Sample records for transfer molding process

  1. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    NASA Astrophysics Data System (ADS)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  2. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  3. Experimental Studies of Heat-Transfer Behavior at a Casting/Water-Cooled-Mold Interface and Solution of the Heat-Transfer Coefficient

    NASA Astrophysics Data System (ADS)

    Zeng, Y. D.; Wang, F.

    2018-02-01

    In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.

  4. Flexural Fatigue Response of Repaired S2-Glass/Vinyl Ester Composites

    DTIC Science & Technology

    2009-08-01

    of Mechanical Engineering & Applied Mechanics, North Dakota State University, Fargo, ND 58105 14. ABSTRACT Vacuum-assisted resin transfer molding ...Introduction 1  2.  Vacuum-Assisted Resin Transfer Molding 2  3.  Repair Strategies 2  4.  Processing and Repairing Laminates 4  5.  Experimental 4  5.1  Set 1...vacuum-assisted resin transfer molding (VARTM) (2), performance evaluations have assumed increasing importance due to the lack of historical databases on

  5. Development of a low-cost, modified resin transfer molding process using elastomeric tooling and automated preform fabrication

    NASA Technical Reports Server (NTRS)

    Doane, William J.; Hall, Ronald G.

    1992-01-01

    This paper describes the design and process development of low-cost structural parts made by a modified resin transfer molding process. Innovative application of elastomeric tooling to increase laminate fiber volume and automated forming of fiber preforms are discussed, as applied to fabrication of a representative section of a cruise missile fuselage.

  6. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, directmore » method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling curve information, as well as temperature gradient history both in the solidifying metal and within the mold are invariably required to be validated. This validation depends upon the response of the sensor concerned, but also on its own effect upon the thermal environment. A joint university/industry team has completed an investigation of the invasive effects of thermocouples upon temperature history in permanent molds determining the degree of uncertainty associated with placement and indicating how the time-temperature history may be recovered. In addition to its relevance to the all important study of thermal contact of the casting with metallic molds, the observations also impact the determination of heat flux and interfacial heat transfer coefficients. In these respects the study represents the first of its kind that has tackled the problem in depth for permanent mold castings. An important ramification of this investigation has been the errors likely to be encountered in mold temperature measurement with thin section aluminum castings, especially with respect to the plans for thermocouple placement. A comparison between the degree of uncertainty experienced in sand molds compared with that found in permanent molds reveals that the associated problems have a lesser impact. These conclusions and the related recommendations have been disseminated to industry and the technical community through project reports and publications.« less

  7. Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.

    2001-01-01

    The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.

  8. Transferability of glass lens molding

    NASA Astrophysics Data System (ADS)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  9. Photopolymerizable liquid encapsulants for microelectronic devices

    NASA Astrophysics Data System (ADS)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion of a thermal initiator on the thermal and mechanical properties of the final cured encapsulants have been investigated. The results show that the material properties of the PLEs are the same, if not better, than those exhibited by conventional transfer molding compounds and demonstrate the potential of using PLEs for encapsulating microelectronic devices.

  10. A simulated RTM process for fabricating polyimide (AMB-21) carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Thomas, Shanon

    1995-01-01

    An experimental polyimide matrix, AMB-21 - supplied by NASA/LeRC, was especially formulated to be non-carcinogenic. It was also expected to be amenable to a Resin Transfer Molding Process (RTM). AMB-21 is a solid at room temperature and must be heated to a very high temperature to obtain a fluid state. However, even after heating it to a realistic high temperature, it was found to be too viscous for use in a RTM process. As a result, a promising approach was experimented leading to the introduction of the resin into a solvent solution in order to obtain a viscosity suitable for RTM. A mixture of methanol and tetrahydroferone was found to be a suitable solvent mixture. The matrix solution was introduced into carbon-fiber preform using two techniques: (1) injection of matrix into a Resin Transfer Mold after positioning the preform into the 'mold cavity', and (2) infiltration of matrix into the preform using the 'autoclave through-the-thickness transfer process'. After completing the resin transfer (infiltration) process, the 'filled' preform was heated to 300 F for one hour to reduce the solvent content. The temperature was then increased to 400 F under a vacuum to complete the solvent evaporation and to remove volatile products of the polyimide imidization. The impregnated preform was removed from the mold and press-cured at 200 psi and 600 FF for two hours. The resulting panel was found to be of reasonably good quality. This observation was based on the results obtained from short beam shear strength (700-8000 psi) tests and microscopic examination of the cross-section indicating a very low level of porosity. Further, the flash around the molded panels from the compression molding was free of porosity indicating the removal of volatiles, solvents, and other imidization products. Based on these studies, a new RTM mold containing a diaphragm capable of applying 200 psi at 600 F has been designed and constructed with the expectation that it will allow the incorporation of all of the above processing steps, including the consolidation with the preform in the mold cavity. Moreover, the new diaphragm design will enable to process larger preform panels. Processing studies with the diaphragm mold are being initiated.

  11. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  12. Analytical modeling and sensor monitoring for optimal processing of advanced textile structural composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Macrae, John D.; Hammond, Vincent H.; Kranbuehl, David E.; Hart, Sean M.; Hasko, Gregory H.; Markus, Alan M.

    1993-01-01

    A two-dimensional model of the resin transfer molding (RTM) process was developed which can be used to simulate the infiltration of resin into an anisotropic fibrous preform. Frequency dependent electromagnetic sensing (FDEMS) has been developed for in situ monitoring of the RTM process. Flow visualization tests were performed to obtain data which can be used to verify the sensor measurements and the model predictions. Results of the tests showed that FDEMS can accurately detect the position of the resin flow-front during mold filling, and that the model predicted flow-front patterns agreed well with the measured flow-front patterns.

  13. Toward mass producible ordered bulk heterojunction organic photovoltaic devices.

    PubMed

    Kim, Taeyong; Yoon, Hyunsik; Song, Hyung-Jun; Haberkorn, Niko; Cho, Younghyun; Sung, Seung Hyun; Lee, Chang Hee; Char, Kookheon; Theato, Patrick

    2012-12-13

    A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self-replication of replica molds. The concept of the transfer method in low temperature with a flexible and reusable replica mold obtained from an AAO template will be a firm foundation for a low-cost fabrication process of ordered OPVs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  15. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  16. On the use of topology optimization for improving heat transfer in molding process

    NASA Astrophysics Data System (ADS)

    Agazzi, A.; LeGoff, R.; Truc-Vu, C.

    2016-10-01

    In the plastic industry, one of the key factor is to control heat transfer. One way to achieve that goal is to design an effective cooling system. But in some area of the mold, where it is not possible to design cooling system, the use of a highly conductive material, such as copper pin, is often used. Most of the time, the location, the size and the quantity of the copper pin are made by empirical considerations, without using optimization procedures. In this article, it is proposed to use topology optimization, in order to improve transient conductive heat transfer in an injection/blowing mold. Two methodologies are applied and compared. Finally, the optimal distribution of cooper pin in the mold is given.

  17. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  18. American Society of Composites, 32nd Technical Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitharaju, Venkat; Yu, Hang; Zhao, Selina

    Resin transfer molding (RTM) has become increasingly popular for the manufacturing of composite parts. To enable high volume manufacturing and obtain good quality parts at an acceptable cost to automotive industry, accurate process simulation tools are necessary to optimize the process conditions. Towards that goal, General Motors and the ESI-group are involved in developing a state of the art process simulation tool for composite manufacturing in a project supported by the Department of Energy. This paper describes the modeling of various stages in resin transfer molding such as resin injection, resin curing, and part distortion. An instrumented RTM system locatedmore » at the General Motors Research and Development center was used to perform flat plaque molding experiments. The experimental measurements of fill time, in-mold pressure versus time, cure variation with time, and part deformation were compared with the model predictions and very good correlations were observed.« less

  19. Method of casting pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  20. High Temperature Transfer Molding Resins Based on 2,3,3',4'-Biphenyltetracarboxylic Dianhydride

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Yokota, R.; Criss, J. M.

    2002-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) processes to fabricate high performance/high temperature composite structures, phenylethynyl containing imides have been under investigation. New phenylethynyl containing imide compositions were prepared using 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA) and evaluated for cured glass transition temperature (Tg), melt flow behavior, and for processability into flat composite panels via RTM. The a-BPDA imparts a unique combination of properties that are desirable for high temperature transfer molding resins. In comparison to its symmetrical counterpart (i.e. 3,3',4,4'-biphenyltetracarboxylic dianhydride), a-BPDA affords oligomers with lower melt viscosities and when cured, higher Tgs. Several candidates exhibited the appropriate combination of properties such as a low and stable melt viscosity required for RTM processes, high cured Tg, and moderate toughness. The chemistry, physical, and composite properties of select resins will be discussed.

  1. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT... heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming. ...

  2. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT... heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming. ...

  3. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  4. Resin transfer molding for advanced composite primary wing and fuselage structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan

    1992-01-01

    The stitching and resin transfer molding (RTM) processes developed at Douglas Aircraft Co. are successfully demonstrating significant cost reductions with good damage tolerance properties. These attributes were identified as critical to application of advanced composite materials to commercial aircraft primary structures. The RTM/stitching developments, cost analyses, and test results are discussed of the NASA Advanced Composites Technology program.

  5. Multiphysics modeling of the steel continuous casting process

    NASA Astrophysics Data System (ADS)

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric parameters in the model are calibrated such that the reduced-order model temperatures match a small, periodic subdomain of the mold. These parameters are demonstrated to be insensitive to the calibration conditions. The thermal behavior of the detailed, three-dimensional mold models used in this work can be approximated closely with a few arithmetic calculations after calibrating the reduced-order model of mold heat transfer. The example application of the model includes the effects of the molten steel jet on the solidification front and the ferrostatic pressure. The model is demonstrated to match measurements of mold heat removal and the thickness of a breakout shell all the way around the perimeter of the mold, and gives insight to the cause of breakouts in a beam-blank caster. This multiphysics modeling approach redefines the state of the art of process modeling for continuous casting, and can be~used in future work to explore the formation and prevention of defects and other practical issues. This work also explores the eigen-problem for an arbitrary 3x3 matrix. An explicit, algebraic formula for the eigenvectors is presented.

  6. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND... cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming. ...

  7. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND... cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming. ...

  8. The experimental study of heat transfer around molds inside a model autoclave

    NASA Astrophysics Data System (ADS)

    Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent

    2018-05-01

    The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.

  9. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    NASA Astrophysics Data System (ADS)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  10. Textile composite processing science

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.

    1993-01-01

    A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.

  11. Flow behavior in liquid molding

    NASA Technical Reports Server (NTRS)

    Hunston, D.; Phelan, F.; Parnas, R.

    1992-01-01

    The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.

  12. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  13. Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films

    NASA Astrophysics Data System (ADS)

    Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun

    2016-03-01

    Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.

  14. Method for molding ceramic powders using a water-based gel casting process

    DOEpatents

    Jenny, Mark A.; Omalete, Ogbemi O.

    1992-09-08

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  15. Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf

    2018-05-01

    This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.

  16. Modeling of process-induced residual stresses and resin flow behavior in resin transfer molded composites with woven fiber mats

    NASA Astrophysics Data System (ADS)

    Golestanian, Hossein

    This research focuses on modeling Resin Transfer Molding process for manufacture of composite parts with woven fiber mats. Models are developed to determine cure dependent stiffness matrices for composites manufactured with two types of woven fiber mats. Five-harness carbon and eight-harness fiberglass mats with EPON 826 resin composites are considered. The models presented here take into account important material/process parameters with emphasis on; (1) The effects of cure-dependent resin mechanical properties, (2) Fiber undulation due to the weave of the fiber fill and warp bundles, and (3) Resin interaction with the fiber bundles at a microscopic scale. Cure-dependent mechanical properties were then used in numerical models to determine residual stresses and deformation in the composite parts. The complete cure cycle was modeled in these analyses. Also the cool down stage after the composite cure was analyzed. The effect of 5% resin shrinkage on residual stresses and deformations was also investigated. In the second part of the study, Finite Element models were developed to simulate mold filling in RTM processes. Resin flow in the fiber mats was modeled as flow through porous media. Physical models were also developed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids of 50 and 100 centistoke viscosities as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeabilities were determined experimentally for both types of reinforcements. Comparison of experimental and numerical resin front positions indicated the importance of edge effects in resin flow behavior in small cavities. The resin front positions agreed well for the rectangular mold geometry.

  17. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  18. Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.

    2018-06-01

    Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.

  19. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  20. Advanced Infusion Techniques with 3-D Printed Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuttall, David; Elliott, Amy; Post, Brian K.

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanningmore » and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is a small business. Phase II as discussed herein is under consideration by MVP as of this writing. Overall, it is anticipated that developing this process for manufacturing tooling for complex contoured surfaces has applicability to naval and other watercraft as well as bathrooms and large trucks.« less

  1. Resin transfer molding of textile composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William

    1993-01-01

    The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.

  2. RTM: Cost-effective processing of composite structures

    NASA Technical Reports Server (NTRS)

    Hasko, Greg; Dexter, H. Benson

    1991-01-01

    Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.

  3. Flow and Compaction During the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiao-Lan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2001-01-01

    The flow of an epoxy resin and compaction behavior of carbon fiber preform during vacuum- assisted resin transfer molding (VARTM) infiltration was measured using an instrumented tool. Composite panels were fabricated by the VARTM process using SAERTEX(R)2 multi-axial non- crimp carbon fiber fabric and the A.T.A.R.D. SI-ZG-5A epoxy resin. Resin pressure and preform thickness variation was measured during infiltration. The effects of the resin on the compaction behavior of the preform were measured. The local preform compaction during the infiltration is a combination of wetting and spring-back deformations. Flow front position computed by the 3DINFIL model was compared with the experimental data.

  4. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less

  5. Silicon micro-mold and method for fabrication

    DOEpatents

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  6. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M [Livermore, CA

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  7. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  8. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    NASA Astrophysics Data System (ADS)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  9. Textile composite fuselage structures development

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.

    1993-01-01

    Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.

  10. High-Temperature Properties of Mold Flux Observed and Measured In Situ by Single/Double Hot-Thermocouple Technique

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lyu, Peisheng; Zhou, Lejun; Li, Huan; Zhang, Tongsheng

    2018-05-01

    Mold flux plays very important roles in the continuous casting process, and its high-temperature properties affect the quality of the final as-cast product greatly. Investigations on the melting, isothermal and nonisothermal crystallization, and phase evolution behaviors under a simulated temperature field for the mold flux system using the single/double hot-thermocouple technique (S/DHTT) were reviewed. Meanwhile, further in situ observations on the wetting behavior and heat transfer ability of the mold flux system were also carried out using the S/DHTT. The results summarized here provide a clear understanding of both the high-temperature properties of mold flux and the detailed application of advanced real-time visual high-temperature S/DHTT to this molten slag system.

  11. Design and fabrication of optical homogenizer with micro structure by injection molding process

    NASA Astrophysics Data System (ADS)

    Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.

    2008-08-01

    This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.

  12. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.

    PubMed

    Hibler, Susanne; Wagner, Christophe; Gieseler, Henning

    2012-03-01

    In order to optimize a freeze-drying cycle, information regarding the heat transfer characteristics of the container system is imperative. Two most recently developed tubing (TopLyo™) and molded (EasyLyo™) vial designs were compared with a standard serum tubing and molded vial, a polymer vial (TopPac™), and an amber molded EasyLyo™. In addition, the impact of methodology on the determination of reliable vial heat transfer coefficient (K(v) ) data is examined in detail. All K(v) s were gravimetrically determined by sublimation tests with pure water at 50, 100, 200, and 400 mTorr. In contrast to the traditional assumption that molded vials exhibit inefficient heat transfer characteristics, these vials showed a very similar performance compared with their serum tubing counterparts in the relevant pressure range for freeze-drying. At 100 mTorr, the TopLyo™ center vials show only 4% higher K(v) values than the EasyLyo™ center vials. All glass vials outmatch the polymer vial in terms of heat transfer, up to 30% elevated heat transfer for the TopLyo™ center vials at 400 mTorr. Sublimation tests have demonstrated to be a valuable tool to investigate the heat transfer characteristics of vials, but results are dependent on methodology. New developments in molded vial manufacturing lead to improved heat transfer performance. Copyright © 2011 Wiley Periodicals, Inc.

