Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
NASA Astrophysics Data System (ADS)
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Steadman, Todd
2003-01-01
The chilldown of fluid transfer lines is an important part of using cryogenic systems such as those found in both ground and space based applications. The chilldown process is a complex combination of both thermal and fluid transient phenomena. A cryogenic liquid flows through a transfer line that is initially at a much higher temperature than the cryogen. Transient heat transfer processes between the liquid and transfer line cause vaporization of the liquid, and this phase change can cause transient pressure and flow surges in the liquid. As the transfer line is cooled, these effects diminish until the liquid reaches a steady flow condition in the chilled transfer line. If these transient phenomena are not properly accounted for in the design process of a cryogenic system, it can lead to damage or failure of system components during operation. For such cases, analytical modeling is desirable for ensuring that a cryogenic system transfer line design is adequate for handling the effects of a chilldown process. The purpose of this paper is to present the results of a numerical model developed using Generalized Fluid System Simulation Program (GFSSP)'s new fluid transient capability in combination with its previously developed thermal transient capability to predict pressure and flow surge in cryogenic transfer lines during a chilldown process. An experiment performed by the National Bureau of Standards (NBS) in 1966 has been chosen as the baseline comparison case for this work. NBS s experimental set-up consisted of a 10.59 cubic foot supply dewar, an inlet valve, and a 200 foot long, in Outside Diameter (OD) vacuum jacketed copper transfer line that exhausted to atmosphere. Three different inlet valves, an in-port ball valve, a 1-in-port globe valve and a 1-in-port gate valve, were used in NBS's experiments. Experiments were performed using both liquid hydrogen and liquid nitrogen as the fluids. The proposed paper will include detailed comparisons of GFSSP's predictions with NBS's experimental results.
Situ soil sampling probe system with heated transfer line
Robbat, Jr., Albert
2002-01-01
The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.
FRIB Cryogenic Distribution System and Status
NASA Astrophysics Data System (ADS)
Ganni, V.; Dixon, K.; Laverdure, N.; Yang, S.; Nellis, T.; Jones, S.; Casagrande, F.
2015-12-01
The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.
Service life evaluation of rigid explosive transfer lines
NASA Technical Reports Server (NTRS)
Bement, L. J.; Kayser, E. G.; Schimmel, M. L.
1983-01-01
This paper describes a joint Army/NASA-sponsored research program on the service life evaluation of rigid explosive transfer lines. These transfer lines are used to initiate emergency crew escape functions on a wide variety of military and NASA aircraft. The purpose of this program was to determine quantitatively the effects of service, age, and degradation on rigid explosive transfer lines to allow responsible, conservative, service life determination. More than 800 transfer lines were removed from the U.S. Army AH-1G and AH-1S, the U.S. Air Force B-1 and F-111, and the U.S. Navy F-14 aircraft for testing. The results indicated that the lines were not adversely affected by age, service, or a repeat of the thermal qualification tests on full-service lines. Extension of the service life of rigid explosive transfer lines should be considered, since considerable cost savings could be realized with no measurable decrease in system reliability.
Helium Evolution from the Transfer of Helium Saturated Propellant in Space
NASA Technical Reports Server (NTRS)
Nguyen, Bich N.
2000-01-01
Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.
Failure of 307 basin transfer line and resultant ground contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denham, D.H.
1970-01-01
A leak of apparently long duration was discovered on December 9, 1965, in the transfer line from the 307 retention basins to the 340 contaminated waste system during the transfer of liquid from one of the 307 basins. This line was designed to carry only mildly-contaminated retention system waste. However, the uncovered line suggests that, over a period of time, the bottom half of the carbon steel transition section between the transfer line and the 340 contaminated waste system was corroded out. This permitted the highly contaminated waste to percolate into the soil beneath the missing pipe section. Since neithermore » the duration of leakage nor the exact origin or nature of the contaminants were known, this study was undertaken to: (1) estimate the amount of radioactivity released; (2) document its location with respect to the 340 Area and to the underlying groundwater; and (3) investigate its potential environmental impact. Soil samples were collected to determine the approximate location and quantity of each of the radionuclides which had leaked to the soil. One-digit accuracy was deemed sufficient to decide what, if any, action would be required. The findings from the several exploratory holes drilled at and adjacent to the site of the corroded transfer line are reported. (auth)« less
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
Helium Transfer System for the Superconducting Devices at NSRRC
NASA Astrophysics Data System (ADS)
Li, H. C.; Hsiao, F. Z.; Chang, S. H.; Chiou, W. S.
2006-04-01
A helium cryogenic plant with a maximum cooling power of 450 W at 4.5K was installed at the end of the year 2003. This plant has provide the cooling power for the test of one superconducting cavity and the commission of one superconducting magnet for nine months. In November 2004, we installed one helium transfer system in NSRRC's storage ring to fulfill the cooling requirement for the operation of one superconducting cavity and two superconducting magnets. This helium transfer system consists of a switch valve box and the nitrogen-shielding multi-channel transfer lines. The averaged heat leak to the helium process line (including the straight section, the joint, the elbow, the coupling) at liquid helium temperature is specified to be less than 0.1 W/m at 4.2K; the total heat leak of the switching valve box to helium process lines is less than 16 W at 4.2K. In this paper we present the function, design parameters and test result of the helium transfer system. Commissioning results of both the cavity and the magnets using this helium transfer system will be shown as well.
Cryogenic Propellant Feed System Analytical Tool Development
NASA Technical Reports Server (NTRS)
Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.
2011-01-01
The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.
2016-01-01
Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation temperature. An incomplete fill results if insufficient energy is removed from the tank's thermal mass and ullage space. The key to successfully conducting the no vent fill is to assure that sufficient energy is removed from the system prior to closing the receiver tank vent valve. This paper will provide a description of the transfer methodology and test article, and will provide a discussion of test results.
NASA Technical Reports Server (NTRS)
Ludtke, P. R.; Voth, R. O.
1971-01-01
The vacuum liquid hydrogen and liquid oxygen transfer lines at Kennedy Space Center were studied to evaluate the feasibility of using a condensing gas such as CO2 inside the vacuum spaces to achieve a condensing-vacuum. The study indicates that at ambient temperature, a maximum vacuum hyphen space pressure of 4000 microns is acceptable for the LH2 transfer lines. In addition, the cooldown procedures for the 14-inch cross-country liquid oxygen line was studied using a simplified mathematical model. Preliminary cooldown times are presented for various heat leak rates to the line and for two vent configurations.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred (Inventor)
1987-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
NASA Astrophysics Data System (ADS)
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
An Integrated On-Line Transfer Credit Evaluation System-Admissions through Graduation Audit.
ERIC Educational Resources Information Center
Schuman, Chester D.
This document discusses a computerized transfer evaluation system designed by Pennsylvania College of Technology, a comprehensive two-year institution with an enrollment of over 4,800 students. It is noted that the Admissions Office processes approximately 500 transfer applications for a fall semester, as well as a large number of evaluations for…
Miniature Joule Thomson (JT) CryoCoolers for Propellant Management
NASA Technical Reports Server (NTRS)
Kapat, Jay; Chow, Louis
2002-01-01
A proof-of-concept project is proposed here that would attempt to demonstrate how miniature cryocoolers can be used to chill the vacuum jacket line of a propellant transfer line and thus to achieve transfer line pre-chill, zero boil off and possible propellant densification. The project would be performed both at UCF and KSC, with all of the cryogenic testing taking place in the KSC cryogenic test bed. A LN2 line available in that KSC test facility would serve to simulate a LOX transfer line. Under this project, miniature and highly efficient cold heads would be designed. Two identical cold heads will be fabricated and then integrated with a JT-type cryogenic system (consisting of a common compressor and a common external heat exchanger). The two cold heads will be integrated into the vacuum jacket of a LN2 line in the KSC cryo lab, where the testing will take place.
Margin and sensitivity methods for security analysis of electric power systems
NASA Astrophysics Data System (ADS)
Greene, Scott L.
Reliable operation of large scale electric power networks requires that system voltages and currents stay within design limits. Operation beyond those limits can lead to equipment failures and blackouts. Security margins measure the amount by which system loads or power transfers can change before a security violation, such as an overloaded transmission line, is encountered. This thesis shows how to efficiently compute security margins defined by limiting events and instabilities, and the sensitivity of those margins with respect to assumptions, system parameters, operating policy, and transactions. Security margins to voltage collapse blackouts, oscillatory instability, generator limits, voltage constraints and line overloads are considered. The usefulness of computing the sensitivities of these margins with respect to interarea transfers, loading parameters, generator dispatch, transmission line parameters, and VAR support is established for networks as large as 1500 buses. The sensitivity formulas presented apply to a range of power system models. Conventional sensitivity formulas such as line distribution factors, outage distribution factors, participation factors and penalty factors are shown to be special cases of the general sensitivity formulas derived in this thesis. The sensitivity formulas readily accommodate sparse matrix techniques. Margin sensitivity methods are shown to work effectively for avoiding voltage collapse blackouts caused by either saddle node bifurcation of equilibria or immediate instability due to generator reactive power limits. Extremely fast contingency analysis for voltage collapse can be implemented with margin sensitivity based rankings. Interarea transfer can be limited by voltage limits, line limits, or voltage stability. The sensitivity formulas presented in this thesis apply to security margins defined by any limit criteria. A method to compute transfer margins by directly locating intermediate events reduces the total number of loadflow iterations required by each margin computation and provides sensitivity information at minimal additional cost. Estimates of the effect of simultaneous transfers on the transfer margins agree well with the exact computations for a network model derived from a portion of the U.S grid. The accuracy of the estimates over a useful range of conditions and the ease of obtaining the estimates suggest that the sensitivity computations will be of practical value.
Project W-314 specific test and evaluation plan for transfer line SN-633 (241-AX-B to 241-AY-02A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, W.H.
1998-03-20
The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-633 transfer line by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the addition of transfer line SN-633. The Project Design Specificationsmore » (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.« less
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
McGuire, Joseph C.
1982-01-01
A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.
2010-06-01
A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.
System for pressure letdown of abrasive slurries
Kasper, Stanley
1991-01-01
A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.
Effect of the connection gap on the heat-load characteristics of a liquid nitrogen bayonet coupling
NASA Astrophysics Data System (ADS)
Tsai, H. H.; Liu, C. P.; Hsiao, F. Z.; Huang, T. Y.; Li, H. C.; Chiou, W. S.; Chang, S. H.; Lin, T. F.
2012-12-01
A transfer system for liquid nitrogen (LN2) installed at National Synchrotron Radiation Research Center (NSRRC) to provide LN2 required for the superconducting equipment and experimental stations has a LN2 transfer line of length 160 m and pipeline of inner diameter 25 mm, a phase separator (250 L) and an automatic filling station. The end uses include two cryogenic systems, one Superconducting Radio Frequency (SRF) cavity, five superconducting magnets, monochromators for the beam line and filling of mobile Dewars. The transfer line is segmented and connected with bayonet couplings. The aim of this work was to investigate, by numerical simulation, the effects on the heat load of the gap thickness of the bayonet assembly and the thickness of vacuum insulation. A numerical correlation was created that has become a basis to minimize the head load for future design of bayonet couplings.
Ultrasound Picture Archiving And Communication Systems
NASA Astrophysics Data System (ADS)
Koestner, Ken; Hottinger, C. F.
1982-01-01
The ideal ultrasonic image communication and storage system must be flexible in order to optimize speed and minimize storage requirements. Various ultrasonic imaging modalities are quite different in data volume and speed requirements. Static imaging, for example B-Scanning, involves acquisition of a large amount of data that is averaged or accumulated in a desired manner. The image is then frozen in image memory before transfer and storage. Images are commonly a 512 x 512 point array, each point 6 bits deep. Transfer of such an image over a serial line at 9600 baud would require about three minutes. Faster transfer times are possible; for example, we have developed a parallel image transfer system using direct memory access (DMA) that reduces the time to 16 seconds. Data in this format requires 256K bytes for storage. Data compression can be utilized to reduce these requirements. Real-time imaging has much more stringent requirements for speed and storage. The amount of actual data per frame in real-time imaging is reduced due to physical limitations on ultrasound. For example, 100 scan lines (480 points long, 6 bits deep) can be acquired during a frame at a 30 per second rate. In order to transmit and save this data at a real-time rate requires a transfer rate of 8.6 Megabaud. A real-time archiving system would be complicated by the necessity of specialized hardware to interpolate between scan lines and perform desirable greyscale manipulation on recall. Image archiving for cardiology and radiology would require data transfer at this high rate to preserve temporal (cardiology) and spatial (radiology) information.
A High Performance Micro Channel Interface for Real-Time Industrial Image Processing
Thomas H. Drayer; Joseph G. Tront; Richard W. Conners
1995-01-01
Data collection and transfer devices are critical to the performance of any machine vision system. The interface described in this paper collects image data from a color line scan camera and transfers the data obtained into the system memory of a Micro Channel-based host computer. A maximum data transfer rate of 20 Mbytes/sec can be achieved using the DMA capabilities...
1989-12-15
Since no bridge crane exists in either the north or south plate areas, parts must be dismounted from one monorail /hoist and transferred to another...when the chemical operations involve more than one tank line. There are 19 tank lines in the shop with one monorail hoist for each pair of tank lines...except for tank line no. 19. The monorail system over line 19 does not connect with the rest of the interconnected serpentine monorail system. Solution
Application of a transient heat transfer model for bundled, multiphase pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.S.; Clapham, J.; Danielson, T.J.
1996-12-31
A computer model has been developed which accurately describes transient heat transfer in pipeline bundles. An arbitrary number of internal pipelines containing different fluids, flowing in either direction along with the input of heat to one or more of the fluids can be accommodated. The model is coupled to the transient, multiphase flow simulator OLGA. The lines containing the multiphase production fluids are modeled by OLGA, and the heat transfer between the internal lines, carrier pipe, and surroundings is handled by the bundle model. The model has been applied extensively to the design of a subsea, heated bundle system formore » the Britannia gas condensate field in the North Sea. The 15-km bundle system contains a 14{double_prime} production line, an 8{double_prime} test line, a 3{double_prime} methanol line, and a 12{double_prime} internal heating medium line within a 37.25{double_prime} carrier. The heating medium (water) flows in the internal heating medium line and in the annulus at 82,500 BPD. The primary purpose of the bundle system is to avoid the formation of hydrates. A secondary purpose is to avoid the deposition of paraffin. The bundle model was used to (1) compare the merits of two coaxial lines vs. a single bundle; (2) optimize the insulation levels on the carrier and internal lines; (3) determine the minimum time required to heat up the bundle; (4) determine heat input requirements to avoid hydrates throughout the field life, (5) determine temperature profiles along the lines for a range of production rates; (6) study ruptures of the production line into the bundle annulus; (7) determine minimum temperatures during depressurization; and (8) determine cool-down times. The results of these studies were used to size lines, select insulation levels, assess erosion potential, design for thermal expansion-induced stresses, and to select materials of construction.« less
Testing of Prototype Magnetic Suspension Cryogenic Transfer Line
NASA Astrophysics Data System (ADS)
Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.
2006-04-01
A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.
3D Hydrodynamic & Radiative Transfer Models of HETG Line Profiles from Colliding Winds
NASA Astrophysics Data System (ADS)
Russell, Christopher
2016-09-01
Chandra has invested 2.52 Ms of HETG observations into 4 colliding-wind binary (CWB) systems. WR140 and eta Car are massive-star binaries with long periods that produce X-rays in a 3D, warped shock cone, while delta Ori A and HD150136 are short-period systems that show line profile changes due to embedded-wind-shock emission in the primary wind being partially evacuated by the secondary wind. HETG observations resolve the velocity structure in both types of systems. We propose 3D line-profile radiative-transfer calculations on existing 3D hydrodynamic simulations of these 4 CWBs. This is the first confrontation of these data with this level of modeling, and will provide greater understanding of their stellar, wind, and orbital properties, as well as the underlying CWB shock physics.
SEURAT: SPH scheme extended with ultraviolet line radiative transfer
NASA Astrophysics Data System (ADS)
Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki
2018-05-01
We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.
Evaluation of Hose in Hose Transfer Line Service Life for Hanfords Interim Stabilization Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
TORRES, T.D.
RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program (Torres, 2000a), defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of waste transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program (Torres, 2000b), has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications associated with Interim Stabilization. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will bemore » exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning, RPP-6028 Section 3.2.7. Performance Incentive Number ORP-05 requires that all the Single Shell Tanks be Interim Stabilized by September 30, 2003. The Tri-Party Agreement (TPA) milestone M-41-00, enforced by a federal consent decree, requires all the Single Shell Tanks to be Interim stabilized by September 30, 2004. By meeting the Performance Incentive the TPA milestone is met. Prudent engineering dictates that the equipment used to transfer waste have a life in excess of the forecasted operational time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer, published literature and calculations. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are the hose material's resistance to the harmful effects of process fluid characteristics, ambient environmental conditions, exposure to ionizing radiation and the manufacturer's stated shelf life. In order to determine the transfer line service life this evaluation examines the certification of shelf life, the certification of chemical compatibility with waste, catalog information of ambient ratings and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials. During initial hose procurements, the hose-in-hose transfer line vendor River Bend Hose Specialty (RBHS) submitted a letter, dated 6/8/00, which recommended the service and shelf life of the hose to be seven years. In submittals for later hose procurements, RBHS submitted a letter, dated 11/6/00, which recommended the service life of the hose to be three years. This submittal was followed by documentation, on 2/14/01, which submitted new storage requirements and restated the seven year shelf life. RBHS revised their original hose service life estimate to a more conservative three years due to concerns over the effects of chemicals in transferred waste. The above mentioned submittals from RBHS are the primary drivers of the three year service life limit established by this document.« less
CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Gorpani
2000-06-23
The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks aremore » prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.« less
Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction
NASA Astrophysics Data System (ADS)
Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Nakai, M.; Koga, M.; Shiraga, H.; Kojima, S.; Azechi, H.; Ozaki, T.; Chen, H.; Pakr, J.; Williams, G. J.; Nishikino, M.; Kawachi, T.; Sagisaka, A.; Orimo, S.; Ogura, K.; Pirozhkov, A.; Yogo, A.; Kiriyama, H.; Kondo, K.; Okano, Y.
2012-10-01
X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes, for the detectors and crystal respectively. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for Au Kα x-ray line emissions, is derived as a consequence of this work. By considering the hot electron temperature, the transfer efficiency from LFEX laser to Au plate target is about 8% to 10%.
Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Vera, Jerry
2015-01-01
Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
..., San Pedro, CA 90731. POLA seeks approval of the proposed discontinuance of Control Point (CP) Transfer Junction at Milepost 1.2 on the Pacific Harbor Line, San Pedro Subdivision. CP Transfer Junction will... discontinuance of CP Transfer Junction. A copy of the petition, as well as any written communications concerning...
Experimental study of high-performance cooling system pipeline diameter and working fluid amount
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan
2016-03-01
This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing.
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-09-05
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-01-01
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals. PMID:28872583
Note: A simple sample transfer alignment for ultra-high vacuum systems.
Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W
2016-06-01
The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.
DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY
A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...
Vacuum-jacketed transfer line installation technique
NASA Technical Reports Server (NTRS)
Bowers, W. M.
1968-01-01
Rolling-type spacers in the form of steel balls retained in appropriate sleeves affixed at intervals to the exterior of the transfer line facilitate the installation of a vacuum-jacketed line. They act as standoffs to position the transfer line concentrically within the vacuum jacket line.
NASA Astrophysics Data System (ADS)
Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.
2016-04-01
The transfer of liquid helium (LHe) into mobile dewars or transport vessels is a common and unavoidable process at LHe decant stations. During this transfer reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus generated helium gas needs to be collected and reliquefied which requires a huge amount of electrical energy. Therefore, the design of transfer lines used at LHe decant stations has been optimised to establish a LHe transfer with minor evaporation losses which increases the overall efficiency and capacity of LHe decant stations. This paper presents the experimental results achieved during the thermohydraulic optimisation of a flexible LHe transfer line. An extensive measurement campaign with a set of dedicated transfer lines equipped with pressure and temperature sensors led to unique experimental data of this specific transfer process. The experimental results cover the heat leak, the pressure drop, the transfer rate, the outlet quality, and the cool-down and warm-up behaviour of the examined transfer lines. Based on the obtained results the design of the considered flexible transfer line has been optimised, featuring reduced heat leak and pressure drop.
77 FR 59726 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... existing AD currently requires removing the actuator from the fuel-balance transfer-valve (FBTV) and... the position indicator of the FBTV is in the closed position and deactivating the fuel-balance... production line with a Fuel-Balance Transfer-System (FBTS) installed. Other Fokker 100 aeroplanes were...
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Technological inductive power transfer systems
NASA Astrophysics Data System (ADS)
Madzharov, Nikolay D.; Nemkov, Valentin S.
2017-05-01
Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs
Experimental Investigation on Heat Transfer Characteristics of Different Metallic Fin Arrays
NASA Astrophysics Data System (ADS)
Sangewar, Ravi Kumar
2018-04-01
The reliability of electronic equipment depends on the reliability of the system. For small applications natural convection cooling is sufficient, but for the electronic equipment having number of heat generating components, forced convection cooling is essential. In number of cases, pin fin arrangement is preferred for augmentation of heat transfer. Here, the performance of pin fin array of copper and aluminum material with in-line, as well as staggered arrangement over a flat plate is studied. Constant heat input was given to the inline, staggered arrangement of copper as well as aluminium pin fin arrays. In the present experimental study, heat input and airflow rates are the variables. It was found that the heat transfer coefficient for staggered array is 15% more than that of the in-line array, at the same time pressure drop across the staggered array is more by 10% than the in-line array. The pressure drop was observed to be increasing with increase in flow rate as expected. Endeavor of the present work is to find the optimum spacing between the fins in an array for maximum heat transfer rate, by investigating the heat transfer characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HICKS, D.F.
1999-08-12
The S-Farm overground transfer (OGT) line will bypass the existing line(s), between valve pits 241-S-B and 241-S-D that no longer meet system requirements. The new OGT line will provide a waste transfer pipeline between these valve pits in support of saltwell pumping activities. The length of the OGT line is approximately 180 ft from pit to pit. The primary pipe is nominal 1-in. diameter stainless steel (SST) braided Ethylene-propylene Diene Monomer (EPDM) hose. The encasement pipe is a nominal 3-in., flanged, SST pipe made up of several different length pipe spool pieces (drawing H-2-829564, sh. 1 and sh. 2). Themore » OGT line slopes from valve pit 241-S-B toward valve pit 241-S-D. At each end, the primary and encasement pipe connect to a pit entry spool piece. The pit entry spool pieces are constructed of prefabricated SST materials. These spool pieces allow for the separation of the primary and encasement pipelines after the pipes have entered the valve pits (drawing H-2-818280, sh. 2). The pit entry spool pieces also allow for leak detection of the encasement pipe at each end (drawing H-2-829564, sh. 2). The OGT encasement pipeline is supported above ground by adjustable height unistrut brackets and precast concrete bases (drawing H-2-829654, sh. 1). The pipeline is heat-traced and insulated. The heat tracing and insulation supply and retain latent heat that prevents waste solidification during transfers and provides freeze protection. The total length of the pipeline is above ground, thereby negating the need for cathodic corrosion protection. This Construction Integrity Assessment Report (CIAR) is prepared by Fluor Daniel Northwest for Numatec Hanford Corporation/Lockheed Martin Hanford Corporation, the operations contractor, and the U. S. Department of Energy, the system owner. The CIAR is intended to verify that construction was performed in accordance with the provisions of Washington Administrative Code, WAC-173-303-640 (3) (c), (e), (f) and (h).« less
Design of the transfer line from booster to storage ring at 3 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch
The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less
Control voltage and power fluctuations when connecting wind farms
NASA Astrophysics Data System (ADS)
Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana
2015-12-01
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.
ERIC Educational Resources Information Center
Korem, Andrej; Shapiro, Arthur
2006-01-01
Globalizing processes in education are reflected in conceptions of "policy borrowing" and knowledge transfer. These processes tend to be associated with the notion of "developed" and "undeveloped" countries. The idea of a direct-line transfer may be limited in that each nation has developed a culture and numerous…
Tracking Community College Transfers Using National Student Clearinghouse Data.
ERIC Educational Resources Information Center
Romano, Richard M.; Wisniewski, Martin
This study shows how community colleges can track almost all of their own students who transfer into both public and private colleges and across state lines using the National Student Clearinghouse (NSC) database. It utilizes data from the student information systems of Broome Community College, New York; Cayuga Community College, New York; the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Griffin, John Clark
2015-01-01
The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenariosmore » are presented with calculations showing the application of such a metric.« less
Technologies for Refueling Spacecraft On-Orbit
NASA Technical Reports Server (NTRS)
Chato, David J.
2000-01-01
This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.
An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space
NASA Technical Reports Server (NTRS)
Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)
2001-01-01
Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.
Design of a CAN bus interface for photoelectric encoder in the spaceflight camera
NASA Astrophysics Data System (ADS)
Sun, Ying; Wan, Qiu-hua; She, Rong-hong; Zhao, Chang-hai; Jiang, Yong
2009-05-01
In order to make photoelectric encoder usable in a spaceflight camera which adopts CAN bus as the communication method, CAN bus interface of the photoelectric encoder is designed in this paper. CAN bus interface hardware circuit of photoelectric encoder consists of CAN bus controller SJA 1000, CAN bus transceiver TJA1050 and singlechip. CAN bus interface controlling software program is completed in C language. A ten-meter shield twisted pair line is used as the transmission medium in the spaceflight camera, and speed rate is 600kbps.The experiments show that: the photoelectric encoder with CAN bus interface which has the advantages of more reliability, real-time, transfer rate and transfer distance overcomes communication line's shortcomings of classical photoelectric encoder system. The system works well in automatic measuring and controlling system.
Graphic design of pinhole cameras
NASA Technical Reports Server (NTRS)
Edwards, H. B.; Chu, W. P.
1979-01-01
The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.
Performance evaluation of the croissant production line with reparable machines
NASA Astrophysics Data System (ADS)
Tsarouhas, Panagiotis H.
2015-03-01
In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.
Ahmed, Trifa M; Lim, Hwanmi; Bergvall, Christoffer; Westerholm, Roger
2013-10-01
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Gorpani
2000-06-26
The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs formore » off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.« less
Space Transportation System (STS) propellant scavenging system study. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
1985-01-01
The objectives are to define the most efficient and cost effective methods for scavenging cryogenic and storable propellants and then define the requirements for these scavenging systems. For cryogenic propellants, scavenging is the transfer of propellants from the Shuttle orbiter external tank (ET) and/or main propulsion subsystems (MPS) propellant lines into storage tanks located in the orbiter payload bay for delivery to the user station by a space based transfer stage or the Space Transportation System (STS) by direct insertion. For storable propellants, scavenging is the direct transfer from the orbital maneuvering subsystem (OMS) and/or tankage in the payload bay to users in LEO as well as users in the vicinity of the Space Station.
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
NASA Astrophysics Data System (ADS)
Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng
2018-03-01
Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.
A new exact method for line radiative transfer
NASA Astrophysics Data System (ADS)
Elitzur, Moshe; Asensio Ramos, Andrés
2006-01-01
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations, and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the `effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins. The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the CII 158-μm line but not by the 3P lines of OI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAQ MA
2009-05-12
The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.
33 CFR 127.1101 - Piping systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... following criteria: (a) Each system must be designed and constructed in accordance with ASME B31.3. (b) Each... the line or equipment. Unless the layout of the piping allows the isolation valve at the transfer...
33 CFR 127.1101 - Piping systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... following criteria: (a) Each system must be designed and constructed in accordance with ASME B31.3. (b) Each... the line or equipment. Unless the layout of the piping allows the isolation valve at the transfer...
33 CFR 127.1101 - Piping systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... following criteria: (a) Each system must be designed and constructed in accordance with ASME B31.3. (b) Each... the line or equipment. Unless the layout of the piping allows the isolation valve at the transfer...
33 CFR 127.1101 - Piping systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... following criteria: (a) Each system must be designed and constructed in accordance with ASME B31.3. (b) Each... the line or equipment. Unless the layout of the piping allows the isolation valve at the transfer...
33 CFR 127.1101 - Piping systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... following criteria: (a) Each system must be designed and constructed in accordance with ASME B31.3. (b) Each... the line or equipment. Unless the layout of the piping allows the isolation valve at the transfer...
Offshore Hydrokinetic Energy Conversion for Onshore Power Generation
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Chao, Yi
2009-01-01
Design comparisons have been performed for a number of different tidal energy systems, including a fully submerged, horizontal-axis electro-turbine system, similar to Verdant Tidal Turbines in New York's East River, a platform-based Marine Current Turbine, now operating in Northern Ireland's Strangford Narrows, and the Rotech Lunar Energy system, to be installed off the South Korean Coast. A fourth type of tidal energy system studied is a novel JPL/Caltech hydraulic energy transfer system that uses submerged turbine blades which are mechanically attached to adjacent high-pressure pumps, instead of to adjacent electrical turbines. The generated highpressure water streams are combined and transferred to an onshore hydroelectric plant by means of a closed-cycle pipeline. The hydraulic energy transfer system was found to be cost competitive, and it allows all electronics to be placed onshore, thus greatly reducing maintenance costs and corrosion problems. It also eliminates the expenses of conditioning and transferring multiple offshore power lines and of building offshore platforms embedded in the sea floor.
