescently labeled NTSR1. For this, we fused the fluorescent protein mNeonGreen to the C terminus of NTSR1, purified the receptor fusion protein from E. coli membranes, and reconstituted NTSR1 into liposomes with E. coli polar lipids. Using single-molecule anisotropy measurements, NTSR1 was found to be monomeric in liposomes, with a small fraction being dimeric and oligomeric, showing homoFRET. Similar results were obtained for NTSR1 in detergent solution. Furthermore, we demonstrated agonist binding to NTSR1 by time-resolved single-molecule Förster resonance energy transfer (smFRET), using neurotensin labeled with the fluorophore ATTO594.

  14. Imaging of protein kinase C activation by FRET during proliferation induced by low-energy laser irradiation in living cells

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Chen, Tongsheng; Xing, Da; Wang, Fang

    2005-01-01

    Protein kinase Cs (PKCs) play an important role in cellular proliferation, and low-energy laser irradiation (LELI) can enhance cellular proliferation. The present work contributes to the understanding of the mechanisms of action by studying effects of LELI at the dose of 0.8 J/cm2 on PKCs activities in the single lung adenocarcinoma cell (ASTC-a-1) and in real time by fluorescence resonance energy transfer (FRET) technique. C-kinase activity reporter (CKAR), consisting of a cyan fluorescent protein (CFP), the FHA2 phosphothreonine-binding domain, a PKC substrate sequence, and a yellow fluorescent protein (YFP), was utilized. The living cell imaging showed a decrease in FRET in the cytosol and nucleus after the cells were treated with LELI. These results suggest that PKCs could be activated by LELI throughout the cell, and the proliferation of ASTC-a-1 cells could be modulated by the activated PKCs.

  15. Development of a sensor to study the DNA conformation using molecular logic gates.

    PubMed

    Roy, Arpan Datta; Dey, Dibyendu; Saha, Jaba; Chakraborty, Santanu; Bhattacharjee, D; Hussain, Syed Arshad

    2015-02-05

    This communication reports our investigations on the Fluorescence Resonance Energy Transfer (FRET) between two laser dyes Acriflavine and Rhodamine B in absence and presence of DNA at different pH. It has been observed that energy transfer efficiency is largely affected by the presence of DNA as well as the pH of the system. It is well known that with increase in pH, DNA conformation changes from double stranded to single stranded (denaturation) and finally form random coil. Based on our experimental results two different types of molecular logic gates namely, XOR and OR logic have been demonstrated which can be used to have an idea about DNA conformation in solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rapid and sensitive detection of clenbuterol using a fluorescence nanosensor based on diazo coupling mechanism

    NASA Astrophysics Data System (ADS)

    Thanh Hop Tran, Thi; Huong Do, Thi Mai; Hoang, Mai Ha; Tuyen Nguyen, Duc; Le, Quang Tuan; Nghia Nguyen, Duc; Ngo, Trinh Tung

    2015-01-01

    In this paper, the fluorescence resonance energy transfer (FRET) effect has been used for fabrication of nanosensor for the detection of clenbuterol. In the nanosensor, the CdTe quantum dots (QDs) are the donors while the acceptor is the super-macromolecule formed by the diazoation coupling mechanism between diazo clenbuterol and naphthylethylene diamine. Changes in fluorescence intensities of nanosensor were used to determine the clenbuterol concentration. We have successfully fabricated a nanosensor for detection of clenbuterol sensible to clenbuterol concentration of 10-12 g ml-1.

  17. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball

    PubMed Central

    Kim, Kyungmok; Ko, Joon Soo

    2016-01-01

    This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873

  18. Fretting and Corrosion at the Backside of Modular Cobalt Chromium Acetabular Inserts: A Retrieval Analysis.

    PubMed

    Tarity, T David; Koch, Chelsea N; Burket, Jayme C; Wright, Timothy M; Westrich, Geoffrey H