  13. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  14. THE DURABILITY OF LARGE-SCALE ADDITIVE MANUFACTURING COMPOSITE MOLDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K; Love, Lonnie J; Duty, Chad

    2016-01-01

    Oak Ridge National Laboratory s Big Area Additive Manufacturing (BAAM) technology permits the rapid production of thermoplastic composite molds using a carbon fiber filled Acrylonitrile-Butadiene-Styrene (ABS) thermoplastic. Demonstration tools (i.e. 0.965 m X 0.559 m X 0.152 m) for composite part fabrication have been printed, coated, and finished with a traditional tooling gel. We present validation results demonstrating the stability of thermoplastic printed molds for room temperature Vacuum Assisted Resin Transfer Molding (VARTM) processes. Arkema s Elium thermoplastic resin was investigated with a variety of reinforcement materials. Experimental results include dimensional characterization of the tool surface using laser scanning techniquemore » following demolding of 10 parts. Thermoplastic composite molds offer rapid production compared to traditionally built thermoset molds in that near-net deposition allows direct digital production of the net geometry at production rate of 45 kg/hr.« less

  15. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model

    NASA Astrophysics Data System (ADS)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.

    2017-10-01

    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  16. Thermo-mechanical simulation of liquid-supported stretch blow molding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less

  17. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  18. Pattern fidelity in nanoimprinted films using CD-SAXS

    NASA Astrophysics Data System (ADS)

    Jones, Ronald L.; Soles, Christopher L.; Lin, Eric K.; Hu, Walter; Reano, Ronald M.; Pang, Stella W.; Weigand, Steven J.; Keane, Denis T.; Quintana, John P.

    2005-05-01

    The primary measure of process quality in nanoimprint lithography (NIL) is the fidelity of pattern transfer, comparing the dimensions of the imprinted pattern to those of the mold. As a potential next generation lithography, NIL is capable of true nanofabrication, producing patterns of sub-10 nm dimensions. Routine production of nanoscale patterns will require new metrologies capable of non-destructive dimensional measurements of both the mold and the pattern with sub-nm precision. In this article, a rapid, non-destructive technique termed Critical Dimension Small Angle X-ray Scattering (CD-SAXS) is used to measure the cross sectional shape of both a pattern master, or mold, and the resulting imprinted films. CD-SAXS data are used to extract periodicity as well as pattern height, width, and sidewall angles. Films of varying materials are molded by thermal embossed NIL at temperatures both near and far from the bulk glass transition (TG). The polymer systems include a photoresist, representing a mixture of a polymer and small molecular components, and two pure homopolymers. Molding at low temperatures (T-TG < 40°C) produces small aspect ratio patterns that maintain periodicity to within a single nanometer, but feature large sidewall angles. While the pattern height does not reach that of the mold until very large imprinting temperatures (T-TG ~ 70°C), the pattern width of the mold is accurately transferred for T-TG > 30°C. In addition to obtaining basic dimensions, CD-SAXS data are used to assess the origin of loss in pattern fidelity.

  19. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  20. Fiber optic strain monitoring of textile GFRP during RTM molding and fatigue tests by using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito

    2003-08-01

    This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.

  1. Low cost tooling material and process for graphite and Kevlar composites

    NASA Technical Reports Server (NTRS)

    Childs, William I.

    1987-01-01

    An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.

  2. Experimental validation of analytical models for a rapid determination of cycle parameters in thermoplastic injection molding

    NASA Astrophysics Data System (ADS)

    Pignon, Baptiste; Sobotka, Vincent; Boyard, Nicolas; Delaunay, Didier

    2017-10-01

    Two different analytical models were presented to determine cycle parameters of thermoplastics injection process. The aim of these models was to provide quickly a first set of data for mold temperature and cooling time. The first model is specific to amorphous polymers and the second one is dedicated to semi-crystalline polymers taking the crystallization into account. In both cases, the nature of the contact between the polymer and the mold could be considered as perfect or not (thermal contact resistance was considered). Results from models are compared with experimental data obtained with an instrumented mold for an acrylonitrile butadiene styrene (ABS) and a polypropylene (PP). Good agreements were obtained for mold temperature variation and for heat flux. In the case of the PP, the analytical crystallization times were compared with those given by a coupled model between heat transfer and crystallization kinetics.

  3. Microlens fabrication by replica molding of frozen laser-printed droplets

    NASA Astrophysics Data System (ADS)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  4. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  5. Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, I.; Babu Rao, J.

    2017-07-01

    The microstructure and mechanical properties of as-cast A356 (Al-Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome (Fe-Cr) slag, and a mixture of sand and Fe-Cr. A sodium silicate-CO2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing (SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe-Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe-Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe-Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.

  6. Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  7. Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  8. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    NASA Technical Reports Server (NTRS)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  9. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  10. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.

    PubMed

    Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei

    2014-11-01

    A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.

  11. Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds.

    PubMed

    Yeo, L P; Yan, Y H; Lam, Y C; Chan-Park, Mary B

    2006-11-21

    As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold can be conveniently passivated via plasma polymerization of octafluorocyclobutane (C4F8), which is also employed in the DRIE process itself, to enable the mold to be used repeatedly. To optimize the passivation conditions, we have undertaken a Box-Behnken experimental design on the basis of three passivation process parameters (plasma power, C4F8 flow rate, and deposition time). The measured responses were fluorinated film thickness, demolding status/success, demolding force, and fluorine/carbon ratio on the fifth replica surface. The optimal passivation process conditions were predicted to be an input power of 195 W, a C4F8 flow rate of 57 sccm, and a deposition time of 364 s; these were verified experimentally to have high accuracy. Demolding success requires medium-deposited film thickness (66-91 nm), and the thickness of the deposited films correlated strongly with deposition time. At moderate to high ranges, increased plasma power or gas flow rate promoted polymerization over reactive etching of the film. It was also found that small quantities of the fluorinated surface were transferred from the Si mold to the PDMS at each replication, entailing progressive wear of the fluorinated layer.

  12. Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold.

    PubMed

    Bertran, Oscar; Revilla-López, Guillermo; Casanovas, Jordi; Del Valle, Luis J; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2016-05-04

    In spite of the clinical importance of hydroxyapatite (HAp), the mechanism that controls its dissolution in acidic environments remains unclear. Knowledge of such a process is highly desirable to provide better understanding of different pathologies, as for example osteoporosis, and of the HAp potential as vehicle for gene delivery to replace damaged DNA. In this work, the mechanism of dissolution in acid conditions of HAp nanoparticles encapsulating double-stranded DNA has been investigated at the atomistic level using computer simulations. For this purpose, four consecutive (multi-step) molecular dynamics simulations, involving different temperatures and proton transfer processes, have been carried out. Results are consistent with a polynuclear decalcification mechanism in which proton transfer processes, from the surface to the internal regions of the particle, play a crucial role. In addition, the DNA remains protected by the mineral mold and transferred proton from both temperature and chemicals. These results, which indicate that biomineralization imparts very effective protection to DNA, also have important implications in other biomedical fields, as for example in the design of artificial bones or in the fight against osteoporosis by promoting the fixation of Ca(2+) ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Wang, Jing (Inventor); Zhao, Yongjun (Inventor); Cui, Tianhong (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  14. Injection Molding and its application to drug delivery.

    PubMed

    Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Gazzaniga, Andrea

    2012-05-10

    Injection Molding (IM) consists in the injection, under high pressure conditions, of heat-induced softened materials into a mold cavity where they are shaped. The advantages the technique may offer in the development of drug products concern both production costs (no need for water or other solvents, continuous manufacturing, scalability, patentability) and technological/biopharmaceutical characteristics of the molded items (versatility of the design and composition, possibility of obtaining solid molecular dispersions/solutions of the active ingredient). In this article, process steps and formulation aspects relevant to IM are discussed, with emphasis on the issues and advantages connected with the transfer of this technique from the plastics industry to the production of conventional and controlled-release dosage forms. Moreover, its pharmaceutical applications thus far proposed in the primary literature, intended as either alternative manufacturing strategies for existing products or innovative systems with improved design and performance characteristics, are critically reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Comparison of resin film infusion, resin transfer molding, and consolidation of textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Dastin, S.

    1992-01-01

    Innovative design concepts and cost effective fabrication processes were developed for damage tolerant primary structures that can perform at a design ultimate strain level of 6000 micro inch/inch. Attention focused on the use of textile high performance fiber reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials and/or processes methods is described: fabricated using IM7 angle interlock 0 to 90 deg woven preforms with + or - 45 deg plies stitched with Toray high strength graphite thread and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms using RTM and Tactix 123/H41 epoxy; and fabricated preforms using AS4(6K)/PEEK 150 g commingled angle interlock 0 to 90 deg woven preforms with + or - 45 deg commingled plies stitched using high strength graphite thread and processed by consolidation. Structural efficiency, processability, and acquisition cost are compared.

  16. Molding apparatus. [for thermosetting plastic compositions

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  17. Verification of a three-dimensional resin transfer molding process simulation model

    NASA Technical Reports Server (NTRS)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  18. Development of an inverse heat conduction model and its application to determination of heat transfer coefficient during casting solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu

    2014-07-01

    The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.

  19. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. Itmore » was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the procedure. It is believed that most critical for fabrication of high quality samples is control of the temperature of the sample during and after infiltration, and the rate and amount of time spent applying epoxy to the PDMS.« less

  20. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    NASA Astrophysics Data System (ADS)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  1. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.

    PubMed

    Wu, Jing; Lee, Nae Yoon

    2016-01-01

    Here, we introduce a simple and facile technique for fabricating microfluidic optical cells by utilizing a micropatterned polymer mold, followed by imprinting on thermoplastic substrates. This process has reduced the surface roughness of the microchannel, making it suitable for microscale optical measurements. The micropatterned polymer mold was fabricated by first micromilling on a poly(methylmethacrylate) (PMMA) substrate, and then transferring the micropattern onto an ultraviolet (UV)-curable optical adhesive. After an anti-adhesion treatment of the polymer mold fabricated using the UV-curable optical adhesive, the polymer mold was used repeatedly for imprinting onto various thermoplastics, such as PMMA, polycarbonate (PC), and poly(ethyleneterephthalate) (PET). The roughness values for the PMMA, PC, and PET microchannels were approximately 11.3, 20.3, and 14.2 nm, respectively, as compared to those obtained by micromilling alone, which were 15.9, 76.8, and 207.5 nm, respectively. Using the imprint-molded thermoplastic optical cell, rhodamine B and copper ions were successfully quantified. The reduced roughness of the microchannel surface resulted in improved sensitivity and reduced noise, paving the way for integration of the detection module so as to realize totally integrated microdevices.

  2. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  3. Novel Low-Melt Viscosity Polyimides for Resin Transfer Molding (RTM)

    DTIC Science & Technology

    2008-08-29

    used no solvent in the process and the only volatile generated is water tbrmed during the imidization process. Resins were prepared as outlined below...without the use of a solvent. Due to the commercial availabilit \\ of 3,4’ -ODA, RTM370 is cheaper to manufacture than RTM 350 or RTM330. All these rcsins

  4. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  5. The effect of surface tension, superheat and surface films on the rate of heat transfer from an iron droplet to a water cooled copper mold

    NASA Astrophysics Data System (ADS)

    Phinichka, Natthapong

    In strip casting the cast surface forms during the initial stage of solidification and the phenomenon that occurs during the first 50 milliseconds of contact time between the liquid steel and the mold define the cast surface and its quality. However the exact mechanism of the initial solidification and the process variables that affect initial solidification phenomena during that time are not well understood. The primary goal of this work is to develop a fundamental understanding of factors controlling strip casting. The purpose of the experimental study is to better understand the role of processing parameters on initial solidification phenomena, heat transfer rate and the formation of the cast steel surface. An investigation was made to evaluate the heat transfer rate of different kinds of steels. The experimental apparatus was designed for millisecond resolution of heat transfer behavior. A novel approach of simultaneous in-situ observation and measurement of rapid heat transfer was developed and enabled a coupling between the interfacial heat transfer rate and droplet solidification rate. The solidification rate was estimated from the varying position of the solidification front as captured by a CCD camera. The effects of experimental parameters such as melt superheat, sulfur content and oxide accumulation at the interface on measured heat flux were studied. It was found that the heat flux increased slightly when the percent of sulfur and increased significantly when superheat increased. The oxide accumulation at the interface was found to be manganese and silicon based oxide. When the liquid steel droplets were ejected onto the copper substrate repeatedly, without cleaning the substrate surface between the ejections, a large increase in the interfacial heat flux was observed. The results of the film study indicated that a liquid oxide film existed at the interface. The surface roughness measurement of the solidified specimen decreased with repeated experimentation and better contact between the droplet and the mold was found to be the cause of the improved heat transfer rate.

  6. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  7. Hybrid RTM process: Monitoring and processing of composites based on reactive thermoplastic systems

    NASA Astrophysics Data System (ADS)

    Dkier, Mohamed; Lamnawar, Khalid; Maazouz, Abderrahim

    2017-10-01

    In this work, hybrid process coupling "Reactive Extrusion" and "Resin Transfer Molding" machine (T-ERTM) equipped with an instrumented mold was designed and developed. Polyamides model matrix according to two kinds of polymerizations were studied as well anionic and chain extension reactions. For the former, different ratios of catalyst and activator were investigated. For the latter, various formulations of prepolymer with chain extender (CA) were studied at different stoichiometry ratios and temperatures. Since that both reaction kinetics are very fast to be monitored at short times by usual technics, the chemo-rheological evolutions were firstly studied ex-situ by coupling rheology with FTIR and dielectric spectroscopy (DRS). Secondly, the T-ERTM process with an "instrumented mold" was developed with specific dielectric sensors in order to in-situ track viscosity and reaction evolution. The in-situ results corroborate the ex-situ ones aforementioned. Overall, a processing window was obtained for each reactive system to ensure a good preform impregnation for the manufacturing of complex and continuous glass fiber-reinforced parts. Herein, the Time-Temperature-Transformation-equivalent diagrams were established to obtain Thermoplastic composites with tailored mechanical and physical properties.

  8. Preparation and properties of an internal mold release for rigid urethane foam

    NASA Astrophysics Data System (ADS)

    Paker, B. G.

    1980-08-01

    Most mold release agents used in the molding of rigid polyurethane foam are applied to the internal surfaces of the mold. These materials form a thin layer between the surface of the mold and the foam, allowing for easy release of the molded parts. This type of mold release must be applied prior to each molding operation; and, after repeated use, cleaning of the mold is required. Small amounts of this mold release are transferred to the molded part, resulting in a part with poor surface bondability characteristics. An internal release agent, which can be mixed in a urethane foam resin was investigated. The internal mold release provided good releasability and resulted in urethane foam that has excellent surface bondability. No compatibility problems are expected from the use of this type of release agent.

  9. Resin transfer molding speeds composite making

    NASA Astrophysics Data System (ADS)

    Valenti, Michael

    1992-11-01

    Fabrication resin transfer molding (RTM) composite parts for different industrial applications is discussed. These applications include composite aerospace parts, sports car components, and high performance sporting equipment. It is pointed out that RTM parts are lighter than metals and can be formulated to have superior durability. But like all composite parts, they are expensive and are made in limited runs.

  10. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  11. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    NASA Astrophysics Data System (ADS)

    Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.

    2017-02-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.

  12. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Groh, Bill

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  13. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (f) Adequate... hot-molded briquettes. (h) Radar and RDF scanners must be adequately protected against dust generated during cargo transfer operations of DRI hot-molded briquettes. (i) During final discharge only, a fine...

  14. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (f) Adequate... hot-molded briquettes. (h) Radar and RDF scanners must be adequately protected against dust generated during cargo transfer operations of DRI hot-molded briquettes. (i) During final discharge only, a fine...

  15. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (f) Adequate... hot-molded briquettes. (h) Radar and RDF scanners must be adequately protected against dust generated during cargo transfer operations of DRI hot-molded briquettes. (i) During final discharge only, a fine...

  16. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (f) Adequate... hot-molded briquettes. (h) Radar and RDF scanners must be adequately protected against dust generated during cargo transfer operations of DRI hot-molded briquettes. (i) During final discharge only, a fine...

  17. International SAMPE Symposium and Exhibition, 36th, San Diego, CA, Apr. 15-18, 1991, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, J.; Adsit, R.; Gordaninejad, F.

    This symposium presents papers in the fields of the design and development of space system structures, advanced textile preforming, low-cost processing of materials, and nondestructive testing. Also presented are adhesive and bonding technologies, resin transfer molding, filament winding, high-temperature composites, thermoplastic material properties, composites for marine environments, and thermoplastic processes and applications.

  18. Consolidation of graphite thermoplastic textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Mahon, J.

    1991-01-01

    The use of innovative cost effective material forms and processes is being considered for fabrication of future primary aircraft structures. Processes that have been identified as meeting these goals are textile preforms that use resin transfer molding (RTM) and consolidation forming. The Novel Composites for Wing and Fuselage Applications (NCWFA) program has as its objective the integration of innovative design concepts with cost effective fabrication processes to develop damage-tolerant structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. In this on-going effort, design trade studies were conducted to arrive at advanced wing designs that integrate new material forms with innovative structural concepts and cost effective fabrication methods. The focus has been on minimizing part count (mechanical fasteners, clips, number of stiffeners, etc.), by using cost effective textile reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin transfer molding processing, and thermoplastic forming concepts. The fabrication of representative Y spars by consolidation methods will be described. The Y spars were fabricated using AS4 (6K)/PEEK 150g commingled angle interlock 0/90-degree woven preforms with +45-degree commingled plies stitched using high strength Toray carbon thread and processed by autoclave consolidation.