Control voltage and power fluctuations when connecting wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com
2015-12-23
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less
Hazards Analysis of Holston Ammonium Nitrate/Nitric Acid Storage and Transfer System
1974-07-01
amonium nitrate re- sulting from an abnormally hbigh heat input which goes uncorrected. A 111-4 failure in either type of heating line has the potential...34 WC P.O. 080-0265, ABL FinM~l Report, November 1971. 14. C. Feick and R. Iiraies, *On the Thermal Decomposition of Amonium Nitrate Steady-State...AD-AO22 868 HAZARDS ANALYSIS OF HOLSTON AMMONIUM NITRATE /NITRIC ACID STORAGE AND TRANSFER SYSTEM W. L. Walker Hercules, Incorporated Prepared for
A comprehensive approach to reactive power scheduling in restructured power systems
NASA Astrophysics Data System (ADS)
Shukla, Meera
Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.
Evaluation of Hose in Hose transfer line service life
DOE Office of Scientific and Technical Information (OSTI.GOV)
EAGLE, O.H.
This document presents a determination for the amount of expected service life from Hose-in-Hose Transfer Lines based on vendor information and past HIHTL experience. Based on the information presented in this report and referenced documentation, we conclude the service life of the inner hose establishes the limits of service life for the finished assemblies. Since the process and environmental conditions to which the transfer line is subjected will not adversely affect the hose, the effective service life is that stated by the vendor--three years from the date of initial transfer. Transfer line assemblies have a shelf life of seven yearsmore » from the date of hose manufacture, if stored in accordance with Section 2.1. This evaluation provides documentation showing that a three year service life has been justified. In the event that transfer lines are to be operated after three years from the date of initial transfer and within the shelf life of seven years, they must be reevaluated for their ability to perform intended functions.« less
Application of information theory to the design of line-scan imaging systems
NASA Technical Reports Server (NTRS)
Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.
1981-01-01
Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.
SHOOT performance testing. [Superfluid Helium On-Orbit Transfer Flight Demonstration
NASA Technical Reports Server (NTRS)
Dipirro, M. J.; Shirron, P. J.; Volz, S. M.; Schein, M. E.
1991-01-01
The Superfluid Helium On-Orbit Transfer (SHOOT) Flight Demonstration is a shuttle attached payload designed to demonstrate the technology necessary to resupply liquid helium dewars in space. Many SHOOT components will also have use in other aerospace cryogenic systems. The first of two SHOOT dewar systems has been fabricated. The ground performance testing of this dewar is described. The performance tests include measurements of heat leak, impedances of the two vent lines, heat pulse mass gauging accuracy, and superfluid transfer parameters such as flow rate and efficiency. A laboratory dewar was substituted for the second flight dewar for the transfer tests. These tests enable a precise analytical model of the transfer process to be verified. SHOOT performance is thus quantified, except for components such as the liquid acquisition devices and a phase separator which cannot be verified in one gravity.
Accelerator Vacuum Protection System
NASA Astrophysics Data System (ADS)
Barua, Pradip; Kothari, Ashok; Archunan, M.; Joshi, Rajan
2012-11-01
A new and elaborate automatic vacuum protection system using fast acting valve has been installed to avoid accidental venting of accelerator from experimental chamber side. To cover all the beam lines and to reduce the system cost, it has been installed at a common point from where all the seven beam lines originate. The signals are obtained by placing fast response pressure sensing gauges (HV SENSOR) near all the experimental stations. The closing time of the fast valve is 10 milli-second. The fast closing system protects only one vacuum line at a time. At IUAC, we have seven beam lines so one sensor was placed in each of the beam lines near experimental chamber and a multiplexer was incorporated into the fast closing system. At the time of experiment, the sensor of the active beam line is selected through the multiplexer and the Fast closing valve is interlocked with the selected sensor. As soon as the pressure sensor senses the pressure rise beyond a selected pressure, the signal is transferred and the fast valve closes within 10 to 12 millisecond.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2018-03-01
Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R 2 and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Reflectivity of the atmosphere-inhomogeneous surfaces system Laboratory simulation
NASA Technical Reports Server (NTRS)
Mekler, Y.; Kaufman, Y. J.; Fraser, R. S.
1984-01-01
Theoretical two- and three-dimensional solutions of the radiative transfer equation have been applied to the earth-atmosphere system. Such solutions have not been verified experimentally. A laboratory experiment simulates such a system to test the theory. The atmosphere was simulated by latex spheres suspended in water and the ground by a nonuniform surface, half white and half black. A stable radiation source provided uniform illumination over the hydrosol. The upward radiance along a line orthogonal to the boundary of the two-halves field was recorded for different amounts of the hydrosol. The simulation is a well-defined radiative transfer experiment to test radiative transfer models involving nonuniform surfaces. Good agreement is obtained between the measured and theoretical results.
Processing Infrared Images For Fire Management Applications
NASA Astrophysics Data System (ADS)
Warren, John R.; Pratt, William K.
1981-12-01
The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.
NASA Technical Reports Server (NTRS)
Atwater, J. E.; Michalek, W. F.; Wheeler, R. R. Jr; Dahl, R.; Lunsford, T. D.; Garmon, F. C.; Sauer, R. L.
2001-01-01
Novel methods and apparatus that employ the rapid heating characteristics of microwave irradiation to facilitate the aseptic transfer of nutrients, products, and other materials between microbially sensitive systems and the external environment are described. The microwave-sterilizable access port (MSAP) consists of a 600-W magnetron emitting at a frequency of 2.45 GHz, a sterilization chamber with inlet and outlet flow lines, and a specimen transfer interface. Energy is routed to the sterilization chamber via a coaxial transmission line where small quantities of water couple strongly with the incident radiation to produce a superheated vapor phase. The efficiency of energy transfer is enhanced through the use of microwave susceptors within the sterilization chamber. Mating surfaces are thermally sterilized through direct contact with the hot gas. Efficacy has been demonstrated using the thermophile Bacillus stearothermophilus.
A HO-IRT Based Diagnostic Assessment System with Constructed Response Items
ERIC Educational Resources Information Center
Yang, Chih-Wei; Kuo, Bor-Chen; Liao, Chen-Huei
2011-01-01
The aim of the present study was to develop an on-line assessment system with constructed response items in the context of elementary mathematics curriculum. The system recorded the problem solving process of constructed response items and transfered the process to response codes for further analyses. An inference mechanism based on artificial…
NASA Technical Reports Server (NTRS)
Stainback, Calvin
1960-01-01
An experimental investigation was conducted to evaluate the heat-transfer characteristics of a hypersonic glide configuration having 79.5 deg of sweepback (measured in the plane of the leading edges) and 45 of dihedral. The tests were conducted at a nominal Mach number of 4.95 and a stagnation temperature of 400 F. The test-section unit Reynolds number was varied from 1.95 x 10(exp 6) to 12.24 x 10(exp 6) per foot. The results indicated that the laminar-flow heat-transfer rate to the lower surface of the model decreased as the distance from the ridge line increased except for thermocouples located near the semispan at an angle of attack of 00 with respect to the plane of the leading edges. The heat-transfer distribution (local heating rate relative to the ridge-line heating rate) was similar to the theoretical heat-transfer distribution for a two-dimensional blunt body, if the ridge line was assumed to be the stagnation line, and could be predicted by this theory provided a modified Newtonian pressure distribution was used. Except in the vicinity of the apex, the ridge-line heat-transfer rate could also be predicted from two-dimensional blunt-body heat-transfer theory provided it was assumed that the stagnation-line heat-transfer rate varied as the cosine of the effective sweep (sine of the angle of attack of the ridge line). The heat-transfer level on the lower surface and the nondimensional heat-transfer distribution around the body on the lower surface were in qualitative agreement with the results of a geometric study of highly swept delta wings with large positive dihedrals made in reference 1.
Simulation and experimental research of heat leakage of cryogenic transfer lines
NASA Astrophysics Data System (ADS)
Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.
2017-12-01
The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2017-06-08
The industrial production of liquid detergent compositions entails delicate balance of ingredients and process steps. In order to assure high quality and productivity in the manufacturing line, process analytical technology tools such as Raman spectroscopy are to be implemented. Marked chemical specificity, negligible water interference and high robustness are ascribed to this process analytical technique. Previously, at-line calibration models have been developed for determining the concentration levels of the being studied liquid detergents main ingredients from Raman spectra. A strategy is now proposed to transfer such at-line developed regression models to an in-line set-up, allowing real-time dosing control of the liquid detergent composition under production. To mimic in-line manufacturing conditions, liquid detergent compositions are created in a five-liter vessel with an overhead mixer. Raman spectra are continuously acquired by pumping the detergent under production via plastic tubing towards a Raman superhead probe, which is incorporated into a metal frame with a sapphire window facing the detergent fluid. Two at-line developed partial least squares (PLS) models are aimed at transferring, predicting the concentration of surfactant 1 and polymer 2 in the examined liquid detergent composition. A univariate slope/bias correction (SBC) is investigated, next to three well-acknowledged multivariate transformation methods: direct, piecewise and double-window piecewise direct standardization. Transfer is considered successful when the magnitude of the validation sets root mean square error of prediction (RMSEP) is similar to or smaller than the corresponding at-line prediction error. The transferred model offering the most promising outcome is further subjected to an exhaustive statistical evaluation, in order to appraise the applicability of the suggested calibration transfer method. Interval hypothesis tests are thereby performed for method comparison. It is illustrated that the investigated transfer approach yields satisfactory results, provided that the original at-line calibration model is thoroughly validated. Both SBC transfer models return lower RMSEP values than their corresponding original models. The surfactant 1 assay met all relevant evaluation criteria, demonstrating successful transfer to the in-line set-up. The in-line quantification of polymer 2 levels in the liquid detergent composition could not be statistically validated, due to the poorer performance of the at-line model. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Shi, Xiaojie M.; Li, Yalong
Hybrid ac/dc transmission extends the power transfer capacity of existing long ac lines closer to their thermal limit, by superposing the dc current onto three-phase ac lines through a zigzag transformer. However, this transformer could suffer saturation under unbalanced line impedance conditions. This paper introduces the concept of hybrid line impedance conditioner (HLIC) as a cost-effective approach to compensate for the line unbalance and therefore avoid saturation. The topology and operation principle are presented. The two-level control strategy is described, which enables autonomous adaptive regulation without the need of system-level control. Design and implementation are also analyzed, including dc-link capacitancemore » as one of the key line conditioner components, HLIC installation, and protection under fault conditions. The cost study on this HLIC-based hybrid system is also performed to reveal the benefits of the solution. In conclusion, simulation results and experimental results based on a down-scaled prototype are provided to verify the feasibility of the proposed approach.« less
Liu, Bo; Shi, Xiaojie M.; Li, Yalong; ...
2016-09-13
Hybrid ac/dc transmission extends the power transfer capacity of existing long ac lines closer to their thermal limit, by superposing the dc current onto three-phase ac lines through a zigzag transformer. However, this transformer could suffer saturation under unbalanced line impedance conditions. This paper introduces the concept of hybrid line impedance conditioner (HLIC) as a cost-effective approach to compensate for the line unbalance and therefore avoid saturation. The topology and operation principle are presented. The two-level control strategy is described, which enables autonomous adaptive regulation without the need of system-level control. Design and implementation are also analyzed, including dc-link capacitancemore » as one of the key line conditioner components, HLIC installation, and protection under fault conditions. The cost study on this HLIC-based hybrid system is also performed to reveal the benefits of the solution. In conclusion, simulation results and experimental results based on a down-scaled prototype are provided to verify the feasibility of the proposed approach.« less
Uncertainties in water chemistry in disks: An application to TW Hydrae
NASA Astrophysics Data System (ADS)
Kamp, I.; Thi, W.-F.; Meeus, G.; Woitke, P.; Pinte, C.; Meijerink, R.; Spaans, M.; Pascucci, I.; Aresu, G.; Dent, W. R. F.
2013-11-01
Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims: The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods: We use a previously published thermo-chemical Protoplanetary Disk Model (ProDiMo) of the disk around TW Hya and study a range of chemical modeling uncertainties: metallicity, C/O ratio, and reaction pathways and rates leading to the formation of water. We provide results for the simplified assumption of Tgas = Tdust to quantify uncertainties arising for the complex heating/cooling processes of the gas and elaborate on limitations due to water line radiative transfer. Results: We report new line detections of p-H2O (322-211) at 89.99 μm and CO J = 18-17 at 144.78 μm for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([O i], [C ii]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [O i] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions: Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide access to the various gas phase water reservoirs (inside and outside the snow line) in protoplanetary disks and thus provide important information on where gas-phase water is potentially located. Experimental and/or theoretical collision rates for H2O with atomic hydrogen are needed to diminish uncertainties from water line radiative transfer. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
AU-FREDI - AUTONOMOUS FREQUENCY DOMAIN IDENTIFICATION
NASA Technical Reports Server (NTRS)
Yam, Y.
1994-01-01
The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is typically done in ground structural testing, AU-FREDI identifies only the key transfer function parameters and uncertainty bounds that are necessary for on-line design and tuning of robust controllers. AU-FREDI's system identification algorithms are independent of the JPL-LSCL environment, and can easily be extracted and modified for use with input/output data files. The basic approach of AU-FREDI's system identification algorithms is to non-parametrically identify the sampled data in the frequency domain using either stochastic or sine-dwell input, and then to obtain a parametric model of the transfer function by curve-fitting techniques. A cross-spectral analysis of the output error is used to determine the additive uncertainty in the estimated transfer function. The nominal transfer function estimate and the estimate of the associated additive uncertainty can be used for robust control analysis and design. AU-FREDI's I/O data transfer routines are tailored to the environment of the CALTECH/ JPL-LSCL which included a special operating system to interface with the testbed. Input commands for a particular experiment (wideband, narrowband, or sine-dwell) were computed on-line and then issued to respective actuators by the operating system. The operating system also took measurements through displacement sensors and passed them back to the software for storage and off-line processing. In order to make use of AU-FREDI's I/O data transfer routines, a user would need to provide an operating system capable of overseeing such functions between the software and the experimental setup at hand. The program documentation contains information designed to support users in either providing such an operating system or modifying the system identification algorithms for use with input/output data files. It provides a history of the theoretical, algorithmic and software development efforts including operating system requirements and listings of some of the various special purpose subroutines which were developed and optimized for Lahey FORTRAN compilers on IBM PC-AT computers before the subroutines were integrated into the system software. Potential purchasers are encouraged to purchase and review the documentation before purchasing the AU-FREDI software. AU-FREDI is distributed in DEC VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard media) or a TK50 tape cartridge. AU-FREDI was developed in 1989 and is a copyrighted work with all copyright vested in NASA.
Proliferative lifespan is conserved after nuclear transfer.
Clark, A John; Ferrier, Patricia; Aslam, Samena; Burl, Sarah; Denning, Chris; Wylie, Diana; Ross, Arlene; de Sousa, Paul; Wilmut, Ian; Cui, Wei
2003-06-01
Cultured primary cells exhibit a finite proliferative lifespan, termed the Hayflick limit. Cloning by nuclear transfer can reverse this cellular ageing process and can be accomplished with cultured cells nearing senescence. Here we describe nuclear transfer experiments in which donor cell lines at different ages and with different proliferative capacities were used to clone foetuses and animals from which new primary cell lines were generated. The rederived lines had the same proliferative capacity and rate of telomere shortening as the donor cell lines, suggesting that these are innate, genetically determined, properties that are conserved by nuclear transfer.
Forced-convection Heat-transfer Characteristics of Molten Sodium Hydroxide
NASA Technical Reports Server (NTRS)
Grele, Milton D; Gedeon, Louis
1953-01-01
The forced-convection heat-transfer characteristics of sodium hydroxide were experimentally investigated. The heat-transfer data for heating fall slightly above the McAdams correlation line, and the heat-transfer data for cooling are fairly well represented by the McAdams correlation line.
Liquefied Natural Gas Transfer
NASA Technical Reports Server (NTRS)
1980-01-01
Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.
Hong, Cheol-Hwa; Sohn, Hyun-Jung; Lee, Hyun-Joo; Cho, Hyun-Il; Kim, Tai-Gyu
Human leukocyte antigens (HLAs) are essential immune molecules that affect transplantation and adoptive immunotherapy. When hematopoietic stem cells or organs are transplanted with HLA-mismatched recipients, graft-versus-host disease or graft rejection can be induced by allogeneic immune responses. The function of each HLA allele has been studied using HLA-deficient cells generated from mutant cell lines or by RNA interference, zinc finger nuclease, and the CRISPR/Cas9 system. To improve HLA gene editing, we attempted to generate an HLA class I null cell line using the multiplex CRISPR/Cas9 system by targeting exons 2 and 3 of HLA-A, HLA-B, and HLA-C genes simultaneously. Multiplex HLA editing could induce the complete elimination of HLA class I genes by bi-allelic gene disruption on target sites which was defined by flow cytometry and target-specific polymerase chain reaction. Furthermore, artificial antigen-presenting cells were generated by transfer of a single HLA class I allele and co-stimulatory molecules into this novel HLA class I null cell line. Artificial antigen-presenting cells showed HLA-restricted antigen presentation following antigen processing and were successfully used for the efficient generation of tumor antigen-specific cytotoxic T cells in vitro. The efficient editing of HLA genes may provide a basis for universal cellular therapies and transplantation.
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentle, Jake Paul
2016-12-01
One primary goal of rendering today’s transmission grid “smarter” is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid’s true capacity. With the “Smarter Grid”, new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INLmore » Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation’s energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL’s DLR development supports EERE and The Wind Energy Technology Office’s goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational Fluid Dynamics (CFD) enhanced weather analysis and DLR software, INL’s project offers the potential of safely providing line ampacities up to 40 percent or more above existing SLRs, by using real time information rather than overly conservative SLR.« less
47 CFR 54.902 - Calculation of Interstate Common Line Support for transferred exchanges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... filed pursuant to § 54.903(a)(4) shall reflect the transfer of exchanges. All post-transaction... transfer of exchanges. All post-transaction Interstate Common Line Support shall be subject to true up by... for transferred exchanges. 54.902 Section 54.902 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...
Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S
2007-02-16
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.
System and method for correcting attitude estimation
NASA Technical Reports Server (NTRS)
Josselson, Robert H. (Inventor)
2010-01-01
A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.
46 CFR 39.20-1 - Vapor collection system-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...
46 CFR 39.20-1 - Vapor collection system-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...
46 CFR 39.20-1 - Vapor collection system-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...
Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP
NASA Astrophysics Data System (ADS)
Stancalie, Viorica; Rachlew, Elisabeth
We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.
NASA Astrophysics Data System (ADS)
Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio
2014-10-01
For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.
Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars
NASA Astrophysics Data System (ADS)
Ozak, N.; Aharonson, O.; Halevy, I.
2016-06-01
Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.
Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level
NASA Astrophysics Data System (ADS)
Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.
1995-11-01
A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.
Collisional transfer of population and orientation in sodium potassium
NASA Astrophysics Data System (ADS)
Wolfe, Christopher Matthew
Collisional spectral satellite lines have been identified in recent optical-optical double resonance (OODR) excitation spectra of the NaK molecule. These satellite lines represent both a transfer of population, and a partial preservation of angular momentum orientation, to a rotational level adjacent to the one directly excited by the pump laser beam. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms (being the most populous species in the vapor by an order of magnitude over the third most populous). Using a fit of this rate equation model to the data, it was found that collisions between NaK and potassium are more likely to transfer population and destroy orientation than argon collisions, and also more likely to transfer population to rotational levels higher in energy than the one being pumped (i.e. a propensity for positive Delta J collisions). Also, collisions between NaK and argon atoms show a propensity toward even-numbered changes in J. In addition to the above study, an analysis of collisional line broadening and velocity-changes in J-changing collisions was performed, showing potassium has a higher line broadening rate coefficient, as well as a smaller velocity change in J-changing collisions, than argon. A program was also written in Fortran 90/95 which solves the density matrix equations of motion in steady state for a coupled system of 3 (or 4) energy levels with their constituent degenerate magnetic sublevels. The solution to these equations yields the populations of each sublevel in steady state, as well as the laser-induced coherences between each sublevel (which are needed to model the polarization spectroscopy lineshape precisely). Development of an appropriate theoretical model for collisional transfer will yield a more rigorous study of the problem than the empirical rate equation model used in the analysis of our experiment.
A gimbal platform stabilization for topographic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci
2015-03-10
The aim of this work is the stabilization of a Gimbal platform for optical sensors acquisitions in topographic applications using mobile vehicles. The stabilization of the line of sight (LOS) consists in tracking the command velocity in presence of nonlinear noise due to the external environment. The hardware architecture is characterized by an Ardupilot platform that allows the control of both the mobile device and the Gimbal. Here we developed a new approach to stabilize the Gimbal platform, which is based on neural network. For the control system, we considered a plant that represents the transfer function of the servomore » system control model for an inertial stabilized Gimbal platform. The transductor used in the feed-back line control is characterized by the Rate Gyro transfer function installed onboard of Ardupilot. For the simulation and investigation of the system performance, we used the Simulink tool of Matlab. Results show that the hardware/software approach is efficient, reliable and cheap for direct photogrammetry, as well as for general purpose applications using mobile vehicles.« less
Goldrick, Stephen; Lee, Kenneth; Spencer, Christopher; Holmes, William; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S
2018-04-01
Glucose control is vital to ensure consistent growth and protein production in mammalian cell cultures. The typical fed-batch glucose control strategy involving bolus glucose additions based on infrequent off-line daily samples results in cells experiencing significant glucose concentration fluctuations that can influence product quality and growth. This study proposes an on-line method to control and manipulate glucose utilizing readily available process measurements. The method generates a correlation between the cumulative oxygen transfer rate and the cumulative glucose consumed. This correlation generates an on-line prediction of glucose that has been successfully incorporated into a control algorithm manipulating the glucose feed-rate. This advanced process control (APC) strategy enables the glucose concentration to be maintained at an adjustable set-point and has been found to significantly reduce the deviation in glucose concentration in comparison to conventional operation. This method has been validated to produce various therapeutic proteins across cell lines with different glucose consumption demands and is successfully demonstrated on micro (15 mL), laboratory (7 L), and pilot (50 L) scale systems. This novel APC strategy is simple to implement and offers the potential to significantly enhance the glucose control strategy for scales spanning micro-scale systems through to full scale industrial bioreactors. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Development of online NIR urine analyzing system based on AOTF
NASA Astrophysics Data System (ADS)
Wan, Feng; Sun, Zhendong; Li, Xiaoxia
2006-09-01
In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.
A Measurement and Power Line Communication System Design for Renewable Smart Grids
NASA Astrophysics Data System (ADS)
Kabalci, E.; Kabalci, Y.
2013-10-01
The data communication over the electric power lines can be managed easily and economically since the grid connections are already spread around all over the world. This paper investigates the applicability of Power Line Communication (PLC) in an energy generation system that is based on photovoltaic (PV) panels with the modeling study in Matlab/Simulink. The Simulink model covers the designed PV panels, boost converter with Perturb and Observe (P&O) control algorithm, full bridge inverter, and the binary phase shift keying (BPSK) modem that is utilized to transfer the measured data over the power lines. This study proposes a novel method to use the electrical power lines not only for carrying the line voltage but also to transmit the measurements of the renewable energy generation plants. Hence, it is aimed at minimizing the additional monitoring costs such as SCADA, Ethernet-based or GSM based systems by using the proposed technique. Although this study is performed with solar power plants, the proposed model can be applied to other renewable generation systems. Consequently, the usage of the proposed technique instead of SCADA or Ethernet-based systems eliminates additional monitoring costs.
Ab Initio Computation of Dynamical Properties: Pressure Broadening
NASA Astrophysics Data System (ADS)
Wiesenfeld, Laurent; Drouin, Brian
2014-06-01
Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into account the ortho or para state of H2 were performed, at temperatures ranging from 10 K to 100K, typically. Reliable results are found, that compare favorably to experiments. In particular, the water-molecular hydrogen system has been thoroughly computed and successfully experimentally tested 6. New projects consider other simple molecules as well as heavier systems, relevant for cometary comae and planetary high atmospheres. as part of the GNU EPrints system
X ray opacity in cluster cooling flows
NASA Technical Reports Server (NTRS)
Wise, Michael W.; Sarazin, Craig L.
1993-01-01
We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.
Radial Velocities of 41 Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.
Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A
2016-02-21
This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.
[High-contrast resolution of film-screen systems in oral and maxillofacial radiology].
Kaeppler, G; Reinert, S
2007-11-01
The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same x-ray units as those used for patient radiographs. The MTF was determined using a lead grid and according to DIN 6867-2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). The relevance of this study is underlined by the diagnostic reference doses defined in the German X-ray Ordinance (RöV) which are also intended for dentistry. Film-screen systems (speed 250, speed class 200) previously used in dental panoramic and cephalometric radiography can be replaced by newly developed film-screen systems (speed class 400). In dental radiography dose reductions are possible with film-screen systems (speed class 400) without impairing diagnostic accuracy. The introduction of newly developed film-screen systems (speed class 400) requires lower milliampere-seconds and therefore an adjustment of the x-ray units to lower milliampere settings.
NASA Astrophysics Data System (ADS)
Menzel, R.; Paynter, D.; Jones, A. L.
2017-12-01
Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.
Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials
NASA Astrophysics Data System (ADS)
Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina
1992-08-01
Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.
NASA Astrophysics Data System (ADS)
Chalon, J. P.; Jaubert, G.; Lafore, J. P.; Roux, F.
1988-10-01
Durirg the night of 23/24 June 1981, new Korhogo, Ivory Coast, a squall line passed over the instrumented area of the COPT 81 experiment. Observations were obtained with a dual-Doppler radar system, a sounding station and 22 automatic meteorological surface stations. Data from these instruments and from satellite pictures were analyzed to depict the kinematic and thermodynamic structure of the squall line. Composite analysis techniques were used to obtain a vertical cross section of the reflectivity structure and of the wind field relative to the line. The redistributions of air, moisture and thermodynamic energy by the convection wet calculated through averaged two-dimensional wind fields from a dual-Doppler radar system. The method also allowed the evaluation of the exchanges that were occurring between the convective and the stratiform regions.This squall line had many similarities with tropical squall lines previously described by others. The leading convective part, composed of intense updrafts and downdrafts, and the trailing part, containing weak mesoscale updraft and downdraft, were separated by a reflectivity trough. A notable feature of this line was the presence of a leading anvil induced by intense easterly environmental winds in the upper troposphere. Observations of the evolution of the system at different scales indicated that the mesoalpha-scale (following the classification of Orlanski) and the mosobeta-scale patterns combined to allow the system to have optimum conditions for maximum strength and a maximum lifetime.A rear-to-front flow was found at midlevels in the stratiform region. The flow sloped downward to the surface and took on the characteristics of a density current in the forward half of the squall lice. Entering the convective region, this flow was supplied with cold air by the convective downdrafts and played an important role in forcing upward the less dense monsoon flow entering at the leading edge.Calculations of mass, moisture and energy transports showed the importance of the transfers between the convective and the stratiform regions. Particularly large quantities of condensate and energy were transferred from the convective region toward the anvils and made important contributions to the precipitation budget in the stratiform region, while large quantities of water vapor and latent heat energy were transferred from the stratiform region toward the convective region through the rear-to-front flow. Diabatic heating resulting from condensation in the convective region was also evaluated.
Optical Waveguide Solar Energy System for Lunar Materials Processing
NASA Technical Reports Server (NTRS)
Nakamura, T.; Case, J. A.; Senior, C. L.
1997-01-01
This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.
Transformation of EIA to EIT by incoherent pumping of the 85Rb D1 line
NASA Astrophysics Data System (ADS)
Yu, Hoon; Kim, Jung Dong; Jung, Tae Young; Kim, Jung Bog
2012-10-01
We have observed a transformation from electromagnetically-induced absorption (EIA) to electromagnetically induced transparency (EIT) in open systems of the 85Rb D1 line by adding an incoherent optical pumping laser. This result raises a new question about recent theoretical work which does not address the degree of open. The pump beam only plays a role in transferring atoms by a spontaneous transition into the interacting system for EIT observation, which is an incoherent process. The dependence of the absorption spectra on the intensity and the polarization of each laser beam were observed. We have found the same tendencies in all transitions except the F = 2 ↔ F' = 3 transition of the 85Rb D1 line, which is the system that almost satisfies conventional EIA conditions.
A proposed time transfer experiment between the USA and the South Pacific
NASA Technical Reports Server (NTRS)
Luck, John; Dunkley, John; Armstrong, Tim; Gifford, Guy A.; Landis, Paul; Rasmussen, Scott; Wheeler, Paul J.; Bartholomew, Thomas R.; Stein, Samuel R.