    2017-03-01

    Adverse local tissue reaction formation has been suggested to occur with the Modular Dual Mobility (MDM) acetabular design. Few reports in the literature have evaluated fretting and corrosion damage between the acetabular shell and modular metal inserts in this modular system. We evaluated a series of 18 retrieved cobalt chromium MDM inserts for evidence of fretting and corrosion. We assessed the backsides of 18 MDM components for evidence of fretting and corrosion in polar and taper regions based on previously established methods. We collected and assessed 30 similarly designed modular inserts retrieved from metal-on-metal (MoM) total hip arthroplasties as a control. No specific pattern of fretting or corrosion was identified on the MDM inserts. Both fretting and corrosion were significantly greater in the MoM cohort than the MDM cohort, driven by higher fretting and corrosion scores in the engaged taper region of the MoM inserts. MoM components demonstrated more fretting and corrosion than MDM designs, specifically at the taper region, likely driven by differences in the taper engagement mechanism and geometry among the insert designs. The lack of significant fretting and corrosion observed in the MDM inserts are inconsistent with recent claims that this interface may produce clinically significant metallosis and adverse local tissue reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball.

    PubMed

    Kim, Kyungmok; Ko, Joon Soo

    2016-09-03

    This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.

  20. Dynamics of TBP binding to the TATA box

    NASA Astrophysics Data System (ADS)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  1. Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET.

    PubMed

    Lee, Jay-Ron; Shieh, Ru-Chi

    2009-03-06

    Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi < 7.4 where pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.

  2. Homologous versus heterologous interactions in the bicomponent staphylococcal γ-haemolysin pore1

    PubMed Central

    Viero, Gabriella; Cunaccia, Romina; Prévost, Gilles; Werner, Sandra; Monteil, Henri; Keller, Daniel; Joubert, Olivier; Menestrina, Gianfranco; Dalla Serra, Mauro

    2005-01-01

    Staphylococcal γ-haemolysin HlgA–HlgB forms a β-barrel transmembrane pore in cells and in model membranes. The pore is formed by the oligomerization of two different proteins and a still debated number of monomers. To clarify the topology of the pore, we have mutated single residues – placed near the right and left interfaces of each monomer into cysteine. The mutants were labelled with fluorescent probes, forming a donor–acceptor pair for FRET (fluorescence resonance energy transfer). Heterologous couples (labelled on complementary left and right interfaces) displayed a marked FRET, suggesting extensive HlgA–HlgB or HlgB–HlgA contacts. Heterologous control couples (with both components labelled on the same side) showed absent or low FRET. We found the same result for the homologous couple formed by HlgA [i.e. HlgA–HlgA in the presence of wt (wild-type) HlgB]. The homologous HlgB couple (HlgB–HlgB labelled on left and right interfaces and in the presence of wt HlgA) displayed a transient, declining FRET, which may indicate fast formation of an intermediate that is consumed during pore formation. We conclude that bicomponent pores are assembled by alternating heterologous monomers. PMID:16241903

  3. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time.

    PubMed

    Andrews, Natalie; Ramel, Marie-Christine; Kumar, Sunil; Alexandrov, Yuriy; Kelly, Douglas J; Warren, Sean C; Kerry, Louise; Lockwood, Nicola; Frolov, Antonina; Frankel, Paul; Bugeon, Laurence; McGinty, James; Dallman, Margaret J; French, Paul M W

    2016-04-01

    Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region. © 2016 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  5. Investigation of the quaternary structure of an ABC transporter in living cells using spectrally resolved resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Singh, Deo Raj

    Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the structure and behavior of this ABC transporter will help develop antibiotics targeting the biosynthesis of the A-band LPS endotoxin.

  6. Diverse dissolution-recrystallization structural transformations and sequential Förster resonance energy transfer behavior of a luminescent porous Cd-MOF.