  19. Comparison of resin film infusion, resin transfer molding, and consolidation of textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Dastin, S.

    1992-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) Program, Grumman is developing innovative design concepts and cost-effective fabrication processes for damage-tolerant primary structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. Attention has focused on the use of textile high-performance fiber-reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials/processes methods is described: 'Y' spars fabricated using IM7 angle interlock 0/90 deg woven preforms with +/- 45 deg plies stitched with Toray high-strength graphite thread and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RTM and Tactix 123/H41 epoxy; and 'Y' spars fabricated using AS4(6k)/PEEK 150-g commingled angle interlock 0/90 deg woven preforms with +/- 45 deg commingled plies stitched using high-strength graphite thread and processed by consolidation. A comparison of the structural efficiency, processability, and projected acquisition cost of these representative spars is presented.

  20. Process simulations for manufacturing of thick composites

    NASA Astrophysics Data System (ADS)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure gages at the mandrel-composite interface. Cylinders were hoop wound with tensions ranging from 13-34 N. An analytical model was developed to calculate change in stress due to relaxation during winding. Although compressive circumferential stresses occurred throughout each of the cylinders, the magnitude was fairly low.

  1. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  2. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  3. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon

    2013-04-01

    Following a series of laboratory-scale experiments, the mechanism of a chemical reaction 4[{Al}] + 3({SiO}_2) = 3[{Si}] + 2({Al}_2{O}_3) between high-alloyed TWIP (TWin-Induced Plasticity) steel containing Mn and Al and molten mold flux composed mainly of CaO-SiO2 during the continuous casting process is discussed in the present article in the context of kinetic analysis, morphological evolution at the reaction interface. By the kinetic analysis using a two-film theory, a rate-controlling step of the chemical reaction at the interface between the molten steel and the molten flux is found to be mass transport of Al in a boundary layer of the molten steel, as long as the molten steel and the molten flux phases are concerned. Mass transfer coefficient of the Al in the boundary layer (k_{{Al}}) is estimated to be 0.9 to 1.2 × 10-4 m/s at 1773 K (1500 ^{circ}C). By utilizing experimental data at various temperatures, the following equation is obtained for the k_{{Al}}; ln k_{{Al}} = -14,290/T - 1.1107. Activation energy for the mass transfer of Al in the boundary layer is 119 kJ/mol, which is close to a value of activation energy for mass transfer in metal phase. The composition evolution of Al in the molten steel was well explained by the mechanism of Al mass transfer. On the other hand, when the concentration of Al in the steel was high, a significant deviation of the composition evolution of Al in the molten steel was observed. By observing reaction interface between the molten steel and the molten flux, it is thought that the chemical reaction controlled by the mass transfer of Al seemed to be disturbed by formation of a solid product layer of MgAl2O4. A model based on a dynamic mass balance and the reaction mechanism of mass transfer of Al in the boundary layer for the low Al steel was developed to predict (pct Al2O3) accumulation rate in the molten mold flux.

  4. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying.

    PubMed

    Hibler, Susanne; Gieseler, Henning

    2012-11-01

    In the field of freeze-drying, the primary packaging material plays an essential role. Here, the packaging system not only contains and protects the drug product during storage and shipping, but it is also directly involved in the freeze-drying process itself. The heat transfer characteristics of the actual container system influence product temperature and therefore product homogeneity and quality as well as process performance. Consequently, knowledge of the container heat transfer characteristics is of vital importance for process optimization. It is the objective of this review article to provide a summary of research focused on heat transfer characteristics of different container systems for pharmaceutical freeze-drying. Besides the common tubing and molded glass vials and metal trays, more recent packaging solutions like polymer vials, LYOGUARD® trays, syringes, and blister packs are discussed. Recent developments in vial manufacturing are also taken into account. Copyright © 2012 Wiley Periodicals, Inc.

  5. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  6. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  7. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  8. Resin transfer molding of textile preforms for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less

  10. Aeroplastic, New Composite Materials with Reduced Heat Transfer and Increased Flame Retardancy

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.; Nichols, James D.; Roberson, Luke B.; Tate, Lanetra C.

    2015-01-01

    A new composite system formulated using commodity grade and engineered grade polymers. The composites can be fabricated into fibers, molded, or otherwise processed into useable articles. Use of this technology reduces the thermal conductivity and peak heat releases rates of the base polymer between 20%-50% while maintaining or enhancing the mechanical properties..

  11. Farbrication of diffractive optical elements on a Si chip by an imprint lithography using nonsymmetrical silicon mold

    NASA Astrophysics Data System (ADS)

    Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio

    2001-11-01

    Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.

  12. Toward large-area roll-to-roll printed nanophotonic sensors

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav

    2014-05-01

    Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular imprint (MIP) functionalization methods were applied in the sensor demonstrators. In this paper, the process flow in fabricating large-area nanophotonic structures by the use of sheet-level and roll-to-roll UV- nanoimprinting is reported.

  13. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    DOEpatents

    Angel, Roger P [Tucson, AZ; Olbert, Blain H [Tucson, AZ

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  14. Micromolded thick PZT sol gel composite structures for ultrasound transducer devices operating at high frequencies

    NASA Astrophysics Data System (ADS)

    Pang, Guofeng

    The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.

  15. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  16. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    PubMed Central

    Radford, Donald W.; Grabher, Andrew; Bridge, John

    2009-01-01

    Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  17. Method for molding ceramic powders using a water-based gel casting

    DOEpatents

    Janney, Mark A.; Omatete, Ogbemi O.

    1991-07-02

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product any be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  18. Fiber Metal Laminates Made by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Cano, Roberto J.; Hales, Stephen J.; Alexa, Joel A.; Weiser, Erik S.; Loos, Alfred; Johnson, W.S.

    2009-01-01

    Fiber metal laminates (FMLs) are multi-component materials utilizing metals, fibers and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Established FMLs like GLARE utilize aluminum foils, glass fibers and epoxy matrices and are manufactured using an autoclave. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed at the NASA Langley Research Center (LaRC). A description of these processes and the resulting FMLs are presented.

  19. Influence of different materials and techniques to transfer molding in multiple implants.

    PubMed

    Faria, Júlio C B; Cruz, Fernando L G; Silva-Concílio, Laís R; Neves, Ana C C

    2012-01-01

    The aim of this study was to compare different materials and techniques used in transfer molding of multiple implants, by evaluating the space between implants and superstructure. Four external hexagon implants were fixed in a master template and the same on a superstructure. Transfer molding of implants were done using the direct and indirect techniques, with transfers united or not, using the union chemically activated acrylic resin (QA) and other groups polymerized acrylic resin (FT), and sectioned and not split. The casts were made with polyether and models divided into 8 groups (n = 5). The space between the superstructure and the master implants was measured with a microscope and the data was analyzed statistically by Student's t test (p < 0.05). For the material of union there was no significant difference, except when the groups were compared with the resin Duralay QA (G4) and the resin Duolay FT (G8) and groups using resins Duolay QA (G5) and Duolay FT (G7) for the union of the transfers. When comparing the groups who had the union between the transfers and sectioned again united with those in which the union was not severed there was no statistically significant difference. QA resin was superior to the FT with respect to the union of transfers. Techniques with united transfers or not were similar.

  20. Fabrication of complex nanoscale structures on various substrates

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon

    2007-09-01

    Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.

  1. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed on the width of imprinted patterns. Moreover, the imprinted depth deepened as the Tg of the molding material lowered, and a progressive change according to conditions of ultrasonic vibration also became remarkable. Therefore, it seems that impressing ultrasonic vibration with a high frequency and large amplitude promotes thermal deformation and improves the molding accuracy in the ultrasonic nanoimprint technology.

  2. Processing and Properties of Vacuum Assisted Resin Transfer Molded Phenylethynyl Terminated Imide Composites

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Ghose, Sayata; Watson, Kent A.; Chunchu, Prasad B.; Jensen, Brian J.; Connell, John W.

    2012-01-01

    Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems that can be processed without the use of an autoclave for advanced aerospace applications. Due to their low melt viscosities and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature vacuum assisted resin transfer molding (HT-VARTM). VARTM has shown the potential to reduce the manufacturing cost of composite structures. In the current study, two PETI resins, LARC(Trademark) PETI-330 and LARC(Trademark) PETI-9, were infused into carbon fiber preforms at 260 C and cured at temperatures up to 371 C. Photomicrographs of polished cross sections were taken and void contents, determined by acid digestion, were below 4.5%. Mechanical properties including short block compression (SBC), compression after impact (CAI), and open hole compression (OHC) were determined at room temperature, 177 C, and 288 C. Both PETI-9 and PETI-330 composites demonstrated very good retention of mechanical properties at elevated temperatures. SBC and OHC properties after aging for 1000 hours at temperatures up to 288 C were also determined.

  3. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  4. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    NASA Astrophysics Data System (ADS)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-06-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  5. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2018-01-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  6. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2017-12-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  7. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  8. Materials for Heated Head Automated Thermoplastic Tape Placement

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Kinney, Megan C.; Cano, Roberto J.; Grimsley, Brian W.

    2012-01-01

    NASA Langley Research Center (LaRC) is currently pursuing multiple paths to develop out of autoclave (OOA) polymeric composite materials and processes. Polymeric composite materials development includes the synthesis of new and/or modified thermosetting and thermoplastic matrix resins designed for specific OOA processes. OOA processes currently under investigation include vacuum bag only (VBO) prepreg/composite fabrication, resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM) and heated head automated thermoplastic tape placement (HHATP). This paper will discuss the NASA Langley HHATP facility and capabilities and recent work on characterizing thermoplastic tape quality and requirements for quality part production. Samples of three distinct versions of APC-2 (AS4/PEEK) thermoplastic dry tape were obtained from two materials vendors, TENCATE, Inc. and CYTEC Engineered Materials** (standard grade and an experimental batch). Random specimens were taken from each of these samples and subjected to photo-microscopy and surface profilometry. The CYTEC standard grade of APC-2 tape had the most voids and splits and the highest surface roughness and/or waviness. Since the APC-2 tape is composed of a thermoplastic matrix, it offers the flexibility of reprocessing to improve quality, and thereby improve final quality of HHATP laminates. Discussions will also include potential research areas and future work that is required to advance the state of the art in the HHATP process for composite fabrication.

  9. Sensitivity Equation Derivation for Transient Heat Transfer Problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

    2004-01-01

    The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

  10. Development of automated system based on neural network algorithm for detecting defects on molds installed on casting machines

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.

    2018-05-01

    During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.

  11. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  12. Comparison of product drying performance in molded and serum tubing vials using gentamicin sulfate as a model system.

    PubMed

    Hibler, Susanne; Wagner, Christophe; Gieseler, Henning

    2012-01-01

    In a previous study, heat transfer coefficients of different 10 mL tubing and molded vials were determined gravimetrically via sublimation tests with pure water. Contrary to "conventional wisdom", only small differences in K(v) values between tubing and molded vials were found in the pressure range relevant for pharmaceutical freeze-drying. In order to investigate the impact of these relatively small differences on the primary drying time of an actual product, freeze-drying experiments with 5% gentamicin sulfate solution as a model system were performed at 68, 100 and 200 mTorr. The primary drying times of the API in recently developed molded (EasyLyo™), tubing (TopLyo™) and polymer vials (TopPac™) were compared. At 68 and 100 mTorr the primary drying time of the drug in the glass vials only differed by 3% to 4%, while the polymer vial took around 9% longer. At 200 mTorr, the API in the EasyLyo™ vials dried approximately 15% faster compared to the other vial types. The present study suggest that molded vials that have been modified in design to have better heat transfer properties can achieve drying times comparable to tubing vials.

  13. The Fabrication of Nanoimprinted P3HT Nanograting by Patterned ETFE Mold at Room Temperature and Its Application for Solar Cell

    NASA Astrophysics Data System (ADS)

    Ding, Guangzhu; Wang, Kaixuan; Li, Xiaohui; Chen, Qing; Hu, Zhijun; Liu, Jieping

    2016-05-01

    Nanoimprinting lithography (NIL) is investigated as a promising method to define nanostructure; however, finding a practical method to achieve large area patterning of conjugated polymer remains a challenge. We demonstrate here that a simple and cost-effective technique is proposed to fabricate the nanoimprinted P3HT nanograting by solvent-assisted room temperature NIL (SART-NIL) method with patterned ETFE film as mold. The patterned ETFE template is produced by embossing ETFE film into a patterned silicon master and is used as template to transfer nanogratings during the SART-NIL process. It indicates that highly reproducible and well-controlled P3HT nanograting film is obtained successfully with feature size of nanogratings ranging from 130 to 700 nm, due to the flexibility, stiffness, and low surface energy of ETFE mold. Moreover, the SART-NIL method using ETFE mold is able to fabricate nanogratings but not to induce the change of molecular orientation within conjugated polymer. The conducting ability of P3HT nanograting in the vertical direction is also not damaged after patterning. Finally, we further apply P3HT nanograting for the fabrication of active layer of OBHJ solar cell device, to investigate the morphology role presented by ETFE mold in device performance. The device performance of OBHJ solar cell is preferential to that of PBHJ device obviously.

  14. The Fabrication of Nanoimprinted P3HT Nanograting by Patterned ETFE Mold at Room Temperature and Its Application for Solar Cell.

    PubMed

    Ding, Guangzhu; Wang, Kaixuan; Li, Xiaohui; Chen, Qing; Hu, Zhijun; Liu, Jieping

    2016-12-01

    Nanoimprinting lithography (NIL) is investigated as a promising method to define nanostructure; however, finding a practical method to achieve large area patterning of conjugated polymer remains a challenge. We demonstrate here that a simple and cost-effective technique is proposed to fabricate the nanoimprinted P3HT nanograting by solvent-assisted room temperature NIL (SART-NIL) method with patterned ETFE film as mold. The patterned ETFE template is produced by embossing ETFE film into a patterned silicon master and is used as template to transfer nanogratings during the SART-NIL process. It indicates that highly reproducible and well-controlled P3HT nanograting film is obtained successfully with feature size of nanogratings ranging from 130 to 700 nm, due to the flexibility, stiffness, and low surface energy of ETFE mold. Moreover, the SART-NIL method using ETFE mold is able to fabricate nanogratings but not to induce the change of molecular orientation within conjugated polymer. The conducting ability of P3HT nanograting in the vertical direction is also not damaged after patterning. Finally, we further apply P3HT nanograting for the fabrication of active layer of OBHJ solar cell device, to investigate the morphology role presented by ETFE mold in device performance. The device performance of OBHJ solar cell is preferential to that of PBHJ device obviously.

  15. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of theirmore » properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.« less

  16. Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)

    NASA Astrophysics Data System (ADS)

    Bradley, James E.; Wysocki, Tadeusz S., Jr.

    1993-02-01

    This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.

  17. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  18. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    NASA Astrophysics Data System (ADS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  19. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  20. Testing single point incremental forming molds for thermoforming operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  1. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  2. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less

  3. Effects of process parameters in plastic, metal, and ceramic injection molding processes

    NASA Astrophysics Data System (ADS)

    Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.

    2011-09-01

    Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.

  4. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  5. Remelt Ingot Production Technology

    NASA Astrophysics Data System (ADS)

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  6. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE PAGES

    Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...

    2017-01-02

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  7. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Zhangxing; Xu, Hongyi

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  8. A hybrid optimization approach in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  9. Prefabricated microvascular autograft in tracheal reconstruction.

    PubMed

    Fayad, J; Kuriloff, D B

    1994-10-01

    Tracheal reconstruction continues to be a challenge in head and neck surgery. Numerous techniques, including the use of alloplasts, composite grafts, and staged laryngotracheal troughs, have met with limited success because of implant exposure, infection, persistent granulation tissue, and eventual restenosis. With recently introduced techniques for soft-tissue molding, bone induction with bone morphogenetic protein, and microvascular free tissue transfer, a rodent model was developed to create a well-vascularized tracheal autograft. In this model, a rigid tube having the same dimensions and flexibility as the native trachea was created by wrapping a cylindrical silicone tracheal mold with a layer of vascularized adductor thigh muscle pedicled on the femoral vessels in the groin. Tracheal rings were created by filing transverse troughs in the muscle bed with bone morphogenetic protein-primed demineralized bone matrix before wrapping around the silicone mold. Grafts harvested at 2 weeks demonstrated rigid skeletal support provided by heterotopic bone formation in the form of rings and a smooth inner lining produced by fibroplasia. Bone transformation was controlled and restricted to the muscle troughs, allowing intervening regions of soft tissue and thus producing a flexible neotrachia. With this model, a homologous, vascularized tracheal autograft capable of microvascular free tissue transfer was fabricated based on the femoral vessels. Prefabrication of composite grafts, through the use of soft-tissue molding, bone induction, and subsequent free tissue transfer, has an unlimited potential for use in head and neck reconstruction.