1992-01-01
Described here are the concept, architecture and preliminary details of an experiment directed towards providing continuous Ultra High Precision (UHP) time transfer between Washington, DC; Salisbury, SA Australia; Orroral Valley, ACT Australia; and Lower Hutt, New Zealand. A proposed method of distributing UTC(USNO) at a high level of precision to passive users over a broad area of the South Pacific is described. The concept is based on active two-way satellite time transfer from the United States Naval Observatory (USNO) to the proposed USNO Master Clock West (MCW) in Wahiwa, HI at the 1 nanosecond level using active satellite two-way time transfer augmented by Precise Positioning Service (PPS) of the Global Positioning System (GPS). MCW would act as an intermediate transfer/reference station, again linked to Salisbury at the 1 nanosecond level using active satellite two-way time transfer augmented by PPS GPS. From this point, time would be distributed within the region by two methods. The first is an existing TV line sync system using an Australian communications satellite (AUSSAT K1) which is useful to the 20 nanosecond level. The second approach is RF ranging and multilateration between Salisbury, Orroral Observatory, Lower Hutt and the AUSSAT B1 and B2 to be launched in 1992. Orroral Observatory will provide precise laser ranging to the AUSSAT B1/B2 retro reflectors which will reduce ephemeris related time transfer errors to below 1 nanosecond. The corrected position will be transmitted by both the time transfer modem and the existing TV line sync dissemination process. Multilateration has the advantage of being an all weather approach and when used with the laser ranging technique will provide a precise measurement of the propagation path delays. This will result in time transfer performance levels on the order of 10 nanoseconds to passive users in both Australia and New Zealand.
Objects of attention, objects of perception.
Avrahami, J
1999-11-01
Four experiments were conducted, to explore the notion of objects in perception. Taking as a starting point the effects of display content on rapid attention transfer and manipulating curvature, closure, and processing time, a link between objects of attention and objects of perception is proposed. In Experiment 1, a number of parallel, equally spaced, straight lines facilitated attention transfer along the lines, relative to transfer across the lines. In Experiment 2, with curved, closed-contour shapes, no "same-object" facilitation was observed. However, when a longer time interval was provided, in Experiment 3, a same-object advantage started to emerge. In Experiment 4, using the same curved shapes but in a non-speeded distance estimation task, a strong effect of objects was observed. It is argued that attention transfer is facilitated by line tracing but that line tracing is encouraged by objects.
Flores, Gema; Díaz-Plaza, Eva María; Cortés, Jose Manuel; Villén, Jesús; Herraiz, Marta
2008-11-21
The use of absorbents as retaining materials in the through oven transfer adsorption desorption interface (TOTAD) of an on-line coupled reversed-phase liquid chromatography-gas chromatography system (RPLC-GC) is proposed for the first time. A comparative study of an adsorbent (Tenax TA) and two absorbents, namely polydimethylsiloxane and poly(50% phenyl/50% methylsiloxane) is performed to establish the best experimental conditions for the automated and simultaneous determination of 15 organophosphorus and organochlorine pesticide residues in olive oil. The proposed method provides satisfactory repeatability (RSDs lower, in general, than 8.5%) and sensitivity (limits of detection ranging from 0.6 to 81.9 microg/L) for the investigated compounds.
Analysis of longwave radiation for the Earth-atmosphere system
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Venuru, C. S.; Subramanian, S. V.
1983-01-01
Accurate radiative transfer models are used to determine the upwelling atmospheric radiance and net radiative flux in the entire longwave spectral range. The validity of the quasi-random band model is established by comparing the results of this model with those of line-by-line formulations and with available theoretical and experimental results. Existing radiative transfer models and computer codes are modified to include various surface and atmospheric effects (surface reflection, nonequilibrium radiation, and cloud effects). The program is used to evaluate the radiative flux in clear atmosphere, provide sensitivity analysis of upwelling radiance in the presence of clouds, and determine the effects of various climatological parameters on the upwelling radiation and anisotropic function. Homogeneous and nonhomogeneous gas emissivities can also be evaluated under different conditions.
Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold
High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less
Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey
Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold; ...
2018-05-02
High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA has transferred the improved portable leak detector technology to UE Systems, Inc.. This instrument was developed to detect leaks in fluid systems of critical launch and ground support equipment. This system incorporates innovative electronic circuitry, improved transducers, collecting horns, and contact sensors that provide a much higher degree of reliability, sensitivity and versatility over previously used systems. Potential commercial uses are pipelines, underground utilities, air-conditioning systems, petrochemical systems, aerospace, power transmission lines and medical devices.
NASA Astrophysics Data System (ADS)
Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.
2002-07-01
A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.
Heat pump system with selective space cooling
Pendergrass, J.C.
1997-05-13
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.
Heat pump system with selective space cooling
Pendergrass, Joseph C.
1997-01-01
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.
NASA Astrophysics Data System (ADS)
Lindinger, W.; Hansel, A.; Jordan, A.
1998-02-01
A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
Radiation-Tolerant, SpaceWire-Compatible Switching Fabric
NASA Technical Reports Server (NTRS)
Katzman, Vladimir
2011-01-01
Current and future near-Earth and deep space exploration programs and space defense programs require the development of robust intra-spacecraft serial data transfer electronics that must be reconfigurable, fault-tolerant, and have the ability to operate effectively for long periods of time in harsh environmental conditions. Existing data transfer systems based on state-of-the-art serial data transfer protocols or passive backplanes are slow, power-hungry, and poorly reconfigurable. They provide limited expandability and poor tolerance to radiation effects and total ionizing dose (TID) in particular, which presents harmful threats to modern submicron electronics. This novel approach is based on a standard library of differential cells tolerant to TID, and patented, multi-level serial interface architecture that ensures the reliable operation of serial interconnects without application of a data-strobe or other encoding techniques. This proprietary, high-speed differential interface presents a lowpower solution fully compatible with the SpaceWire (SW) protocol. It replaces a dual data-strobe link with two identical independent data channels, thus improving the system s tolerance to harsh environments through additional double redundancy. Each channel incorporates an automatic line integrity control circuitry that delivers error signals in case of broken or shorted lines.
Ju, Jin Young; Park, Chun Young; Gupta, Mukesh Kumar; Uhm, Sang Jun; Paik, Eun Chan; Ryoo, Zae Young; Cho, Youl Hee; Chung, Kil Saeng; Lee, Hoon Taek
2008-05-01
To establish embryonic stem cell lines from nuclear transfer of somatic cell nuclei isolated from the same oocyte donor and from parthenogenetic activation. The study also evaluated the effect of the micromanipulation procedure on the outcome of somatic cell nuclear transfer in mice. Randomized, prospective study. Hospital-based assisted reproductive technology laboratory. F(1) (C57BL/6 x 129P3/J) mice. Metaphase II-stage oocytes were either parthenogenetically activated or nuclear transferred with cumulus cell nuclei or parthenogenetically activated after a sham-manipulation procedure. Embryogenesis and embryonic stem cell establishment. The development rate to morula/blastocyst of nuclear transferred oocytes (27.9% +/- 5.9%) was significantly lower than that of the sham-manipulated (84.1% +/- 5.6%) or parthenogenetic (98.6% +/- 1.4%) groups. A sharp decrease in cleavage potential was obvious in the two- to four-cell transition for the nuclear transferred embryos (79.0% +/- 4.6% and 43.3% +/- 5.0%), implying incomplete nuclear reprogramming in arrested oocytes. However, the cleavage, as well as the development rate, of parthenogenetic and sham-manipulated groups did not differ significantly. The embryonic stem cell line establishment rate was higher from parthenogenetically activated oocytes (15.7%) than nuclear transferred (4.3%) or sham-manipulated oocytes (12.5%). Cell colonies from all groups displayed typical morphology of mice embryonic stem cells and could be maintained successfully with undifferentiated morphology after continuous proliferation for more than 120 passages still maintaining normal karyotype. All these cells were positive for mice embryonic stem cell markers such as Oct-4 and SSEA-1 based on immunocytochemistry and reverse transcriptase-polymerase chain reaction. The clonal origin of the ntES cell line and the parthenogenetic embryonic stem cell lines were confirmed by polymerase chain reaction analysis of the polymorphic markers. Blastocyst injection experiments demonstrated that these lines contributed to resulting chimeras and are germ-line competent. We report the establishment of ntES cell lines from somatic cells isolated from same individual. Our data also suggest that embryo micromanipulation procedure during the nuclear transfer procedure influences the developmental ability and embryonic stem cell establishment rate of nuclear transferred embryos.
Space Cryogenics Workshop, University of Wisconsin, Madison, June 22, 23, 1987
NASA Technical Reports Server (NTRS)
1988-01-01
Papers are presented on liquid helium servicing from the Space Station, performance estimates in the Superfluid Helium On-Orbit Transfer Flight Experiment, an analytical study of He II flow characteristics in the SHOOT transfer line, a Dewar to Dewar model for superfluid helium transfer, and mechanical pumps for superfluid helium transfer in space. Attention is also given to the cavitation characteristics of a small centrifugal pump in He I and He II, turbulent flow pressure drop in various He II transfer system components, slip effects associated with Knudsen transport phenomena in porous media, and an integrated fountain effect pump device for fluid management at low gravity. Other papers are on liquid/vapor phase separation in He-4 using electric fields, an enclosed capillary device for low-gravity management of He II, cavitation in flowing superfluid helium, the long-term performance of the passive thermal control systems of the IRAS spacecraft, and a novel approach to supercritical helium flight cryostat support structures.
Experimental Investigation of two-phase nitrogen Cryo transfer line
NASA Astrophysics Data System (ADS)
Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.
2017-02-01
A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.
Air Liquides Contribution to the CERN Lhc Refrigeration System
NASA Astrophysics Data System (ADS)
Dauguet, P.; Gistau-Baguer, G. M.; Briend, P.; Hilbert, B.; Monneret, E.; Villard, J. C.; Marot, G.; Delcayre, F.; Mantileri, C.; Hamber, F.; Courty, J. C.; Hirel, P.; Cohu, A.; Moussavi, H.
2008-03-01
The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It is a superconducting machine over 27 km in circumference. Its magnets and cavities require helium refrigeration and liquefaction over the temperature range of 1.8 K to 300 K. This is the largest cryogenic system in the world with respect to the needed cryogenic power: 144-kW equivalent power at 4.5 K. The LHC cryogenic system is composed of 8×18 kW at 4.5 K refrigerators, 8×2.4 kW at 1.8 K systems, 5 main valve boxes, more than 27 km of helium transfer lines and around 300 service modules connecting the transfer line to the magnet and cavity strings. More than half of these components have been designed, manufactured, installed and commissioned by Air Liquide. Due to the huge size of the project, the engineering, construction and commissioning of the equipment has lasted for 8 years, from the first order of equipment in 1998 to final commissioning in 2006. Specifications, architecture and the Air Liquide design of major components of the LHC Refrigeration System are presented in this paper.
Commissioning the cryogenic system of the first LHC sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, F.; Claudet, S.; Ferlin, G.
2007-12-01
The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less
40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...
40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...
40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...
40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...
40 CFR 1065.145 - Gaseous and PM probes, transfer lines, and sampling system components.
Code of Federal Regulations, 2011 CFR
2011-07-01
... measuring sample flows by designing a passive sampling system that meets the following requirements: (A) The... number of bends, and have no filters. (B) If probes are designed such that they are sensitive to stack... design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw...
de Semir, D.; Maurisse, R.; Du, F.; Xu, J.; Yang, X.; Illek, B.; Gruenert, D. C.
2013-01-01
The prospect of developing large animal models for the study of inherited diseases, such as cystic fibrosis (CF), through somatic cell nuclear transfer (SCNT) has opened up new opportunities for enhancing our understanding of disease pathology and for identifying new therapies. Thus, the development of species-specific in vitro cell systems that will provide broader insight into organ- and cell-type-specific functions relevant to the pathology of the disease is crucial. Studies have been undertaken to establish transformed rabbit airway epithelial cell lines that display differentiated features characteristic of the primary airway epithelium. This study describes the successful establishment and characterization of two SV40-transformed rabbit tracheal epithelial cell lines. These cell lines, 5RTEo- and 9RTEo-, express the CF transmembrane conductance regulator (CFTR) gene, retain epithelial-specific differentiated morphology and show CFTR-based cAMP-dependent Cl− ion transport across the apical membrane of a confluent monolayer. Immunocytochemical analysis indicates the presence of airway cytokeratins and tight-junction proteins in the 9RTEo- cell line after multiple generations. However, the tight junctions appear to diminish in their efficacy in both cell lines after at least 100 generations. Initial SCNT studies with the 9RTEo- cells have revealed that SV40-transformed rabbit airway epithelial donor cells can be used to generate blastocysts. These cell systems provide valuable models for studying the developmental and metabolic modulation of CFTR gene expression and rabbit airway epithelial cell biology. PMID:22234514
REPHLEX II: An information management system for the ARS Water Data Base
NASA Astrophysics Data System (ADS)
Thurman, Jane L.
1993-08-01
The REPHLEX II computer system is an on-line information management system which allows scientists, engineers, and other researchers to retrieve data from the ARS Water Data Base using asynchronous communications. The system features two phone lines handling baud rates from 300 to 2400, customized menus to facilitate browsing, help screens, direct access to information and data files, electronic mail processing, file transfers using the XMODEM protocol, and log-in procedures which capture information on new users, process passwords, and log activity for a permanent audit trail. The primary data base on the REPHLEX II system is the ARS Water Data Base which consists of rainfall and runoff data from experimental agricultural watersheds located in the United States.
NASA Technical Reports Server (NTRS)
Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley
2015-01-01
The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.
Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.
Riedlinger, J; Grencis, R K; Wakelin, D
1986-01-01
T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438
An In-Rush Current Suppression Technique for the Solid-State Transfer Switch System
NASA Astrophysics Data System (ADS)
Cheng, Po-Tai; Chen, Yu-Hsing
More and more utility companies provide dual power feeders as a premier service of high power quality and reliability. To take advantage of this, the solid-state transfer switch (STS) is adopted to protect the sensitive load against the voltage sag. However, the fast transfer process may cause in-rush current on the load-side transformer due to the resulting DC-offset in its magnetic flux as the load-transfer is completed. The in-rush current can reach 2∼6 p.u. and it may trigger the over-current protections on the power feeder. This paper develops a flux estimation scheme and a thyristor gating scheme based on the impulse commutation bridge STS (ICBSTS) to minimize the DC-offset on the magnetic flux. By sensing the line voltages of both feeders, the flux estimator can predict the peak transient flux linkage at the moment of load-transfer and evaluate a suitable moment for the transfer to minimize the in-rush current. Laboratory test results are presented to validate the performance of the proposed system.
The need for national mandatory guidance on CSTDs.
Meade, Elizabeth; Simons, Alison; Toland, Samantha
2017-09-06
Closed system transfer devices play a vital role in reducing health professionals' risk of exposure to hazardous drugs. Although recommended as a first line of defence against contamination, they are not widely used. Clear mandatory national guidance is needed to address this.
Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Schreier, Franz; García, Sebastián Gimeno
2013-05-01
Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.
Balash, Cheslav; Sterling, David; Binns, Jonathan; Thomas, Giles; Bose, Neil
2015-01-01
For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new ‘W’ trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and ‘W’ trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed ‘W’ trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated ‘W’ trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin ‘W’ trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow. PMID:25751251
Ultra-high efficiency moving wire combustion interface for on-line coupling of HPLC
Thomas, Avi T.; Ognibene, Ted; Daley, Paul; Turteltaub, Ken; Radousky, Harry; Bench, Graham
2011-01-01
We describe a 100% efficient moving-wire interface for on-line coupling of high performance liquid chromatography which transmits 100% of carbon in non-volatile analytes to a CO2 gas accepting ion source. This interface accepts a flow of analyte in solvent, evaporates the solvent, combusts the remaining analyte, and directs the combustion products to the instrument of choice. Effluent is transferred to a periodically indented wire by a coherent jet to increase efficiency and maintain peak resolution. The combustion oven is plumbed such that gaseous combustion products are completely directed to an exit capillary, avoiding the loss of combustion products to the atmosphere. This system achieves the near complete transfer of analyte at HPLC flow rates up to 125 μL/min at a wire speed of 6 cm/s. This represents a 30x efficiency increase and 8x maximum wire loading compared to the spray transfer technique used in earlier moving wire interfaces. PMID:22004428
Optical and UV spectroscopy of the peculiar RS CVn system RT Lacertae
NASA Technical Reports Server (NTRS)
Huenemoerder, D. P.; Barden, S. C.
1986-01-01
H-alpha and H-beta spectra of the peculiar double-lined RS CVn binary RT Lacertae have been obtained using the IUE, together with a ground-based coude-feed telescope at KPNO. The ground-based spectra show an asymmetry related to the orbital phase in the H-alpha profile. H-beta profiles showed excess emission in one hemisphere and excess absorption in the other, with a broad Gaussian emission component superposed on the excess H-alpha line. A radial velocity curve was derived to estimate the mass ratio and geometry of the system. It is shown that the component of RT Lac fills 80-90 percent of the equilibrium Roche surface. Low-resolution ultraviolet data show that the supposed cooler component is bluer than its companion, suggesting evidence of a scattering shell or a cloud produced by the splash of a gas stream. The phase behavior of the low resolution ultraviolet data support the conclusion that RT Lac is a mass transfer system and that mass transfer is the primary cause of its activity.
Be discs in coplanar circular binaries: Phase-locked variations of emission lines
NASA Astrophysics Data System (ADS)
Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo
2018-01-01
In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.
Weak e+e- lines from internal pair conversion observed in collisions of 238U with heavy nuclei
NASA Astrophysics Data System (ADS)
Heinz, S.; Berdermann, E.; Heine, F.; Joeres, O.; Kienle, P.; Koenig, I.; Koenig, W.; Kozhuharov, C.; Leinberger, U.; Rhein, M.; Schröter, A.; Tsertos, H.
1998-01-01
We present the results of a Doppler-shift correction to the measured e+e- sum-energy spectra obtained from e+e- coincidence measurements in 238U +206Pb and 238U +181Ta collisions at beam energies close to the Coulomb barrier, using an improved experimental setup at the double-Orange spectrometer of GSI. Internal-Pair-Conversion (IPC) e+e- pairs from discrete nuclear transitions of a moving emitter have been observed following Coulomb excitation of the 1.844 MeV (E1) transition in 206Pb and neutron transfer to the 1.770 MeV (M1) transition in 207Pb. In the collision system 238U +181Ta, IPC transitions were observed from the Ta-like as well as from the U-like nuclei. In all systems the Doppler-shift corrected e+e- sum-energy spectra show weak lines at the energies expected from the corresponding γ ray spectra with cross sections being consistent with the measured excitation cross sections of the γ lines and the theoretically predicted IPC coefficients. No other than IPC e+e- sum-energy lines were found in the measured spectra. The transfer cross sections show a strong dependence on the distance of closest approach (Rmin), thus signaling also a strong dependence on the bombarding energy close to the Coulomb barrier.
Practice makes transfer of motor skills imperfect.
Boutin, Arnaud; Badets, Arnaud; Salesse, Robin N; Fries, Udo; Panzer, Stefan; Blandin, Yannick
2012-09-01
We investigated the practice-effects on motor skill transfer and the associated representational memory changes that occur during the within-practice and between-practice phases. In two experiments, participants produced extension-flexion movements with their dominant right arm for a limited or prolonged practice session arranged in either a single- or multi-session format. We tested the ability of participants to transfer the original pattern (extrinsic transformation) or the mirrored one (intrinsic transformation) to the non-dominant left arm, 10 min and 24 h after the practice sessions. Results showed that practice induces rapid motor skill improvements that are non-transferable irrespective of the amount of acquisition trials. Furthermore, the extrinsic component of the skill develops early and remains the dominant coding system during practice. Conversely, we found distinct between-practice memory changes: a limited practice induces an off-line development of the extrinsic component, whereas a prolonged practice session subserves the off-line development of the intrinsic component (experiment 2). We provided further evidence that the long-term representation of the motor skill also depends on the nature of the practice session itself: the parsing of practice into multiple sessions narrows the effector-transfer capacities in comparison to a single session (experiment 1). These findings yield theoretical and practical implications that are discussed in the context of recent motor skill learning models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang
In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10%more » by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.« less
First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB
NASA Astrophysics Data System (ADS)
Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter
2018-05-01
160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.
Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1993-01-01
The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.
Dutta, Rajesh; Bagchi, Kaushik
2017-01-01
Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457
UV line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1992-01-01
The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.
A small scale remote cooling system for a superconducting cyclotron magnet
NASA Astrophysics Data System (ADS)
Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.
2017-02-01
Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouzes, R.T.; Piilonen, L.; Schreiber, D.
Apple microcomputers have been combined with CAMAC to produce data acquisition systems used for a variety of applications at the Princeton Cyclotron Laboratory. Two specific implementations are discussed: a general one or two parameter MCA system and a specific eleven parameter system. A multiplicity of off-line experiments led to the need for these systems having data manipulation and control ability beyond that of low cost systems available commercially. A serial communications port allows for data transfer to the main computer for more complete analysis.
Diesel fuel burner for diesel emissions control system
Webb, Cynthia C.; Mathis, Jeffrey A.
2006-04-25
A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.
ERIC Educational Resources Information Center
Jakku-Sihvonen, Ritva; Tissari, Varpu; Ots, Aivar; Uusiautti, Satu
2012-01-01
During the Bologna process, from 2003 to 2006, degree programmes, including teacher education curricula, were developed in line with the two-tier system--the European Credit Transfer and Accumulation System (ECTS) and modularization. The purpose of the present study is to contribute to the development of teacher education profiling measures by…
Liu, Xinyu; Pawliszyn, Janusz
2007-04-01
In this paper, we present results for the on-line determination of semivolatile organic compounds (SVOCs) in air using membrane extraction with a sorbent interface-ion mobility spectrometry (MESI-IMS) system with a preheated carrier (stripping) gas. The mechanism of the mass transfer of SVOCs across a membrane was initially studied. In comparison with the extraction of volatile analytes, the mass transfer resistance that originated from the slow desorption from the internal membrane surface during the SVOC extraction processes should be taken into account. A preheated carrier gas system was therefore built to facilitate desorption of analytes from the internal membrane surface. With the benefit of a temperature gradient existing between the internal and external membrane surfaces, an increase in the desorption rate of a specific analyte at the internal surface and the diffusion coefficient within the membrane could be achieved while avoiding a decrease of the distribution constant on the external membrane interface. This technique improved both the extraction rate and response times of the MESI-IMS system for the analysis of SVOCs. Finally, the MESI-IMS system was shown to be capable of on-site measurement by monitoring selected polynuclear aromatic hydrocarbons emitted from cigarette smoke.
NASA Technical Reports Server (NTRS)
Laepple, H.
1979-01-01
The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.
A New Method for 3D Radiative Transfer with Adaptive Grids
NASA Astrophysics Data System (ADS)
Folini, D.; Walder, R.; Psarros, M.; Desboeufs, A.
2003-01-01
We present a new method for 3D NLTE radiative transfer in moving media, including an adaptive grid, along with some test examples and first applications. The central features of our approach we briefly outline in the following. For the solution of the radiative transfer equation, we make use of a generalized mean intensity approach. In this approach, the transfer eqation is solved directly, instead of using the moments of the transfer equation, thus avoiding the associated closure problem. In a first step, a system of equations for the transfer of each directed intensity is set up, using short characteristics. Next, the entity of systems of equations for each directed intensity is re-formulated in the form of one system of equations for the angle-integrated mean intensity. This system then is solved by a modern, fast BiCGStab iterative solver. An additional advantage of this procedure is that convergence rates barely depend on the spatial discretization. For the solution of the rate equations we use Housholder transformations. Lines are treated by a 3D generalization of the well-known Sobolev-approximation. The two parts, solution of the transfer equation and solution of the rate equations, are iteratively coupled. We recently have implemented an adaptive grid, which allows for recursive refinement on a cell-by-cell basis. The spatial resolution, which is always a problematic issue in 3D simulations, we can thus locally reduce or augment, depending on the problem to be solved.
Phase III: Implementation and Operation of the Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1998-07-01
The metadata catalog was brought online for public access May 14, 1998. Since then dozens of users have registered and began to access the system. The system was demonstrated at the AAPG annual meeting in Salt Lake City and the EAGE (European Association of Geoscientists and Engineers) annual meeting in Leipzig, Germany. Hart Publications and PTTC "NetworkNews" have published articles about the metadata catalog, and articles for the AAPG Explorer and GSA Today are being developed. A back-up system at AGI headquarters was established. In support of the metadata catalog system, a leased-line Internet connection and two servers were installed.more » Porting of the GeoTrek server software to the new systems has begun. The back-up system will be operational during the 3 rd quarter of 1998 and will serve the NGDRS needs during periods when access to the site in Houston is down. Additionally, experimentation with new data types and deployment schemes will be tested on the system at AGI. The NGDRS has picked-up additional endorsements from the American Association of State Geologists, the MMS Outer Continental Shelf Policy Committee, and a new endorsement is being formulated by the AAPG Core Preservation Committee for consideration by the AAPG Executive Committee. The Texas Bureau of Economic Geology (BEG) is currently geocoding the well locations for the metadata catalog. Also, they have solicited proposals for the development of a core inventory control system that will work hand-in-hand with GeoTrek. A contract for that system will probably be given during the 3 rd quarter of 1998. The Texas Railroad Commission proposes to test the application of GeoTrek for accessing data in a joint project with the BEG. Several data transfer projects are underway. Vastar has committed to the transfer of 2D Appalachian seismic lines to the NDGRS clearinghouse. Receiving repositories have been identified and the final preparations are being made for transfer to these public repositories. Discussions have been initiated with the State of Oregon concerning listing their 400 oil and gas well and 50 geothermal well cores and logs on the metadata catalog. Additionally, discussions continue with the Stapleton Development Corporation concerning the transfer of facilities in Denver for use as a central core repository. A letter of intent for the facility's transfer is being reviewed.« less
Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin
2015-01-01
The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications. PMID:26670247
Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin
2015-12-08
The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.
An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations
NASA Astrophysics Data System (ADS)
Cubillos, Patricio E.
2017-11-01
Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-line mark, handling them has become computationally prohibitive, due to both the required processing power and memory. Here I present a temperature-dependent algorithm to separate strong from weak line transitions, reformatting the large majority of the weaker lines into a cross-section data file, and retaining the detailed line-by-line information of the fewer strong lines. For any given molecule over the 0.3-30 μm range, this algorithm reduces the number of lines to a few million, enabling faster radiative-transfer computations without a significant loss of information. The final compression rate depends on how densely populated the spectrum is. I validate this algorithm by comparing Exomol’s HCN extinction-coefficient spectra between the complete (65 million line transitions) and compressed (7.7 million) line lists. Over the 0.6-33 μm range, the average difference between extinction-coefficient values is less than 1%. A Python/C implementation of this algorithm is open-source and available at https://github.com/pcubillos/repack. So far, this code handles the Exomol and HITRAN line-transition format.
NASA Technical Reports Server (NTRS)
Rybicki, G. B.; Hummer, D. G.
1991-01-01
A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.
Improving Transversal Competences by Using Wikis in Collaborative Work
ERIC Educational Resources Information Center
Guinau Sellés, Marta; Playà Pous, Elisabet; Aulinas Juncà, Meritxell; Rosell Ortiz, Laura; Rivero Marginedas, Lluís
2017-01-01
Work on transversal competences in university degrees is a teaching line entirely established since the implementation of the European Credit Transfer System (ECTS). Nevertheless, undergraduate students present shortcomings in the development of some of these competences, especially on collaborative work, time management, oral and writing…
Kordis, Dusan; Gubensek, Franc
1998-01-01
We have shown previously by Southern blot analysis that Bov-B long interspersed nuclear elements (LINEs) are present in different Viperidae snake species. To address the question as to whether Bov-B LINEs really have been transmitted horizontally between vertebrate classes, the analysis has been extended to a larger number of vertebrate, invertebrate, and plant species. In this paper, the evolutionary origin of Bov-B LINEs is shown unequivocally to be in Squamata. The previously proposed horizontal transfer of Bov-B LINEs in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The horizontal transfer of Bov-B LINEs from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution. The ancestor of Colubroidea snakes is a possible donor of Bov-B LINEs to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINEs in Ruminantia and the fossil data of Ruminantia to be 40–50 My ago. The phylogenetic relationships of Bov-B LINEs from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINEs have been maintained stably by vertical transmission since the origin of Squamata in the Mesozoic era. PMID:9724768
Number-space mapping in human infants.
de Hevia, Maria Dolores; Spelke, Elizabeth S
2010-05-01
Mature representations of number are built on a core system of numerical representation that connects to spatial representations in the form of a mental number line. The core number system is functional in early infancy, but little is known about the origins of the mapping of numbers onto space. In this article, we show that preverbal infants transfer the discrimination of an ordered series of numerosities to the discrimination of an ordered series of line lengths. Moreover, infants construct relationships between numbers and line lengths when they are habituated to unordered pairings that vary positively, but not when they are habituated to unordered pairings that vary inversely. These findings provide evidence that a predisposition to relate representations of numerical magnitude to spatial length develops early in life. A central foundation of mathematics, science, and technology therefore emerges prior to experience with language, symbol systems, or measurement devices.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, David H.; Ulrich, Klaus H.
1998-01-01
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag.