    PubMed

    Cao, Li-Hui; Li, Hai-Yang; Xu, Hong; Wei, Yong-Li; Zang, Shuang-Quan

    2017-09-12

    Metal-organic frameworks (MOFs) with light-harvesting building blocks provide an excellent platform to study energy transfer in networks with well-defined structures. Here, we report the synthesis, dissolution-recrystallization structural transformation (DRST) and the Förster resonance energy transfer (FRET) properties of a 2D microporous MOF {[Cd 2 (L 1 ) 3 (Hdabco) 2 ]·5DMAc·6H 2 O} n (Cd-MOF, 1). Complex 1 can be dissolved in water and three other products with different dimensions recrystallized from the aqueous solution under diverse reaction conditions were obtained. Due to the porosity and excellent blue luminescence properties of complex 1, we also studied the FRET process between 1 and guest dyes. Two distinct organic dye molecules viz., acridine orange (AO) and rhodamine B (RhB), are encapsulated in 1 which has honeycomb-type nanochannels, and their influence on fluorescence emission has also been studied. The microporous complex 1 in (AO + RhB)@1 serves as an energy funnel that harvests high energy excitation and channels it onto AO and then onto RhB. The steady-state fluorescence and fluorescence dynamics of emission reveal successfully the process of stepwise vectorial energy transfer. Therefore, MOFs could be a class of promising host materials to be further explored in the field of energy transfer between MOF-host and organic guests.

  7. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    PubMed

    Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  8. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide.

    PubMed

    Alonso-Cristobal, P; Vilela, P; El-Sagheer, A; Lopez-Cabarcos, E; Brown, T; Muskens, O L; Rubio-Retama, J; Kanaras, A G

    2015-06-17

    In this work we demonstrate a DNA biosensor based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er nanoparticles and graphene oxide (GO). Monodisperse NaYF4:Yb,Er nanoparticles with a mean diameter of 29.1 ± 2.2 nm were synthesized and coated with a SiO2 shell of 11 nm, which allowed the attachment of single strands of DNA. When these DNA-functionalized NaYF4:Yb,Er@SiO2 nanoparticles were in the proximity of the GO surface, the π-π stacking interaction between the nucleobases of the DNA and the sp(2) carbons of the GO induced a FRET fluorescence quenching due to the overlap of the fluorescence emission of the NaYF4:Yb,Er@SiO2 and the absorption spectrum of GO. By contrast, in the presence of the complementary DNA strands, the hybridization leads to double-stranded DNA that does not interact with the GO surface, and thus the NaYF4:Yb,Er@SiO2 nanoparticles remain unquenched and fluorescent. The high sensitivity and specificity of this sensor introduces a new method for the detection of DNA with a detection limit of 5 pM.

  9. Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants

    PubMed Central

    Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992

  10. Developing a capillary electrophoresis based method for dynamically monitoring enzyme cleavage activity using quantum dots-peptide assembly.

    PubMed

    Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju

    2017-10-01

    Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

  12. Luminescence and transient lifetime studies for energy transfer of PbS QD films

    NASA Astrophysics Data System (ADS)

    Wang, Joanna S.; Ullrich, Bruno; Dass, Chandriker K.; Das, Anirban; Wai, Chien M.; Brown, Gail J.; Hendrickson, Joshua R.

    2017-08-01

    Quantum confined semiconductor materials in colloidal form have drawn great attention in scientific communities due to the size-tunability, which controls their optical properties. PbS quantum dots (QDs) are exciting candidates for quantum optics, particularly due to the control of the QD sizes during the synthetic process enabling the realization of precisely tunable emission properties in the near-infrared region. Differently sized pairs of PbS QDs were deposited onto glass substrates to form thin films using supercritical CO2 (sc-CO2) deposition and solvent deposition methods (SDM). The fluorescence and photoluminescence (PL) spectra obtained from these closely packed films prepared by the sc-CO2 method reveal effective Förster resonance energy transfer (FRET) between two different sized dots, while the films composed of three different QD sizes show an even more effective FRET from the smallest to the largest ones. Energy transfer can be observed more directly by temporally resolved PL decay of mixed dots. By means of transient lifetime measurements, a mixed PbS film with 3.1 and 4.7 nm QDs was studied for FRET by time correlated single photon counting. The PL peak of the 3.1 nm QDs is quenched with respect to the emission of the 4.7 nm QDs and decays faster, and the best fit for the lifetime (decay constant)-1 is a biexponential decay mode. The long wavelength decay (4.7 nm QDs) is best fit by a mono-exponential equation. More theoretical and experimental work is required for a thorough understanding of the radiative lifetimes of PbS QDs in mixed QD systems.

  13. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    PubMed Central

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  14. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  15. A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape.