  10. Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry

    NASA Astrophysics Data System (ADS)

    Szucki, Michal; Suchy, J. S.; Lelito, J.; Malinowski, P.; Sobczyk, J.

    2017-12-01

    The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.

  11. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    NASA Astrophysics Data System (ADS)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.

    2007-05-01

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS®. Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project "APT_PACK" (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging).

  12. Development of integrated control system for smart factory in the injection molding process

    NASA Astrophysics Data System (ADS)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  13. Experiments Related to the Fabrication of Carbon Fiber/AMB-21 Polyimide Composite Tubes Using the RTM Process

    NASA Technical Reports Server (NTRS)

    Exum, Daniel

    1996-01-01

    AMB-21 is a new polymer developed by Mr. Ray Vannucci, NASA, LeRC as a noncarcinogenic polyimide matrix which may be suitable for fabricating composite parts by the Resin Transfer Modeling (RTM) process. The polyimide for this project was prepared at the Center of Composite Materials Research at N.C. A&T State University because it is not currently an item of commerce. The RTM process is especially suitable for producing geometrically complex composite parts at a low cost. Because of the high melting point and very high viscosity at the time of processing, polyimides have not been extensively used in the RTM process. The process for preparing AMB-21 as well as the process for fabricating composite plates will be described. The basic fabrication process consists of injecting a solvent solution of AMP-21 into a carbon fiber preform, evaporating the solvent, imidizing the polyimide, and vacuum/compression modeling the impregnated preform. All the above molding steps are preformed in a specially designed RTM mold which will be described. The results of this process have been inconsistent. Where as some experiments have resulted in a reasonably sound panels, others have not. Further refinements of the process are required to establish a reliable process.

  14. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  15. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  16. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  17. Interface conditions of two-shot molded parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less

  18. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  19. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    NASA Astrophysics Data System (ADS)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  20. Development of processes and techniques for molding thermally stable, fire-retardant, low-smoke-emitting polymeric materials

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1979-01-01

    All available newly developed nonmetallic thermally stable polymers were examined for the development of processes and techniques by compression molding, injection molding, or thermoforming cabin interior parts. Efforts were directed toward developing molding techniques of new polymers to economically produce usable nonmetallic molded parts. Data on the flame resistant characteristics of the materials were generated from pilot plant batches. Preliminary information on the molding characteristics of the various thermoplastic materials was obtained by producing actual parts.

  1. Effects of Amine and Anhydride Curing Agents on the VARTM Matrix Processing Properties

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiaolan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2002-01-01

    To ensure successful application of composite structure for aerospace vehicles, it is necessary to develop material systems that meet a variety of requirements. The industry has recently developed a number of low-viscosity epoxy resins to meet the processing requirements associated with vacuum assisted resin transfer molding (VARTM) of aerospace components. The curing kinetics and viscosity of two of these resins, an amine-cured epoxy system, Applied Poleramic, Inc. VR-56-4 1, and an anhydride-cured epoxy system, A.T.A.R.D. Laboratories SI-ZG-5A, have been characterized for application in the VARTM process. Simulations were carried out using the process model, COMPRO, to examine heat transfer, curing kinetics and viscosity for different panel thicknesses and cure cycles. Results of these simulations indicate that the two resins have significantly different curing behaviors and flow characteristics.

  2. Textile technology development

    NASA Technical Reports Server (NTRS)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  3. Plug Repairs of Marine Glass Fiber / Vinyl Ester Laminates Subjected to Uniaxial Tension

    DTIC Science & Technology

    2009-06-01

    Material characteristics of glass fiber / vinyl ester composites used in naval surface ships 1.1.1.2 Construction of surface ship hulls with FRP...Piping - Ventilation ducts - Deck gratings 1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval surface ships The...that polysester-based composites do [15, 24]. Typical processing methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM

  4. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  5. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  6. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  7. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  8. Study of a Compression-Molding Process for Ultraviolet Light-Emitting Diode Exposure Systems via Finite-Element Analysis

    PubMed Central

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-01-01

    Although wafer-level camera lenses are a very promising technology, problems such as warpage with time and non-uniform thickness of products still exist. In this study, finite element simulation was performed to simulate the compression molding process for acquiring the pressure distribution on the product on completion of the process and predicting the deformation with respect to the pressure distribution. Results show that the single-gate compression molding process significantly increases the pressure at the center of the product, whereas the multi-gate compressing molding process can effectively distribute the pressure. This study evaluated the non-uniform thickness of product and changes in the process parameters through computer simulations, which could help to improve the compression molding process. PMID:28617315

  9. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  10. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-03-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  11. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-06-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  12. Intelligent process development of foam molding for the Thermal Protection System (TPS) of the space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Bharwani, S. S.; Walls, J. T.; Jackson, M. E.

    1987-01-01

    A knowledge based system to assist process engineers in evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protection system of the Space Shuttle external tank (ET) is discussed. The Reaction Injection Molding- Process Development Advisor (RIM-PDA) is a coupled system which takes advantage of both symbolic and numeric processing techniques. This system will aid the process engineer in identifying a startup set of mold schedules and in refining the mold schedules to remedy specific process problems diagnosed by the system.

  13. High Temperature Transfer Molding Resins: Status of PETI-298 and PETI-330

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G., Jr.; Hergenrother, Paul M.; Criss, Jim M.

    2003-01-01

    Two phenylethynyl terminated oligomers designated PETI-298 and PETI-330 were developed at the NASA Langley Research Center and have emerged as leading candidates for composite applications requiring high temperature performance (i.e. greater than or equal to 288 C for 1000 hours) combined with the ability to be readily processed into composites without the use of an autoclave or complex/lengthy cure or post-cure cycle. These high performance/high temperature composites are potentially useful on advanced aerospace vehicles in structural applications and as aircraft engine components such as inlet frames and compressor vanes. The number designation (i.e. 298, 330) refers to the glass transition temperature in degrees Celsius as determined on neat resin cured for 1 hour at 371 C. The resins are processable by non-autoclave techniques such as resin transfer molding (RTM), vacuum assisted RTM (VARTM) and resin infusion (RI). Both resins exhibit low complex melt viscosities (0.1-10 poise) at 280 C and are stable for greater than or equal to 2 hours at this temperature. Typically, the resins are melted, de-gassed and infused or injected at 280 C and subsequently cured at 371 C for 1-2 hours. Virtually no volatiles are evolved during the cure process. The resin synthesis is straightforward and has been scaled-up to 25 kg batches. The chemistry of PETI-298 and PETI-330 and the RTM AS-4 and T-650 carbon fabric laminate properties, and those of BMI-5270 for comparison, are presented.

  14. Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process.

    PubMed

    Cho, E; Kim, B; Choi, S; Han, J; Jin, J; Han, J; Lim, J; Heo, Y; Kim, S; Sung, G Y; Kang, S

    2011-01-01

    This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.

  15. MOLD-SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Molds can cause health problems like infections and allergies, destroy crops, and contaminate our food or pharmaceuticals. We can't avoid molds. Molds are essential players in the biological processes on earth, but we can now identify and quantify the molds that will be most pr...

  16. Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Shen, Ping; Jin, Na

    In order to simulate the precision molding process, the viscoelastic properties of chalcogenide glasses under high temperatures were investigated. Thermomechanical analysis were performed to measure and analysis the thermomechanical properties of chalcogenide glasses. The creep responses of the glasses at different temperatures were obtained. Finite element analysis was applied for the simulation of the molding processes. The simulation results were in consistence with previously reported experiment results. Stress concentration and evolution during the molding processes was also described with the simulation results.

  17. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  18. Design of fabric preforms for double diaphragm forming

    NASA Technical Reports Server (NTRS)

    Luby, Steven; Bernardon, Edward

    1992-01-01

    Resin Transfer Molding (RTM) has the potential of becoming one of the most cost effective ways of producing composite structures since the raw materials used, resin and dry fabric, are less costly than prepregs. Unfortunately these low material costs are offset by the high labor costs incurred to layup the dry fabric into 3D shapes. To reduce the layup costs, double diaphragm forming is being investigated as a potential technique for creating a complex 3D preform from a simple flat layup. As part of our effort to develop double diaphragm forming into a production capable process, we have undertaken a series of experiments to investigate the interactions between process parameters, mold geometry, fabric weave, tow size, and the quality of the formed part. The results of these tests will be used to determine the forming geometry limitations of double diaphragm forming and to characterize the formability of fabric configurations. An important part of this work was the development of methods to measure and analyze fiber orientations, deformation angles, tow spreading, and shape conformation of the formed parts. This paper will describe the methods used to mark plies, the double diaphragm forming process, the techniques used to measure the formed parts, and the calculation of the parameters of interest. The results can be displayed as 3D contour plots. These experimental results have also been used to verify and improve a computer model which simulates the draping of fabrics over 3D mold shapes.

  19. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  20. Improved molding process ensures plastic parts of higher tensile strength

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1968-01-01

    Single molding process ensures that plastic parts /of a given mechanical design/ produced from a conventional thermosetting molding compound will have a maximum tensile strength. The process can also be used for other thermosetting compounds to produce parts with improved physical properties.

  1. Nonisothermal glass molding for the cost-efficient production of precision freeform optics

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz

    2016-07-01

    Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.

  2. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  3. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  4. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  5. Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures

    PubMed Central

    Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha

    2017-01-01

    Aims and Objectives: The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. Materials and Methods: A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Results: Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions (P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant (P < 0.001). Conclusions: Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems. PMID:28713763

  6. Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures.

    PubMed

    Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha

    2017-06-01

    The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions ( P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant ( P < 0.001). Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems.

  7. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  8. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less

  9. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  10. Improved silicon carbide for advanced heat engines. I - Process development for injection molding

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Trela, Walter

    1989-01-01

    Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.

  11. A versatile approach to vacuum injection casting for materials research and development.

    PubMed

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  12. A versatile approach to vacuum injection casting for materials research and development

    NASA Astrophysics Data System (ADS)

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  13. Foundry Manual

    DTIC Science & Technology

    1958-01-01

    ramming main part of mold or loose mold- ing sand used to support green cores while baking. Bail. Hoop or connection between the crane hook ...Crystallization 3 Heat Transfer 4 Gases in Metals 5 Summary 5 Chapter II. Designing a Casting 15 Strength Requirements 15 Stress Concentrations 15... Stress -Relief Anneal 180 Reasons for Heat Treatment 179 Aluminum 181 Iron and Steel 181 Monel 183 Summary 183 Chapter XIII. Composition of

  14. Real-time parameter optimization based on neural network for smart injection molding

    NASA Astrophysics Data System (ADS)

    Lee, H.; Liau, Y.; Ryu, K.

    2018-03-01

    The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.

  15. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  16. Process influences and correction possibilities for high precision injection molded freeform optics

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  17. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  18. RFI and SCRIMP Model Development and Verification

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Sayre, Jay

    2000-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.

  19. Processing-microstructure relationships in thermotropic liquid crystalline polymers: Experimental and numerical modeling studies

    NASA Astrophysics Data System (ADS)

    Fang, Jun

    Thermotropic liquid crystalline polymers (TLCPs) are a class of promising engineering materials for high-demanding structural applications. Their excellent mechanical properties are highly correlated to the underlying molecular orientation states, which may be affected by complex flow fields during melt processing. Thus, understanding and eventually predicting how processing flows impact molecular orientation is a critical step towards rational design work in order to achieve favorable, balanced physical properties in finished products. This thesis aims to develop deeper understanding of orientation development in commercial TLCPs during processing by coordinating extensive experimental measurements with numerical computations. In situ measurements of orientation development of LCPs during processing are a focal point of this thesis. An x-ray capable injection molding apparatus is enhanced and utilized for time-resolved measurements of orientation development in multiple commercial TLCPs during injection molding. Ex situ wide angle x-ray scattering is also employed for more thorough characterization of molecular orientation distributions in molded plaques. Incompletely injection molded plaques ("short shots") are studied to gain further insights into the intermediate orientation states during mold filling. Finally, two surface orientation characterization techniques, near edge x-ray absorption fine structure (NEXAFS) and infrared attenuated total reflectance (FTIR-ATR) are combined to investigate the surface orientation distribution of injection molded plaques. Surface orientation states are found to be vastly different from their bulk counterparts due to different kinematics involved in mold filling. In general, complex distributions of orientation in molded plaques reflect the spatially varying competition between shear and extension during mold filling. To complement these experimental measurements, numerical calculations based on the Larson-Doi polydomain model are performed. The implementation of the Larson-Doi in complex processing flows is performed using a commercial process modeling software suite (MOLDFLOWRTM), exploiting a nearly exact analogy between the Larson-Doi model and a fiber orientation model that has been widely used in composites processing simulations. The modeling scheme is first verified by predicting many qualitative and quantitative features of molecular orientation distributions in isothermal extrusion-fed channel flows. In coordination with experiments, the model predictions are found to capture many qualitative features observed in injection molded plaques (including short shots). The final, stringent test of Larson-Doi model performance is prediction of in situ transient orientation data collected during mold filling. The model yields satisfactory results, though certain numerical approximations limit performance near the mold front.

  20. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  1. Study of parameters in precision optical glass molding

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Wang, Qin-hua; Yu, Jing-chi

    2010-10-01

    Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.

  2. Demultiplexer for wavelength division multiplexing over polymer optical fibers applicable for high-volume production

    NASA Astrophysics Data System (ADS)

    Fischer, Ulrich H. P.; Höll, Sebastian; Haupt, Matthias; Joncic, Mladen

    2015-10-01

    Polymer optical fibers (POF) offer only transmission so far with one wavelength at 650 nm. In order to increase the overall transfer rate, the key element for wavelength division multiplexing (WDM) over POF will be presented. This element is a demultiplexer (DEMUX), which was designed in polymethylmethacrylate with an optical grating on an aspherical mirror to be produced by injection molding in a further development steps. The master was produced by diamond turning as a master for injection molding replication. The results of the different simulations followed by the development steps and the measurements of the prototype are presented. This prototype is used as a DEMUX in a WDM system with four wavelengths. In the WDM system, bit-error ratio (BER) measurements with an 8.26 Gb/s cumulated data rate in an offline processed discrete multitone modulation technique have been achieved over 100 m SI-POF at a BER of 10-3.

  3. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    NASA Astrophysics Data System (ADS)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  4. Study on In-mold Punching during PPS/GF Injection Molding

    NASA Astrophysics Data System (ADS)

    Inuzuka, Takayuki; Fujita, Akihiro; Nakai, Asami; Hamada, Hiroyuki

    The influence of the punching condition on strength and the amount of shear droop was investigated to optimize the processing condition for punching in the mold during glass fiber reinforced polyphenylenesulfide (PPS/GF) injection molding. For in-mold punching part during cooling process, the tensile strength was constant because the pressure loss by the punch did not occur. The amount of the shear droop decreased in line with the increase in delay time because the rigidity of injection molded part in the mold increased when the resin was cooled. Moreover, when the resin temperature lowered more than the glass transition temperature, the amount of the shear droop was constant because the rigidity became constant. It is necessary to begin punching when the resin temperature lowers more than the glass transition temperature after holding pressure process is completed, to secure high strength and to assume 0.05 mm or less, at which level the shear droop cannot be visually recognized. The shortest delay time for PPS/GF is 8 sec. The delay time to minimize the amount of the shear droop can be guessed by analyzing the temperature change of the resin in the mold by injection molding CAE.

  5. Digital Twin concept for smart injection molding

    NASA Astrophysics Data System (ADS)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  6. Applications of nanocomposites and woodfiber plastics for microcellular injection molding

    Treesearch

    Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield

    2003-01-01

    The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...

  7. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  8. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    PubMed

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Progress in manufacturing large primary aircraft structures using the stitching/RTM process

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Thrash, Patrick; Rohwer, Kim

    1993-01-01

    The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.

  10. VARTM Model Development and Verification

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Technical Monitor); Dowling, Norman E.

    2004-01-01

    In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.

  11. Investigation of the adhesion interface obtained through two-component injection molding

    NASA Astrophysics Data System (ADS)

    Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel

    2011-01-01

    In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.

  12. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  13. Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Yi, Allen Y

    2017-04-01

    In compression molding of polymer optical components with micro/nanoscale surface features, rapid heating of the mold surface is critical for the implementation of this technology for large-scale applications. In this Letter, a novel method of a localized rapid heating process is reported. This process is based on induction heating of a thin conductive coating deposited on a silicon mold. Since the graphene coating is very thin (∼45  nm), a high heating rate of 10∼20°C/s can be achieved by employing a 1200 W 30 kHz electrical power unit. Under this condition, the graphene-coated surface and the polymer substrate can be heated above the polymer's glass transition temperature within 30 s and subsequently cooled down to room temperature within several tens of seconds after molding, resulting in an overall thermal cycle of about 3 min or shorter. The feasibility of this process was validated by fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrates with very high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer, a diffraction test setup, and a Shack-Hartmann wavefront sensor built with a molded PMMA microlens array. Compared with the conventional bulk heating molding process, this novel rapid localized induction heating process could improve replication efficiency with better geometrical fidelity.