Accretion Structures in Algol-Type Interacting Binary Systems
NASA Astrophysics Data System (ADS)
Peters, Geraldine
The physics of mass transfer in interacting binaries of the Algol type will be investigated through an analysis of an extensive collection of FUV spectra from the FUSE spacecraft, Kepler photometry, and FUV spectra from IUE and ORFEUS-SPAS II. The Algols range from close direct impact systems to wider systems that contain prominent accretion disks. Several components of the circumstellar (CS) material have been identified, including the gas stream, splash/outflow domains, a high temperature accretion region (HTAR), accretion disk, and magnetically-controlled flows (cf. Peters 2001, 2007, Richards et al. 2010). Hot spots are sometimes seen at the site where the gas stream impacts the mass gainer's photosphere. Collectively we call these components of mass transfer "accretion structures". The CS material will be studied from an analysis of both line-of-sight FUV absorption features and emission lines. The emission line regions will be mapped in and above/below the orbital plane with 2D and 3D Doppler tomography techniques. We will look for the presence of hot accretion spots in both the Kepler photometry of Algols in the Kepler fields and phase-dependent flux variability in the FUSE spectra. We will also search for evidence of microflaring at the impact site of the gas stream. An abundance study of the mass gainer will reveal the extent to which CNO-processed material from the core of the mass loser is being deposited on the primary. Analysis codes that will be used include 2D and 3D tomography codes, SHELLSPEC, light curve analysis programs such as PHOEBE and Wilson-Devinney, and the NLTE codes TLUSTY/SYNSPEC. This project will transform our understanding of the mass transfer process from a generic to a hydrodynamical one and provide important information on the degree of mass loss from the system which is needed for calculations of the evolution of Algol binaries.
Acoustic Wave Propagation in Pressure Sense Lines
NASA Technical Reports Server (NTRS)
Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin
2003-01-01
Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.
Slope and Line of Best Fit: A Transfer of Knowledge Case Study
ERIC Educational Resources Information Center
Nagle, Courtney; Casey, Stephanie; Moore-Russo, Deborah
2017-01-01
This paper brings together research on slope from mathematics education and research on line of best fit from statistics education by considering what knowledge of slope students transfer to a novel task involving determining the placement of an informal line of best fit. This study focuses on two students who transitioned from placing inaccurate…
NASA Astrophysics Data System (ADS)
DeVries, John; Terebey, Susan
2018-06-01
Protoplanetary disks are the birthplaces of planets in our universe. Observations of these disks with radio telescopes like the Atacama Large Millimeter Array (ALMA) offer great insight into the star and planet formation process. Comparing theories of formation with observations requires tracing the energy transfer via electromagnetic radiation, known as radiative transfer. To determine the temperature distribution of circumstellar material, a Monte Carlo code (Whitney et al. [1]) was used to to perform the radiative transfer through dust. The goal of this research is to utilize RADMC-3D [2] to handle the spectral line radiative transfer computations. An existing model of a rotating ring was expanded to include emission from the C18O isotopologue of carbon monoxide using data from the Leiden Atomic and Molecular Database (LAMDA). This feature of our model compliments ALMA's ability to measure C18O line emission, a proxy for disk rotation. In addition to modeling gas in the protoplanetary disk, dust also plays an important role. The generic description of absorption and scattering for dust provided by RADMC-3D was changed in favor of a more physically-realistic description with OH5 grains. This description is more appropriate in high-density regions of the envelope around a protostar. Further improvements, such as consideration for the finite resolution of observations, have been implemented. The task at present is to compare our model with observations of protoplanetary systems like L1527. Some results of these comparisons will be presented.[1] Whitney et al. 2013, ApJS, 207:30[2] RADMC-3D: http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC
NASA Astrophysics Data System (ADS)
Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang
2018-04-01
This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.
NASA Astrophysics Data System (ADS)
Pasam, Gopi Krishna; Manohar, T. Gowri
2016-09-01
Determination of available transfer capability (ATC) requires the use of experience, intuition and exact judgment in order to meet several significant aspects in the deregulated environment. Based on these points, this paper proposes two heuristic approaches to compute ATC. The first proposed heuristic algorithm integrates the five methods known as continuation repeated power flow, repeated optimal power flow, radial basis function neural network, back propagation neural network and adaptive neuro fuzzy inference system to obtain ATC. The second proposed heuristic model is used to obtain multiple ATC values. Out of these, a specific ATC value will be selected based on a number of social, economic, deregulated environmental constraints and related to specific applications like optimization, on-line monitoring, and ATC forecasting known as multi-objective decision based optimal ATC. The validity of results obtained through these proposed methods are scrupulously verified on various buses of the IEEE 24-bus reliable test system. The results presented and derived conclusions in this paper are very useful for planning, operation, maintaining of reliable power in any power system and its monitoring in an on-line environment of deregulated power system. In this way, the proposed heuristic methods would contribute the best possible approach to assess multiple objective ATC using integrated methods.
Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko
The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.
Validation and performance of the LHC cryogenic system through commissioning of the first sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serio, L.; Bouillot, A.; Casas-Cubillos, J.
2007-12-01
The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was establishedmore » and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.« less
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2018-03-01
The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .
1980-09-30
typography is voluminous and directly applicable. Research dealing directly with the line printer used in computer output is scanty, but consistent with...available to the researcher. While this may stimulate rapid software production, it often creates sets of chain- reaction problems. Accordingly
33 CFR 154.310 - Operations manual: Contents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the piping subject to the tests required by § 156.170(c)(4) of this chapter, and the locations of...; and (2) A description of the vapor control system's design and operation including the: (i) Vapor line... sulfur); (v) Alarms and shutdown devices; and (vi) Pre-transfer equipment inspection requirements. (c...
NASA Astrophysics Data System (ADS)
Gupta, S. R. D.; Gupta, Santanu D.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Vacuum system for room temperature X-ray lithography source (XLS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuchman, J.C.
1988-09-30
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Vacuum system for room temperature X-ray lithography source (XLS)
NASA Astrophysics Data System (ADS)
Schuchman, J. C.
1988-09-01
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karger, A.E.; Weiss, R.; Gesteland, R.F.
A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less
NASA Astrophysics Data System (ADS)
Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.
2012-03-01
Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.
Control of the electrode metal transfer by means of the welding current pulse generator
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.
2016-04-01
The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.
Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension
NASA Astrophysics Data System (ADS)
Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.
2004-06-01
An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.
Multiple-function multi-input/multi-output digital control and on-line analysis
NASA Technical Reports Server (NTRS)
Hoadley, Sherwood T.; Wieseman, Carol D.; Mcgraw, Sandra M.
1992-01-01
The design and capabilities of two digital controller systems for aeroelastic wind-tunnel models are described. The first allowed control of flutter while performing roll maneuvers with wing load control as well as coordinating the acquisition, storage, and transfer of data for on-line analysis. This system, which employs several digital signal multi-processor (DSP) boards programmed in high-level software languages, is housed in a SUN Workstation environment. A second DCS provides a measure of wind-tunnel safety by functioning as a trip system during testing in the case of high model dynamic response or in case the first DCS fails. The second DCS uses National Instruments LabVIEW Software and Hardware within a Macintosh environment.
Experimental research and numerical simulation on cryogenic line chill-down process
NASA Astrophysics Data System (ADS)
Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon
2018-01-01
The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.
Minimum impulse transfers to rotate the line of apsides
NASA Technical Reports Server (NTRS)
Phong, Connie; Sweetser, Theodore H.
2005-01-01
Transfer between two coplanar orbits can be accomplished via a single impulse if the two orbits intersect. Optimization of a single-impulse transfer, however, is not possible since the transfer orbit is completely constrained by the initial and final orbits. On the other hand, two-impulse transfers are possible between any two terminal orbits. While optimal scenarios are not known for the general two-impulse case, there are various approximate solutions to many special cases. We consider the problem of an inplane rotation of the line of apsides, leaving the size and shape of the orbit unaffected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, K.; Fuetterer, J.; Potrykus, I.
1995-10-01
The frequency of possible {open_quotes}horizontal{close_quotes} gene transfer between a plant and a tightly associated bacterial pathogen was studied in a model system consisting of transgenic Solanum tuberosum, containing a {beta}-lactamase gene linked to a pBR322 origin of replication, and Erwinia chrysanthemi. This experimental system offers optimal conditions for the detection of possible horizontal gene transfer events, even when they occur at very low frequency. Horizontal gene transfer was not detected under conditions mimicking a {open_quotes}natural{close_quotes} infection. The gradual, stepwise alteration of artificial, positive control conditions to idealized natural conditions, however, allowed the characterization of factors that affected gene transfer, andmore » revealed a gradual decrease of the gene transfer frequency from 6.3 x 10{sup -2} under optimal control conditions to a calculated 2.0 x 10{sub -17} under idealized natural conditions. These data, in combination with other published studies, argue that horizontal gene transfer is so rare as to be essentially irrelevant to any realistic assessment of the risk involved in release experiments involving transgenic plants. 22 refs., 3 figs., 2 tabs.« less
Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem
NASA Astrophysics Data System (ADS)
Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.
2017-05-01
In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.
Powering the High-Luminosity Triplets
NASA Astrophysics Data System (ADS)
Ballarino, A.; Burnet, J. P.
The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.
REACT Real-Time Emergency Action Coordination Tool
NASA Technical Reports Server (NTRS)
2004-01-01
Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.
Pattern classification using charge transfer devices
NASA Technical Reports Server (NTRS)
1980-01-01
The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.
Molluscan cells in culture: primary cell cultures and cell lines
Yoshino, T. P.; Bickham, U.; Bayne, C. J.
2013-01-01
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436
Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures
NASA Astrophysics Data System (ADS)
Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min
2014-03-01
The metal transfer in CO2 Laser+GMAW-P hybrid welding by using argon-helium mixtures was investigated and the effect of the laser on the mental transfer is discussed. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. In order to analyze the heat input to the droplet and the droplet internal current line distribution. An optical emission spectroscopy system was employed to estimate default parameter and optimized plasma temperature, electron number densities distribution. The results indicate that the CO2 plasma plume have a significant impact to the electrode melting, droplet formation, detachment, impingement onto the workpiece and weld morphology. Since the current distribution direction flow changes to the keyhole, to obtain a metal transfer mode of one droplet per pulse, the welding parameters should be adjusted to a higher pulse time (TP) and a lower voltage.
Byers, John A
2004-05-30
Heating of chromatographic columns, transfer lines, and other devices is often required in neuroscience research. For example, volatile compounds passing through a capillary column of a gas chromatograph (GC) can be split, with half exiting the instrument through a heated transfer line to an insect antenna or olfactory sensillum for electroantennographic detector (GC-EAD) recordings. The heated transfer line is used to prevent condensation of various chemicals in the capillary that would otherwise occur at room temperature. Construction of such a transfer line heater is described using (80/20%) nickel-chromium heating wire wrapped in a helical coil and powered by a 120/220 V ac rheostat. Algorithms were developed in a computer program to estimate the voltage at which a rheostat should be set to obtain the desired heater temperature for a specific coil. The coil attributes (radius, width, number of loops, or length of each loop) are input by the user, as well as AWG size of heating wire and desired heater temperature. The program calculates total length of wire in the helix, resistance of the wire, amperage used, and the voltage to set the rheostat. A discussion of semiochemical isolation methods using the GC-EAD and bioassays is presented.
Identifying hub stations and important lines of bus networks: A case study in Xiamen, China
NASA Astrophysics Data System (ADS)
Zhang, Hui; Zhuge, Chengxiang; Yu, Xiaohua
2018-07-01
Hub stations and important lines play key roles in transfers between stations. In this paper, a node failure model is proposed to identify hub stations. In the model, we introduce two new indicators called neighborhood degree ratio and transfer index to evaluate the importance of stations, which consider neighborhood stations' degree of station and the initial transfer times between stations. Moreover, line accessibility is developed to measure the importance of lines in the bus network. Xiamen bus network in 2016 is utilized to test the model. The results show that the two introduced indicators are more effective to identify hub stations compared with traditional complex network indicators such as degree, clustering coefficient and betweenness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhen F.; Gai, Hui; Huang, You Z.
2006-11-01
Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less
Controlled release of cavity states into propagating modes induced via a single qubit
NASA Astrophysics Data System (ADS)
Pfaff, Wolfgang; Constantin, Marius; Reagor, Matthew; Axline, Christopher; Blumoff, Jacob; Chou, Kevin; Leghtas, Zaki; Touzard, Steven; Heeres, Reinier; Reinhold, Philip; Ofek, Nissim; Sliwa, Katrina; Frunzio, Luigi; Mirrahimi, Mazyar; Lehnert, Konrad; Jiang, Liang; Devoret, Michel; Schoelkopf, Robert
Photonic states stored in long-lived cavities are a promising platform for scalable quantum computing and for the realization of quantum networks. An important aspect in such a cavity-based architecture will be the controlled conversion of stored photonic states into propagating ones. This will allow, for instance, quantum state transfer between remote cavities. We demonstrate the controlled release of quantum states from a microwave resonator with millisecond lifetime in a 3D circuit QED system. Dispersive coupling of the cavity to a transmon qubit allows us to enable a four-wave mixing process that transfers the stored state into a second resonator from which it can leave the system through a transmission line. This permits us to evacuate the cavity on time scales that are orders of magnitude faster than the intrinsic lifetime. This Q-switching process can in principle be fully coherent, making our system highly promising for quantum state transfer between nodes in a quantum network of high-Q cavities.
NASA Astrophysics Data System (ADS)
Das Gupta, Santanu; Das Gupta, S. R.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein'sA, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the ‘rate equations’ to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1973-01-01
A collection of typical three-body trajectories from the L1 libration point on the sun-earth line to the earth is presented. These trajectories in the sun-earth system are grouped into four distinct families which differ in transfer time and delta V requirements. Curves showing the variations of delta V with respect to transfer time, and typical two and three-impulse primer vector histories, are included. The development of a four-body trajectory optimization program to compute fuel optimal trajectories between the earth and a point in the sun-earth-moon system are also discussed. Methods for generating fuel optimal two-impulse trajectories which originate at the earth or a point in space, and fuel optimal three-impulse trajectories between two points in space, are presented. A brief qualitative comparison of these methods is given. An example of a four-body two-impulse transfer from the Li libration point to the earth is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ton, H.; Yeung, E.S.
1997-02-15
An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less
Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.
2018-01-01
Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.
In vitro study for laser gene transfer in BHK-21 fibroblast cell line
NASA Astrophysics Data System (ADS)
Abdel Aziz, M.; Salem, D. S.; Salama, M. S.; Badr, Y.
2009-02-01
Modifications to our previously introduced system for laser microbeam cell surgery were carried out in the present work to match animal cells. These modifications included: 1- Using other laser system that used before, Excimer laser with 193 and 308 nm wavelengths. The used laser here, is He-Cd with low power and 441.5 nm wavelength in the visible region. 2- Instead of using pulsed laser, we used here CW He-Cd chopped by electrical chopper, which is synchronized with the mechanical motion of the mobile stage with step 40 microns, according to cell dimensions to avoid puncturing the same cell twice. The advantages of the modified here laser setup for gene transfer is: it is less damaging to the sensitive animal cell which has thin cell membrane. The present work aimed to: 1- Design a modified laser microbeam cell surgery, applicable to animal cells, such as fibroblast cells 2- To examine the efficiency of such system. 3- To assure gene transfer and its expression in the used cells. 4- To evaluate the ultra damages produced from using the laser beam as a modality for gene transfer. On the other wards, to introduce: safe, efficient and less damaging modality for gene transfer in animal cells. To achieve these goals, we applied the introduced here home-made laser setup with its synchronized parameters to introduce pBK-CMV phagemid, containing LacZ and neomycin resistance (neor )genes into BHK-21 fibroblast cell line. The results of the present work showed that: 1- Our modified laser microbeam cell surgery setup proved to be useful and efficient tool for gene transfer into fibroblast cells. 2- The presence and expression of LacZ gene was achieved using histochemical LacZ assay. 3- Selection of G418 antibiotic sensitivity assay confirmed the presence and expression towards stability of neor gene with time. 4- Presence of LacZ and neor genes in the genomic DNA of transfected fibroblast cells was indicated using PCR analysis. 5- Transmission electron microscopy indicated that, no ultradamages or changes for cell; membrane, organilles or any component of transfected fibroblast cell as a result of using laser microbeam compared with control cell.
Transfer matrix calculation for ion optical elements using real fields
NASA Astrophysics Data System (ADS)
Mishra, P. M.; Blaum, K.; George, S.; Grieser, M.; Wolf, A.
2018-03-01
With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient transport of ion species from the ion source area to the experimental setup becomes essential. Some available, powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from the standard first order transfer matrix based ion optical simulation program implementing the derived transfer matrix is compared with the real field beam tracking simulations.
Quick-disconnect coupling/filter
NASA Technical Reports Server (NTRS)
Jankowski, F.
1977-01-01
Two-part coupling system for hose lines combines both connection and filter in one fitting. Flared fittings make coupling less prone to leakage, and reduced number of components speeds operation. These features may make coupler useful with liquid-bulk carriers, where materials (e.g., milk, cooking oil, and liquid sugar) must be transferred quickly from vehicle to storage facility.
NASA Astrophysics Data System (ADS)
Sentis, Matthias P. L.; Bruel, Laurent; Charton, Sophie; Onofri, Fabrice R. A.; Lamadie, Fabrice
2017-01-01
An extended Generalized Fresnel Transform (GFT) is proposed to account for the astigmatism introduced by optical elements described, in the paraxial approximation, with a ray transfer matrix analysis. Generalized impulse response and generalized Fresnel transfer function propagators as well as sampling conditions are derived to properly implement this transformation. As a test case, the near-field diffraction patterns and in-line holograms produced by droplets flowing in a tube with cylindrical interfaces have been simulated. A best fitting approach is introduced to retrieve, from the propagated holograms, the 3D position and size of the droplets. Several hologram focusing indicators based on the analysis of droplets focus region are also proposed to further improve the estimation of the droplets position along the optical axis. Numerical simulations and experimental results confirm the applicability and accuracy of the proposed methods.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, D.H.; Ulrich, K.H.
1998-04-21
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, D.H.; Ulrich, K.H.
1998-09-22
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.
NASA Technical Reports Server (NTRS)
1982-01-01
Shuttle's propellant measurement system is produced by Simmonds Precision. Company has extensive experience in fuel management systems and other equipment for military and commercial aircraft. A separate corporate entity, Industrial Controls Division was formed due to a number of non-aerospace spinoffs. One example is a "custody transfer" system for measuring and monitoring liquefied natural gas (LNG). LNG is transported aboard large tankers at minus 260 degrees Fahrenheit. Value of a single shipload may reach $15 million. Precision's LNG measurement and monitoring system aids accurate financial accounting and enhances crew safety. Custody transfer systems have been provided for 10 LNG tankers, built by Owing Shipbuilding. Simmonds also provided measurement systems for several liquefied petroleum gas (LPG) production and storage installations. Another spinoff developed by Simmonds Precision is an advanced ignition system for industrial boilers that offers savings of millions of gallons of fuel, and a computer based monitoring and control system for improving safety and reliability in electrical utility applications. Simmonds produces a line of safety systems for nuclear and non-nuclear electrical power plants.
The complexity and robustness of metro networks
NASA Astrophysics Data System (ADS)
Derrible, Sybil; Kennedy, Christopher
2010-09-01
Transportation systems, being real-life examples of networks, are particularly interesting to analyze from the viewpoint of the new and rapidly emerging field of network science. Two particular concepts seem to be particularly relevant: scale-free patterns and small-worlds. By looking at 33 metro systems in the world, this paper adapts network science methodologies to the transportation literature, and offers one application to the robustness of metros; here, metro refers to urban rail transit with exclusive right-of-way, whether it is underground, at grade or elevated. We find that most metros are indeed scale-free (with scaling factors ranging from 2.10 to 5.52) and small-worlds; they show atypical behaviors, however, with increasing size. In particular, the presence of transfer-hubs (stations hosting more than three lines) results in relatively large scaling factors. The analysis provides insights/recommendations for increasing the robustness of metro networks. Smaller networks should focus on creating transfer stations, thus generating cycles to offer alternative routes. For larger networks, few stations seem to detain a certain monopole on transferring, it is therefore important to create additional transfers, possibly at the periphery of city centers; the Tokyo system seems to remarkably incorporate these properties.
Data storage and retrieval system
NASA Technical Reports Server (NTRS)
Nakamoto, Glen
1991-01-01
The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9 track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to shrink the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.
Data storage and retrieval system
NASA Technical Reports Server (NTRS)
Nakamoto, Glen
1992-01-01
The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9-track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to 'shrink' the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.
TORUS: Radiation transport and hydrodynamics code
NASA Astrophysics Data System (ADS)
Harries, Tim
2014-04-01
TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.
Radiative transfer of X-rays in the solar corona
NASA Technical Reports Server (NTRS)
Acton, L. W.
1978-01-01
The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.
Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.
Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter
2017-10-19
An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Reynolds, J. C.; Schroeder, J. A.
1993-03-01
The FORTRAN library that the NOAA Wave Propagation Laboratory (WPL) developed to perform radiative transfer calculations for an upward-looking microwave radiometer is described. Although the theory and algorithms have been used for many years in WPL radiometer research, the Radiative Transfer Equation (RTE) software has combined them into a toolbox that is portable, readable, application independent, and easy to update. RTE has been optimized for the UNIX environment. However, the FORTRAN source code can be compiled on any platform that provides a Standard FORTRAN 77 compiler. RTE allows a user to do cloud modeling, calibrate radiometers, simulate hypothetical radiometer systems, develop retrieval techniques, and compute weighting functions. The radiative transfer model used is valid for channel frequencies below 1000 GHz in clear conditions and for frequencies below 100 GHz when clouds are present.
NASA Astrophysics Data System (ADS)
Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk
2018-03-01
Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.
Research and application on imaging technology of line structure light based on confocal microscopy
NASA Astrophysics Data System (ADS)
Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen
2009-11-01
In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.
Cyclic subway networks are less risky in metropolises
NASA Astrophysics Data System (ADS)
Xiao, Ying; Zhang, Hai-Tao; Xu, Bowen; Zhu, Tao; Chen, Guanrong; Chen, Duxin
2018-02-01
Subways are crucial in modern transportation systems of metropolises. To quantitatively evaluate the potential risks of subway networks suffered from natural disasters or deliberate attacks, real data from seven Chinese subway systems are collected and their population distributions and anti-risk capabilities are analyzed. Counterintuitively, it is found that transfer stations with large numbers of connections are not the most crucial, but the stations and lines with large betweenness centrality are essential, if subway networks are being attacked. It is also found that cycles reduce such correlations due to the existence of alternative paths. To simulate the data-based observations, a network model is proposed to characterize the dynamics of subway systems under various intensities of attacks on stations and lines. This study sheds some light onto risk assessment of subway networks in metropolitan cities.
Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.
2016-01-01
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system. PMID:27713685
Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J
2016-01-01
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.
Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC
NASA Astrophysics Data System (ADS)
Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.
2015-06-01
Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.
Tethered orbital propellant depot
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a log tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity given transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
NASA Astrophysics Data System (ADS)
Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.
2016-10-01
In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.
Oikawa, Hiroyuki; Takahashi, Takumi; Kamonprasertsuk, Supawich; Takahashi, Satoshi
2018-01-31
Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.
Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines.
Kowarz, Eric; Löscher, Denise; Marschalek, Rolf
2015-04-01
Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of BF Hearth Reasonable Cooling System Based on the Water Dynamic Characteristics
NASA Astrophysics Data System (ADS)
Zuo, Haibin; Jiao, Kexin; Zhang, Jianliang; Li, Qian; Wang, Cui
A rational cooling water system is the assurance for long campaign life of blast furnace. In the paper, the heat transfer of different furnace period and different furnace condition based on the water quality characteristics were analysed, and the reason of the heat flux over the normal from the hydrodynamics was analysed. The results showed that, the vapour-film and scale existence significantly influenced the hearth heat transfer, which accelerated the brick lining erosion. The water dynamic characteristics of the parallel inner pipe or among the pipes were the main reason for the abnormal heat flux and film boiling. As to the reasonable cooling water flow, the gas film and the scale should be controlled and the energy saving should be considered.
Wang, Jason F; Park, Andrew J; Rendini, Tina; Levis, William R
2017-12-01
Lawrence transfer factor (TF) is defined as dialyzable leukocyte extract (DLE) that can transfer antigen-specific cell-mediated immunity from a person testing positive for the antigen in a delayed type hypersensitivity skin test manner to a person negative for the same antigen. A recent article by Myles et al1 has identified a DLE isolated from an established CD8+ T cell line capable of transferring antigen-specific immunity. The DLE contains a portion of the beta chain of the T cell receptor and additional nucleotide and protein factors that are being subjected to further modern biochemical analysis. After months of study that included interviews of TF physician-scientists, we conclude that an antigen-specific TF exists for most, if not all, antigens. By working from a CD8+ T cell line with modern biochemical technology, it should be possible to identify and patent products capable of treating infectious diseases, antigen-responsive cancers, and autoimmune disorders.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... waste storage tanks and supporting ancillary structures. Two of those waste tanks, Tanks 17 and 20 were... available for public review and comment. DATES: The comment period will end on January 7, 2011. Comments... structures are two evaporator systems, transfer lines, six diversion boxes, one catch tank, a concentrate...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...
49 CFR 179.400-17 - Inner tank piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...
ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanad, M. R., E-mail: mrsanad1@yahoo.com
Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less
NASA Astrophysics Data System (ADS)
Pontoppidan, Klaus
Based on the observed distributions of exoplanets and dynamical models of their evolution, the primary planet-forming regions of protoplanetary disks are thought to span distances of 1-20 AU from typical stars. A key observational challenge of the next decade will be to understand the links between the formation of planets in protoplanetary disks and the chemical composition of exoplanets. Potentially habitable planets in particular are likely formed by solids growing within radii of a few AU, augmented by unknown contributions from volatiles formed at larger radii of 10-50 AU. The basic chemical composition of these inner disk regions is characterized by near- to far-infrared (2-200 micron) emission lines from molecular gas at temperatures of 50-1500 K. A critical step toward measuring the chemical composition of planet-forming regions is therefore to convert observed infrared molecular line fluxes, profiles and images to gas temperatures, densities and molecular abundances. However, current techniques typically employ approximate radiative transfer methods and assumptions of local thermodynamic equilibrium (LTE) to retrieve abundances, leading to uncertainties of orders of magnitude and inconclusive comparisons to chemical models. Ultimately, the scientific impact of the high quality spectroscopic data expected from the James Webb Space Telescope (JWST) will be limited by the availability of radiative transfer tools for infrared molecular lines. We propose to develop a numerically accurate, non-LTE 3D line radiative transfer code, needed to interpret mid-infrared molecular line observations of protoplanetary and debris disks in preparation for the James Webb Space Telescope (JWST). This will be accomplished by adding critical functionality to the existing Monte Carlo code LIME, which was originally developed to support (sub)millimeter interferometric observations. In contrast to existing infrared codes, LIME calculates the exact statistical balance of arbitrary collections of molecular lines, and does not use large velocity gradient (LVG) or escape probability approximations. However, to use LIME for infrared line radiative transfer, new functionality must be added and tested, such as dust scattering, UV fluorescence, and interfaces with public state-of-the art 3D dust radiative transfer codes (e.g., RADMC3D) and thermo-chemical codes (e.g, ProDiMo). Infrared transitions of molecules expected to be ubiquitous in JWST spectra currently do not have good databases applicable to astrophysical modeling and protoplanetary disks, including water, OH, CO2, NH3, CH4, HCN, etc. Obtaining accurate solutions of the non-LTE line transfer problem in 3D in the infrared is computationally intensive. We propose to benchmark the new code relative to existing, approximate methods to determine whether they are accurate, and under what conditions. We will also create conversion tables between mid-infrared line strengths of water, OH, CH4, NH3, CH3OH, CO2 and other species expected to be observed with JWST, and their relative abundances in planet-forming regions. We propose to apply the new IR-LIME to retrieve molecular abundances from archival and new spectroscopic observations with Spitzer/Herschel/Keck/VLT of CO, water, OH and organic molecules, and to publish comprehensive tables of retrieved molecular abundances in protoplanetary disks. The proposed research is relevant to the XRP call, since it addresses a critical step in inferring the chemical abundances of planet-forming material, which in turn can be compared to the observed compositions of exoplanets, thereby improving our understanding of the origins of exoplanetary systems. The proposed research is particularly timely as the first JWST science data are expected to become available toward the end of the three-year duration of the project.
Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system.
Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Dohda, Takeaki; Kino-Oka, Masahiro
2018-03-01
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (k L a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h -1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 10 9 cells L -1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018. © 2017 American Institute of Chemical Engineers.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
NASA Astrophysics Data System (ADS)
Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre
1997-03-01
Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.
Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules
NASA Astrophysics Data System (ADS)
Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.
2010-09-01
In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.