    PubMed

    Quereda, Juan J; Pizarro-Cerdá, Javier; Balestrino, Damien; Bobard, Alexandre; Danckaert, Anne; Aulner, Nathalie; Shorte, Spencer; Enninga, Jost; Cossart, Pascale

    2016-01-01

    Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a β-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface β-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. [Development of Fluorescence Resonance Energy Transfer Sensor for Determination of Adenosine Monophosphate in Biological Drug].

    PubMed

    Dong, Ling-yu; Du, Hong-ming; Wang, Peng; Wang, Li-yun; Li, Yi-ke; Zhai, Hong; Feng, Ting; Wang, Xiang-feng; Zhu, Qiao-you; Xie, Meng-xia

    2015-11-01

    The biological drug of the calf-blood dialysate has various pharmacological effects. It can promote the oxygen and glucose uptake for the hypoxia cells, and has beneficial effects on the malfunction of the blood circulation and trophic disturbances in the brain, and the impairment of peripheral blood circulation. Furthermore, it is favorable to wound healing and can regulate the central nervous system. Adenosine monophosphate (AMP) is a main active ingredient of the biological drug. In this report, a fluorescence resonance energy transfer (FRET) sensor has been developed with β-CD-capped ZnS QDs as energy donor and 3-hydroxyflavone (3-HF) as energy acceptor. The results showed that AMP can lead to the fluorescence quenching of the FRET sensor at 526 nm, and the Stern-Volmer curve between the fluorescence quenching and the concentrations of AMP present a satisfactory linearity with the correlation coefficient of 0.996. The developed sensor has successfully applied for determination of the AMP in the biological drug.

  17. A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces

    PubMed Central

    Chen, Yan; O’Donoghue, Meghan B.; Huang, Yu-Fen; Kang, Huaizhi; Phillips, Joseph A.; Chen, Xiaolan; Estevez, M.-Carmen; Tan, Weihong

    2010-01-01

    Measuring distances at molecular length scales in living systems is a significant challenge. Methods like FRET have limitations due to short detection distances and strict orientations. Recently, surface energy transfer (SET) has been used in bulk solutions; however, it cannot be applied to living systems. Here, we have developed an SET nanoruler, using aptamer-gold-nanoparticle conjugates with different diameters, to monitor the distance between binding sites of a receptor on living cells. The nanoruler can measure separation distances well beyond the detection limit of FRET. Thus, for the first time, we have developed an effective SET nanoruler for live cells with long distance, easy construction, fast detection and low background. This is also the first time that the distance between the aptamer and antibody binding sites in the membrane protein PTK7 was measured accurately. The SET nanoruler represents the next leap forward to monitor structural components within living cell membranes. PMID:21038856

  18. Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Daniel Zack; Rodriguez, Salvador B.

    2011-06-01

    The following report presents an assessment of existing capabilities in Sierra/Fuego applied to modeling several aspects of grid-to-rod-fretting (GTRF) including: fluid dynamics, heat transfer, and fluid-structure interaction. We compare the results of a number of Fuego simulations with relevant sources in the literature to evaluate the accuracy, efficiency, and robustness of using Fuego to model the aforementioned aspects. Comparisons between flow domains that include the full fuel rod length vs. a subsection of the domain near the spacer show that tremendous efficiency gains can be obtained by truncating the domain without loss of accuracy. Thermal analysis reveals the extent tomore » which heat transfer from the fuel rods to the coolant is improved by the swirling flow created by the mixing vanes. Lastly, coupled fluid-structure interaction analysis shows that the vibrational modes of the fuel rods filter out high frequency turbulent pressure fluctuations. In general, these results allude to interesting phenomena for which further investigation could be quite fruitful.« less

  19. Fis protein induced λF-DNA bending observed by single-pair fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Chi-Cheng, Fu; Wunshain, Fann; Yuan Hanna, S.