  14. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  15. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  16. Process for slip casting textured tubular structures

    DOEpatents

    Steinlage, Greg A.; Trumble, Kevin P.; Bowman, Keith J.

    2002-01-01

    A process for centrifugal slip casting a textured hollow tube. A slip made up of a carrier fluid and a suspended powder is introduced into a porous mold which is rotated at a speed sufficient to create a centrifugal force that forces the slip radially outward toward the inner surface of the mold. The suspended powder, which is formed of particles having large dimensional aspect ratios such as particles of superconductive BSCCO, settles in a textured fashion radially outward toward the mold surface. The carrier fluid of the slip passes by capillary action radially outward around the settled particles and into the absorbent mold. A layer of mold release material is preferably centrifugally slip cast to cover the mold inner surface prior to the introduction of the BSCCO slip, and the mold release layer facilitates removal of the BSCCO greenbody from the mold without fracturing.

  17. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  18. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  19. The effect of creative labor on property-ownership transfer by preschool children and adults.

    PubMed

    Kanngiesser, Patricia; Gjersoe, Nathalia; Hood, Bruce M

    2010-09-01

    Recognizing property ownership is of critical importance in social interactions, but little is known about how and when this attribute emerges. We investigated whether preschool children and adults believe that ownership of one person's property is transferred to a second person following the second person's investment of creative labor in that property. In our study, an experimenter and a participant borrowed modeling-clay objects from each other to mold into new objects. Participants were more likely to transfer ownership to the second individual after he or she invested creative labor in the object than after any other manipulations (holding the object, making small changes to it). This effect was significantly stronger in preschool children than in adults. Duration of manipulation had no effect on property-ownership transfer. Changes in the object's identity acted only as a secondary cue for children. We conclude that ownership is transferred after an investment of creative labor and that determining property ownership may be an intuitive process that emerges in early childhood.

  20. Infusion Processing of Phenylethynyl Terminated Imides by High Temperature RTM and VARTM

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Lewis, Todd M.; Cano, Roberto J.; Watson, Kent A.; Isayev, Avraam I.

    2011-01-01

    Fabrication of composite structures using infusion processes such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting both technologies for the fabrication of high temperature (HT) resistant composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using these high temperature out-of-autoclave processes. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using both RTM and VARTM. For aerospace applications, a void fraction of less than 2% is desired. Traditionally, RTM has had the advantage over VARTM for generating composites with low void content. However, the process is limited in terms of size. Work at NASA LaRC has incorporated modifications to the thermal cycle used in laminate fabrication that have reduced the void content significantly (typically 1-3%) using the current HT-VARTM process. For composite fabrication by both RTM and VARTM, the resins were infused into three carbon fiber preforms (T650-35-3k 5HS, IM7-6k 5HS, and IM7-6k Uniweave) at 316 C and 260 C respectively and cured up to 371 C. The details of the RTM processing carried out at the University of Akron are discussed in this work along with a brief description of the HT-VARTM processing carried out at NASA-LaRC. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Mechanical properties (short beam shear, SBS) of the panels fabricated by both infusion processes were determined at room temperature as well as at various elevated temperatures. The results of this work are presented herein.

  1. Microcellular nanocomposite injection molding process

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  2. An in-mold packaging process for plastic fluidic devices.

    PubMed

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.

  3. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  4. Scaffold pore space modulation through intelligent design of dissolvable microparticles.

    PubMed

    Liebschner, Michael A K; Wettergreen, Matthew

    2012-01-01

    The goal of this area of research is to manipulate the pore space of scaffolds through the application of an intelligent design concept on dissolvable microparticles. To accomplish this goal, we developed an efficient and repeatable process for fabrication of microparticles from multiple materials using a combination of rapid prototyping (RP) and soft lithography. Phase changed 3D printing was used to create masters for PDMS molds. A photocrosslinkable polymer was then delivered into these molds to make geometrically complex 3D microparticles. This repeatable process has demonstrated to generate the objects with greater than 95% repeatability with complete pattern transfer. This process was illustrated for three different shapes of various complexities. The shapes were based on the extrusion of 2D shapes. This may allow simplification of the fabrication process in the future combined with a direct transfer of the findings. Altering the shapes of particles used for porous scaffold fabrication will allow for tailoring of the pore shapes, and therefore their biological function within a porous tissue engineering scaffold. Through permeation experiments, we have shown that the pore geometry may alter the permeability coefficient of scaffolds while influencing mechanical properties to a lesser extent. By selecting different porogen shapes, the nutrition transport and scaffold degradation can be significantly influenced with minimal effect on the mechanical integrity of the construct. In addition, the different shapes may allow a control of drug release by modifying their surface-to-volume ratio, which could modulate drug delivery over time. While soft lithography is currently used with photolithography, its high precision is offset by high cost of production. The employment of RP to a specific resolution offers a much less expensive alternative with increased throughput due to the speed of current RP systems.

  5. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  6. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    NASA Astrophysics Data System (ADS)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-06-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  7. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    NASA Astrophysics Data System (ADS)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  8. Material flow data for numerical simulation of powder injection molding

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  9. Grinding aspheric and freeform micro-optical molds

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.

    2007-02-01

    Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.

  10. Applying simulation to optimize plastic molded optical parts

    NASA Astrophysics Data System (ADS)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  11. Conductivity fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.

    2002-01-01

    An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

  12. Modeling and control of flow during impregnation of heterogeneous porous media, with application to composite mold-filling processes

    NASA Astrophysics Data System (ADS)

    Bickerton, Simon

    Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold cavities. The molds applied in this study have required careful consideration of cavity thickness variations. Any effects on mold filling due to corner radii have been overshadowed by those due to preform compression. While numerical tools are available to study actively controlled mold filling in a virtual environment, some development is required for the physical equipment to implement this in practice. A versatile, multiple line fluid injection system is developed here. The equipment and control algorithms employed have provided servo control of flow rate, or injection pressure, and have been tested under very challenging conditions. The single injection line developed is expanded to a multiple line system, and shows great potential for application to actual resin systems. A case study is presented, demonstrating design and implementation of a simple actively controlled injection scheme. The experimental facility developed provides an excellent testbed for application of actively controlled mold filling concepts, an area that is providing great promise for the advancement of LCM processes.

  13. Experimental analysis for fabrication of high-aspect-ratio piezoelectric ceramic structure by micro-powder injection molding process

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin

    2018-04-01

    Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.

  14. CAE for Injection Molding — Past, Present and the Future

    NASA Astrophysics Data System (ADS)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE tools will eventually be integrated into an Enterprise Resources Planning (ERP) system as the trend of enterprise globalization continues.

  15. Lightning Arrestor Connectors Production Readiness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marten, Steve; Linder, Kim; Emmons, Jim

    2008-10-20

    The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of themore » LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.« less

  16. Space Shuttle Projects

    NASA Image and Video Library

    2004-09-13

    The Space Shuttle External Tank 120 is shown here during transfer in NASA’s Michoud Assembly Facility in New Orleans. Slated for launch on the Orbiter Discovery scheduled for next Spring, the tank will be erected vertically in preparation for its new foam application process on the liquid hydrogen tank-to-inter tank flange area, a tank structural connection point. The foam will be applied with an enhanced finishing procedure that requires two technicians, one for a new mold-injection procedure to the intertank’s ribbing and one for real-time videotaped surveillance of the process. Marshall Space Flight Center played a significant role in the development of the new application process designed to replace the possible debris shedding source previously used.

  17. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    NASA Astrophysics Data System (ADS)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  18. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  19. Manufacturing plastic injection optical molds

    NASA Astrophysics Data System (ADS)

    Bourque, David

    2008-08-01

    ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.

  20. Direct metal transfer printing on flexible substrate for fabricating optics functional devices

    NASA Astrophysics Data System (ADS)

    Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi

    2015-11-01

    New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.

  1. Experimental and Numerical Analysis of Injection Molding of Ti-6Al-4V Powders for High-Performance Titanium Parts

    NASA Astrophysics Data System (ADS)

    Lin, Dongguo; Kang, Tae Gon; Han, Jun Sae; Park, Seong Jin; Chung, Seong Taek; Kwon, Young-Sam

    2018-02-01

    Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure-volume-temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.

  2. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  3. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery.

    PubMed

    Song, Hyun Beom; Lee, Kang Ju; Seo, Il Ho; Lee, Ji Yong; Lee, Sang-Mok; Kim, Jin Hyoung; Kim, Jeong Hun; Ryu, WonHyoung

    2015-07-10

    It has been challenging for microneedles to deliver drugs effectively to thin tissues with little background support such as the cornea. Herein, we designed a microneedle pen system, a single microneedle with a spring-loaded microneedle applicator to provide impact insertion. To firmly attach solid microneedles with 140 μm in height at the end of macro-scale applicators, a transfer molding process was employed. The fabricated microneedle pens were then applied to mouse corneas. The microneedle pens successfully delivered rhodamine dye deep enough to reach the stromal layer of the cornea with small entry only about 1000 μm(2). When compared with syringes or 30 G needle tips, microneedle pens could achieve more localized and minimally invasive delivery without any chances of perforation. To investigate the efficacy of microneedle pens as a way of drug delivery, sunitinib malate proven to inhibit in vitro angiogenesis, was delivered to suture-induced angiogenesis model. When compared with delivery by a 30 G needle tip dipped with sunitinib malate, only delivery by microneedle pens could effectively inhibit corneal neovascularization in vivo. Microneedle pens could effectively deliver drugs to thin tissues without impairing merits of using microneedles: localized and minimally invasive delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  5. Evacuated displacement compression molding

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1973-01-01

    A process for molding long, thin-wall tubular bodies from thermosetting plastic molding compounds is described. The tubular bodies produced may have body lengths several times the diameters. The application of the process for manufacturing rocket engine cases and nozzles is discussed. The advantages of the system over other methods of circular tube manufacture are analyzed.

  6. Automated catalyst processing for cloud electrode fabrication for fuel cells

    DOEpatents

    Goller, Glen J.; Breault, Richard D.

    1980-01-01

    A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

  7. The Effect of Epoxy Molding Compound Floor Life to Reliability Performance and mold ability for QFN Package

    NASA Astrophysics Data System (ADS)

    Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak

    2017-09-01

    This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing

  8. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  9. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    PubMed

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.

  10. Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    Honeycomb structures are commonly employed as load- and force-bearing structures as they are structurally strong and lightweight. Manufacturing processes for heat-molded composite honeycomb structures commence with the placement of pre-impregnated composite layups over metal mandrels. To prevent permanent bonding between the composite layup and the metal mandrels, an agent, known as a mold release agent, is used. Mold release agents allow the molded composite material to be removed from mandrels after a heat-forming process. Without a specific removal process, mold release agents may continue to adhere to the surface of the composite material, thereby affecting the bonding of other materials that may come into contact with the composite surface in later stages of processing A constituent common to commercially available household cleaning agents is employed for the removal of mold release agents common to the manufacturing of heat-formed composite materials. The reliability of the solvent has been proven by the longevity and reliability of commercial household cleaners. At the time of this reporting, no one has attempted using constituent for this purpose. The material to be cleaned is immersed in the solution, vertically removed so that the solution is allowed to drain along cell walls and into a solvent bath, and then placed on a compressed airflow table for drying.

  11. Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran

    2018-04-01

    The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.

  12. An apparatus for in situ x-ray scattering measurements during polymer injection molding.

    PubMed

    Rendon, Stanley; Fang, Jun; Burghardt, Wesley R; Bubeck, Robert A

    2009-04-01

    We report a novel instrument for synchrotron-based in situ x-ray scattering measurements during injection molding processing. It allows direct, real-time monitoring of molecular-scale structural evolution in polymer materials undergoing a complex processing operation. The instrument is based on a laboratory-scale injection molding machine, and employs customized mold tools designed to allow x-ray access during mold filling and subsequent solidification, while providing sufficient robustness to withstand high injection pressures. The use of high energy, high flux synchrotron radiation, and a fast detector allows sufficiently rapid data acquisition to resolve time-dependent orientation dynamics in this transient process. Simultaneous monitoring of temperature and pressure signals allows transient scattering data to be referenced to various stages of the injection molding cycle. Representative data on a commercial liquid crystalline polymer, Vectra(R) B950, are presented to demonstrate the features of this apparatus; however, it may find application in a wide range of polymeric materials such as nanocomposites, semicrystalline polymers and fiber-reinforced thermoplastics.

  13. Acetylene-chromene terminated resins as high temperature thermosets

    NASA Technical Reports Server (NTRS)

    Godschalx, J. P.; Inbasekaran, M. N.; Bartos, B. R.; Scheck, D. M.; Laman, S. A.

    1990-01-01

    A novel phase transfer catalyzed process for the preparation of propargyl ethers has been developed. The propargyl ethers serve as precursors to a new class of thermosetting resins called acetylene-chromene terminated (ACT) resins. Heat treatment of a solution of propargyl ethers with various catalysts, followed by removal of solvent leads to the ACT resins via partial conversion of the propargyl ether groups to chromenes. This process reduces the energy content of the resin systems and reduces the amount of shrinkage found during cure. Due to the presence of the solvent the process is safe and gives rise to low viscosity products suitable for resin transfer molding and filament winding type applications. Due to the high glass transition temperature, high modulus, and low moisture uptake the cured resins display better than 232 C/wet performance. The thermal stability of the ACT resins in air at 204 C is superior to that of conventional bismaleimide resins. The resins also display excellent electrical properties.

  14. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    NASA Astrophysics Data System (ADS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.

  15. Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Williams, Martha

    2008-01-01

    Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

  16. Development of stitched/RTM primary structures for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hawley, Arthur V.

    1993-01-01

    This report covers work accomplished in the Innovative Composite Aircraft Primary Structure (ICAPS) program. An account is given of the design criteria and philosophy that guides the development. Wing and fuselage components used as a baseline for development are described. The major thrust of the program is to achieve a major cost breakthrough through development of stitched dry preforms and resin transfer molding (RTM), and progress on these processes is reported. A full description is provided on the fabrication of the stitched RTM wing panels. Test data are presented.

  17. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  18. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Treesearch

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  19. Virtual Manufacturing of Composite Structures for Ground Platforms, A DARPA Instant Foundry Adaptive Through Bits (iFAB) Program

    DTIC Science & Technology

    2012-08-01

    This document contains color. 14. ABSTRACT This effort focused specifically on the Liquid Composite Molding (LCM) class of processes as they...SUBJECT TERMS Liquid Composite Molding (LCM), fabrication, manufacturability assessment 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... Molding (LCM) .......................................................................... 2 1.1.1 LCM Process Variations

  20. A strategy for design and fabrication of low cost microchannel for future reproductivity of bio/chemical lab-on-chip application

    NASA Astrophysics Data System (ADS)

    Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.

    2017-03-01

    The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.

  1. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  2. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  3. Investigation on the Effect of Mold Constraints and Cooling Rate on Residual Stress During the Sand-Casting Process of 1086 Steel by Employing a Thermomechanical Model

    NASA Astrophysics Data System (ADS)

    Baghani, Amir; Davami, Parviz; Varahram, Naser; Shabani, Mohsen Ostad

    2014-06-01

    In this study, the effects of mold constraints and cooling rate on residual stress were analyzed during the shaped casting process. For this purpose, an H-shaped sample was designed in which the contraction of its middle portion is highly restricted by the mold during the cooling process. The effects of an increasing cooling rate combined with mold constraints were analyzed by reducing the thickness of the middle portion in the second sample. A three-dimensional coupled temperature-displacement analysis was performed in finite-element code ABAQUS to simulate residual stress distribution, and then numerical results were verified by the hole-drilling strain-gauge method. It was concluded that the mold constraints have a greater effect on the values of residual stress than the cooling rate (thin section) in steel sand casting. Increasing the cooling rate would increase the amount of residual stress, only in the presence of mold constraints. It is also suggested that employing the elastic-plastic stress model for the sand mold will satisfy the experimental results and avoid exaggerated values of residual stress in simulation.