Multinucleon transfer dynamics in heavy-ion collisions near Coulomb-barrier energies
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2017-12-01
Multinucleon transfer reactions near barrier energies have been investigated with a multistep model based on the dinuclear system (DNS) concept, in which the capture of two colliding nuclei, the transfer dynamics, and the deexcitation process of primary fragments are described by an analytical formula, diffusion theory, and a statistical model, respectively. The nucleon transfer takes place after forming the DNS and is coupled to the dissipation of relative motion energy and angular momentum by solving a set of microscopically derived master equations within the potential energy surface. Specific reactions of Ca,4840+124Sn , 40Ca(40Ar,58Ni)+232Th , 40Ca(58Ni)+238U , and Ca,4840(58Ni)+248Cm near barrier energies are investigated. It is found that fragments are produced by multinucleon transfer reactions with maximal yields along the β -stability line. The isospin relaxation is particularly significant in the process of fragment formation. The incident energy dependence of heavy target-like fragments in the reaction of 58Ni+248Cm is analyzed thoroughly.
Radiative transfer in molecular lines
NASA Astrophysics Data System (ADS)
Asensio Ramos, A.; Trujillo Bueno, J.; Cernicharo, J.
2001-07-01
The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.
Controlling mechanisms over the internet
NASA Astrophysics Data System (ADS)
Lumia, Ronald
1997-01-01
The internet, widely available throughout the world, can be used to control robots, machine tools, and other mechanisms. This paper will describe a low-cost virtual collaborative environment (VCE) which will connect users with distant equipment. The system is based on PC technology, and incorporates off-line-programming with on-line execution. A remote user programs the systems graphically and simulates the motions and actions of the mechanism until satisfied with the functionality of the program. The program is then transferred from the remote site to the local site where the real equipment exists. At the local site, the simulation is run again to check the program from a safety standpoint. Then, the local user runs the program on the real equipment. During execution, a camera in the real workspace provides an image back to the remote user through a teleconferencing system. The system costs approximately 12,500 dollars and represents a low-cost alternative to the Sandia National Laboratories VCE.
NASA Astrophysics Data System (ADS)
Griessbach, Sabine; Hoffmann, Lars; Höpfner, Michael; Riese, Martin; Spang, Reinhold
2013-09-01
The viability of a spectrally averaging model to perform radiative transfer calculations in the infrared including scattering by atmospheric particles is examined for the application of infrared limb remote sensing measurements. Here we focus on the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Envisat. Various spectra for clear air and cloudy conditions were simulated with a spectrally averaging radiative transfer model and a line-by-line radiative transfer model for three atmospheric window regions (825-830, 946-951, 1224-1228 cm-1) and compared to each other. The results are rated in terms of the MIPAS noise equivalent spectral radiance (NESR). The clear air simulations generally agree within one NESR. The cloud simulations neglecting the scattering source term agree within two NESR. The differences between the cloud simulations including the scattering source term are generally below three and always below four NESR. We conclude that the spectrally averaging approach is well suited for fast and accurate infrared radiative transfer simulations including scattering by clouds. We found that the main source for the differences between the cloud simulations of both models is the cloud edge sampling. Furthermore we reasoned that this model comparison for clouds is also valid for atmospheric aerosol in general.
Limits of Kirchhoff's Laws in Plasmonics.
Razinskas, Gary; Biagioni, Paolo; Hecht, Bert
2018-01-30
The validity of Kirchhoff's laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff's laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff's laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff's laws we achieve maximum signal transfer to the nanoantenna.
On-line analysis capabilities developed to support the AFW wind-tunnel tests
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.
1992-01-01
A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort.
Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto
2017-10-02
We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.
High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis.
Kautz, Roger A; Goetzinger, Wolfgang K; Karger, Barry L
2005-01-01
An automated system for loading samples into a microcoil NMR probe has been developed using segmented flow analysis. This approach enhanced 2-fold the throughput of the published direct injection and flow injection methods, improved sample utilization 3-fold, and was applicable to high-field NMR facilities with long transfer lines between the sample handler and NMR magnet. Sample volumes of 2 microL (10-30 mM, approximately 10 microg) were drawn from a 96-well microtiter plate by a sample handler, then pumped to a 0.5-microL microcoil NMR probe as a queue of closely spaced "plugs" separated by an immiscible fluorocarbon fluid. Individual sample plugs were detected by their NMR signal and automatically positioned for stopped-flow data acquisition. The sample in the NMR coil could be changed within 35 s by advancing the queue. The fluorocarbon liquid wetted the wall of the Teflon transfer line, preventing the DMSO samples from contacting the capillary wall and thus reducing sample losses to below 5% after passage through the 3-m transfer line. With a wash plug of solvent between samples, sample-to-sample carryover was <1%. Significantly, the samples did not disperse into the carrier liquid during loading or during acquisitions of several days for trace analysis. For automated high-throughput analysis using a 16-second acquisition time, spectra were recorded at a rate of 1.5 min/sample and total deuterated solvent consumption was <0.5 mL (1 US dollar) per 96-well plate.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.
1993-01-01
A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.
Xu, Yang; Zheng, Xinxin; Song, Yunzhi; Zhu, Lifei; Yu, Zipeng; Gan, Liming; Zhou, Shumei; Liu, Hongmei; Wen, Fujiang; Zhu, Changxiang
2018-06-11
Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum. The overexpression of NtLTP4 in N. tabacum enhanced resistance to salt and drought stresses. Upon exposure to high salinity, NtLTP4-overexpressing lines (OE lines) accumulated low Na + levels. Salt-responsive genes, including Na + /H + exchangers (NHX1) and high-affinity K + transporter1 (HKT1), were dramatically higher in OE lines than in wild-type lines. NtLTP4 might regulate transcription levels of NHX1 and HKT1 to alleviate the toxicity of Na + . Interestingly, OE lines enhanced the tolerance of N. tabacum to drought stress by reducing the transpiration rate. Moreover, NtLTP4 could increase reactive oxygen species (ROS)-scavenging enzyme activity and expression levels to scavenge excess ROS under drought and high salinity conditions. We used a two-hybrid yeast system and screened seven putative proteins that interact with NtLTP4 in tobacco. An MAPK member, wound-induced protein kinase, was confirmed to interact with NtLTP4 via co-immunoprecipitation and a firefly luciferase complementation imaging assay. Taken together, this is the first functional analysis of NtLTP4, and proves that NtLTP4 positively regulates salt and drought stresses in N. tabacum.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.
Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets
NASA Technical Reports Server (NTRS)
Ruemmele, Warren P.; Bue, Grant C.; Orndoff, Evelyne; Tang, Henry
2010-01-01
This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat transfer over a flexible and surface-conformable fashion without the limitation of fluid freeze points.
Efficiency estimation method of three-wired AC to DC line transfer
NASA Astrophysics Data System (ADS)
Solovev, S. V.; Bardanov, A. I.
2018-05-01
The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.
A Near-Infrared Surface Compositional Analysis of Blue Straggler Stars in Open Cluster M67
NASA Astrophysics Data System (ADS)
Seifert, Richard; Gosnell, Natalie M.; Sneden, Chris
2017-06-01
Blue straggler stars (BSSs) are stars whose evolutions have been directly impacted by binary system interactions. By obtaining additional mass from a companion, BSSs are able to live prolonged lives on the main sequence. BSSs bring confusions to studies that rely on a standard stellar evolutionary track when modeling stellar populations, since the presence of BSSs can make a population appear younger than it actually is. It is important to have a better understanding of the mechanisms that drive BSS formation so that BSSs may be correctly accounted for in future studies.Blue stagglers in clusters primarily form in one of two ways; either from a close binary system in which one star accretes mass from its companion star or from a hierarchical trinary system in which a close inner binary merges as a result of perturbations from a farther-orbiting third star. In order to investigate the nature of this mass transfer, We obtained IGRINS H-band high resolution spectra of 6 BSSs and 12 red giant stars in open cluster M67. Using a grid of synthetic spectra obtained from the line analysis code MOOG, we identified and fit abundances for absorption lines of iron, silicon, and carbon. Depending on the evolutionary stage of the donor star, the abundance of carbon in the resulting BSS can be affected by mixing during the mass transfer. By analyzing the abundance of carbon in our targets, we find that [Fe/H] ~= 0 and [C/H] ~= 0. We see no evidence of depletion of carbon from RGB-phase mass transfer or enhancement of carbon from AGB-phase mass transfer, implying that the mass transfer occured earlier in the donar star's evolution.Funding for this research comes from the John W. Cox endowment for the Advanced Studies in Astronomy. For support of this work we acknowledge NSF grants AST-1211585 and AST-1616040 to CS. The successful development of the IGRINS spectrograph has resulted from the combined efforts of teams at the University of Texas at Austin and the Korea Astronomy and Space Science Institute; their work is gratefully acknowledged.
Investigation of heat transfer of tube line of staggered tube bank in two-phase flow
NASA Astrophysics Data System (ADS)
Jakubcionis, Mindaugas
2015-06-01
This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.
Experimental Raman adiabatic transfer of optical states in rubidium
NASA Astrophysics Data System (ADS)
Appel, Jürgen; Figueroa, Eden; Vewinger, Frank; Marzlin, Karl-Peter; Lvovsky, Alexander
2007-06-01
An essential element of a quantum optical communication network is a tool for transferring and/or distributing quantum information between optical modes (possibly of different frequencies) in a loss- and decoherence-free fashion. We present a theory [1] and an experimental demonstration [2] of a protocol for routing and frequency conversion of optical quantum information via electromagnetically-induced transparency in an atomic system with multiple excited levels. Transfer of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line. [1] F. Vewinger, J. Appel, E. Figueroa, A. I. Lvovsky, quant-ph/0611181 [2] J. Appel, K.-P. Marzlin, A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006)
A Space Station tethered orbital refueling facility
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
Howarth, Joanna L; Lee, Youn Bok; Uney, James B
2010-02-01
In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described.
Miniature Heat Transport System for Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)
2002-01-01
Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes, pressure gradients, and local heat transfer coefficients using ammonia, propylene, and R134, are carried out.
1981-04-01
variables resulting from the survey and their location on an SPSS system file are documented in a user-oriented codebook. Free responses to an open...and added expense), anguish in transfer of family. (3) The Navy cannot afford to treat people like cattle. If I could have re- signed without a six
Design and evaluation of a THz time domain imaging system using standard optical design software.
Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas
2008-09-20
A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.
Solar hot water system installed at Days Inn Motel, Jacksonville, Florida
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.
2011-06-06
8 Figure 2-10 – Peak anomaly amplitude results from the GEMTADS and pit measurements of the 4.2-in mortar (open diamonds). The modeled system...projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable orientations of the mortar are shown as lines...and measurements of the emplaced 75-mm projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable
Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.
2014-10-01
High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; ...
2016-09-22
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less
Heating of foods in space-vehicle environments. [by conductive heat transfer
NASA Technical Reports Server (NTRS)
Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.
1973-01-01
In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.
Photometric analysis of the eclipsing binary star AI Draconis
NASA Astrophysics Data System (ADS)
Deǧirmenci, Ö. L.; Gülmen, Ö.; Sezer, C.; Erdem, A.; Devlen, A.
2000-11-01
New photometric data from the eclipsing binary star AI Draconis has been analyzed with the method of Wilson-Devinney. The system shows a period increase of about 0.91 sec per century, which corresponds to a mass transfer from the less to the more massive component at a rate of 7.5 10-7 Msun/yr under the conservative mass transfer hypothesis. We also suggest that the system has an unseen component which orbits around the mass center of the triplet system with a period of about 23 yrs. We found that the projectional angular separation between the third star and eclipsing pair varies from 0.048 arcsec to 0.235 arcsec. These results suggestive of a third body should be checked in the future with more sensitive observations. Table 1 is only available electronically with the On-Line publication at http://link.springer.de/link/service/00230/
Life sciences flight experiments microcomputer
NASA Technical Reports Server (NTRS)
Bartram, Peter N.
1987-01-01
A promising microcomputer configuration for the Spacelab Life Sciences Lab. Equipment inventory consists of multiple processors. One processor's use is reserved, with additional processors dedicated to real time input and output operations. A simple form of such a configuration, with a processor board for analog to digital conversion and another processor board for digital to analog conversion, was studied. The system used digital parallel data lines between the boards, operating independently of the system bus. Good performance of individual components was demonstrated: the analog to digital converter was at over 10,000 samples per second. The combination of the data transfer between boards with the input or output functions on each board slowed performance, with a maximum throughput of 2800 to 2900 analog samples per second. Any of several techniques, such as use of the system bus for data transfer or the addition of direct memory access hardware to the processor boards, should give significantly improved performance.
Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Jirapong, Peeraool; Ongsakul, Weerakorn
2008-10-01
This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.
Traceable calibration and demonstration of a portable dynamic force transfer standard
NASA Astrophysics Data System (ADS)
Vlajic, Nicholas; Chijioke, Ako
2017-08-01
In general, the dynamic sensitivity of a force transducer depends upon the mechanical system in which it is used. This dependence serves as motivation to develop a dynamic force transfer standard, which can be used to calibrate an application transducer in situ. In this work, we SI-traceably calibrate a hand-held force transducer, namely an impact hammer, by using a mass suspended from a thin line which is cut to produce a known dynamic force in the form of a step function. We show that this instrument is a promising candidate as a transfer standard, since its dynamic response has small variance between different users. This calibrated transfer standard is then used to calibrate a secondary force transducer in an example application setting. The combined standard uncertainty (k = 2) in the calibration of the transfer standard was determined to be 2.1% or less, up to a bandwidth of 5 kHz. The combined standard uncertainty (k = 2) in the performed transfer calibration was less than 4%, up to 3 kHz. An advantage of the transfer calibration framework presented here, is that the transfer standard can be used to transfer SI-traceable calibrations without the use of any SI-traceable voltage metrology instrumentation.
Multiline Transfer and the Dynamics of Stellar Winds
NASA Technical Reports Server (NTRS)
Abbott, D. C.; Lucy, L. B.
1985-01-01
A Monte Carlo technique for treating multiline transfer in stellar winds is described. With a line list containing many thousands of transitions and with fairly realistic treatments of ionization, excitation and line formation, the resulting code allows the dynamic effects of overlapping lines the investigation of and provides the means to directly synthesize the complete spectrum of a star and its wind. It is found that the computed mass loss rate for data Puppis agrees with the observed rate. The synthesized spectrum of zeta Puppis also agrees with observational data. This confirms that line driving is the dominant acceleration mechanism in this star's wind.
NASA Astrophysics Data System (ADS)
Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team
2013-04-01
Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak, Application of FUTBOLIN (FUll Transfer By Ordinary Line-by-Line) to the analysis of the solar system and extrasolar planetary atmospheres, Bulletin of the American Astronomical Society, Vol. 37, p.1566, 2005
Incomplete mass transfer processes in 28Si +93Nb reaction
NASA Astrophysics Data System (ADS)
Tripathi, R.; Sodaye, S.; Ramachandran, K.; Sharma, S. K.; Pujari, P. K.
Cross sections of reaction products were measured in 28Si +93Nb reaction using recoil catcher technique involving by off-line gamma-ray spectrometry at beam energies of 105 and 155MeV. At Elab = 155MeV, the contribution from different incomplete mass transfer processes is investigated. Results of the present studies show the contribution from deep inelastic collision (DIC), massive transfer or incomplete fusion (ICF) and quasi-elastic transfer (QET). The contribution from massive transfer reactions was confirmed from the fractional yield of the reaction products in the forward catcher foil. The present results are different from those from the reactions with comparatively higher entrance channel mass asymmetry with lighter projectiles, for which dominant transfer processes are ICF and QET which involve mass transfer predominantly from projectile to target. The N/Z values of the products close to the target mass were observed to be in a wide range, starting from N/Z of the target (93Nb) and extending slightly below the N/Z of the composite system, consistent with the contribution from DIC and QET reactions. At Elab = 105MeV, a small contribution from QET was observed in addition to complete fusion.
NASA Technical Reports Server (NTRS)
Liu, Anthony S.
1990-01-01
Aerospace has routinely processed the Osborne Time Transfer Receiver (TTR) data for the purpose of monitoring the performance of ground and GPS atomic clocks in near real-time with on-line residual displays and characterizing clock stability with Allan Variance calculations. Recently, Aerospace added the ability to estimate the TTR's location by differentially correcting the TTR's location in the WGS84 reference system. This new feature is exercised on a set of TTR clock phase data and Sub-meter accurate station location estimates of the TTR at the Aerospace Electronic Research Lab (ERL) are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madanipour, Khosro; Tavassoly, Mohammad T
2009-02-01
We show theoretically and verify experimentally that the modulation transfer function (MTF) of a printing system can be determined by measuring the autocorrelation of a printed Ronchi grating. In practice, two similar Ronchi gratings are printed on two transparencies and the transparencies are superimposed with parallel grating lines. Then, the gratings are uniformly illuminated and the transmitted light from a large section is measured versus the displacement of one grating with respect to the other in a grating pitch interval. This measurement provides the required autocorrelation function for determination of the MTF.
Producing primate embryonic stem cells by somatic cell nuclear transfer.
Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M
2007-11-22
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Evaluation and Selection of a Telecommunication System at the Naval Postgraduate School BOQ
1991-03-01
software, and operating system software as a part of a complete package. An internal modem must be included for remote diagnostic and programming...2 service delivery will follow the CCITT V.35 recommendation for physical, functional and electrical interfaces. Type 1 & 2 will transfer data at 56K ...by a dedicated access line at 4.8 kbs and 9.6 Kbps and 56k /64Kbps. PSS will follow the CCITT X.25 recommendations. E-mail service may be provided on
Cyclotron line resonant transfer through neutron star atmospheres
NASA Technical Reports Server (NTRS)
Wang, John C. L.; Wasserman, Ira M.; Salpeter, Edwin E.
1988-01-01
Monte Carlo methods are used to study in detail the resonant radiative transfer of cyclotron line photons with recoil through a purely scattering neutron star atmosphere for both the polarized and unpolarized cases. For each case, the number of scatters, the path length traveled, the escape frequency shift, the escape direction cosine, the emergent frequency spectra, and the angular distribution of escaping photons are investigated. In the polarized case, transfer is calculated using both the cold plasma e- and o-modes and the magnetic vacuum perpendicular and parallel modes.
NASA Astrophysics Data System (ADS)
Shin, Seokmin; Metiu, Horia
1995-06-01
We use a minimal model to study the effects of the upper electronic states on the rate of a charge transfer reaction. The model consists of three ions and an electron, all strung on a line. The two ions at the ends of the structure are held fixed, but the middle ion and the electron are allowed to move in one dimension, along the line joining them. The system has two bound states, one in which the electron ties the movable ion to the fixed ion at the left, and the other in which the binding takes place to the fixed ion at the right. The transition between these bound states is a charge transfer reaction. We use the flux-flux correlation function theory to perform two calculations of the rate constant for this reaction. In one we obtain numerically the exact rate constant. In the other we calculate the exact rate constant for the case when the reaction proceeds exclusively on the ground adiabatic state. The difference between these calculations gives the magnitude of the nonadiabatic effects. We find that the nonadiabatic effects are fairly large even when the gap between the ground and the excited adiabatic state substantially exceeds the thermal energy. The rate in the nonadiabatic theory is always smaller than that of the adiabatic one. Both rate constants satisfy the Arrhenius formula. Their activation energies are very close but the nonadiabatic one is always higher. The nonadiabatic preexponential is smaller, due to the fact that the upper electronic state causes an early recrossing of the reactive flux. The description of this reaction in terms of two diabatic states, one for reactants and one for products, is not always adequate. In the limit when nonadiabaticity is small, we need to use a third diabatic state, in which the electron binds to the moving ion as the latter passes through the transition state; this is an atom transfer process. The reaction changes from an atom transfer to an electron transfer, as nonadiabaticity is increased.
Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes
NASA Astrophysics Data System (ADS)
Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas
2018-05-01
An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.
Performance of a Cryogenic Multipath Herriott Cell Vacuum-Coupled to a Bruker IFS-125HR System
NASA Astrophysics Data System (ADS)
Mantz, Arlan; Sung, Keeyoon; Crawford, Timothy J.; Brown, Linda; Smith, Mary Ann H.
2014-06-01
Accurate modeling of atmospheric trace gases requires detailed knowledge of spectroscopic line parameters at temperatures and pressures relevant to the atmospheric layers where the spectroscopic signatures form. Pressure-broadened line shapes, frequency shifts, and their temperature dependences, are critical spectroscopic parameters that limit the accuracy of state-of-the-art atmospheric remote sensing. In order to provide temperature dependent parameters from controlled laboratory experiments, a 20.946 ± 0.001 m long path Herriott cell and associated transfer optics were designed and fabricated at Connecticut College to operate in the near infrared using a Bruker 125 HR Fourier transform spectrometer. The cell body and gold coated mirrors are fabricated with Oxygen-Free High Conductivity (OFHC) copper. Transfer optics are through-put matched for entrance apertures smaller than 2 mm. A closed-cycle Helium refrigerator cools the cell and cryopumps the surrounding vacuum box. This new system and its transfer optics are fully evacuated to ˜10 mTorr (similar to the pressure inside the interferometer). Over a period of several months, this system has maintained extremely good stability in recording spectra at gas sample temperatures between 75 and 250 K. The absorption path length and cell temperatures are validated using CO spectra. The characterization of the Herriott cell is described along with its performance and future applications. We thank Drs. V. Malathy Devi and D. Chris Benner at The College of William and Mary for helpful discussion. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.
Charge transfer transitions in optical spectra of NicMg1-cO oxides
NASA Astrophysics Data System (ADS)
Churmanov, V. N.; Sokolov, V. I.; Pustovarov, V. A.; Gruzdev, N. B.; Uimin, M. A.; Byzov, I. V.; Druzhinin, A. V.; Korolyov, A. V.; Kim, G. A.; Zatsepin, A. F.; Kuznetsova, J. A.
2017-04-01
Radiative recombination with charge transfer was observed in NicMg1-cO (c = 0.008) oxides over the 8-300 K temperature range. This recombination occurs as a result of strong hybridization of the Ni2+ ion 3d-states and the band states. The charge transfer radiation excitation spectrum shows vibrational LO repeats of two exciton lines having charge transfer energy intervals of about 35 meV. The NiO nanocrystal absorption spectrum shows two weak peaks with energies of 3.510 and 3.543 eV, which are highly dependent on temperature. They are interpreted as charge transfer excitons at the edge of NiO fundamental absorption. The distance between the charge transfer exciton lines in the NicMg1-cO oxide spectra are caused by spin-orbit splitting of the valence band peak that was formed by the p-states of the oxygen ion.
Taming tosyl azide: the development of a scalable continuous diazo transfer process.
Deadman, Benjamin J; O'Mahony, Rosella M; Lynch, Denis; Crowley, Daniel C; Collins, Stuart G; Maguire, Anita R
2016-04-07
Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a 'one pot' batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including β-ketoesters, β-ketoamides, malonate esters and β-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography.
NASA Astrophysics Data System (ADS)
Moran, Diane M.; May, P. Stanley; Richardson, F. S.
1994-08-01
Electronic energy-transfer processes between Tb 3+5D 4) and Eu 3+ ( 7F 0, 7F 1) ions in crystalline Cs 2NaY 1-x-yTb xEu yCl 6 compounds are examined over a wide range of relative Tb 3+ and Eu 3+ concentrations (at sample temperature of 77 and 295 K). In these systems, the Tb 3+ and Eu 3+ ions are located at centrosymmetric (O h) sites surrounded by six Cl - ions, and the minimum distance between these sites is ≈ 7.6 Å. The host lattice has a cubic structure (space group O h5-Fm3m), and the phonon spectrum of this lattice has a cut-off frequency of ≈ 300 cm -1. The optical spectra of Tb 3+ and Eu 3+ in Cs 2NaYCl 6 exhibit relatively sparse line structures, consisting almost entirely of magnetic-dipole origin lines and one-phonon-assisted electric-dipole vibronic lines that reflect O h selection rules and have relatively low oscillator strenghts. Overlap between Tb 3+ ( 5D 4) emission and Eu 3+ ( 7F 0, 7F 1) absorption spectra occurs only within the Tb 3+ ( 5D 4 → 7 F 4 and Eu 3+ ( 7F 0, 7F 1 → 5D 0 transition regions, and resonances between individual lines in these regions are used to identify possible pathways for Tb 3+ ( 5D 4)-to-Eu 3+ ( 7F 0, 7F 1) energy transfer. Rates of energy transfer are determined from time-resolved Tb 3+ ( 5D 4) luminescence intersity measurements, analyzed in terms of two different models for representing donor (Tb 3+)-acceptor (Eu 3+) site distributions in Cs 2NaY 1-x-yTb xEu yCl 6 systems. In one model, donor-accepator site distances are represented by a continuous radial distribution function, whereas in the second model, these distances are represented by a discrete distribution function. Both models are used to analyze donor luminescence decay data in terms of rate parameters that reflect specific mechanistic contributions to electronic energy transfer. Both electron-exchange and multipole-multipole mechanisms are considered in the analyses. Results from these analyses, combined with spectral overlap considerations and comparisons of 77 versus 295 K rate data, suggest an electric-quadrupole/electric-dipole mechanism in which a 5D 4(T 1g → 7F 4(T 1g) electric-quadrupole transition on Tb 3+ excites a 7F 0(A 1g) + v4(t 1u → 5D 0(A 1g) electric-dipole (vibronic) transition on Eu 3+. Rate data obtained on systems of stoichiometric formulae Cs 2NaY 0.95-xTb xEu 0.05Cl 6 show that Tb 3+( 5D 4)- to-Eu 3+ ( 7F 0, 7F 1) energy-transfer rates a Tb 3+-Tb 3+ energy-migration processes when tx > 0.05. Direct calculations of Tb 3+ ( 5D 4)-Eu 3+ ( 7F 0, 7F 1) and Tb 3+ ( 5D 4-Tb 3+ ( 7F 6) multipole-multipole interaction parameters are performed, and the parameters obtained from these calculations are compared to those derived from parametric fits of experimentally observed rate data. Discrepancies between calculated and ovserved rate parameters are large, and possible explanations for these discrepancies are discussed.
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka
Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.
Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong
2013-10-01
This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.
A new e-beam application in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Sadat, Theo; Malcolm, Fiona
2005-10-01
The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.
Relative biological effectiveness of light ions in human tumoural cell lines: role of protein p53
NASA Technical Reports Server (NTRS)
Baggio, L.; Cavinato, M.; Cherubini, R.; Conzato, M.; Cucinotta, F.; Favaretto, S.; Gerardi, S.; Lora, S.; Stoppa, P.; Williams, J. R.
2002-01-01
Protons and alpha particles of high linear energy transfer (LET) have shown an increased relative biological effectiveness (RBE) with respect to X/gamma rays for several cellular and molecular endpoints in different in vitro cell systems. To contribute to understanding the biochemical mechanisms involved in the increased effectiveness of high LET radiation, an extensive study has been designed. The present work reports the preliminary result of this study on two human tumoural cell lines, DLD1 and HCT116, (with different p53 status), which indicate that for these cell lines, p53 does not appear to take a part in the response to radiation induced DNA damage, suggesting an alternative p53-independent pathway and a cell biochemical mechanism dependent on the cell type.
Membrane-lined foundations for liquid thermal storage
NASA Astrophysics Data System (ADS)
Bourne, R. C.
1981-06-01
The membrane lined storage (MLS) container which is a spinoff of vinyl-lined swimming pool and waterbed technologies was developed. The state of development of MLS was evaluated and concepts for MLS structural and heat transfer systems were improved. Preferred structural supports were identified and designed for 1500 gal MLS containers for basement, crawl space, and slab-on-grade foundation types. Techniques are developed to provide space heating via forced air through a finned storage jacket for the two preferred structural enclosure designs. Cost effectiveness of the direct air heating technique is evaluated. Alternate free convection domestic water preheaters and a preferred heat exchanger material is selected. Collector and space heat inlet/outlet designs, design concepts for auxiliary heat input to MLS from resistance electric, combustion, and heat pump sources are developed.
Cowan, Lauren S; Diem, Lois; Brake, Mary Catherine; Crawford, Jack T
2004-01-01
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay.
Repository of not readily available documents for project W-320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, J.C.
1997-04-18
The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.
New methods of measuring and calibrating robots
NASA Astrophysics Data System (ADS)
Janocha, Hartmut; Diewald, Bernd
1995-10-01
ISO 9283 and RIA R15.05 define industrial robot parameters which are applied to compare the efficiency of different robots. Hitherto, however, no suitable measurement systems have been available. ICAROS is a system which combines photogrammetrical procedures with an inertial navigation system. For the first time, this combination allows the high-precision static and dynamic measurement of the position as well as of the orientation of the robot endeffector. Thus, not only the measuring data for the determination of all industrial robot parameters can be acquired. By integration of a new over-all-calibration procedure, ICAROS also allows the reduction of the absolute robot pose errors to the range of its repeatability. The integration of both system components as well as measurement and calibration results are presented in this paper, using a six-axes robot as example. A further approach also presented here takes into consideration not only the individual robot errors but also the tolerances of workpieces. This allows the adjustment of off-line programs of robots based on inexact or idealized CAD data in any pose. Thus the robot position which is defined relative to the workpiece to be processed, is achieved as required. This includes the possibility to transfer teached robot programs to other devices without additional expenditure. The adjustment is based on the measurement of the robot position using two miniaturized CCD cameras mounted near the endeffector which are carried along by the robot during the correction phase. In the area viewed by both cameras, the robot position is determined in relation to prominent geometry elements, e.g. lines or holes. The scheduled data to be compared therewith can either be calculated in modern off-line programming systems during robot programming, or they can be determined at the so-called master robot if a transfer of the robot program is desired.
Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen
2009-02-11
The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2014-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro- polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with a gain of 2.0 +/- 0.5, less than or equal to 25 e- readout noise, less than or equal to 10 e-/second/pixel dark current, and less than 0.1percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; system gain, dark current, read noise, and residual non-linearity.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming
2016-11-01
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (I.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
NASA Astrophysics Data System (ADS)
Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny
2016-08-01
The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (I≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .
Eta Carinae: An Observational Testbed for 3-D Interacting Wind Modeling
NASA Technical Reports Server (NTRS)
Gull, Theodore; Madura, Tom; Groh, Jose; Corcoran, Mike; Owocki, Stan
2011-01-01
Eta Car, with its very massive interacting winds, provides shocked arc-like structures dense enough to trace in forbidden emission lines out to 0.7" (1700 AU). As the massive binary is in a very elliptical orbit (e approx. 0.9), the spatial and velocity structures of these winds change over the 5.54 year period. We can tract ionization structures by several forbidden emission lines. With the addition of radiative transfer on a time-step frame-by-frame basis, we are learning much new information on the ballistic structures, and may gain insight on how molecules and dust might form in these very massive systems.
NASA Astrophysics Data System (ADS)
Tarasenkov, M. V.; Belov, V. V.; Poznakharev, E. S.
2017-11-01
Impulse response of non-line-of-sight atmospheric communication channels at wavelengths of 0.3, 0.5, and 0.9 μm are compared for the case in which the optical axes of the receiver and laser radiation lie in the plane perpendicular to the Earth's surface. The most efficient communication channel depending on the base distance is determined. For a wavelength of 0.5 μm and a concrete variant of the transceiving part of the communication system, the limiting communication range and the limiting repetition frequency of pulses that can be transmitted through the communication channel are estimated.
Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Sun, C. K.
2015-11-15
Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E ×more » B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.« less
Bashi, Zafer Dallal; Khachatourians, George; Hegedus, Dwayne Daniel
2010-01-01
Fungal hyphae--and in some cases, spores--are multi-nucleate. During genetic transformation of these spores or mycelia, only one nucleus generally receives the transferred T-DNA generating heterokaryotic colonies. Characterization of genetic changes, such as the effects of gene disruption in the transformants, requires purified homokaryotic lines. Hyphal tip transfer has conventionally been used to isolate homokaryons. We developed an alternative method for purification of fungal homokaryons from transformed heterokaryotic lines of Sclerotinia sclerotiorum. Ultrasound pulses were used to generate bi-septate, unicellular hyphal fragments that regenerate under selection to produce homokaryotic lines that can be easily identified using colony PCR. This technique facilitates the purification of transformed lines, which allows for routine genome manipulation, and should be adaptable for other filamentous fungi.
Energy transfer by radiation in non-grey atomic gases in isothermal and non-isothermal slabs
NASA Technical Reports Server (NTRS)
Poon, P. T. Y.
1975-01-01
A multiband model for the absorption coefficient of atomic hydrogen-helium plasmas is constructed which includes continuum and line contributions. Emission from 28 stronger lines of 106 that have been screened is considered, of which 21 are from hydrogen and 7 belong to helium, with reabsorption due to line-line, line-continuum overlap accurately accounted for. The model is utilized in the computation of intensities and fluxes from shock-heated slabs of 85% H2-15% He mixtures for slab thicknesses from 1 to 30 cm, temperature from 10,000 to 20,000 K, and for different densities. In conjunction with the multiband model, simple numerical schemes have been devised which provide a quick and comprehensive way of computing radiative energy transfer in nonisothermal and nongrey gases.
High-performance camera module for fast quality inspection in industrial printing applications
NASA Astrophysics Data System (ADS)
Fürtler, Johannes; Bodenstorfer, Ernst; Mayer, Konrad J.; Brodersen, Jörg; Heiss, Dorothea; Penz, Harald; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Today, printing products which must meet highest quality standards, e.g., banknotes, stamps, or vouchers, are automatically checked by optical inspection systems. Typically, the examination of fine details of the print or security features demands images taken from various perspectives, with different spectral sensitivity (visible, infrared, ultraviolet), and with high resolution. Consequently, the inspection system is equipped with several cameras and has to cope with an enormous data rate to be processed in real-time. Hence, it is desirable to move image processing tasks into the camera to reduce the amount of data which has to be transferred to the (central) image processing system. The idea is to transfer relevant information only, i.e., features of the image instead of the raw image data from the sensor. These features are then further processed. In this paper a color line-scan camera for line rates up to 100 kHz is presented. The camera is based on a commercial CMOS (complementary metal oxide semiconductor) area image sensor and a field programmable gate array (FPGA). It implements extraction of image features which are well suited to detect print flaws like blotches of ink, color smears, splashes, spots and scratches. The camera design and several image processing methods implemented on the FPGA are described, including flat field correction, compensation of geometric distortions, color transformation, as well as decimation and neighborhood operations.
NASA Astrophysics Data System (ADS)
Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.
2017-12-01
The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.
Disk-Anchored Magnetic Propellers - A Cure for the SW Sex Syndrome
NASA Astrophysics Data System (ADS)
Horne, Keith
In AE Aqr, magnetic fields transfer energy and angular momentum from a rapidly-spinning white dwarf to material in the gas stream from the companion star, with the effect of spinning down the white dwarf while flinging the gas stream material out of the binary system. This magnetic propeller produces a host of observable signatures, chief among which are broad, single-peaked, flaring emission lines with phase-shifted orbital kinematics. SW Sex stars have accretion disks, but also broad, single-peaked, phase-shifted emission lines similar to those seen in AE Aqr. We propose that a magnetic propeller similar to that which operates in AE Aqr is also at work in SW Sex stars - and to some extent in all nova-like systems. The propeller is anchored in the inner accretion disk, rather than, or in addition to, the white dwarf. Energy and angular momentum are thereby extracted from the inner disk and transferred to gas-stream material flowing above the disk, which is consequently pitched out of the system. This provides a non-local, dissipationless angular-momentum-extraction mechanism, which should result in cool inner disks with temperature profiles flatter than T propto R^{-3/4}, as observed in eclipse mapping studies of nova-like variables. The disk-anchored magnetic propeller model appears to explain qualitatively most if not all of the peculiar features of the SW Sex syndrome.
NASA Technical Reports Server (NTRS)
Ng, Y. S.; Lee, J. H.
1989-01-01
The Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT) is designed to demonstrate the techniques and components required for orbital superfluid (He II) replenishment of observatories and satellites. One of the tasks planned in the experiment is to cool a warm cryogen tank and a warm transfer line to liquid helium temperature. A math model, based on single-phase vapor flow heat transfer, has been developed to predict the cooldown time, component temperature histories, and helium consumption rate, for various initial conditions of the components and for the thermomechanical pump heater powers of 2 W and 0.5 W. This paper discusses the model and the analytical results, which can be used for planning the experiment operations and determining the pump heater power required for the cooldown operation.
Comparative study of INPIStron and spark gap
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Ja H.
1993-01-01
An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.
NASA Technical Reports Server (NTRS)
Cady, E. C.
1973-01-01
A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.
12 CFR 545.17 - Funds transfer services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Funds transfer services. 545.17 Section 545.17...-OPERATIONS § 545.17 Funds transfer services. A Federal savings association is authorized to transfer, with or without fee, its customers' funds from any account (including a line of credit) of the customer at the...
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function ismore » expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.« less
Comprehensive analysis of line-edge and line-width roughness for EUV lithography
NASA Astrophysics Data System (ADS)
Bonam, Ravi; Liu, Chi-Chun; Breton, Mary; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Muthinti, Raja; Patlolla, Raghuveer; Huang, Huai
2017-03-01
Pattern transfer fidelity is always a major challenge for any lithography process and needs continuous improvement. Lithographic processes in semiconductor industry are primarily driven by optical imaging on photosensitive polymeric material (resists). Quality of pattern transfer can be assessed by quantifying multiple parameters such as, feature size uniformity (CD), placement, roughness, sidewall angles etc. Roughness in features primarily corresponds to variation of line edge or line width and has gained considerable significance, particularly due to shrinking feature sizes and variations of features in the same order. This has caused downstream processes (Etch (RIE), Chemical Mechanical Polish (CMP) etc.) to reconsider respective tolerance levels. A very important aspect of this work is relevance of roughness metrology from pattern formation at resist to subsequent processes, particularly electrical validity. A major drawback of current LER/LWR metric (sigma) is its lack of relevance across multiple downstream processes which effects material selection at various unit processes. In this work we present a comprehensive assessment of Line Edge and Line Width Roughness at multiple lithographic transfer processes. To simulate effect of roughness a pattern was designed with periodic jogs on the edges of lines with varying amplitudes and frequencies. There are numerous methodologies proposed to analyze roughness and in this work we apply them to programmed roughness structures to assess each technique's sensitivity. This work also aims to identify a relevant methodology to quantify roughness with relevance across downstream processes.
A Novel TRM Calculation Method by Probabilistic Concept
NASA Astrophysics Data System (ADS)
Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki
In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
A new mask exposure and analysis facility
NASA Astrophysics Data System (ADS)
te Sligte, Edwin; Koster, Norbert; Deutz, Alex; Staring, Wilbert
2014-10-01
The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at high EUV powers and intensities, and capable of exposing and analyzing EUV masks. The proposed system architecture is similar to the EBL system which has been operated jointly by TNO and Carl Zeiss SMT since 2005. EBL2 contains an EUV Beam Line, in which samples can be exposed to EUV irradiation in a controlled environment. Attached to this Beam Line is an XPS system, which can be reached from the Beam Line via an in-vacuum transfer system. This enables surface analysis of exposed masks without breaking vacuum. Automated handling with dual pods is foreseen so that exposed EUV masks will still be usable in EUV lithography tools to assess the imaging impact of the exposure. Compared to the existing system, large improvements in EUV power, intensity, reliability, and flexibility are proposed. Also, in-situ measurements by e.g. ellipsometry is foreseen for real time monitoring of the sample condition. The system shall be equipped with additional ports for EUVR or other analysis tools. This unique facility will be open for external customers and other research groups.
Introduction of new genetic markers on human chromosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Hitoshi; Barrett, J.C.; Oshimura, Mitsuo
1991-03-01
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter{yields}3p12::Xq26{yields}Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. These results demonstrate that microcell chromosome transfer can bemore » used to select chromosomes containing multiple markers.« less
Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K
2015-02-01
Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.
Space Instrument Optimization by Implementing of Generic Three Bodies Circular Restricted Problem
NASA Astrophysics Data System (ADS)
Nejat, Cyrus
2011-01-01
In this study, the main discussion emphasizes on the spacecraft operation with a concentration on stationary points in space. To achieve these objectives, the circular restricted problem was solved for selected approaches. The equations of motion of three body restricted problem was demonstrated to apply in cases other than Lagrange's (1736-1813 A.D.) achievements, by means of the purposed CN (Cyrus Nejat) theorem along with appropriate comments. In addition to five Lagrange, two other points, CN1 and CN2 were found to be in unstable equilibrium points in a very large distance respect to Lagrange points, but stable at infinity. A very interesting simulation of Milky Way Galaxy and Andromeda Galaxy were created to find the Lagrange points, CN points (Cyrus Nejat Points), and CN lines (Cyrus Nejat Lines). The equations of motion were rearranged such a way that the transfer trajectory would be conical, by means of decoupling concept. The main objective was to make a halo orbit transfer about CN lines. The author purposes therefore that all of the corresponding sizing design that they must be developed by optimization techniques would be considered in future approaches. The optimization techniques are sufficient procedures to search for the most ideal response of a system.
FLUSH: A tool for the design of slush hydrogen flow systems
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1990-01-01
As part of the National Aerospace Plane Project an analytical model was developed to perform calculations for in-line transfer of solid-liquid mixtures of hydrogen. This code, called FLUSH, calculates pressure drop and solid fraction loss for the flow of slush hydrogen through pipe systems. The model solves the steady-state, one-dimensional equation of energy to obtain slush loss estimates. A description of the code is provided as well as a guide for users of the program. Preliminary results are also presented showing the anticipated degradation of slush hydrogen solid content for various piping systems.
A novel pressure-driven piezodispenser for nanoliter volumes.
McGuire, Shawn; Fisher, Charles; Holl, Mark; Meldrum, Deirdre
2008-08-01
A successful dispensing device has been built for use in biotechnology applications requiring nanoliter volume liquid transfer. Air pressure is used as the primary driving force and is controlled via a high speed miniature solenoid valve as opposed to many existing systems that use a valve in line with constantly pressurized fluid to start and stop the dispensing action. This automated pressure-driven system is used to improve a typical piezodriven microdispenser. The resulting system is much less prone to failures resulting from air entrainment and can dispense much higher viscosity fluids than the microdispenser alone.
Beyond "Line by Line": Strategies for Performance and Learning Transfer
ERIC Educational Resources Information Center
Musco, Ann Marie
2011-01-01
A variety of excellent method books aim to help student musicians develop skills in music reading and instrumental technique, but sometimes the best approach is not simply to move ahead line by line through the book. Rather, teachers will find it beneficial to consider apposite strategies to be used before, during, and after rehearsing a line so…
Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity
NASA Technical Reports Server (NTRS)
Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.
1995-01-01
We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that potons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identfying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.
Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity
NASA Astrophysics Data System (ADS)
Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.
1995-03-01
We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that photons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identifying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.
LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapse, K.; Kyser, E.
2011-09-22
A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose ofmore » this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.« less
NASA Astrophysics Data System (ADS)
Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH
2018-05-01
In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.
Li, Yihan; Wojcik, Roza; Dovichi, Norman J.
2010-01-01
We describe a two-dimensional capillary electrophoresis system that incorporates a replaceable enzymatic microreactor for on-line protein digestion. In this system, trypsin is immobilized on magnetic beads. At the start of each experiment, old beads are flushed to waste and replaced with a fresh plug of beads, which is captured by a pair of magnets at the distal tip of the first capillary. For analysis, proteins are separated in the first capillary. A fraction is then parked in the reactor to create peptides. Digested peptides are periodically transferred to the second capillary for separation; a fresh protein fraction is simultaneously moved to the reactor for digestion. An electrospray interface is used to introduce peptides into a mass spectrometer for analysis. This procedure is repeated for several dozen fractions under computer control. The system was demonstrated by the separation and digestion of insulin chain b oxidized and β-casein as model proteins. PMID:21030030
Vogeser, Michael; Spöhrer, Ute
2006-01-01
Liquid chromatography tandem-mass spectrometry (LC-MS/MS) is an efficient technology for routine determination of immunosuppressants in whole blood; however, time-consuming manual sample preparation remains a significant limitation of this technique. Using a commercially available robotic pipetting system (Tecan Freedom EVO), we developed an automated sample-preparation protocol for quantification of tacrolimus in whole blood by LC-MS/MS. Barcode reading, sample resuspension, transfer of whole blood aliquots into a deep-well plate, addition of internal standard solution, mixing, and protein precipitation by addition of an organic solvent is performed by the robotic system. After centrifugation of the plate, the deproteinized supernatants are submitted to on-line solid phase extraction, using column switching prior to LC-MS/MS analysis. The only manual actions within the entire process are decapping of the tubes, and transfer of the deep-well plate from the robotic system to a centrifuge and finally to the HPLC autosampler. Whole blood pools were used to assess the reproducibility of the entire analytical system for measuring tacrolimus concentrations. A total coefficient of variation of 1.7% was found for the entire automated analytical process (n=40; mean tacrolimus concentration, 5.3 microg/L). Close agreement between tacrolimus results obtained after manual and automated sample preparation was observed. The analytical system described here, comprising automated protein precipitation, on-line solid phase extraction and LC-MS/MS analysis, is convenient and precise, and minimizes hands-on time and the risk of mistakes in the quantification of whole blood immunosuppressant concentrations compared to conventional methods.
Doubling The Intensity Of An ERL Based Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Hutton
2005-05-01
A light source based on an Energy Recovered Linac (ERL) [1] consists of a superconducting linac and a transfer line that includes wigglers and undulators to produce the synchrotron light. The transfer line brings the electron bunches back to the beginning of the linac so that their energy can be recovered when they traverse the linac a second time, {lambda}/2 out of RF phase. There is another interesting condition when the length of the transfer line is (n {+-} 1/4) {lambda}. In this case, the electrons drift through on the zero RF crossing, and make a further pass around themore » transfer line, effectively doubling the circulating current in the wigglers and undulators. On the third pass through the linac, they will be decelerated and their energy recovered. The longitudinal focusing at the zero crossing is a problem, but it can be canceled if the drifting beam sees a positive energy gradient for the first half of the linac and a negative gradient for the second half (or vice versa). This paper presents a proposal to use a double chicane at the center of the linac to provide this focusing inversion for the drifting beam while leaving the accelerating and decelerating beams on crest. [1] G. R. Neil, et al, Phys. Rev. Let. 84, 662 2000« less
Pento, Robert; Marks, James E.; Staffanson, Clifford D.
2000-01-01
A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.
Polarized He 3 + 2 ions in the Alternate Gradient Synchrotron to RHIC transfer line
Tsoupas, N.; Huang, H.; Méot, F.; ...
2016-09-06
The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV/n polarized 3He +2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus G He=(g₋2)/2=₋4.184 (where g is the g-factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions frommore » AGS to RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and lastly, we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.« less
NASA Technical Reports Server (NTRS)
Bingle, Bradford D.; Shea, Anne L.; Hofler, Alicia S.
1993-01-01
Transferable Output ASCII Data (TOAD) computer program (LAR-13755), implements format designed to facilitate transfer of data across communication networks and dissimilar host computer systems. Any data file conforming to TOAD format standard called TOAD file. TOAD Editor is interactive software tool for manipulating contents of TOAD files. Commonly used to extract filtered subsets of data for visualization of results of computation. Also offers such user-oriented features as on-line help, clear English error messages, startup file, macroinstructions defined by user, command history, user variables, UNDO features, and full complement of mathematical statistical, and conversion functions. Companion program, TOAD Gateway (LAR-14484), converts data files from variety of other file formats to that of TOAD. TOAD Editor written in FORTRAN 77.
Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.; ...
2017-01-06
We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.
We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.
Cowan, Lauren S.; Diem, Lois; Brake, Mary Catherine; Crawford, Jack T.
2004-01-01
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay. PMID:14715809
Computer Center Reference Manual. Volume 1
1990-09-30
Unlimited o- 0 0 91o1 UNCLASSI FI ED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la . REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE...with connection to INTERNET ) (host tables allow transfer to some other networks) OASYS - the DTRC Office Automation System The following can be reached...and buffers, two windows, and some word processing commands. Advanced editing commands are entered through the use of a command line. EVE las its own
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuckovich, M.; Burkett, J. P.; Sallustio, J.
1984-12-11
Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If themore » strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly.« less
Capillary Pumped Heat Transfer (CHT) Experiment
NASA Technical Reports Server (NTRS)
Hallinan, Kevin P.; Allen, J. S.
1998-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Kukowska-Latallo, J F; Bielinska, A U; Johnson, J; Spindler, R; Tomalia, D A; Baker, J R
1996-01-01
Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines. Images Fig. 1 Fig. 2 Fig. 4 PMID:8643500
Homma, Akira
2011-07-01
A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.
A passive and active microwave-vector radiative transfer (PAM-VRT) model
NASA Astrophysics Data System (ADS)
Yang, Jun; Min, Qilong
2015-11-01
A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors.
Generation of stable cell line by using chitosan as gene delivery system.
Şalva, Emine; Turan, Suna Özbaş; Ekentok, Ceyda; Akbuğa, Jülide
2016-08-01
Establishing stable cell lines are useful tools to study the function of various genes and silence or induce the expression of a gene of interest. Nonviral gene transfer is generally preferred to generate stable cell lines in the manufacturing of recombinant proteins. In this study, we aimed to establish stable recombinant HEK-293 cell lines by transfection of chitosan complexes preparing with pDNA which contain LacZ and GFP genes. Chitosan which is a cationic polymer was used as gene delivery system. Stable HEK-293 cell lines were established by transfection of cells with complexes which were prepared with chitosan and pVitro-2 plasmid vector that contains neomycin drug resistance gene, beta gal and GFP genes. The transfection efficiency was shown with GFP expression in the cells using fluorescence microscopy. Beta gal protein expression in stable cells was examined by beta-galactosidase assay as enzymatically and X-gal staining method as histochemically. Full complexation was shown in the above of 1/1 ratio in the chitosan/pDNA complexes. The highest beta-galactosidase activity was obtained with transfection of chitosan complexes. Beta gal gene expression was 15.17 ng/ml in the stable cells generated by chitosan complexes. In addition, intensive blue color was observed depending on beta gal protein expression in the stable cell line with X-gal staining. We established a stable HEK-293 cell line that can be used for recombinant protein production or gene expression studies by transfecting the gene of interest.
Contribution functions for Zeeman-split lines, and line formation in photospheric faculae
NASA Technical Reports Server (NTRS)
Vanballegooijen, A. A.
1985-01-01
The transfer of polarized light in an inhomogeneous stellar atmosphere, and the formation of magnetically sensitive spectral lines, are discussed. A new method for the solution of the transfer equations is proposed. The method gives a natural definition of the contribution functions for Stokes' parameters, i.e., functions describing the contributions from different parts along the line-of-sight (LOS). The formalism includes all magneto-optical effects, and allows for an arbitrary variation of magnetic field, velocity field, temperature, density, etc., along the LOS. The formation of FeI lambda 5250.2 in photospheric faculae is described. A potential-field model of a facular element is presented, and spectra profiles and contribution functions are computed for the Stokes parameters I, Q, and V.
MODTRAN6: a major upgrade of the MODTRAN radiative transfer code
NASA Astrophysics Data System (ADS)
Berk, Alexander; Conforti, Patrick; Kennett, Rosemary; Perkins, Timothy; Hawes, Frederick; van den Bosch, Jeannette
2014-06-01
The MODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. This version of the code incorporates modern software ar- chitecture including an application programming interface, enhanced physics features including a line-by-line algorithm, a supplementary physics toolkit, and new documentation. The application programming interface has been developed for ease of integration into user applications. The MODTRAN code has been restructured towards a modular, object-oriented architecture to simplify upgrades as well as facilitate integration with other developers' codes. MODTRAN now includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.
The role of atomic lines in radiation heating of the experimental space vehicle Fire-II
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2015-10-01
The results of calculating the convective and radiation heating of the Fire-II experimental space vehicle allowing for atomic lines of atoms and ions using the NERAT-ASTEROID computer platform are presented. This computer platform is intended to solve the complete set of equations of radiation gas dynamics of viscous, heat-conductive, and physically and chemically nonequilibrium gas, as well as radiation transfer. The spectral optical properties of high temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The calculation of the transfer of selective thermal radiation is performed using a line-by-line method using specially generated computational grids over the radiation wavelengths, which make it possible to attain a noticeable economy of computational resources.
NASA Astrophysics Data System (ADS)
Jacquinet-Husson, N.; Lmd Team
The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated, from GEISA. Its content, will be described, as well. This work is ongoing, with the purpose of assessing the IASI measurements capabilities and the spectroscopic information quality, within the ISSWG (IASI Sounding Science Working Group), in the frame of the CNES (Centre National d'Etudes Spatiales, France)/EUMETSAT (EUropean organization for the exploitation of METeorological SATellites) Polar System (EPS) project, by simulating high resolution radiances and/or using experimental data. EUMETSAT will implement GEISA/IASI into the EPS ground segment. The IASI soundings spectroscopic data archive requirements will be discussed in the context of comparisons between recorded and calculated experimental spectra, using the ARA/4A forward line-by-line radiative transfer modelling code in its latest version.
Attitude transfer assembly design for MAGSAT
NASA Technical Reports Server (NTRS)
Collyer, P. W.; Freund, N. P.
1976-01-01
A description is given of a design for an instrument system that will monitor the orientation of a boom-mounted vector magnetometer relative to the main spacecraft body. The attitude of the magnetometer is measured with respect to X and Z axes lateral to the boom length and also a twist axis around the boom center line. These measurements are made in a noncontact optical approach employing a three-axis autocollimator system mounted on the main body of the spacecraft with only passive elements (reflectors) located at the end of the 20-foot boom.
Low resolution spectroscopy of selected Algol systems
NASA Astrophysics Data System (ADS)
Devarapalli, Shanti Priya; Jagirdar, Rukmini; Parthasarathy, M.; Sahu, D. K.; Mohan, Vijay; Bhatt, B. C.; Thomas, Vineet S.
2018-04-01
The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.
1988-03-01
oriented expansion of dictionaries and systems. 4,.j - Portability. Included essential criteria for evaluation are: N - Quality of the raw (also called...hard to be made without having precise criteria for the de- cision. Because the amount of data in computerized dictionaries - on the long line of...develop- ment of MT and CAT systems - is the decisive component, the update of the (electronic) dictionary plays a substantial part in both alternatives
A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.
Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J
2013-01-01
A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.
A young bipolar outflow from IRAS 15398-3359
NASA Astrophysics Data System (ADS)
Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.
2016-03-01
Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.
Incompressible Navier-Stokes Computations with Heat Transfer
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Rogers, Stuart; Kutler, Paul (Technical Monitor)
1994-01-01
The existing pseudocompressibility method for the system of incompressible Navier-Stokes equations is extended to heat transfer problems by including the energy equation. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. Both forced and natural convection problems are examined. Numerical results from turbulent reattaching flow behind a backward-facing step will be compared against experimental measurements for the forced convection case. The validity of Boussinesq approximation to simplify the buoyancy force term will be investigated. The natural convective flow structure generated by heat transfer in a vertical rectangular cavity will be studied. The numerical results will be compared by experimental measurements by Morrison and Tran.
Surface De-Wetting Based Critical Heat Flux Model Development and Validation
2013-02-05
the onset of CHF. When the process of dewetting occurs at contact line and micro region, the temperature of dry spots increases, hence dryout areas...increase and the CHF occurs. Finally, we proposed the CHF mechanism based on the surface dewetting and experimental data. 15. SUBJECT TERMS spray...determines the overall heat transfer, contact line heat transfer wall is critically important to trigger the onset of CHF. When the process of dewetting
Two-dimensional HID light source radiative transfer using discrete ordinates method
NASA Astrophysics Data System (ADS)
Ghrib, Basma; Bouaoun, Mohamed; Elloumi, Hatem
2016-08-01
This paper shows the implementation of the Discrete Ordinates Method for handling radiation problems in High Intensity Discharge (HID) lamps. Therefore, we start with presenting this rigorous method for treatment of radiation transfer in a two-dimensional, axisymmetric HID lamp. Furthermore, the finite volume method is used for the spatial discretization of the Radiative Transfer Equation. The atom and electron densities were calculated using temperature profiles established by a 2D semi-implicit finite-element scheme for the solution of conservation equations relative to energy, momentum, and mass. Spectral intensities as a function of position and direction are first calculated, and then axial and radial radiative fluxes are evaluated as well as the net emission coefficient. The results are given for a HID mercury lamp on a line-by-line basis. A particular attention is paid on the 253.7 nm resonance and 546.1 nm green lines.
NASA Technical Reports Server (NTRS)
Mihalas, D.; Kunasz, P. B.
1978-01-01
The coupled radiative transfer and statistical equilibrium equations for multilevel ionic structures in the atmospheres of early-type stars are solved. Both lines and continua are treated consistently; the treatment is applicable throughout a transonic wind, and allows for the presence of background continuum sources and sinks in the transfer. An equivalent-two-level-atoms approach provides the solution for the equations. Calculations for simplified He (+)-like model atoms in parameterized isothermal wind models indicate that subordinate line profiles are sensitive to the assumed mass-loss rate, and to the assumed structure of the velocity law in the atmospheres.
Study on Heat Transfer Agent Models of Transmission Line and Transformer
NASA Astrophysics Data System (ADS)
Wang, B.; Zhang, P. P.
2018-04-01
When using heat transfer simulation to study the dynamic overload of transmission line and transformer, it needs to establish the mathematical expression of heat transfer. However, the formula is a nonlinear differential equation or equation set and it is not easy to get general solutions. Aiming at this problem, some different temperature change processes caused by different initial conditions are calculated by differential equation and equation set. New agent models are developed according to the characteristics of different temperature change processes. The results show that the agent models have high precision and can solve the problem that the original equation cannot be directly applied in some practical engineers.
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
NASA Astrophysics Data System (ADS)
Yamada, Takayoshi; Kasai, Yasuko; Yoshida, Naohiro
2016-07-01
The Submillimeter Wave Instrument (SWI) is one of the scientific instruments on the JUpiter Icy moon Explorer (JUICE). We plan to observe atmospheric compositions including water vapor and its isotopomers in Galilean moons (Io, Europa, Ganymede, and Callisto). The frequency windows of SWI are 530 to 625 GHz and 1080 to 1275 GHz with 100 kHz spectral resolution. We are developing a radiative transfer code in Japan with line-by-line method for Ganymede atmosphere in THz region (0 - 3 THz). Molecular line parameters (line intensity and partition function) were taken from JPL (Jet Propulsion Laboratory) catalogue. The pencil beam was assumed to calculate a spectrum of H _{2}O and CO in rotational transitions at the THz region. We performed comparisons between our model and ARTS (Atmospheric Radiative Transfer Simulator). The difference were less than 10% and 5% for H _{2}O and CO, respectively, under the condition of the local thermodynamic equilibrium (LTE). Comparison with several models with non-LTE assumption will be presented.