    2006-03-01

    Fis, a site-specific DNA binding protein, regulates many biological processes including recombination, transcription, and replication in E.coli. Fis induced DNA bending plays an important role in regulating these functions and bending angle range from ˜50 to 95 dependent on the DNA sequence. For instance, the average bending angle of λF-DNA (26 bp, 8.8nm long, contained λF binding site on the center) measured by gel mobility shift assays was ˜ 94 . But the traditional method cannot provide information about the dynamics and the angle distribution. In this study, λF-DNA was labeled with donor (Alexa Fluor 546) and acceptor (Alexa Fluor 647) dyes on its two 5' ends and the donor-acceptor distances were measured using single-pair fluorescence resonance energy transfer (sp-FRET) with and without the present of Fis protein. Combing with structure information of Fis-DNA complex, the sp-FRET results are used to estimate the protein induced DNA bending angle distribution and dynamics.

  20. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopich, Irina V.

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when themore » FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.« less

  1. Real-time measurements to characterize dynamics of emulsion interface during simulated intestinal digestion.

    PubMed

    Pan, Yuanjie; Nitin, N

    2016-05-01

    Efficient delivery of bioactives remains a critical challenge due to their limited bioavailability and solubility. While many encapsulation systems are designed to modulate the digestion and release of bioactives within the human gastrointestinal tract, there is limited understanding of how engineered structures influence the delivery of bioactives. The objective of this study was to develop a real-time quantitative method to measure structural changes in emulsion interface during simulated intestinal digestion and to correlate these changes with the release of free fatty acids (FFAs). Fluorescence resonant energy transfer (FRET) was used for rapid in-situ measurement of the structural changes in emulsion interface during simulated intestinal digestion. By using FRET, changes in the intermolecular spacing between the two different fluorescent probes labeled emulsifier were characterized. Changes in FRET measurements were compared with the release of FFAs. The results showed that bile salts and pancreatic lipase interacted immediately with the emulsion droplets and disrupted the emulsion interface as evidenced by reduction in FRET efficacy compared to the control. Similarly, a significant amount of FFAs was released during digestion. Moreover, addition of a second layer of polymers at emulsion interface decreased the extent of interface disruption by bile salts and pancreatic lipase and impacted the amount or rate of FFA release during digestion. These results were consistent with the lower donor/acceptor ratio of the labeled probes from the FRET result. Overall, this study provides a novel approach to analyze the dynamics of emulsion interface during digestion and their relationship with the release of FFAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    PubMed Central

    Gopich, Irina V.

    2015-01-01

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated. PMID:25612692

  3. Single molecule views of Nature's nano-machines

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2006-03-01

    We are interested in the perturbational analysis of biological molecules to better understand their mechanisms. Our readout is the fluorescence signal from individual biomolecules, mainly in the form of single molecule fluorescence resonance energy transfer (FRET). We are pioneering approaches to perturb and control biomolecular conformations using external force (combination of single molecule FRET and optical trap) or other biological motifs (DNA hybridization, G-quadruplex, aptamers,.). In this talk, I will present our latest results on mapping the conformational energy landscape of the Holliday junction through simultaneous fluorescence and force measurements. In addition, a new nanomechanical device called single molecule nano-metronome will be discussed with an outlook toward controlling protein conformations using nucleic acids motifs.

  4. Effect of Various Material Properties on the Adhesive Stage of Fretting

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    Various properties of metals and alloys were studied with respect to their effect on the initial stage of the fretting process, namely adhesion. Crystallographic orientation, crystal structure, interfacial binding energies of dissimiliar metal, segregation of alloy constituents and the nature and structure of surface films were found to influence adhesion. High atomic density, low surface energy grain orientations exhibited lower adhesion than other orientations. Knowledge of interfacial surface binding energies assists in predicting adhesive transfer and wear. Selective surface segregation of alloy constituents accomplishes both a reduction in adhesion and improved surface oxidation characteristics. Equivalent surface coverages of various adsorbed species indicate that some are markedly more effective in inhibiting adhesion than others.

  5. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.

    PubMed

    Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M

    2004-11-01

    In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). (c) 2005 Wiley-Liss, Inc.

  6. Resonance energy transfer: Dye to metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: him-lax3@yahoo.com

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  7. Single-Pair Fret Analysis of mRNA Transcripts for Highly Sensitive Gene Expression Profiling in Near Real Time

    PubMed Central

    Peng, Zhiyong; Young, Brandon; Baird, Alison E.; Soper, Steven A.