  4. Heat transfer analytical models for the rapid determination of cooling time in crystalline thermoplastic injection molding and experimental validation

    NASA Astrophysics Data System (ADS)

    Didier, Delaunay; Baptiste, Pignon; Nicolas, Boyard; Vincent, Sobotka

    2018-05-01

    Heat transfer during the cooling of a thermoplastic injected part directly affects the solidification of the polymer and consequently the quality of the part in term of mechanical properties, geometric tolerance and surface aspect. This paper proposes to mold designers a methodology based on analytical models to provide quickly the time to reach the ejection temperature depending of the temperature and the position of cooling channels. The obtained cooling time is the first step of the thermal conception of the mold. The presented methodology is dedicated to the determination of solidification time of a semi-crystalline polymer slab. It allows the calculation of the crystallization time of the part and is based on the analytical solution of the Stefan problem in a semi-infinite medium. The crystallization is then considered as a phase change with an effective crystallization temperature, which is obtained from Fast Scanning Calorimetry (FSC) results. The crystallization time is then corrected to take the finite thickness of the part into account. To check the accuracy of such approach, the solidification time is calculated by solving the heat conduction equation coupled to the crystallization kinetics of the polymer. The impact of the nature of the contact between the polymer and the mold is evaluated. The thermal contact resistance (TCR) appears as significant parameter that needs to be taken into account in the cooling time calculation. The results of the simplified model including or not TCR are compared in the case of a polypropylene (PP) with experiments carried out with an instrumented mold. Then, the methodology is applied for a part made with PolyEtherEtherKetone (PEEK).

  5. Low cost, high performance, self-aligning miniature optical systems

    PubMed Central

    Kester, Robert T.; Christenson, Todd; Kortum, Rebecca Richards; Tkaczyk, Tomasz S.

    2009-01-01

    The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture (NA = 1.0W) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments. PMID:19543344

  6. Determining heat loss from the surface of polymer films via modeling of experimental fluorescence thermometry

    NASA Astrophysics Data System (ADS)

    Firestone, Gabriel; Bochinski, Jason; Meth, Jeffrey; Clarke, Laura

    Understanding of the heat transfer characteristics of a polymer during processing is critical to predicting and controlling the resulting properties and has been studied extensively in injection molding. As new methodologies for polymer processing are developed, such as photothermal heating, it is important to build an understanding of how heat transfer properties change under these novel conditions. By combining theoretical and experimental approaches, the thermal properties of photothermally heated polymer films were measured. The key idea is that by measuring the steady state temperature profile of a spot heated polymer film via a fluorescence probe (the temperature versus distance from the heated region) and fitting to a theoretical model, heat transfer coefficients can be extracted. We apply this approach to three different polymer systems, crosslinked epoxy, poly(methyl methacrylate) and poly(ethylene oxide) thin films with a range of thicknesses, under different heating laser intensities and with different resultant temperatures. We will discuss the resultant trends and extension of the model beyond a simple spot heating configuration. Support from National Science Foundation CMMI-1069108 and CMMI-1462966.

  7. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    NASA Astrophysics Data System (ADS)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  8. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  9. Topology optimization applied to the design of cooling channels for plastic injection

    NASA Astrophysics Data System (ADS)

    Muñoz, D. A.; Arango, J. P.; González, C.; Puerto, E.; Garzón, M.

    2018-04-01

    In this paper, topology optimization is applied to design cooling channels in a mold of structural steel. The problem was implemented in COMSOL multiphysics, where two physics were coupled, heat transfer and solid mechanics. The optimization objective is to maximize the conduction heat flux in the mold and minimize the deformations when the plastic is injected. In order to find an optimal geometry for this objective, a density-based method was implemented into the nonlinear program (NLP) for which feasible results were found.

  10. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less

  11. Injection molding of iPP samples in controlled conditions and resulting morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  12. A Parametric Study of Slag Skin Formation in Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Yanke, Jeff; Krane, Matthew John M.

    In electroslag remelting (ESR), the slag generates heat, chemically refines the melting electrode material, and forms frozen skin on the mold. An axisymmetric model is used to simulate fluid flow, heat transfer, solidification, and electromagnetics and their interaction with slag skin formation in ESR. A volume of fluid (VOF) method is used to track the slag/metal interface, allowing simulation of slag freezing to the mold. Mold diameter and applied current are varied to determine how these parameters affect melt rate and formation of slag skin during ESR. Variations in the slag skin thickness within the slag cap are found to have a significant impact on melt rate and depth of metal sump. Changes in slag cap volume resulted in small changes in melt rate.

  13. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    PubMed

    Park, Jeong Hun; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2014-06-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes.

  14. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  15. Fabrication Process for Large Size Mold and Alignment Method for Nanoimprint System

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kentaro; Kokubo, Mitsunori; Goto, Hiroshi; Mizuno, Jun; Shoji, Shuichi

    Nanoimprint technology is considered one of the mass production methods of the display for cellular phone or notebook computer, with Anti-Reflection Structures (ARS) pattern and so on. In this case, the large size mold with nanometer order pattern is very important. Then, we describe the fabrication process for large size mold, and the alignment method for UV nanoimprint system. We developed the original mold fabrication process using nanoimprint method and etching techniques. In 66 × 45 mm2 area, 200nm period seamless patterns were formed using this process. And, we constructed original alignment system that consists of the CCD-camera system, X-Y-θ table, method of moiré fringe, and image processing system, because the accuracy of pattern connection depends on the alignment method. This alignment system accuracy was within 20nm.

  16. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    NASA Astrophysics Data System (ADS)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  17. Determination of injection molding process windows for optical lenses using response surface methodology.

    PubMed

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  18. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1975-04-01

    was directed toward fabricating flaw- free one-piece first stage stators using a silicon metal powder injection molding composition yielding reaction...process was used because this composition utilizes thermoset polymers which cannot be handled on available injection molding equipment. Silicon...molded of several compositions incorporating slight variations. Some of the components molded had completely filled the die cavity and appeared

  19. Thermoplastics for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1978-01-01

    The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.

  20. Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng

    2014-06-01

    This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.

  1. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    NASA Astrophysics Data System (ADS)

    De Jesus Vega, Marisely

    Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  2. Nanoimprinting-induced nanomorphological transition in polymer solar cells: enhanced electrical and optical performance.

    PubMed

    Jeong, Seonju; Cho, Changsoon; Kang, Hyunbum; Kim, Ki-Hyun; Yuk, Youngji; Park, Jeong Young; Kim, Bumjoon J; Lee, Jung-Yong

    2015-03-24

    We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively.

  3. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, L.O.; McNinch, J.H. Jr.; Nowell, G.C.

    1984-10-23

    A molding process is described for molding an elongated elastomeric member with wire mesh sleeves bonded to the ends. A molding preform of elastomeric material is positioned within a seamless mold cylinder, and the open ends of the wire mesh sleeves are mounted to end plug assemblies slidably received into the mold cylinder and positioned against the ends of the preform. A specialized profile is formed into surfaces of the respective end plug assemblies and by heating of the mold, the ends of the elastomeric preform are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves. Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces there through. The completed elastomeric member is removed from the mold cylinder by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder and removal thereof. 9 figs.

  4. Volume-change indicator for molding plastic

    NASA Technical Reports Server (NTRS)

    Heler, W. C.

    1979-01-01

    Monitor consisting of two concentric disks measures change in volume of charge during compression/displacement molding. Device enables operator to decide whether process pressure and temperature are set properly or whether sufficient material has been placed in mold.

  5. An investigation into the injection molding of PMR-15 polyimide

    NASA Technical Reports Server (NTRS)

    Colaluca, M. A.

    1984-01-01

    The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.

  6. Intelligent methods for the process parameter determination of plastic injection molding

    NASA Astrophysics Data System (ADS)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  7. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table... Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021 [70 FR 50129, Aug...

  8. Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    NASA Astrophysics Data System (ADS)

    Lyu, Peisheng; Wang, Wanlin; Long, Xukai; Zhang, Kaixuan; Gao, Erzhuo; Qin, Rongshan

    2018-02-01

    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed.

  9. Process for Forming a High Temperature Single Crystal Canted Spring

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  10. Organic materials for ceramic molding processes

    NASA Technical Reports Server (NTRS)

    Saito, K.

    1984-01-01

    Ceramic molding processes are examined. Binders, wetting agents, lubricants, plasticizers, surface active agents, dispersants, etc., for pressing, rubber pressing, sip casting, injection casting, taping, extrusion, etc., are described, together with forming machines.

  11. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.

  12. Investigation of Materials Processing Technology

    DTIC Science & Technology

    1993-07-01

    Figure 6: Time-temperature curves of A357 casting in Cu mold ................. 12 Figure 7: Time-temperature curves of 17 -4 casting in ceramic mold...simulation of 17 -4 ................ 17 Figure 12: IHTC from IHEAT simulation of 17 -4 casting ..................... 18 Figure 13: Temperature profiles...mold used for Ti castings .......................... 23 Figure 16: Cooling curves for a Ti casting in ceramic mold .................. 24 Figure 17

  13. Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

    DOE PAGES

    Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour; ...

    2016-01-06

    Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less

  14. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  15. PETIs as High-Temperature Resin-Transfer-Molding Materials

    NASA Technical Reports Server (NTRS)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  16. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process.

    PubMed

    Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk

    2013-12-12

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  17. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process

    PubMed Central

    Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk

    2013-01-01

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made. PMID:28788427

  18. Surface quality of unsaturated polyester resin processed via continuous multi-shot rotational molding

    NASA Astrophysics Data System (ADS)

    Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.

    2017-05-01

    Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.

  19. Failure strengths of denture teeth fabricated on injection molded or compression molded denture base resins.

    PubMed

    Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R

    2016-08-01

    Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Laser-assisted photothermal imprinting of nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Shao, D. B.; Chen, S. C.

    2004-08-01

    We report on a laser-assisted photothermal imprinting method for directly patterning carbon nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state Nd :YAG laser (10ns pluse, 532 and 355nm wavelengths) is used to melt/soften a thin skin layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro sized surface relief structures is pressed against the surface of the composite. Successful pattern transfer is realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam, the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz mold.

  1. Enabling Learning through the Assessment Process

    DTIC Science & Technology

    2010-04-08

    Software, 47. 32 a specific pattern over time.”98 Johnson provides an example of this when discussing the computer simulation of slime mold growth. He...asserts that since the designers understood the underlying interactions between the individual slime molds , they could increase or decrease the...density of individual mold cells and the aggregating chemical that is required for the molds to group together. Furthermore, Johnson suggests that this

  2. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  3. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning.

    PubMed

    Hendrikson, Wim; Masman-Bakker, Wendy; van Bochove, Bas; Skolski, Johann; Eichstädt, Justus; Koopman, Bart; van Blitterswijk, Clemens; Grijpma, Dirk; Römer, Gert-Willem; Moroni, Lorenzo; Rouwkema, Jeroen

    2016-01-01

    Laser-induced periodic surface structures (LIPSS) are highly regular, but at the same time contain a certain level of disorder. The application of LIPSS is a promising method to functionalize biomaterials. However, the absorption of laser energy of most polymer biomaterials is insufficient for the direct application of LIPSS. Here, we report the application of LIPSS to relevant biomaterials using a two-step approach. First, LIPSS are fabricated on a stainless steel surface. Then, the structures are replicated onto biomaterials using the steel as a mold. Results show that LIPSS can be transferred successfully using this approach, and that human mesenchymal stromal cells respond to the transferred structures. With this approach, the range of biomaterials that can be supplied with LIPSS increases dramatically. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  5. Applications of thin carbon coatings and films in injection molding

    NASA Astrophysics Data System (ADS)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (<10 wt. %) due to the dispersion difficulty and exponential increase in viscosity. In this research, the technical feasibility of a new approach to EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. For many years, in-mold coating (IMC) has been commercially applied to Sheet Molding Compound (SMC) compression molded parts, as an environmentally friendly approach to improve its surface quality and provide the required conductivity for electrostatic painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness and 71wt.% to 79wt.% in the nanopaper itself after resin infusion) and high conductivity of the nanopaper. Instead of premixing nanoparticles with IMC coating, nanopapers enable the use of low viscosity IMC without CB coating to impregnate the CNF network in order to reach high electrical conductivity and EMI shielding values. (Abstract shortened by UMI.).

  6. A comprehensive study of woven carbon fiber-reinforced nylon 6 composites

    NASA Astrophysics Data System (ADS)

    Pillay, Selvum

    Liquid molding of thermoset composites has become very popular in all industry sectors, including aerospace, automotive, mass transit, and sporting goods, but the cost of materials and processing has limited the use to high-end applications. Thermoplastic composites are relatively cheap; however, the use has been limited to components with short fiber reinforcing. The high melt viscosity and short processing window precludes their use in the liquid molding of large structures and applications with continuous fiber reinforcement. The current research addresses the processing parameters, methodology, and limitations of vacuum assisted resin transfer molding (VARTM) of carbon fabric-reinforced, thermoplastic polyamide 6 (PA6). The material used is casting grade PA6. The process developed for using VARTM to produce carbon fabric-reinforced PA6 composites is explained in detail. The effects of infusion temperature and flow distance on the fiber weight fraction and crystallinity of the PA6 resin are presented. The degree of conversion from monomer to polymer was determined. Microscopic studies to show the wet-out of the fibers at the filament level are also presented. Tensile, flexural, short beam shear strength (SBSS), and low-velocity impact test results are presented and compared to a equivalent thermoset matrix composite. The rubber toughened epoxy system (SC-15) was chosen for the comparative study because the system has been especially developed to overcome the brittle nature of epoxy composites. The environmental effects of moisture and ultraviolet (UV) radiation on the carbon/nylon 6 composite were investigated. The samples were immersed in boiling water for 100 hr, and mechanical tests were conducted. Results showed that moisture causes plasticization of the matrix and attacks the fiber matrix interface. This leads to deterioration of the mechanical properties. The samples were also exposed to UV for up to 600 hr, and post exposure tests were conducted. The exposure to UV caused an increase in the degree of crystallinity of the PA6. The mechanical properties were not affected by the exposure to UV for 600 hr.

  7. Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates

    NASA Technical Reports Server (NTRS)

    Cano, Robert J.; Jensen, Brian J.

    2013-01-01

    The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.

  8. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, Lyle O.; McNinch, Jr., Joseph H.; Nowell, Gregory C.

    1984-01-01

    A molding process for molding an elongated elastomeric member (60) with wire mesh sleeves (16) bonded to the ends (14). A molding preform (10) of elastomeric material is positioned within a seamless mold cylinder (26), and the open ends of the wire mesh sleeves (16) are mounted to end plug assemblies (30) slidably received into the mold cylinder (26) and positioned against the ends (14) of the preform (10). A specialized profile is formed into surfaces (44) of the respective end plug assemblies (30) and by heating of the mold (26), the ends (14) of the elastomeric preform (10) are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves (16). Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces therethrough. The completed elastomeric member (60) is removed from the mold cylinder (26) by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder (26) and removal thereof.

  9. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  10. Low-Cost Resin Transfer Molding Process Developed for High-Temperature Polyimide Matrix Composites

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The use of high-temperature polymer matrix composites (PMC's) in aircraft engine applications can significantly reduce engine weight and improve performance and fuel efficiency. High-temperature PMC's, such as those based on the PMR-15 polyimide matrix resin developed by the NASA Lewis Research Center, have been used extensively in military applications where performance improvements have justified their use regardless of the cost involved in producing the component. However, in commercial engines cost is a primary driver, and PMC components must be produced at costs comparable to those of the metal components that they will replace.

  11. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  12. Shrinkage Prediction for the Investment Casting of Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  13. Additive technology of soluble mold tooling for embedded devices in composite structures: A study on manufactured tolerances

    NASA Astrophysics Data System (ADS)

    Roy, Madhuparna

    Composite textiles have found widespread use and advantages in various industries and applications. The constant demand for high quality products and services requires companies to minimize their manufacturing costs, and delivery time in order to compete in general and niche marketplaces. Advanced manufacturing methods aim to provide economical methods of mold production. Creation of molding and tooling options for advanced composites encompasses a large portion of the fabrication time, making it a costly process and restraining factor. This research discusses a preliminary investigation into the use of soluble polymer compounds and additive manufacturing to fabricate soluble molds. These molds suffer from dimensional errors due to several factors, which have also been characterized. The basic soluble mold of a composite is 3D printed to meet the desired dimensions and geometry of holistic structures or spliced components. The time taken to dissolve the mold depends on the rate of agitation of the solvent. This process is steered towards enabling the implantation of optoelectronic devices within the composite to provide sensing capability for structural health monitoring. The shape deviation of the 3D printed mold is also studied and compared to its original dimensions to optimize the dimensional quality to produce dimensionally accurate parts. Mechanical tests were performed on compact tension (CT) resin samples prepared from these 3D printed molds and revealed crack propagation towards an embedded intact optical fiber.

  14. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  15. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  16. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  17. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting

    PubMed Central

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-01-01

    This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740

  18. Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process

    NASA Astrophysics Data System (ADS)

    Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng

    2018-02-01

    Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication method have low porosity, high density, and there is no indication of secondary phase on the microstructure. However, it has rough brackets surface. Whereas, the production of orthodontic brackets using metal injection molding method resulted in better surface roughness. But, it has relatively high porosity, presence of another phase on the microstructure, and low density.

  19. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-07-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

  20. Estimation of state and material properties during heat-curing molding of composite materials using data assimilation: A numerical study.