Research of communication quality assessment algorithm according to the standard G3-PLC
NASA Astrophysics Data System (ADS)
Chebotayev, Pavel; Klimenko, Aleksey; Myakochin, Yuri; Polyakov, Igor; Shelupanov, Alexander; Urazayev, Damir; Zykov, Dmitriy
2017-11-01
The present paper deals with the quality assessment of PLC channel which is a part of fault-tolerant self-organizing heterogeneous communication system. The PLC implementation allows to reduce exploitation costs when constructing new info-communication networks. PLC is used for transmitting information between various devices in alternating current mains. There exist different approaches to transfer information over power lines. Their differences resulted from the requirements of typical apps which use PLC as a data transmission channel. In the process of research described in this paper, the simulation of a signal in AC mains with regard to different kinds of noise caused by power line loads was performed.
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.
1995-02-01
An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.
Laser frequency stabilization and shifting by using modulation transfer spectroscopy
NASA Astrophysics Data System (ADS)
Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang
2014-10-01
The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.
Project H - A Complete Spaceport Hydrogen Solution
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
This slide presentation reviews Project H, and its importance in the development of Kennedy Space Center (KSC) as a Spaceport capable of multiple launches. It is known that current KSC cryogenic technology results in only approximately 55 % of purchased hydrogen being used. The rest is lost at various points in the process: transfer from transporting vehicle to tank, storage tank boil off, and from the tank to the intended propulsion tanks. Project H's goals would be to have local hydrogen production and liquifaction capability, and to increase the efficiency of hydrogen operations to greater than 80 %. The project envisions two phases: Phase 1 will build a smaller scale demonstration system, and phase 2 will build a full scale spaceport system. This initial project has proposed ideas for local hydrogen production, gaseous distribution, integrated refrigeration and storage, and high efficiency transfer lines that merit further investigation.
The Role of Teams, Culture, and Capacity in the Transfer of Organizational Practices
ERIC Educational Resources Information Center
Lucas, Leyland M.
2010-01-01
Purpose: Transferring organizational practices requires an understanding not only of what is being transferred but also of what is needed to ensure that the transfer is successful. In line with this thinking, the purpose of this study is to examine three factors that are crucial parts of this mechanism: use of teams, culture, and capacity.…
DISTRIBUTED RC NETWORKS WITH RATIONAL TRANSFER FUNCTIONS,
A distributed RC circuit analogous to a continuously tapped transmission line can be made to have a rational short-circuit transfer admittance and...one rational shortcircuit driving-point admittance. A subcircuit of the same structure has a rational open circuit transfer impedance and one rational ...open circuit driving-point impedance. Hence, rational transfer functions may be obtained while considering either generator impedance or load
Predictive models for moving contact line flows
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Stephen
2003-01-01
Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.
The outlook of innovative optical-electronic technologies implementation in transportation
NASA Astrophysics Data System (ADS)
Shilina, Elena V.; Ryabichenko, Roman B.
2005-06-01
Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from locomotive, video monitoring, gyroscopes based on fiber optic.
NASA Astrophysics Data System (ADS)
Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.
2017-11-01
Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
Li, Jian; Bloch, Pavel; Xu, Jing; Sarunic, Marinko V; Shannon, Lesley
2011-05-01
Fourier domain optical coherence tomography (FD-OCT) provides faster line rates, better resolution, and higher sensitivity for noninvasive, in vivo biomedical imaging compared to traditional time domain OCT (TD-OCT). However, because the signal processing for FD-OCT is computationally intensive, real-time FD-OCT applications demand powerful computing platforms to deliver acceptable performance. Graphics processing units (GPUs) have been used as coprocessors to accelerate FD-OCT by leveraging their relatively simple programming model to exploit thread-level parallelism. Unfortunately, GPUs do not "share" memory with their host processors, requiring additional data transfers between the GPU and CPU. In this paper, we implement a complete FD-OCT accelerator on a consumer grade GPU/CPU platform. Our data acquisition system uses spectrometer-based detection and a dual-arm interferometer topology with numerical dispersion compensation for retinal imaging. We demonstrate that the maximum line rate is dictated by the memory transfer time and not the processing time due to the GPU platform's memory model. Finally, we discuss how the performance trends of GPU-based accelerators compare to the expected future requirements of FD-OCT data rates.
Amplification of large scale magnetic fields in a decaying MHD system
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-10-01
Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.
The transfer of Cfunc contextual control through equivalence relations.
Perez, William F; Fidalgo, Adriana P; Kovac, Roberta; Nico, Yara C
2015-05-01
Derived relational responding is affected by contextual stimuli (Cfunc) that select specific stimulus functions. The present study investigated the transfer of Cfunc contextual control through equivalence relations by evaluating both (a) the maintenance of Cfunc contextual control after the expansion of a relational network, and (b) the establishment of novel contextual stimuli by the transfer of Cfunc contextual control through equivalence relations. Initially, equivalence relations were established and contingencies were arranged so that colors functioned as Cfunc stimuli controlling participants' key-pressing responses in the presence of any stimulus from a three-member equivalence network. To investigate the first research question, the three-member equivalence relations were expanded to five members and the novel members were presented with the Cfunc stimuli in the key-pressing task. To address the second goal of this study, the colors (Cfunc) were established as equivalent to certain line patterns. The transfer of contextual cue function (Cfunc) was tested replacing the colored backgrounds with line patterns in the key-pressing task. Results suggest that the Cfunc contextual control was transferred to novel stimuli that were added to the relational network. In addition, the line patterns indirectly acquired the contextual cue function (Cfunc) initially established for the colored backgrounds. The conceptual and applied implications of Cfunc contextual control are discussed. © Society for the Experimental Analysis of Behavior.
Tests of Exoplanet Atmospheric Radiative Transfer Codes
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin
2016-10-01
Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belluzzi, Luca; Bueno, Javier Trujillo; Degl’Innocenti, Egidio Landi
2015-12-01
The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuousmore » distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.« less
Rigby, Carolyn C.; Franks, L. M.
1970-01-01
Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601
Importing, caring, breeding, genotyping, and phenotyping a genetic mouse in a Chinese university.
Kuo, S T; Wu, Q H; Liu, B; Xie, Z L; Wu, X; Shang, S J; Zhang, X Y; Kang, X J; Liu, L N; Zhu, F P; Wang, Y S; Hu, M Q; Xu, H D; Zhou, L; Liu, B; Chai, Z Y; Zhang, Q F; Liu, W; Teng, S S; Wang, C H; Guo, N; Dou, H Q; Zuo, P L; Zheng, L H; Zhang, C X; Zhu, D S; Wang, L; Wang, S R; Zhou, Z
2014-07-01
The genetic manipulation of the laboratory mouse has been well developed and generated more and more mouse lines for biomedical research. To advance our science exploration, it is necessary to share genetically modified mouse lines with collaborators between institutions, even in different countries. The transfer process is complicated. Significant paperwork and coordination are required, concerning animal welfare, intellectual property rights, colony health status, and biohazard. Here, we provide a practical example of importing a transgenic mice line, Dynamin 1 knockout mice, from Yale University in the USA to Perking University in China for studying cell secretion. This example including the length of time that required for paper work, mice quarantine at the receiving institution, and expansion of the mouse line for experiments. The procedure described in this paper for delivery live transgenic mice from USA to China may serve a simple reference for transferring mouse lines between other countries too.
COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kóspál, Á.; Ábrahám, P.; Moór, A.
EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and themore » {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.« less
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2014-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.
NASA Technical Reports Server (NTRS)
Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.
Tumor-derived exosomes modulate T cell function through transfer of RNA.
House, Imran G; Petley, Emma V; Beavis, Paul A
2018-03-01
Tumor cells can develop a variety of mechanisms to evade and subvert the immune system for their survival. Bland et al., in this edition of The FEBS Journal, make the novel finding that the tumor line B16F0 can deliver mRNA/miRNA loaded exosomes to cytotoxic T lymphocytes and alter their metabolic function and interferon gamma production. © 2018 Federation of European Biochemical Societies.
2012-09-30
understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and distributary shoals and...and the subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis...on Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and in the offshore banks may be shorelines lined with vegetation ( mangroves
MTF evaluation of in-line phase contrast imaging system
NASA Astrophysics Data System (ADS)
Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing
2017-02-01
X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.
A Semi-analytical Line Transfer (SALT) Model. II: The Effects of a Bi-conical Geometry
NASA Astrophysics Data System (ADS)
Carr, Cody; Scarlata, Claudia; Panagia, Nino; Henry, Alaina
2018-06-01
We generalize the semi-analytical line transfer model recently introduced by Scarlata & Panagia for modeling galactic outflows, to account for bi-conical geometries of various opening angles and orientations with respect to the line of sight to the observer, as well as generalized velocity fields. We model the absorption and emission component of the line profile resulting from resonant absorption in the bi-conical outflow. We show how the outflow geometry impacts the resulting line profile. We use simulated spectra with different geometries and velocity fields to study how well the outflow parameters can be recovered. We find that geometrical parameters (including the opening angle and the orientation) are always well recovered. The density and velocity field parameters are reliably recovered when both an absorption and an emission component are visible in the spectra. This condition implies that the velocity and density fields for narrow cones oriented perpendicular to the line of sight will remain unconstrained.
Close, James; Call, Josep
2015-03-01
Over two experiments, we investigated the ability of two adolescent and two adult chimpanzees to generalise a learnt, pictorial categorisation to increasingly degraded and abstract stimuli. In Experiment 2, we further assessed the ability of the adolescent chimpanzees to engage in open-ended categorisation of black-and-white line drawings. The current results confirmed and extended previous findings, showing that sub-adult chimpanzees outperform adult chimpanzees in the categorisation of pictorial stimuli, particularly when the stimuli are more degraded and abstract in nature. However, none of the four chimpanzees showed positive transfer of their category learning to a set of black-and-white line drawings, and neither of the adolescent chimpanzees evidenced reliable open-ended categorisation of the black-and-white line drawings. The latter findings suggest that both sub-adult and adult chimpanzees find it difficult to recognise black-and-white line drawings, and that open-ended categorisation of black-and-white line drawings is challenging for chimpanzees.
NASA Astrophysics Data System (ADS)
Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.
2017-11-01
CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range
Coverage Maximization Using Dynamic Taint Tracing
2007-03-28
we do not have source code are handled, incompletely, via models of taint transfer. We use a little language to specify how taint transfers across a...n) 2.3.7 Implementation and Runtime Issues The taint graph instrumentation is a 2K line Ocaml module extending CIL and is supported by 5K lines of...modern scripting languages such as Ruby have taint modes that work similarly; however, all propagate taint at the variable rather than the byte level and
Companions to peculiar red giants: HR 363 and HR 1105
NASA Technical Reports Server (NTRS)
Ake, Thomas B., III; Johnson, Hollis R.; Perry, Benjamin F., Jr.
1988-01-01
Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Recovery from radiation-induced bone marrow damage by HSP25 through Tie2 signaling.
Lee, Hae-June; Kwon, Hee-Chung; Chung, Hee-Yong; Lee, Yoon-Jin; Lee, Yun-Sil
2012-09-01
Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos
2018-03-01
The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and line correlation metrics in SAQP data. We find that the spacer etch steps reduce edge correlations while etch steps with pattern transfer increase these. Furthermore, the density doubling and quadrupling increase edge correlations as well as cross-line correlations.
On-line consolidation of thermoplastic composites
NASA Astrophysics Data System (ADS)
Shih, Po-Jen
An on-line consolidation system, which includes a computer-controlled filament winding machine and a consolidation head assembly, has been designed and constructed to fabricate composite parts from thermoplastic towpregs. A statistical approach was used to determine the significant processing parameters and their effect on the mechanical and physical properties of composite cylinders fabricated by on-line consolidation. A central composite experimental design was used to select the processing conditions for manufacturing the composite cylinders. The thickness, density, void content, degree of crystallinity and interlaminar shear strength (ILSS) were measured for each composite cylinder. Micrographs showed that complete intimate contact and uniform fiber-matrix distribution were achieved. The degree of crystallinity of the cylinders was found to be in the range of 25-30%. Under optimum processing conditions, an ILSS of 58 MPa and a void content of <1% were achieved for APC-2 (PEEK/Carbon fiber) composite cylinders. An in-situ measurement system which uses a slip ring assembly and a computer data acquisition system was developed to obtain temperature data during winding. Composite cylinders were manufactured with eight K-type thermocouples installed in various locations inside the cylinder. The temperature distribution inside the composite cylinder during winding was measured for different processing conditions. ABAQUS finite element models of the different processes that occur during on-line consolidation were constructed. The first model was used to determine the convective heat transfer coefficient for the hot-air heat source. A convective heat transfer coefficient of 260 w/msp{2°}K was obtained by matching the calculated temperature history to the in-situ measurement data. To predict temperature distribution during winding an ABAQUS winding simulation model was developed. The winding speed was modeled by incrementally moving the convective boundary conditions around the outer surface of the composite cylinder. A towpreg heating model was constructed to predict the temperature distribution on the cross section of the incoming towpreg. For the process-induced thermal stresses analysis, a thermoelastic finite element model was constructed. Using the temperature history obtained from thermal analysis as the initial conditions, the thermal stresses during winding and cooling were investigated.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
NASA Astrophysics Data System (ADS)
Juvela, Mika J.
The relationship between physical conditions of an interstellar cloud and the observed radiation is defined by the radiative transfer problem. Radiative transfer calculations are needed if, e.g., one wants to disentangle abundance variations from excitation effects or wants to model variations of dust properties inside an interstellar cloud. New observational facilities (e.g., ALMA and Herschel) will bring improved accuracy both in terms of intensity and spatial resolution. This will enable detailed studies of the densest sub-structures of interstellar clouds and star forming regions. Such observations must be interpreted with accurate radiative transfer methods and realistic source models. In many cases this will mean modelling in three dimensions. High optical depths and observed wide range of linear scales are, however, challenging for radiative transfer modelling. A large range of linear scales can be accessed only with hierarchical models. Figure 1 shows an example of the use of a hierarchical grid for radiative transfer calculations when the original model cloud (L=10 pc,
NASA Astrophysics Data System (ADS)
Harrington, Kevin
2018-01-01
Multi-J CO line studies are essential for quantifying the physical properties of the star-forming ISM, yet it is observationally expensive to detect those faint CO emission lines at high redshift. Our eight Planck-Herschel selected galaxies, with apparent LIR > 1013‑14 L⊙, serve as the best laboratories to conduct such a CO spectral line energy distribution analysis at high-z. Using our GBT and LMT (Jup = 1-3) measurements, we trace the bulk molecular gas mass, finding relatively large star formation efficiencies (as traced by the LIR-to-L’CO(1‑0) ratio) consistent with a starburst mode of activity. With our mid-J (Jup = 4-8) CO line measurements, obtained with the IRAM 30m telescope, we find gas excitation conditions ranging from sub-thermal SMGs to highly excited local starbursts out to Jup = 5-8. The consistently high velocity-integrated line intensities at Jup = 5-8 indicates the presence a warm/dense component responsible for exciting the higher-J CO lines, therefore we use coupled non-LTE large velocity gradient and dust radiative transfer models to begin characterising the two-component molecular ISM in these strongly lensed systems.
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.
1978-01-01
A coordinate transformation, which can approximate many different two-dimensional and axisymmetric body shapes with an analytic function, is used as a basis for solving the Navier-Stokes equations for the purpose of predicting 0 deg angle of attack supersonic flow fields. The transformation defines a curvilinear, orthogonal coordinate system in which coordinate lines are perpendicular to the body and the body is defined by one coordinate line. This system is mapped in to a rectangular computational domain in which the governing flow field equations are solved numerically. Advantages of this technique are that the specification of boundary conditions are simplified and, most importantly, the entire flow field can be obtained, including flow in the wake. Good agreement has been obtained with experimental data for pressure distributions, density distributions, and heat transfer over spheres and cylinders in supersonic flow. Approximations to the Viking aeroshell and to a candidate Jupiter probe are presented and flow fields over these shapes are calculated.
DISTINGUISHING A HYPOTHETICAL ABIOTIC PLANET–MOON SYSTEM FROM A SINGLE INHABITED PLANET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tong; Tian, Feng; Wei, Wanjing
It has recently been suggested that an exomoon with a CH{sub 4} atmosphere, orbiting an abiotic Earth-mass planet with an O{sub 2}-rich atmosphere, can produce a false positive biosignature at a low–moderate spectral resolution (R = λ/Δλ ≤ 2000). If this were true, inferring the presence of life on exoplanets will be beyond our reach in the next several decades. Here we use a line-by-line radiative transfer model to compute the relevant reflection spectrum between 1 and 3.3 μm. We show that it is possible to separate the combined spectra of such planet–moon systems from an inhabited planet by multiple-band NIR observations.more » We suggest that future observations near the 2.3 μm CH{sub 4} absorption band at a resolution of 100 and an SNR of 10 or more may be a good way to distinguish an abiotic planet–moon system from a inhabited single planet.« less
NASA Astrophysics Data System (ADS)
Blachut, Gregory; Sirard, Stephen M.; Liang, Andrew; Mack, Chris A.; Maher, Michael J.; Rincon-Delgadillo, Paulina A.; Chan, Boon Teik; Mannaert, Geert; Vandenberghe, Geert; Willson, C. Grant; Ellison, Christopher J.; Hymes, Diane
2018-03-01
A pattern transfer study was conducted to monitor the evolution of roughness in sub-10 nm half-pitch lines generated by the directed self-assembly (DSA) of a high-chi, silicon-containing block copolymer, poly(4-trimethylsilylstyrene)-block-poly(4-methoxystyrene). Unbiased roughness measurements were used to characterize the roughness of the structures before and after pattern transfer into silicon nitride. Parameters of the reactive ion etch process used as a dry development were systematically modified to minimize undesired line walking created by the DSA pre-pattern and to determine their impacts on roughness. The results of this study indicate that an optimized dry development can mitigate the effects of pre-pattern inhomogeneity, and that both dry development and pattern transfer steps effect the roughness of the final structures.
Nuclear spectroscopy of r-process nuclei around N = 126 using KISS
NASA Astrophysics Data System (ADS)
Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.
2017-09-01
The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M
2012-04-30
When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah
2007-01-01
We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
Dynamic MTF, an innovative test bench for detector characterization
NASA Astrophysics Data System (ADS)
Emmanuel, Rossi; Raphaël, Lardière; Delmonte, Stephane
2017-11-01
PLEIADES HR are High Resolution satellites for Earth observation. Placed at 695km they reach a 0.7m spatial resolution. To allow such performances, the detectors are working in a TDI mode (Time and Delay Integration) which consists in a continuous charge transfer from one line to the consecutive one while the image is passing on the detector. The spatial resolution, one of the most important parameter to test, is characterized by the MTF (Modulation Transfer Function). Usually, detectors are tested in a staring mode. For a higher level of performances assessment, a dedicated bench has been set-up, allowing detectors' MTF characterization in the TDI mode. Accuracy and reproducibility are impressive, opening the door to new perspectives in term of HR imaging systems testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less
A Sample Return Container with Hermetic Seal
NASA Technical Reports Server (NTRS)
Kong, Kin Yuen; Rafeek, Shaheed; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers and then hermetically seal samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the sampler's featured drill tip for interfacing, transfer-ring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses a few isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The drill based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. Again, the sampler provides all sealing actuation. This sample return container and co-engineered sample acquisition system are being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program.
NASA Astrophysics Data System (ADS)
Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.
2014-08-01
RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.
MAST Propellant and Delivery System Design Methods
NASA Technical Reports Server (NTRS)
Nadeem, Uzair; Mc Cleskey, Carey M.
2015-01-01
A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.
Flow line asymmetric nonimaging concentrating optics
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2016-09-01
Nonimaging Optics has shown that it achieves the theoretical limits by utilizing thermodynamic principles rather than conventional optics. Hence in this paper the condition of the "best" design are both defined and fulfilled in the framework of thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems, even illumination and optical communication tasks. This new way of looking at the problem of efficient concentration depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background. Some of the new development of flow line designs will be introduced and the connection between the thermodynamics and flow line design will be officially formulated in the framework of geometric flux field. A new way of using geometric flux to design nonimaging optics will be introduced. And finally, we discuss the possibility of 3D ideal nonimaing optics.
NASA Astrophysics Data System (ADS)
Daughtrey, E. Hunter; Adams, Jeffrey R.; Oliver, Karen D.; Kronmiller, Keith G.; McClenny, William A.
1998-09-01
A trailer-deployed automated gas chromatograph-mass spectrometer (autoGC-MS) system capable of making continuous hourly measurements was used to determine volatile organic compounds (VOCs) in ambient air at New Hendersonville, Tennessee, and Research Triangle Park, North Carolina, in 1995. The system configuration, including the autoGC-MS, trailer and transfer line, siting, and sampling plan and schedule, is described. The autoGC-MS system employs a pair of matched sorbent traps to allow simultaneous sampling and desorption. Desorption is followed by Stirling engine cryofocusing and subsequent GC separation and mass spectral identification and quantification. Quality control measurements described include evaluating precision and accuracy of replicate analyses of independently supplied audit and round-robin canisters and determining the completeness of the data sets taken in Tennessee. Data quality objectives for precision (±10%) and accuracy (±20%) of 10- to 20-ppbv audit canisters and a completeness of >75% data capture were met. Quality assurance measures used in reviewing the data set include retention time stability, calibration checks, frequency distribution checks, and checks of the mass spectra. Special procedures and tests were used to minimize sorbent trap artifacts, to verify the quality of a standard prepared in our laboratory, and to prove the integrity of the insulated, heated transfer line. A rigorous determination of total system blank concentration levels using humidified scientific air spiked with ozone allowed estimation of method detection limits, ranging from 0.01 to 1.0 ppb C, for most of the 100 target compounds, which were a composite list of the target compounds for the Photochemical Assessment Monitoring Station network, those for Environmental Protection Agency method TO-14, and selected oxygenated VOCs.
The GEISA Spectroscopic Database System in its latest Edition
NASA Astrophysics Data System (ADS)
Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.
2009-04-01
GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are registered for on line use of GEISA. Refs: 1. Jacquinet-Husson N., N.A. Scott, A. Chédin,L. Crépeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, et al. THE GEISA SPECTROSCOPIC DATABASE: Current and future archive for Earth and planetary atmosphere studies. JQSRT, 109, 1043-1059, 2008 2. Jacquinet-Husson N., N.A. Scott, A. Chédin, K. Garceran, R. Armante, et al. The 2003 edition of the GEISA/IASI spectroscopic database. JQSRT, 95, 429-67, 2005. 3. Scott, N.A. and A. Chedin, 1981: A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteor., 20,556-564.
A microeconomic scheduler for parallel computers
NASA Technical Reports Server (NTRS)
Stoica, Ion; Abdel-Wahab, Hussein; Pothen, Alex
1995-01-01
We describe a scheduler based on the microeconomic paradigm for scheduling on-line a set of parallel jobs in a multiprocessor system. In addition to the classical objectives of increasing the system throughput and reducing the response time, we consider fairness in allocating system resources among the users, and providing the user with control over the relative performances of his jobs. We associate with every user a savings account in which he receives money at a constant rate. When a user wants to run a job, he creates an expense account for that job to which he transfers money from his savings account. The job uses the funds in its expense account to obtain the system resources it needs for execution. The share of the system resources allocated to the user is directly related to the rate at which the user receives money; the rate at which the user transfers money into a job expense account controls the job's performance. We prove that starvation is not possible in our model. Simulation results show that our scheduler improves both system and user performances in comparison with two different variable partitioning policies. It is also shown to be effective in guaranteeing fairness and providing control over the performance of jobs.
1E 1048.5 + 5421 - A new 114 minute AM Herculis binary
NASA Technical Reports Server (NTRS)
Morris, Simon L.; Schmidt, Gary D.; Liebert, James; Gioia, Isabella M.; Maccacaro, Tommaso
1987-01-01
The discovery of a new AM Herculis binary system, found as a serendipitous Einstein X-ray source, is described. Like the previously discovered mass-transfer binaries involving synchronously rotating magnetic white-dwarf primaries, the system exhibits strong circular polarization, X-ray and optical continuum variations, and optical emission lines, all of which seem to be modulated with these binary periods of 114.5 + or - 0.2 minutes. Although all data are not concurrent, the new system appears to possess the highest ratio of F(x)/F(opt) yet found for an AM Her system. The surprising accumulation of AM Her variables with periods near 114 minute is commented on.
User guide to a command and control system; a part of a prelaunch wind monitoring program
NASA Technical Reports Server (NTRS)
Cowgill, G. R.
1976-01-01
A set of programs called Command and Control System (CCS), intended as a user manual, is described for the operation of CCS by the personnel supporting the wind monitoring portion of the launch mission. Wind data obtained by tracking balloons is sent by electronic means using telephone lines to other locations. Steering commands are computed from a system called ADDJUST for the on-board computer and relays this data. Data are received and automatically stored in a microprocessor, then via a real time program transferred to the UNIVAC 1100/40 computer. At this point the data is available to be used by the Command and Control system.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane lifts the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment.
Yang, N S; Burkholder, J; Roberts, B; Martinell, B; McCabe, D
1990-01-01
Chimeric chloramphenicol acetyltransferase and beta-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10(-3) and 6 x 10(-4), respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy. Images PMID:2175906
Pamboukian, Marilena Martins; Pereira, Carlos Augusto; Augusto, Elisabeth de Fatima Pires; Tonso, Aldo
2011-12-01
Monitoring the specific respiration rate (Q(O2)) is a valuable tool to evaluate cell growth and physiology. However, for low Q(O2) values the accuracy may depend on the measurement methodology, as it is the case in animal cell culture. The widely used "Dynamic Method" imposes serious difficulties concerning oxygen transfer cancellation, especially through membrane oxygenation. This paper presents an improved procedure to this method, through an automated control of the gas inlet composition that can minimize the residual oxygen transfer driving force during the Q(O2) measurement phase. The improved technique was applied to animal cell cultivation, particularly three recombinant S2 (Drosophila melanogaster) insect cell lines grown in a membrane aeration bioreactor. The average measurements of the proposed method reached 98% of stationary liquid phase balance method, taken as a reference, compared to 21% when the traditional method was used. Furthermore, this methodology does not require knowledge of the volumetric transfer coefficient k(L)a, which may vary during growth. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.
Propagation of senescent mice using nuclear transfer embryonic stem cell lines.
Mizutani, Eiji; Ono, Tetsuo; Li, Chong; Maki-Suetsugu, Rinako; Wakayama, Teruhiko
2008-09-01
Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.
USDA-ARS?s Scientific Manuscript database
Modern blueberry packing lines create impact damage to blueberries which will result in fruit bruising. In this study, impacts created by commercial blueberry packing lines were measured quantitatively using a miniature instrumented sphere. Impacts were recorded at transfer points. Average peakG ...
Gas flows in S-E binary systems of galaxies
NASA Technical Reports Server (NTRS)
Sotnikova, N. YA.
1990-01-01
Tidal interaction between the galaxies in binary systems leads to important consequences. Some peculiarities in galactic morphology as well as the transfer of matter from one galaxy to another may be due to this factor. In particular, gas flows in intergalactic space may be formed. Such flows enriching one component with gas from the other may play a substantial role in the evolution of mixed (S-E) pairs. One can mention several facts corroborating the possibility of the gas transfer from the spiral to the elliptical galaxy. High HI content (10(exp 7) to 10(exp 9) solar mass) is detected in nearly 40 E galaxies (Bottinelli and Gougenheim, 1979; Knapp et al., 1985). Such galaxies are often members of pairs or of multiple systems including an S galaxy, which may be the source of gas (Smirnov and Komberg, 1980). Moreover, the gas kinematics and its distribution also indicate an external origin for this gas (Knapp et al., 1985). In many cases there is an outer gaseous disk. The directions of the disk and of stellar rotation don't always coincide (van Gorkom et al., 1985; Varnas et al., 1987). The galaxy colors in S-E pairs are correlated (the Holmberg effect): bluer ellipticals have spiral components that are usually bluer (Demin et al., 1984). The fraction of E galaxies with emission lines (N sub em) in S-E pairs showing traces of tidal interaction is twice as large (N sub em approx. equals 0.24) as in pairs without interaction (N sub em approx. equals 0.12) (Sotnikova, 1988b). Since the presence of emission lines in a galaxy spectrum strongly depends on gas content, this fact also leads to the conclusion that ellipticals in interacting S-E pairs are enriched with gas. These facts may be considered as a serious indication of the existence of gas transfer. Hence, investigation of this process is of interest.