    2013-01-01

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with on-line single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10 − 10,000 copies) with an R2 = 0.9995 for RT-LDR/spFRET and R2 = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a 2 thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time-sensitive therapeutics. PMID:23869556

  8. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    PubMed

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  9. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    NASA Astrophysics Data System (ADS)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and investigations of aerospace components. A detailed description of the high-frequency, high-temperature fretting rig to be used in this investigation follows. Finally, development of a numerical submodeling technique for calculating the experimental contact traction and near-surface stresses is presented and correlated to the experimental fretting crack nucleation observations.

  10. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.

    PubMed

    Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho

    2014-01-01

    Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).

  11. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis

    PubMed Central

    Waadt, Rainer; Hitomi, Kenichi; Nishimura, Noriyuki; Hitomi, Chiharu; Adams, Stephen R; Getzoff, Elizabeth D; Schroeder, Julian I

    2014-01-01

    Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration changes in response to environmental cues is essential for understanding ABA action. We have developed ABAleons: ABA-specific optogenetic reporters that instantaneously convert the phytohormone-triggered interaction of ABA receptors with PP2C-type phosphatases to send a fluorescence resonance energy transfer (FRET) signal in response to ABA. We report the design, engineering and use of ABAleons with ABA affinities in the range of 100–600 nM to map ABA concentration changes in plant tissues with spatial and temporal resolution. High ABAleon expression can partially repress Arabidopsis ABA responses. ABAleons report ABA concentration differences in distinct cell types, ABA concentration increases in response to low humidity and NaCl in guard cells and to NaCl and osmotic stress in roots and ABA transport from the hypocotyl to the shoot and root. DOI: http://dx.doi.org/10.7554/eLife.01739.001 PMID:24737861

  12. Recent Advances in Conjugated Polymer Materials for Disease Diagnosis.

    PubMed

    Lv, Fengting; Qiu, Tian; Liu, Libing; Ying, Jianming; Wang, Shu

    2016-02-10

    The extraordinary optical amplification and light-harvesting properties of conjugated polymers impart sensing systems with higher sensitivity, which meets the primary demands of early cancer diagnosis. Recent advances in the detection of DNA methylation and mutation with polyfluorene derivatives based fluorescence resonance energy transfer (FRET) as a means to modulate fluorescent responses attest to the great promise of conjugated polymers as powerful tools for the clinical diagnosis of diseases. To facilitate the ever-changing needs of diagnosis, the development of detection approaches and FRET signal analysis are highlighted in this review. Due to their exceptional brightness, excellent photostability, and low or absent toxicity, conjugated polymers are verified as superior materials for in-vivo imaging, and provide feasibility for future clinical molecular-imaging applications. The integration of conjugated polymers with clinical research has shown profound effects on diagnosis for the early detection of disease-related biomarkers, as well as in-vivo imaging, which leads to a multidisciplinary scientific field with perspectives in both basic research and application issues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel One-step Immunoassays to Quantify α-Synuclein

    PubMed Central

    Bidinosti, Michael; Shimshek, Derya R.; Mollenhauer, Brit; Marcellin, David; Schweizer, Tatjana; Lotz, Gregor P.; Schlossmacher, Michael G.; Weiss, Andreas

    2012-01-01

    Familial Parkinson disease (PD) can result from α-synuclein gene multiplication, implicating the reduction of neuronal α-synuclein as a therapeutic target. Moreover, α-synuclein content in human cerebrospinal fluid (CSF) represents a PD biomarker candidate. However, capture-based assays for α-synuclein quantification in CSF (such as by ELISA) have shown discrepancies and have limited suitability for high-throughput screening. Here, we describe two sensitive, in-solution, time-resolved Förster's resonance energy transfer (TR-FRET)-based immunoassays for total and oligomeric α-synuclein quantification. CSF analysis showed strong concordance for total α-synuclein content between two TR-FRET assays and, in agreement with a previously characterized 36 h protocol-based ELISA, demonstrated lower α-synuclein levels in PD donors. Critically, the assay suitability for high-throughput screening of siRNA constructs and small molecules aimed at reducing endogenous α-synuclein levels was established and validated. In a small-scale proof of concept compound screen using 384 well plates, signals ranged from <30 to >120% of the mean of vehicle-treated cells for molecules known to lower and increase cellular α-synuclein, respectively. Furthermore, a reverse genetic screen of a kinase-directed siRNA library identified seven genes that modulated α-synuclein protein levels (five whose knockdown increased and two that decreased cellular α-synuclein protein). This provides critical new biological insight into cellular pathways regulating α-synuclein steady-state expression that may help guide further drug discovery efforts. Moreover, we describe an inherent limitation in current α-synuclein oligomer detection methodology, a finding that will direct improvement of future assay design. Our one-step TR-FRET-based platform for α-synuclein quantification provides a novel platform with superior performance parameters for the rapid screening of large biomarker cohorts and of compound and genetic libraries, both of which are essential to the development of PD therapies. PMID:22843695