    PubMed

    Matsuzaki, Ryosuke; Tachikawa, Takeshi; Ishizuka, Junya

    2018-03-01

    Accurate simulations of carbon fiber-reinforced plastic (CFRP) molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult.

  1. Simulation of cracking cores when molding piston components

    NASA Astrophysics Data System (ADS)

    Petrenko, Alena; Soukup, Josef

    2014-08-01

    The article deals with pistons casting made from aluminum alloy. Pistons are casting at steel mold with steel core. The casting is provided by gravity casting machine. The each machine is equipped by two metal molds, which are preheated above temperature 160 °C before use. The steel core is also preheated by flame. The metal molds and cores are heated up within the casting process. The temperature of the metal mold raise up to 200 °C and temperature of core is higher. The surface of the core is treated by nitration. The mold and core are cooled down by water during casting process. The core is overheated and its top part is finally cracked despite its intensive water-cooling. The life time cycle of the core is decreased to approximately 5 to 15 thousands casting, which is only 15 % of life time cycle of core for production of other pistons. The article presents the temperature analysis of the core.

  2. Turbine blade processing

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Space processing of directionally solidified eutectic-alloy type turbine blades is envisioned as a simple remelt operations in which precast blades are remelted in a preformed mold. Process systems based on induction melting, continuous resistance furnaces, and batch resistance furnaces were evaluated. The batch resistance furnace type process using a multiblade mold is considered to offer the best possibility for turbine blade processing.

  3. A thermoplastic polyimidesulfone. [synthesis of processable and solvent resistant system

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Yamaki, D. A.

    1984-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composites). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  4. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  5. 40 CFR 463.21 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...

  6. 40 CFR 463.31 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Finishing Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a finishing water process and comes in contact with the plastics product over a period of one year. ...

  7. 40 CFR 463.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...

  8. 40 CFR 463.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Finishing Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a finishing water process and comes in contact with the plastics product over a period of one year. ...

  9. Preliminary guidelines and recommendations for the development of material and process specifications for carbon fiber-reinforced liquid resin molded materials.

    DOT National Transportation Integrated Search

    2007-05-01

    This document recommends guidance and criteria for the development of material and process specifications and material acceptance documents for liquid resins and continuous carbon fiber reinforcement materials used in liquid molding processes to manu...

  10. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    NASA Astrophysics Data System (ADS)

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour

    Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less

  12. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    NASA Astrophysics Data System (ADS)

    Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.

    2011-07-01

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.

  13. An Investigation of the Mold-Flux Performance for the Casting of Cr12MoV Steel Using a Mold Simulator Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Xu, Chao; Zhang, Chen

    2017-08-01

    Mold flux plays important roles in the process of continuous casting. In this article, the performance of mold flux for the casting of Cr12MoV steel was investigated by using a mold simulator. The results showed that the slag film formed in the gap between the initial shell and mold hot surface is thin and discontinuous during the casting process with the Flux BM, due to the absorption of chromic oxide inclusions into the liquid slag, while the slag film formed in the case of the optimized Flux NEW casting process is uniform. The main precipitated crystals in Flux BM slag film are cuspidine (Ca4Si2O7F2) and Cr3O4, but only Ca4Si2O7F2 precipitated in the Flux NEW case. Besides, both the responding temperature and heat flux in the case of Flux BM are relatively higher and fluctuate in a larger amplitude. The surface of the shell obtained in the case of the Flux BM experiment is quite uneven, and many severe depressions, cracks, and entrapped slags are observed in the surface due to the lack of lubrication. However, the obtained shell surface in the case of the Flux NEW shows good surface quality due to the addition of B2O3 and the adjustment of basicity, which can compensate for the negative effects of the mold-flux properties caused by the absorption of chromic oxide during the casting process.

  14. Fabrication of a high aspect ratio thick silicon wafer mold and electroplating using flipchip bonding for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Hwan; Kim, Jong-Bok

    2009-06-01

    We have developed a microfabrication process for high aspect ratio thick silicon wafer molds and electroplating using flipchip bonding with THB 151N negative photoresist (JSR micro). This fabrication technique includes large area and high thickness silicon wafer mold electroplating. The process consists of silicon deep reactive ion etching (RIE) of the silicon wafer mold, photoresist bonding between the silicon mold and the substrate, nickel electroplating and a silicon removal process. High thickness silicon wafer molds were made by deep RIE and flipchip bonding. In addition, nickel electroplating was developed. Dry film resist (ORDYL MP112, TOK) and thick negative-tone photoresist (THB 151N, JSR micro) were used as bonding materials. In order to measure the bonding strength, the surface energy was calculated using a blade test. The surface energy of the bonding wafers was found to be 0.36-25.49 J m-2 at 60-180 °C for the dry film resist and 0.4-1.9 J m-2 for THB 151N in the same temperature range. Even though ORDYL MP112 has a better value of surface energy than THB 151N, it has a critical disadvantage when it comes to removing residue after electroplating. The proposed process can be applied to high aspect ratio MEMS structures, such as air gap inductors or vertical MEMS probe tips.

  15. Direct molding of pavement tiles made of ground tire rubber

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  16. Characterization of curing behavior of UV-curable LSR for LED embedded injection mold

    NASA Astrophysics Data System (ADS)

    Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.

    2016-11-01

    For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.

  17. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    PubMed

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  18. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  19. Process of modifying a cable end

    DOEpatents

    Roose, L.D.

    1995-08-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves. 5 figs.

  20. Fabrication of injection molded sintered alpha SiC turbine components

    NASA Technical Reports Server (NTRS)

    Storm, R. S.; Ohnsorg, R. W.; Frechette, F. J.

    1981-01-01

    Fabrication of a sintered alpha silicon carbide turbine blade by injection molding is described. An extensive process variation matrix was carried out to define the optimum fabrication conditions. Variation of molding parameters had a significant impact on yield. Turbine blades were produced in a reasonable yield which met a rigid quality and dimensional specification. Application of injection molding technology to more complex components such as integral rotors is also described.

  1. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  2. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties weremore » accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.« less

  3. Alloy Shrinkage Factors for the Investment Casting of 17-4PH Stainless Steel Parts

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Porter, Wallace D.

    2008-04-01

    In this study, alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. The dimensions of the die tooling, wax pattern, and casting were measured using a coordinate measurement machine (CMM). For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data and measured property data is made. It was found that most material properties were accurately predicted over most of the temperature range of the process. Several assumptions were made, in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed a different evolution on heating and cooling. Thus, one generic simulation was performed with thermal expansion obtained on heating, and another one was performed with thermal expansion obtained on cooling. The alloy dimensions were obtained from the numerical simulation results of the solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly overpredicted.

  4. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  5. Design and thermal analysis of a mold used in the injection of elastomers

    NASA Astrophysics Data System (ADS)

    Fekiri, Nasser; Canto, Cécile; Madec, Yannick; Mousseau, Pierre; Plot, Christophe; Sarda, Alain

    2017-10-01

    In the process of injection molding of elastomers, improving the energy efficiency of the tools is a current challenge for industry in terms of energy consumption, productivity and product quality. In the rubber industry, 20% of the energy consumed by capital goods comes from heating processes; more than 50% of heat losses are linked to insufficient control and thermal insulation of Molds. The design of the tooling evolves in particular towards the reduction of the heated mass and the thermal insulation of the molds. In this paper, we present a complex tool composed, on one hand, of a multi-cavity mold designed by reducing the heated mass and equipped with independent control zones placed closest to each molding cavity and, on the other hand, of a regulated channel block (RCB) which makes it possible to limit the waste of rubber during the injection. The originality of this tool lies in thermally isolating the regulated channel block from the mold and the cavities between them in order to better control the temperature field in the material which is transformed. We present the design and the instrumentation of the experimental set-up. Experimental measurements allow us to understand the thermal of the tool and to show the thermal heterogeneities on the surface of the mold and in the various cavities. Tests of injection molding of the rubber and a thermal balance on the energy consumption of the tool are carried out.

  6. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

    PubMed Central

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol–gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications. PMID:28546899

  7. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting.

    PubMed

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee; Oh, Yong-Jun

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol-gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications.

  8. Resin Flow Behavior Simulation of Grooved Foam Sandwich Composites with the Vacuum Assisted Resin Infusion (VARI) Molding Process

    PubMed Central

    Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo

    2012-01-01

    The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.

  9. High Temperature Transfer Molding Resins: Preliminary Composite Properties of PETI-375

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.; Criss, J. M., Jr.

    2004-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) of high performance/high temperature composites, a new phenylethynyl containing imide designated as PETI-375 has been under evaluation. PETI-375 was prepared using 2,3,3 ,4 - biphenyltetracarboxylic dianhydride (a-BPDA), 1,3-bis(4-aminophenoxy)benzene and 2,2 - bis(trifluoromethyl)benzidine and endcapped with 4-phenylethynylphthalic anhydride. This material exhibited a stable melt viscosity of 0.1-0.4 Pa sec at 280 C. High quality, void-free laminates were fabricated by high temperature RTM using unsized T-650 carbon fabric and evaluated. After curing for 1 hour at 371 C, the laminates exhibited a glass transition temperature of approx. 375 C by thermomechanical analysis. The laminates were essentially void and microcrack free as evidenced by optical microscopic examination. The chemistry, physical, and composite properties of PETI-375 will be discussed.

  10. Developing quartz wafer mold manufacturing process for patterned media

    NASA Astrophysics Data System (ADS)

    Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa

    2009-04-01

    Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.

  11. Reversible creation of nanostructures between identical or different species of materials

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong

    2012-07-01

    In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

  12. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  13. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  14. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    PubMed Central

    Jung, Woo-Chul; Heo, Young-Moo; Yoon, Gil-Sang; Shin, Kwang-Ho; Chang, Sung-Ho; Kim, Gun-Hee; Cho, Myeong-Woo

    2007-01-01

    Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  15. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  16. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  17. Bioglass 45S5 transformation and molding material in the processing of biodegradable poly-DL-lactide scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Abdollahi, Sara

    When bone is damaged, a scaffold can temporarily replace it in the site of injury and incite bone tissue to repair itself. A biodegradable scaffold resorbs into the body, generating non-toxic degradation products as new tissue reforms; a bioactive scaffold encourages the surrounding tissue to regenerate. In the present study, we make composite biodegradable and bioactive scaffolds using poly-DL-lactide (PDLLA), a biodegradable polymer, and incorporate Bioglass 45S5 (BG) to stimulate scaffold bioactivity. BG has an interesting trait when immersed in body fluid, a layer of hydroxycarbonate apatite, similar to the inorganic component of bone, forms on its surface. It is of utmost importance to understand the fate of BG throughout the scaffold’s processing in order to assess the scaffold’s bioactivity. In this study, the established different stages of BG reactivity have been verified by monitoring pH during BG dissolution experiments and by conducting an elemental analysis using inductively coupled plasma optical emission spectroscopy (ICP-OES). The composite scaffolds are synthesized by the solvent casting and particulate leaching technique and their morphology assessed by scanning electron microscopy (SEM). To understand the transformations occurred in BG during scaffold synthesis, BG as received, as well BG treated in acetone and water (the fluids involved in scaffold processing) are characterized by Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS). The results are then compared with BG extracted from scaffolds after processing. BG has been determined to start reacting during the scaffold processing. In addition, its reactivity is influenced by BG particle size. The study suggests that the presence of the polymer provides a reactive environment for BG due to pH effects. Teflon molds in scaffold fabrication are inert and biocompatibile, but their stiffness presents a challenge during de-molding. Silicone-based and polyurethane molds are attractive because they are flexible. However, there is a possibility that silicone leaches either from the material itself or the agents used to enhance their performance onto the scaffold. The second study in this thesis focuses on different types of such flexible substrates (Sil940, polyurethane, polyether, polydimethylsiloxane). The presence of Si in PDLLA films prepared on each material is inspected using XPS. Films made on all four materials are found to contain Si, indicative of the dissolution of part of the substrate in the film. However, silicon in the Si-containing catalysts used in the synthesis of polyethers is not transferred to samples, when the polyether substrate is plasma coated.

  18. Development of a continuous roll-to-roll processing system for mass production of plastic optical film

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Tsai, Meng-Hsun

    2015-12-01

    This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.

  19. Microfluidic systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA

    2007-03-06

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  20. Development and manufacture of visor for helmet-mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert

    2004-01-01

    The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.

  1. Progress in Titanium Metal Powder Injection Molding.

    PubMed

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  2. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.

    PubMed

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-02-08

    This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.

  3. Progress in Titanium Metal Powder Injection Molding

    PubMed Central

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458

  4. Interfacial pattern changes of imprinted multilayered material in milli- and microscales

    NASA Astrophysics Data System (ADS)

    Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.

  5. Closed loop oscillating heat pipe as heating device for copper plate

    NASA Astrophysics Data System (ADS)

    Kamonpet, Patrapon; Sangpen, Waranphop

    2017-04-01

    In manufacturing parts by molding method, temperature uniformity of the mold holds a very crucial aspect for the quality of the parts. Studies have been carried out in searching for effective method in controlling the mold temperature. Using of heat pipe is one of the many effective ways to control the temperature of the molding area to the right uniform level. Recently, there has been the development of oscillating heat pipe and its application is very promising. The semi-empirical correlation for closed-loop oscillating heat pipe (CLOHP) with the STD of ±30% was used in design of CLOHP in this study. By placing CLOHP in the copper plate at some distance from the plate surface and allow CLOHP to heat the plate up to the set surface temperature, the temperature of the plate was recorded. It is found that CLOHP can be effectively used as a heat source to transfer heat to copper plate with excellent temperature distribution. The STDs of heat rate of all experiments are well in the range of ±30% of the correlation used.

  6. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oakmore » Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.« less

  7. Effect of mold designs on molten metal behaviour in high-pressure die casting

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  8. Foam injection molding of poly(lactic acid) with physical blowing agents

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  9. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  10. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloymore » systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.« less

  11. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.

    PubMed

    Kageyama, Tatsuto; Kakegawa, Takahiro; Osaki, Tatsuya; Enomoto, Junko; Ito, Taichi; Nittami, Tadashi; Fukuda, Junji

    2014-06-01

    Fabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures. The in situ crosslinkable hydrogel was composed of hydrazide-modified gelatin (gelatin-ADH) and aldehyde-modified hyaluronic acid (HA-CHO). By simply mixing these two solutions, the gelation occurred in less than 20 s through the formation of a stable hydrazone bond. To rapidly transfer cells from a culture surface to the hydrogel, we utilized a zwitterionic oligopeptide, which forms a self-assembled molecular layer on a gold surface. Human umbilical vein endothelial cells adhering on a gold surface via the oligopeptide layer were transferred to the hydrogel within 5 min, along with electrochemical desorption of the oligopeptides. This approach was applicable to cylindrical needles 200-700 µm in diameter, resulting in the formation of perfusable microchannels where the internal surface was fully enveloped with the transferred endothelial cells. The entire fabrication process was completed within 10 min, including 20 s for the hydrogel crosslinking and 5 min for the electrochemical cell transfer. This rapid fabrication approach may provide a promising strategy to construct perfusable vasculatures in cell-dense tissue constructs and subsequently allow cells to organize complicated and fully vascularized tissues while preventing hypoxic cell injury.

  12. Design of Revolute Joints for In-Mold Assembly Using Insert Molding.

    PubMed

    Ananthanarayanan, Arvind; Ehrlich, Leicester; Desai, Jaydev P; Gupta, Satyandra K

    2011-12-01

    Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.

  13. [Effects of different excipients on properties of Tongsaimai mixture and pellet molding].

    PubMed

    Wang, Jin; Lv, Zhiyang; Wu, Xiaoyan; Di, Liuqing; Dong, Yu; Cai, Baochang

    2011-01-01

    To study preliminarily on the relationship between properties of the mixture composed of Tongsaimai extract and different excipients and pellet molding. The multivariate regression analysis was used to investigate the correlation of different mixture and pellet molding by measuring the cohesion, liquid-plastic limit of mixture, and the powder properties of pellets. The weighted coefficients of the powder properties were determined by analytic hierarchy process combined with criteria importance through intercriteria correlation. The results showed that liquid-plastic limit seemed to be a major factor, which had positive correlation with pellet molding, while cohesion had negative correlation with pellet molding in the measured range. The physical properties of the mixture has marked influence on pellet molding.