Microbiological Horticultural Internship Final Abstract
NASA Technical Reports Server (NTRS)
Palmer, Shane R.; Spencer, Lashelle (Editor)
2017-01-01
GMO dwarf plum (Prunus domestica) is being evaluated as a candidate food crop for long duration space flight missions. A project was undertaken to develop a protocol for transferring selected genetic lines of GMO plum (previously maintained in pots and propagated by cuttings at NASA's Kennedy Space Center in Florida) into in vitro tissue culture. In vitro culture may reduce the space, materials, and labor required to maintain the current lines of GMO plum and better preserve them for future study. Fresh plant material from three selected GMO plum lines (NASA-5, NASA-10, and NASA-11) and a non-modified control line (Control-5) were processed aseptically into in vitro culture on four separate occasions. The impact of multiple treatments on the successful growth of GMO plum tissue in vitro were tested: Parent explant tissue type (leaf petioles, stem nodes containing buds and internodes without buds), tissue sterilization method [soaking in 10 bleach only (5 min for petioles or 10 min for nodesinternodes), or soaking in 70 EtOH (30 sec) followed by 10 bleach (5 min for petioles and 10 min for nodesinternodes)], and media type [three Murashige and Skoog-based medias (SGM, SRM, and SRM+2,4-D) and one recipe containing woody plant media (WPM)]. 22.2 of the plates containing tissue sterilized with bleach alone developed microbial contamination after two weeks, while only 11.8 of plates containing tissue sterilized sequentially with EtOH and bleach developed contamination. Node bud tissue from all four genetic lines of plum produced leafy plantlets on SGM and SRM media after 4-6 weeks. The most numerous and well-developed plantlets were present on SGM. Upon reaching suitable size, plantlets were transferred to larger media containers for further growth. Some node bud growth occurred on SRM+2,4-D and WPM 2.5 weeks after plating, however as of yet no pieces on SRM+2,4-D have adequate development for transferring. Tissue pieces from NASA-5 plated on WPM are developing leaves and will be ready for transferring soon. Petioles and internode tissue lacking bud meristem failed to produce any plantlets on any plates, however petioles developed large masses of undifferentiated callus tissue on SRM+2,4-D media. These callused pieces were then transferred to SRM+TDZ media, which resulted in even larger callus growth but no differentiation. All four selected plum lines were successfully transitioned into in vitro culture. Nodes from NASA-5 and NASA-10 lines produced the most numerous and well-developed leafy plantlets in vitro, while those from NASA-11 and Control-5 were generally smaller, slower growing and less numerous. The best method overall was to use young stem node tissue with buds, surface sterilize the pieces sequentially with 70 EtOH and 10 bleach, and then plate them onto SGM media. Future areas of study will include introducing additional genetic lines of GMO plum into in vitro culture, attempting to induce shoot growth in petiole callus tissue, testing methods (such as cold storage) that extend the time interval between transferring explants into new media, and testing viability of plantlets transferred from in vitro culture back to traditional pot culture.
Radiative gas dynamics of the Fire-II superorbital space vehicle
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2016-03-01
The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E; Groh, Bill
2014-10-31
ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.
NASA Astrophysics Data System (ADS)
Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.
2012-12-01
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
NASA Astrophysics Data System (ADS)
Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.
2013-03-01
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
LentiPro26: novel stable cell lines for constitutive lentiviral vector production.
Tomás, H A; Rodrigues, A F; Carrondo, M J T; Coroadinha, A S
2018-03-27
Lentiviral vectors (LVs) are excellent tools to promote gene transfer and stable gene expression. Their potential has been already demonstrated in gene therapy clinical trials for the treatment of diverse disorders. For large scale LV production, a stable producer system is desirable since it allows scalable and cost-effective viral productions, with increased reproducibility and safety. However, the development of stable systems has been challenging and time-consuming, being the selection of cells presenting high expression levels of Gag-Pro-Pol polyprotein and the cytotoxicity associated with some viral components, the main limitations. Hereby is described the establishment of a new LV producer cell line using a mutated less active viral protease to overcome potential cytotoxic limitations. The stable transfection of bicistronic expression cassettes with re-initiation of the translation mechanism enabled the generation of LentiPro26 packaging populations supporting high titers. Additionally, by skipping intermediate clone screening steps and performing only one final clone screening, it was possible to save time and generate LentiPro26-A59 cell line, that constitutively produces titers above 10 6 TU.mL -1 .day -1 , in less than six months. This work constitutes a step forward towards the development of improved LV producer cell lines, aiming to efficiently supply the clinical expanding gene therapy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Khai; Bogdanović, Tamara
Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less
Sound transmission through triple-panel structures lined with poroelastic materials
NASA Astrophysics Data System (ADS)
Liu, Yu
2015-03-01
In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.
Haehnel-Taguchi, Melanie; Akanyeti, Otar
2014-01-01
The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior. PMID:24966296
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V
2017-07-01
A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is reduced by over 74%, meaning that it is possible to target the final maximum fill reproducibly. The product concentration achieved at a given set of process conditions was unaffected by the control strategy. Biotechnol. Bioeng. 2017;114: 1459-1468. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Doppler effects on 3-D non-LTE radiation transport and emission spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, J. L.; Davis, J.; DasGupta, A.
2010-10-01
Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission andmore » absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.« less
NASA Astrophysics Data System (ADS)
Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.
2016-01-01
In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.
Mema, Briseida; Harris, Ilene
2016-01-01
PHENOMENON: Ultrasound-guided central venous line insertion is currently the standard of care. Randomized controlled trials and systematic reviews show that simulation is superior to apprenticeship training. The purpose of this study is to explore, from the perspectives of participants in a simulation-training program, the factors that help or hinder the transfer of skills from simulation to practice. Purposeful sampling was used to select and study the experience and perspective of novice fellows after they had completed simulation training and then performed ultrasound-guided central venous line in practice. Seven novice pediatric intensive care unit fellows and six supervising faculty in a university-affiliated academic center in a large urban city were recruited between September 2012 and January 2013. We conducted a qualitative study using semistructured interviews as our data source, employing a constructivist, grounded theory methodology. Both curricular and real-life factors influence the transfer of skills from simulation to practice and the overall performance of trainees. Clear instructions, the opportunity to practice to mastery, one-on-one observation with feedback, supervision, and further real-life experiences were perceived as factors that facilitated the transfer of skills. Concern for patient welfare, live trouble shooting, complexity of the intensive care unit environment, and the procedure itself were perceived as real-life factors that hindered the transfer of skills. Insights: As more studies confirm the superiority of simulation training versus apprenticeship training for initial student learning, the faculty should gain insight into factors that facilitate and hinder the transfer of skills from simulation to bedside settings and impact learners' performances. As simulation further augments clinical learning, efforts should be made to modify the curricular and bedside factors that facilitate transfer of skills from simulation to practice settings.
Monitoring Cocrystal Formation via In Situ Solid-State NMR.
Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A
2014-10-02
A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.
Scheme for rapid adjustment of network impedance
Vithayathil, John J.
1991-01-01
A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.
NASA Astrophysics Data System (ADS)
Martin, Deloris
Purpose. The purpose of this study was to describe the existing knowledge transfer practices in selected aerospace companies as perceived by highly experienced engineers retiring from the company. Specifically it was designed to investigate and describe (a) the processes and procedures used to transfer knowledge, (b) the systems that encourage knowledge transfer, (c) the impact of management actions on knowledge transfer, and (d) constraining factors that might impede knowledge transfer. Methodology. A descriptive case study was the methodology applied in this study. Qualitative data were gathered from highly experienced engineers from 3 large aerospace companies in Southern California. A semistructured interview was conducted face-to-face with each participant in a private or semiprivate, non-workplace setting to obtain each engineer's perspectives on his or her company's current knowledge transfer practices. Findings. The participants in this study preferred to transfer knowledge using face-to-face methods, one-on-one, through actual troubleshooting and problem-solving scenarios. Managers in these aerospace companies were observed as having knowledge transfer as a low priority; they tend not to promote knowledge transfer among their employees. While mentoring is the most common knowledge transfer system these companies offer, it is not the preferred method of knowledge transfer among the highly experienced engineers. Job security and schedule pressures are the top constraints that impede knowledge transfer between the highly experienced engineers and their coworkers. Conclusions. The study data support the conclusion that the highly experienced engineers in the study's aerospace companies would more likely transfer their knowledge to those remaining in the industry if the transfer could occur face-to-face with management support and acknowledgement of their expertise and if their job security is not threatened. The study also supports the conclusion that managers should be responsible for the leadership in developing a knowledge-sharing culture and rewarding those who do share. Recommendations. It is recommended that a quantitative study of highly experienced engineers in aerospace be conducted to determine the degree to which knowledge-sharing methods, processes, and procedures may be effective in capturing their knowledge. It is also recommended that a replication of this study be undertaken to include the perspectives of first-line managers on developing a knowledge-sharing culture for the aerospace industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivoli, A.
The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H- Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the down-stream accelerators and facilities. In this paper we present themore » recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.« less
Strategies and Considerations for Distributing and Recovering Mouse Lines
Du, Yubin; Xie, Wen; Liu, Chengyu
2012-01-01
As more and more genetically modified mouse lines are being generated, it becomes increasingly common to share animal models among different research institutions. Live mice are routinely transferred between animal facilities. Due to various issues concerning animal welfare, intellectual property rights, colony health status and biohazard, significant paperwork and coordination are required before any animal travel can take place. Shipping fresh or frozen preimplantation embryos, gametes, or reproductive organs can bypass some of the issues associated with live animal transfer, but it requires the receiving facilities to be able to perform delicate and sometimes intricate procedures such as embryo transfer, in vitro fertilization (IVF), or ovary transplantation. Here, we summarize the general requirements for live animal transport and review some of the assisted reproductive technologies (ART) that can be applied to shipping and reviving mouse lines. Intended users of these methods should consult their institution’s responsible official to find out whether each specific method is legal or appropriate in their own animal facilities. PMID:20691859
Efficient Auger Charge-Transfer Processes in ZnO
NASA Astrophysics Data System (ADS)
Stehr, J. E.; Chen, S. L.; Svensson, B. G.; Buyanova, I. A.; Chen, W. M.
2018-05-01
Photoluminescence and magneto-optical measurements are performed on a line peaking at 3.354 eV (labeled as NBX) in electron-irradiated ZnO. Even though the energy position of the NBX line is close to that for bound excitons in ZnO, it has distinctively different magneto-optical properties. Photoelectron paramagnetic resonance measurements reveal a connection and a charge-transfer process involving NBX and Fe and Al centers. The experimental results are explained within a model which assumes that the NBX is a neutral donor bound exciton at a defect center located near a Fe impurity and an Auger-type charge-transfer process occurs between NBX and Fe3 + . While the NBX dissociates, its hole is captured by an excited state of Fe3 + and the released energy is transferred to the NBX electron, which is excited to the conduction band and subsequently trapped by a substitutional AlZn shallow donor.
NASA Technical Reports Server (NTRS)
1981-01-01
The set of computer programs described allows for data definition, data input, and data transfer between the LSI-11 microcomputers and the VAX-11/780 minicomputer. Program VAXCOM allows for a simple method of textual file transfer from the LSI to the VAX. Program LSICOM allows for easy file transfer from the VAX to the LSI. Program TTY changes the LSI-11 operators console to the LSI's printing device. Program DICTIN provides a means for defining a data set for input to either computer. Program DATAIN is a simple to operate data entry program which is capable of building data files on either machine. Program LEDITV is an extremely powerful, easy to use, line oriented text editor. Program COPYSBF is designed to print out textual files on the line printer without character loss from FORTRAN carriage control or wide record transfer.
Assessment and validation of the community radiative transfer model for ice cloud conditions
NASA Astrophysics Data System (ADS)
Yi, Bingqi; Yang, Ping; Weng, Fuzhong; Liu, Quanhua
2014-11-01
The performance of the Community Radiative Transfer Model (CRTM) under ice cloud conditions is evaluated and improved with the implementation of MODIS collection 6 ice cloud optical property model based on the use of severely roughened solid column aggregates and a modified Gamma particle size distribution. New ice cloud bulk scattering properties (namely, the extinction efficiency, single-scattering albedo, asymmetry factor, and scattering phase function) suitable for application to the CRTM are calculated by using the most up-to-date ice particle optical property library. CRTM-based simulations illustrate reasonable accuracy in comparison with the counterparts derived from a combination of the Discrete Ordinate Radiative Transfer (DISORT) model and the Line-by-line Radiative Transfer Model (LBLRTM). Furthermore, simulations of the top of the atmosphere brightness temperature with CRTM for the Crosstrack Infrared Sounder (CrIS) are carried out to further evaluate the updated CRTM ice cloud optical property look-up table.
Wireless Integrated Microelectronic Vacuum Sensor System
NASA Technical Reports Server (NTRS)
Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun
2013-01-01
NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2017-09-01
Calibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS). The results of these five calibration transfer methods are compared reciprocally, as well as with regard to a full recalibration. Four PLS quantification models, each predicting the concentration of one of the four main ingredients in the studied liquid detergent composition, are aimed at transferring. Accuracy profiles are established from the original and transferred quantification models for validation purposes. A reliable representation of the calibration models performance before and after transfer is thus established, based on β-expectation tolerance intervals. For each transferred model, it is investigated whether every future measurement that will be performed in routine will be close enough to the unknown true value of the sample. From this validation, it is concluded that instrument standardization is successful for three out of four investigated calibration models using multivariate (DS and PDS) transfer approaches. The fourth transferred PLS model could not be validated over the investigated concentration range, due to a lack of precision of the slave instrument. Comparing these transfer results to a full recalibration on the slave instrument allows comparison of the predictive power of both Raman systems and leads to the formulation of guidelines for further standardization projects. It is concluded that it is essential to evaluate the performance of the slave instrument prior to transfer, even when it is theoretically identical to the master apparatus. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... 105.14 at or near Gardendale in LaSalle County, Tex. The line is owned by Crystal City Railroad, Inc... line of railroad and TRS received an exemption to lease and operate the line. See Crystal City R.R... Operation Exemption--Crystal City R.R., FD 31757 (served Nov. 15, 1990). In 1995, CCR was authorized to...
ERIC Educational Resources Information Center
Zufferey, Sandrine; Mak, Willem; Degand, Liesbeth; Sanders, Ted
2015-01-01
Discourse connectives are important indicators of textual coherence, and mastering them is an essential part of acquiring a language. In this article, we compare advanced learners' sensitivity to the meaning conveyed by connectives in an off-line grammaticality judgment task and an on-line reading experiment using eye-tracking. We also assess the…
Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.
Matsunari, Hitomi; Onodera, Masafumi; Tada, Norihiro; Mochizuki, Hideki; Karasawa, Satoshi; Haruyama, Erika; Nakayama, Naoki; Saito, Hitoshi; Ueno, Satoshi; Kurome, Mayuko; Miyawaki, Atsushi; Nagashima, Hiroshi
2008-09-01
Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector D Delta Nsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.
NASA Astrophysics Data System (ADS)
Delil, A. A. M.
2003-01-01
Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.
Astronomical Applications of New Line Lists for CN, C_2 and Their Isotopologues
NASA Astrophysics Data System (ADS)
Bernath, Peter F.; Sneden, Chris; Brooke, James S. A.; Ram, Ram
2014-06-01
For cool stellar and substellar objects, atomic lines weaken, and detailed elemental and isotopic abundances are often derived from molecular absorption features. We have embarked on a project to provide molecular line lists by combining experimental observations for line positions with ab initio calculations for line strengths. So far we have results for MgH (A-X and B-X transitions), C2 (Swan system), CP (A-X transition), NH (vibration-rotation bands) and OH (Meinel system). This talk will briefly describe the new line lists for the Swan system (d3Π-a3Π) of C2 and 12C13C, and the red (A2Π-X2Σ+) and violet (B2Σ+-X2Σ+) systems of CN, 13CN and C15N. Applications to the spectra of carbon-enhanced metal-poor stars, the K-giant Arcturus, the metal-rich open cluster NGC 6791, the Sun and comets will be presented. E. GharibNezhad, A. Shayesteh and P. F. Bernath, Mon. Notices R. Astro. Soc. 432, 2043-2047 (2013) . H. Hinkle, L. Wallace, R. S. Ram, P. F. Bernath, C. Sneden and S. Lucatello, Astrophys. J. Suppl. 207, 26 (7pp) (2013) J. S. A. Brooke, P. F. Bernath, T. W. Schmidt and G. B. Bacskay, J. Quant. Spectrosc. Rad. Trans. 124, 11-20 (2013) R. S. Ram, J. S. A. Brooke, P. F. Bernath, C. Sneden and S. Lucatello, Astrophys. J. Suppl. 211, 5 (7pp) (2014) J. S. A. Brooke, R. S. Ram, C. M. Western, G. Li, D. W. Schwenke and P. F. Bernath, Astrophys. J. Suppl. 210, 23 (15pp) (2014) R. S. Ram, J. S. A. Brooke, C.M. Western and P. F. Bernath, J. Quant. Spectrosc. Rad. Transfer (in press) J. S. A. Brooke et al., this meeting, P301
New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, Walter
2010-12-23
The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the ''hot'' fusion reactions and the continent of known nuclei. In these reactions we may also investigate the ''island of stability''. In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather longmore » ({>=}10{sup -20} s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.« less
Mitigated Transfer Line Leaks that Result in Surface Pools and Spray Leaks into Pits
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEY, B.E.
This analysis provides radiological and toxicological consequence calculations for postulated mitigated leaks during transfers of six waste compositions. Leaks in Cleanout Boxes equipped with supplemental covers and leaks in pits are analyzed.
Strategies to Mitigate Ammonia Release on the International Space Station
NASA Technical Reports Server (NTRS)
Macatangay, Ariel V.; Prokhorov, Kimberlee S.; Sweterlitsch, Jeffrey J.
2007-01-01
International Space Station (ISS) is crucial to its continuous operation. Off-nominal situations can arise from virtually any aspect of ISS operations. One situation of particular concern is the inadvertent release of a chemical into the ISS atmosphere. In sufficient quantities, a chemical release can render the ISS uninhabitable regardless of the chemical s toxicity as a result of its effect on the hardware used to maintain the environment. This is certainly true with system chemicals which are integral components to the function and purpose of the system. Safeguards, such as design for minimum risk, multiple containment, hazard assessments, rigorous safety reviews, and others, are in place to minimize the probability of a chemical release to the ISS environment thereby allowing the benefits of system chemicals to outweigh the risks associated with them. The thermal control system is an example of such a system. Heat generated within the ISS is transferred from the internal thermal control system (ITCS) to the external thermal control system (ETCS) via two, single-barrier interface heat exchangers (IFHX). The ITCS and ETCS are closed-loop systems which utilize water and anhydrous ammonia, respectively, as heat-transfer fluids. There is approximately 1200 lbs. (208 gallons) of anhydrous ammonia in the ETCS circulating through the two heat exchangers, transferring heat from the ITCS water lines. At the amounts present in the ETCS, anhydrous ammonia is one system chemical that can easily overwhelm the station atmosphere scrubbing capabilities and render the ISS uninhabitable in the event of a catastrophic rupture. Although safeguards have certainly minimized the risk of an ammonia release into the Station atmosphere, credible release scenarios and controls to manage these scenarios are examined.
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
The Hall D solenoid helium refrigeration system at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.
Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields withmore » liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.« less
A technique for transferring a patient's smile line to a cone beam computed tomography (CBCT) image.
Bidra, Avinash S
2014-08-01
Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bommier, V.; Deglinnocenti, E. L.; Leroy, J. L.; Sahal-Brechot, S.
1985-01-01
The linear polarization of the Hydrogen H alpha line of prominences has been computed, taking into account the effect of a magnetic field (Hanle effect), of the radiative transfer in the prominence, and of the depolarization due to collisions with the surrounding electrons and protons. The corresponding formalisms are developed in a forthcoming series of papers. In this paper, the main features of the computation method are summarized. The results of computation have been used for interpretation in terms of magnetic field vector measurements from H alpha polarimetric observations in prominences performed at Pic-du-Midi coronagraph-polarimeter. Simultaneous observations in one optically thin line (He I D(3)) and one optically thick line (H alpha) give an opportunity for solving the ambiguity on the field vector determination.
Production of maternal-zygotic mutant zebrafish by germ-line replacement.
Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F
2002-11-12
We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies.
Production of maternal-zygotic mutant zebrafish by germ-line replacement
Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F.
2002-01-01
We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies. PMID:12397179
The forensics of fulgurite formation
NASA Astrophysics Data System (ADS)
Pasek, Matthew A.; Pasek, Virginia D.
2018-04-01
Natural disasters such as forest fires can result in extensive and costly property damage. These events may be the result of a human error or system failure triggered by electrical discharge, and in such circumstances may form a fulgurite. Understanding fulgurites and their formation may be critical in determining the cause of the fire or other, shock-related event. Here we identify several distinguishing features of fulgurites formed in association with downed power lines, including the presence of melted conductors, transformation of quartz to cristobalite, and morphological differences including increased glass percentage and smaller internal voids. These features are consequences of how heat is transferred to and through a target rock material as it melts and forms a fulgurite, and are predicted from both first principles of diffusive heat transfer, and empirically-derived reaction kinetics for mineral transformations.
NASA Astrophysics Data System (ADS)
Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Sidorov, M. Yu.
2018-02-01
The results of a 3D Doppler tomography analysis for the X-ray binary system Cyg X-1 in the HeII λ 4686 Å line are presented. Information about the motions of gaseous flows outside the orbital plane has been obtained for the first time. Line profiles obtained in June 2007 on the 2-m telescope of the Terskol Branch of the Institute of Astronomy (Russia) and on the 2.1-m telescope of the National Astronomical Observatory of Mexico were used. A detailed analysis of these spectral data is presented: the distribution of the data in time, distribution of orbital phases for the projections, comparison of the line profile shapes for the data from two observatories. The geometry of the total transfer function obtained in the reconstruction is considered. The possibility of applying the profiles obtained to realize 3D tomography is justified. The resolution of the constructed 3D tomogram in velocity space is 60 × 60 × 40 km/s for V x , V y , V z . Fifteen cross sections for 15 different V z values perpendicular to the orbital plane are presented. The intensity distributions corresponding to the velocities of gaseous structures in the binary system are obtained. The reconstruction was realized using the radio-astronomical approach, developed for solving problems in tomography with a limited number of projections.
CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feller, J. R.; Salerno, L. J.; Kashani, A.
2010-04-09
Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network ofmore » narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.« less
Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.
Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M
2017-11-02
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.
Modeling and Observations of Massive Binaries with the B[e] Phenomenon
NASA Astrophysics Data System (ADS)
Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.
2017-02-01
We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.
Nickel-hydrogen separator development
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, O. D.
1986-01-01
The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.
Robots Would Couple And Uncouple Fluid And Electrical Lines
NASA Technical Reports Server (NTRS)
Del Castillo, Eduardo Lopez; Davis, Virgil; Ferguson, Bob; Reichle, Garland
1992-01-01
Robots make and break connections between umbilical plates and mating connectors on rockets about to be launched. Sensing and control systems include vision, force, and torque subsystems. Enhances safety by making it possible to couple and uncouple umbilical plates quickly, without exposing human technicians to hazards of leaking fuels and oxidizers. Significantly reduces time spent to manually connect umbilicals. Robots based on similar principles used in refueling of National AeroSpace Plane (NASP) and satellites and orbital transfer vehicles in space.
Combined liquid chromatography-mass spectrometry for trace analysis of pharmaceuticals
NASA Astrophysics Data System (ADS)
Schmidt, Lothar; Danigel, Harald; Jungclas, Hartmut
1982-07-01
A 252Cf-plasma desorption mass spectrometer (PDMS) for the analysis of thin layers from nonvolatile organic samples has been set up to be combined with a liquid chromatograph. A novel interface performs the direct inlet of the liquid sample through a capillary into the vacuum system of the spectrometer. Samples of drugs are periodically collected, transferred to the ion source and analysed using a rotating disk. This on-line sample preparation has been tested for three antiarrhythmic drugs using various solvents and mixtures.
1987-05-27
system in Chinese t-PA to be a serine protease of 327 amino ovary hamster cells. Precise yields from acids in length. The protein appears, high-level...ham- ster or mouse cell line, allowing the differentiation of human and hamster or ________ mouse clones by hybridization with total human DNA or...appropriate lo- functional protein when transferred into cation downstream of a strong promoter in baby hamster kidney (BHK) cells or rat place of one or
Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells.
Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko
2016-04-01
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38-77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.
Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells
Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko
2016-01-01
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal. PMID:27033801
2003-09-02
KENNEDY SPACE CENTER, FLA. - Containers in the Columbia Debris Hangar are lined up after being emptied of the Columbia debris. The debris is being transferred to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.
A modular radiative transfer program for gas filter correlation radiometry
NASA Technical Reports Server (NTRS)
Casas, J. C.; Campbell, S. A.
1977-01-01
The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.
NASA Technical Reports Server (NTRS)
Taylor, Maynard F.; Kirchgessner, Thomas A.
1959-01-01
Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.
Orion Service Module Umbilical (OSMU) Installation on Mobile Launcher (ML)
2017-03-13
Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Preparations are underway to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Preparations are underway to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Seeming to hang in midair, the Orion Service Module Umbilical (OSMU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A crane lifts the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Kruppa, Klaudia; Türkösi, Edina; Mayer, Marianna; Tóth, Viola; Vida, Gyula; Szakács, Éva; Molnár-Láng, Márta
2016-11-01
A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.
Assessing gene function in the ruminant placenta.
Anthony, R V; Cantlon, J D; Gates, K C; Purcell, S H; Clay, C M
2010-01-01
The placenta provides the means for nutrient transfer from the mother to the fetus, waste transfer from the fetus to the mother, protection of the fetus from the maternal immune system, and is an active endocrine organ. While many placental functions have been defined and investigated, assessing the function of specific genes expressed by the placenta has been problematic, since classical ablation-replacement methods are not feasible with the placenta. The pregnant sheep has been a long-standing animal model for assessing in vivo physiology during pregnancy, since surgical placement of indwelling catheters into both maternal and fetal vasculature has allowed the assessment of placental nutrient transfer and utilization, as well as placental hormone secretion, under unanesthetized-unstressed steady state sampling conditions. However, in ruminants the lack of well-characterized trophoblast cell lines and the inefficiency of creating transgenic pregnancies in ruminants have inhibited our ability to assess specific gene function. Recently, sheep and cattle primary trophoblast cell lines have been reported, and may further our ability to investigate trophoblast function and transcriptional regulation of genes expressed by the placenta. Furthermore, viral infection of the trophoectoderm layer of hatched blastocysts, as a means for placenta-specific transgenesis, holds considerable potential to assess gene function in the ruminant placenta. This approach has been used successfully to "knockdown" gene expression in the developing sheep conceptus, and has the potential for gain-of-function experiments as well. While this technology is still being developed, it may provide an efficient approach to assess specific gene function in the ruminant placenta.
Multilocation teleradiology system for emergency triage consultation
NASA Astrophysics Data System (ADS)
Herron, John M.; Yonas, Howard
1996-05-01
A remote consultation system is available at the University of Pittsburgh Medical Center (UPMC) which links four outlying hospitals in Western Pennsylvania and Eastern Ohio. This system has the potential to improve short and long term clinical outcomes and to reduce overall medical care cost by establishing improved emergency triage capability. An EMED, Inc. teleradiology system permits rapid, high-quality transfer of digitized film and CT images from the remote sites to the tertiary care center (UPMC). The images are sent over dial-on- demand ISDN and SW56 lines from the remote hospitals to a central server where they are transmitted to a dual 2K monitor workstation in the Emergency Department, thirteen Eastman Kodak PDS workstations within UPMC, and to three physician homes. Transmission to a workstation at each of the physician homes over ISDN lines enables `after hours' consultation. The radiographic images along with voice and fax communications provide a technique where physicians in outlying hospitals will be able to consult with specialists at any time. A study is in progress to evaluate the effectiveness of this system in terms of perception of utility and its potential to improve emergency triage capability, as well as selection of the appropriate transportation mode (helicopter versus ambulance).
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
AMTEC powered residential furnace and auxiliary power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.
1996-12-31
Residential gas furnaces normally rely on utility grid electric power to operate the fans and/or the pumps used to circulate conditioned air or water and they are thus vulnerable to interruptions of utility grid service. Experience has shown that such interruptions can occur during the heating season, and can lead to serious consequences. A gas furnace coupled to an AMTEC conversion system retains the potential to produce heat and electricity (gas lines are seldom interrupted during power outages), and can save approximately $47/heating season compared to a conventional gas furnace. The key to designing a power system is understanding, andmore » predicting, the cell performance characteristics. The three main processes that must be understood and modeled to fully characterize an AMTEC cell are the electro-chemical, sodium vapor flow, and heat transfer. This paper will show the results of the most recent attempt to model the heat transfer in a multi-tube AMTEC cell and then discusses the conceptual design of a self-powered residential furnace.« less
75 FR 68402 - Georges Creek Railway, LLC-Operation Exemption-in Allegany County, MD
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
.... 25, 2005). By decision served December 14, 2005, WMS, LLC (WMS) was authorized to acquire the Line....27, and by decision served August 18, 2006, James Riffin was substituted as the acquiring entity in... acquired a rail line under the OFA process from transferring that line to any entity other than the...
NASA Astrophysics Data System (ADS)
Ahmouda, Somaya
To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.
Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q
2013-07-21
To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.