  14. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing.

    PubMed

    Ge, Minghao; Bai, Pengli; Chen, Mingli; Tian, Jingjing; Hu, Jun; Zhi, Xu; Yin, Huancai; Yin, Jian

    2018-03-01

    Here, we utilized the ultrasonic emulsification technique to generate hyaluronic acid microspheres incorporating a fluorescence-based glucose biosensor. We synthesized a novel lanthanide ion luminophore based on Eu 3+ . Eu sulfosuccinimidyl dextran (Eu-dextran) and Alexa Fluor 647 sulfosuccinimidyl-ConA (Alexa Fluor 647-ConA) were encapsulated in hyaluronic acid hydrogel to generate microspheres. Glucose sensing was carried out using a fluorescence resonance energy transfer (FRET)-based assay principle. A proportional fluorescence intensity increase was found within a 0.5-10-mM glucose concentration range. The glucose-sensing strategy showed an excellent tolerance for potential interferents. Meanwhile, the fluorescent signal of hyaluronic acid microspheres was very stable after testing for 72 h in glucose solution. Overall, hyaluronic acid microspheres encapsulating sensing biomolecules offer a stable and biocompatible biosensor for a variety of applications including cell culture systems, tissue engineering, detection of blood glucose, etc. Graphical abstract We report an ingenious biosensor encapsulated in hyaluronic acid microspheres for monitoring of glucose. Glucose sensing is carried out using a fluorescence resonance energy transfer-based assay principle with a novel lanthanide ions luminophore. The glucose detection system has excellent biocompatibility and stability for monitoring of glucose.

  15. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.

    PubMed

    Kupstat, Annette; Ritschel, Thomas; Kumke, Michael U

    2011-12-21

    In this work, the photophysical properties of two oxazine dyes (ATTO 610 and ATTO 680) covalently attached via a C6-amino linker to the 5'-end of short single-stranded as well as double-stranded DNA (ssDNA and dsDNA, respectively) of different lengths were investigated. The two oxazine dyes were chosen because of the excellent spectral overlap, the high extinction coefficients, and the high fluorescence quantum yield of ATTO 610, making them an attractive Förster resonance energy transfer (FRET) pair for bioanalytical applications in the far-red spectral range. To identify possible molecular dye-DNA interactions that cause photophysical alterations, we performed a detailed spectroscopic study, including time-resolved fluorescence anisotropy and fluorescence correlation spectroscopy measurements. As an effect of the DNA conjugation, the absorption and fluorescence maxima of both dyes were bathochromically shifted and the fluorescence decay times were increased. Moreover, the absorption of conjugated ATTO 610 was spectrally broadened, and a dual fluorescence emission was observed. Steric interactions with ssDNA as well as dsDNA were found for both dyes. The dye-DNA interactions were strengthened from ssDNA to dsDNA conjugates, pointing toward interactions with specific dsDNA domains (such as the top of the double helix). Although these interactions partially blocked the dye-linker rotation, a free (unhindered) rotational mobility of at least one dye facilitated the appropriate alignment of the transition dipole moments in doubly labeled ATTO 610/ATTO 680-dsDNA conjugates for the performance of successful FRET. Considering the high linker flexibility for the determination of the donor-acceptor distances, good accordance between theoretical and experimental FRET parameters was obtained. The considerably large Förster distance of ~7 nm recommends the application of this FRET pair not only for the detection of binding reactions between nucleic acids in living cells but also for monitoring interactions of larger biomolecules such as proteins.

  16. A Multi-Functional Imaging Approach to High-Content Protein Interaction Screening

    PubMed Central

    Matthews, Daniel R.; Fruhwirth, Gilbert O.; Weitsman, Gregory; Carlin, Leo M.; Ofo, Enyinnaya; Keppler, Melanie; Barber, Paul R.; Tullis, Iain D. C.; Vojnovic, Borivoj; Ng, Tony; Ameer-Beg, Simon M.

    2012-01-01

    Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging. PMID:22506000

  17. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers.

    PubMed

    Harding, Peter J; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H; Smith, Eleanor; Armitage, Judith P; Watts, Anthony

    2009-02-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.

  18. Conformational Dynamics of Titin PEVK Explored with FRET Spectroscopy

    PubMed Central

    Huber, Tamás; Grama, László; Hetényi, Csaba; Schay, Gusztáv; Fülöp, Lívia; Penke, Botond; Kellermayer, Miklós S.Z.

    2012-01-01

    The proline-, glutamate-, valine-, and lysine-rich (PEVK) domain of the giant muscle protein titin is thought to be an intrinsically unstructured random-coil segment. Various observations suggest, however, that the domain may not be completely devoid of internal interactions and structural features. To test the validity of random polymer models for PEVK, we determined the mean end-to-end distances of an 11- and a 21-residue synthetic PEVK peptide, calculated from the efficiency of the fluorescence resonance energy transfer (FRET) between an N-terminal intrinsic tryptophan donor and a synthetically added C-terminal IAEDANS acceptor obtained in steady-state and time-resolved experiments. We find that the contour-length scaling of mean end-to-end distance deviates from predictions of a purely statistical polymer chain. Furthermore, the addition of guanidine hydrochloride decreased, whereas the addition of salt increased the FRET efficiency, pointing at the disruption of structure-stabilizing interactions. Increasing temperature between 10 and 50°C increased the normalized FRET efficiency in both peptides but with different trajectories, indicating that their elasticity and conformational stability are different. Simulations suggest that whereas the short PEVK peptide displays an overall random structure, the long PEVK peptide retains residual, loose helical configurations. Transitions in the local structure and dynamics of the PEVK domain may play a role in the modulation of passive muscle mechanics. PMID:23062340

  19. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.

    PubMed

    Diomidis, N; Mischler, S; More, N S; Roy, Manish

    2012-02-01

    Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Spatio-temporal kinetics of growth hormone receptor signaling in single cells using FRET microscopy.

    PubMed

    Biener-Ramanujan, Eva; Ramanujan, V Krishnan; Herman, Brian; Gertler, Arieh

    2006-08-01

    The growth hormone (GH) receptor (R)-mediated JAK2 (Janus kinase-2)-STAT5 (signaling transducer and activator of transcription-5) pathway involves a cascade of protein-protein interactions and tyrosine phosphorylations that occur in a spatially and temporally sensitive manner in cells. To study GHR dimerization or GH-induced conformational change of predimerized GHRs and STAT5 activation kinetics in intact cells, fluorescence resonance energy transfer (FRET) and live-cell imaging methods were employed. FRET measurements at the membrane of HEK-293T cells co-expressing GHRs tagged at the C-terminus with cyan (C) and yellow (Y) fluorescent proteins (FPs) revealed transient GHR dimerization lasting 2-3 min, with a maximum at 3 min after GH stimulation, which was sufficient to induce STAT5 activation. The transient nature of the dimerization or GH-induced conformational change of predimerized GHRs kinetics was not a result of GHR internalization, as neither potassium- nor cholesterol-depletion treatments prolonged the FRET signal. YFP-tagged STAT5 recruitment to the membrane, binding to GHR-CFP, and phosphorylation, occurred within minutes of GH stimulation. Activated STAT5a-YFP did not show nuclear accumulation, despite nuclear pSTAT5 increase, suggesting high turnover of STAT5 nuclear shuttling. Although GHR dimerization and STAT5 activation have been reported previously, this is the first spatially resolved demonstration of GHR-signaling kinetics in intact cells.

Top