  14. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  15. Study of Shell-Mold Thermal Resistance: Laboratory Measurements, Estimation from Compact Strip Production Plant Data, and Observation of Simulated Flux-Mold Interface

    NASA Astrophysics Data System (ADS)

    González de la C., J. Manuel; Flores F., Tania M.; Castillejos E., A. Humberto

    2016-08-01

    The slag film that forms between the shell and mold in steel continuous casting is key in regulating the heat transfer between them. Generally, the mechanisms proposed are related to the phenomena associated with the formation of crystals in the solid layer of the film, such as the appearance of internal pores and surface roughness, which decrease phononic conduction through the layer and interfacial gap with the mold, respectively, and the emergence of crystals themselves, which reduce the transmissivity of infrared radiation across the layer. Due to the importance of the solid layer, this study investigates experimentally the effective thermal resistance, R T, between a hot Inconel surface and a cold Cu surface separated by an initially glassy slag disk, made from powders for casting low and medium-carbon steels, denoted as A and B, respectively. In the tests, an initially mirror-polished disk is sandwiched for 10,800 seconds while the Inconel temperature, away from the disk face, is maintained steady at a value, T c, between 973 K and 1423 K (700 °C and 1150 °C)-below the liquidus temperature of the slags. The disks have a thickness, d t, between ~0.7 and 3.2 mm. Over the range of conditions studied, mold slag B shows R T 33 pct larger than slag A, and microscopic observation of disks hints that the greater resistance arises from the larger porosity developed in B. This finding is supported by high-temperature confocal laser scanning microscope observations of the evolution of the surface of slag parallelepipeds encased between Pt sheets, which reveal that during devitrification the film surface moves outward not inward, contrary with what is widely claimed. This behavior would favor contact of the slag with the mold for both kinds of powders. However, in the case of slag A, the crystalline grains growing at or near the surface pack closely together, leaving only few and small empty spaces. In slag B, crystalline grains pack loosely and many and large empty spaces arise in and below the surface. Estimation from plant data shows R T values smaller than measured ones, suggesting that the process film slag thickness must be considerably thinner than those of laboratory disks. However, the difference in thermal resistance of both powders, averaged over the mold length, is close to the dissimilarity found in laboratory.

  16. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  17. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  18. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  19. Influence of injection temperatures and fiberglass compositions on mechanical properties of polypropylene

    NASA Astrophysics Data System (ADS)

    Keey, Tony Tiew Chun; Azuddin, M.

    2017-06-01

    Injection molding process appears to be one of the most suitable mass and cost efficiency manufacturing processes for polymeric parts nowadays due to its high efficiency of large scale production. When down-scaling the products and components, the limits of conventional injection molding process are reached. These constraints had initiated the development of conventional injection molding process into a new era of micro injection molding technology. In this study, fiberglass reinforced polypropylenes (PP) with various glass fiber percentage materials were used. The study start with fabrication of micro tensile specimens at three different injection temperature, 260°C, 270°C and 280°C for different percentage by weight of fiberglass reinforced PP. Then evaluate the effects of various injection temperatures on the tensile properties of micro tensile specimens. Different percentage by weight of fiberglass reinforced PP were tested as well and it was found that 20% fiberglass reinforced PP possessed the greatest percentage increase of tensile strength with increasing temperatures.

  20. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOEpatents

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  1. A thermoplastic polyimidesulfone

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A.

    1982-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composities). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  2. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman

    2016-08-01

    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.

  3. Resin bleed improvement on surface mount semiconductor device

    NASA Astrophysics Data System (ADS)

    Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd

    2018-04-01

    Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.

  4. Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure.

    PubMed

    Empting, L D

    2009-01-01

    Human exposure to molds, mycotoxins, and water-damaged buildings can cause neurologic and neuropsychiatric signs and symptoms. Many of these clinical features can partly mimic or be similar to classic neurologic disorders including pain syndromes, movement disorders, delirium, dementia, and disorders of balance and coordination. In this article, the author delineates the signs and symptoms of a syndrome precipitated by mold and mycotoxin exposure and contrasts and separates these findings neurodiagnostically from known neurologic diseases. This clinical process is designed to further the scientific exploration of the underlying neuropathophysiologic processes and to promote better understanding of effects of mold/mycotoxin/water-damaged buildings on the human nervous system and diseases of the nervous system. It is clear that mycotoxins can affect sensitive individuals, and possibly accelerate underlying neurologic/pathologic processes, but it is crucial to separate known neurologic and neuropsychiatric disorders from mycotoxin effects in order to study it properly.

  5. Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin

    2015-12-01

    A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.

  6. Microfluidic fuel cell systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan

    2005-07-26

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  7. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  8. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  9. Classification of buildings mold threat using electronic nose

    NASA Astrophysics Data System (ADS)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  10. Rapid control of mold temperature during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less

  11. Spinoff From a Moon Suit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.

  12. Third NASA Advanced Composites Technology Conference, volume 1, part 1

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  13. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being studied as cost effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. Data are presented to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade stiffened compression tests and stiffener pull-off tests.

  14. Performance of resin transfer molded multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor cost savings are projected for the Saerbeck fabric as compared to uniweave fabric currently being used by Douglas in the NASA ACT wing development program.

  15. Method and composition for molding low-density desiccant syntactic-foam articles

    DOEpatents

    Not Available

    1981-12-07

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  16. A study on the development of engineering plastic piston used in the shock absorber

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ho; Bae, Won-Byong; Lim, Dong-Ju; Suh, Yun-Soo

    1998-08-01

    A piston is an important component of the shock absorber which determines comfortable riding and handling. Conventional piston is made of metal powder that is pressed in a mold, and then sintered at high temperatures below the melting point before machining processes such as drilling, sizing and teflon banding. This study aims at cutting down cost and weight, and improving the process by replacing the traditional sintering process used for manufacturing the shock absorber with the injection molding process adopting engineering plastics as raw material. To analyze the injection molding process, we used the commercial program, MOLDFLOW, and obtained an optimal combination of the process parameters. In addition, by comparing the engineering plastic piston with the metal powder piston through the formability and the performance experiments, we confirmed the availability of this alternative process suggested.

  17. Cross Section of Legislative Approaches to Reducing Indoor Dampness and Mold

    PubMed Central

    Boese, Gerald W.

    2017-01-01

    Exposure to indoor dampness and mold is associated with numerous adverse respiratory conditions, including asthma. While no quantitative health-based threshold currently exists for mold, the conditions that support excessive dampness and mold are known and preventable; experts agree that controlling these conditions could lead to substantial savings in health care costs and improvement in public health. This article reviews a sample of state and local policies to limit potentially harmful exposures. Adoption of laws to strengthen building codes, specify dampness and mold in habitability laws, regulate mold contractors, and other legislative approaches are discussed, as are key factors supporting successful implementation. Communicating these lessons learned could accelerate the process for other jurisdictions considering similar approaches. Information about effectiveness of legislation as prevention is lacking; thus, evaluation could yield important information to inform the development of model state or local laws that significantly address mold as a public health concern. PMID:27977504

  18. 40 CFR 463.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact Cooling and... one plastics molding and forming process that uses contact cooling and heating water is the sum of the... heating water process and comes in contact with the plastic product over a period of one year. ...

  19. 40 CFR 63.544 - Standards for process fugitive sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Smelting furnace and dryer charging hoppers, chutes, and skip hoists; (2) Smelting furnace lead taps, and molds during tapping; (3) Smelting furnace slag taps, and molds during tapping; (4) Refining kettles; (5) Dryer transition pieces; and (6) Agglomerating furnace product taps. (b) Process fugitive emission...

  20. 40 CFR 463.21 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.21... usage flow rate” for a plant with more than one plastics molding and forming process that uses cleaning... process and comes in contact with the plastic product over a period of one year. ...

  1. 40 CFR 463.31 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Finishing Water Subcategory § 463.31... usage flow rate” for a plant with more than one plastics molding and forming process that uses finishing... water process and comes in contact with the plastics product over a period of one year. ...

  2. 40 CFR 463.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact Cooling and... one plastics molding and forming process that uses contact cooling and heating water is the sum of the... heating water process and comes in contact with the plastic product over a period of one year. ...

  3. Mechanical impedance measurements for improved cost-effective process monitoring

    NASA Astrophysics Data System (ADS)

    Clopet, Caroline R.; Pullen, Deborah A.; Badcock, Rodney A.; Ralph, Brian; Fernando, Gerard F.; Mahon, Steve W.

    1999-06-01

    The aerospace industry has seen a considerably growth in composite usage over the past ten years, especially with the development of cost effective manufacturing techniques such as Resin Transfer Molding and Resin Infusion under Flexible Tooling. The relatively high cost of raw material and conservative processing schedules has limited their growth further in non-aerospace technologies. In-situ process monitoring has been explored for some time as a means to improving the cost efficiency of manufacturing with dielectric spectroscopy and optical fiber sensors being the two primary techniques developed to date. A new emerging technique is discussed here making use of piezoelectric wafers with the ability to sense not only aspects of resin flow but also to detect the change in properties of the resin as it cures. Experimental investigations to date have shown a correlation between mechanical impedance measurements and the mechanical properties of cured epoxy systems with potential for full process monitoring.

  4. Predicting and preventing mold spoilage of food products.

    PubMed

    Dagnas, Stéphane; Membré, Jeanne-Marie

    2013-03-01

    This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management decision tool.

  5. Precision glass molding: Toward an optimal fabrication of optical lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  6. Processing soft materials for integrated photonic and macroelectronic components and devices

    NASA Astrophysics Data System (ADS)

    Tsay, Candice Ruth

    Incorporating soft materials into micro-fabrication processes opens up new functionalities for fabricated devices, but requires unique processing routes. This thesis presents our development of integrated photonic and macroelectronic structures through processing innovations that unite disparate inorganic/organic, and soft/rigid materials systems. For the integrated photonic system, we focus our efforts on chalcogenide glasses, dielectric materials that exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these relatively fragile materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of several additive methods for patterning chalcogenide glass waveguides from solution. In particular, we focus on two complementary soft lithography methods. The first, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S 3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (muTM), to produce arrays of single mode rib waveguides over large areas while maintaining low surface and edge roughness. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR photonic structures ranging from less than 5 to 10's of mum in cross-sectional dimension. Optical characterization, including measurement of waveguide loss by cut-back, is carried out in the mid-IR using QCLs. In addition, materials characterization of the chalcogenide glass structures is carried out to determine loss mechanisms and optimize processing. While we use soft polymeric materials as molds to pattern chalcogenide glasses, we also employ them as substrate material for stretchable electronic systems, which comprise a new class of flexible macroelectronics. These devices must undergo elastic deformation to large strain (>10%), for applications in which electronics are conformally shaped around surfaces of arbitrary shape, like many biological surfaces. We develop strategies for processing stretchable metallic electrodes and study the mechanism of their stretchability via careful observation of thin film micro-structures. Our macroelectronic work culminates in fabrication of stretchable microelectrode arrays that interface with brain tissue, laying the groundwork for future development of advanced bio-electronic interfaces.

  7. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameli, A.; Nofar, M.; Saniei, M.

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed inmore » an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.« less

  8. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 1. FINAL REPORT

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced
    plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emission...

  9. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISSIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emissions u...

  10. EVALUATION OF POLLUTION PREVENTION OPTIONS TO REDUCE STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTIC OPEN MOLDING PROCESSES

    EPA Science Inventory

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials, and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To me...

  11. Investigation of Meniscus Region Behavior and Oscillation Mark Formation in Steel Continuous Casting Using a Transient Thermo-Fluid Model

    NASA Astrophysics Data System (ADS)

    Blaes, Carly

    In the continuous casting of steel, many complex phenomena in the meniscus region of the mold are responsible for the formation of oscillation marks. Oscillation marks are depressions found around the perimeter of continuously cast steel slabs, which if too large can lead to cracking in steel slabs. Therefore, knowledge on how to minimize the size of oscillation marks is very valuable. A computational model was created of the meniscus region, which includes transient multiphase fluid flow of slag and steel, with low-Reynolds turbulence, heat transfer in the mold, slag, and steel, steel shell solidification, mold oscillation, and temperature-dependent properties. This model was first validated using previous experimental and plant data. The model was then used to study the impact of varying casting parameters, including oscillation frequency, stroke, modification ratio, casting speed, molten steel level fluctuations, and temperature-dependent slag properties and surface tension on the oscillation mark shape, and other aspects of thermal-flow behavior during each oscillation cycle, including heat flux profile, slag consumption and mold friction. The first half of oscillation marks were formed during negative strip time as the slag rim pushed molten steel away from the mold wall and that the second half of oscillation marks were formed during positive strip time as the molten steel is drawn near the mold wall due to the upstroke of the mold. Oscillation mark depth was found to decrease with increasing frequency, modification ratio, casting speed, and slag viscosity, while oscillation mark depth was found to increase with increasing stroke. Oscillation mark width was only found to increase due to increases in pitch, which can be contributed to decreasing frequency or increasing casting speed. While many observations were made in this study, in general, oscillation mark depth and total slag consumption increase with increasing negative strip time, while the average heat flux and average mold friction decrease with increasing negative strip time.

  12. Powder Injection Molding of Ceramic Engine Components for Transportation

    NASA Astrophysics Data System (ADS)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar

    2012-03-01

    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  13. Bag molding processes

    NASA Astrophysics Data System (ADS)

    Slobodzinsky, A.

    Features, materials, and techniques of vacuum, pressure, and autoclave FRP bag molding processes are described. The bags are used in sealed environments, inflated to flexibly force a curing FRP laminate to conform to a stiff mold form which defines the shape of the finished product. Densification is achieved as the bag presses out the voids and excess resin from the laminate, and consolidation occurs as the plies and adherends are bonded by the bag pressure. Curing techniques nominally involved room temperature or high temperature, and investigations of alternative techniques, such as induction, dielectric, microwave, xenon flash, UV, electron beam, and gamma radiation heating are proceeding. Polysulfone is the most common thermoplastic. Details are given of mold preparations, peel plies or release films and fabrics, bagging techniques, and reusable venting blankets and silicone rubber bags.

  14. Multicomponent micropatterned sol-gel materials by capillary molding

    NASA Astrophysics Data System (ADS)

    Lochhead, Michael J.; Yager, Paul

    1997-10-01

    A physically and chemically benign method for patterning multiple sol-gel materials onto a single substrate is described. Structures are demonstrated for potential micro- optical chemical sensor, biosensor, and waveguiding applications. Fabrication is based on the micro molding in capillaries (MIMIC) approach. A novel mold design allows several sols to be cast simultaneously. Closely spaced, organically modified silica ridges containing fluorescent dyes are demonstrated. Ridges have cross sectional dimensions from one to 50 micrometers and are centimeters in length. Processing issues, particularly those related to mold filling, are discussed in detail. Because sol-gel MIMIC avoids the harsh physical and chemical environments normally associated with patterning, the approach allows full exploitation of sol- gel processing advantages, such as the ability to entrap sensitive organic dopant molecules in the sol-gel matrix.

  15. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process.

    PubMed

    de Cássia Martins Salomão, Beatriz; Muller, Chalana; do Amparo, Hudson Couto; de Aragão, Gláucia Maria Falcão

    2014-01-01

    Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  16. Verification of a two-dimensional infiltration model for the resin transfer molding process

    NASA Technical Reports Server (NTRS)

    Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.

  17. Using template/hotwire cutting to demonstrate moldless composite fabrication

    NASA Technical Reports Server (NTRS)

    Coleman, J. Mario

    1990-01-01

    The objective of this experiment is to provide a simple, inexpensive composite fabrication technique which can be easily performed with a minimum of equipment and facilities. This process eliminates expensive female molds and uses only male molds which are easily formed from foam blocks. Once the mold is shaped, it is covered with fiberglass and becomes a structural component of the product.

  18. Rapid fabrication method of a microneedle mold with controllable needle height and width.

    PubMed

    Lin, Yen-Heng; Lee, I-Chi; Hsu, Wei-Chieh; Hsu, Ching-Hong; Chang, Kai-Ping; Gao, Shao-Syuan

    2016-10-01

    The main issue of transdermal drug delivery is that macromolecular drugs cannot diffuse through the stratum corneum of skin. Many studies have pursued micro-sized needles encapsulated with drugs to overcome this problem, as these needles can pierce the stratum corneum and allow drugs to enter the circulatory system of the human body. However, most microneedle fabrication processes are time-consuming and require expensive equipment. In this study, we demonstrate a rapid method for fabricating a microneedle mold using drawing lithography and a UV-cured resin. The mold was filled with a water-soluble material, polyvinylpyrrolidone (PVP), which was then demolded to produce a water-soluble microneedle array. The results of an in vitro skin insertion test using PVP microneedles and pig ear skin demonstrated the feasibility of the microneedle mold. In addition, by controlling the viscosity of the UV-cured resin through various heat treatments, microneedles with different heights and aspect ratios were produced. Compared with other methods, this technology significantly simplifies and accelerates the mold fabrication process. In addition, the required equipment is relatively simple and inexpensive. Through this technology, we can rapidly fabricate microneedle molds with controllable dimensions for various applications.

  19. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (h) Radar and RDF scanners must be protected against the dust generated during cargo transfer operations of...

  20. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (h) Radar and RDF scanners must be protected against the dust generated during cargo transfer operations of...

  1. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (h) Radar and RDF scanners must be protected against the dust generated during cargo transfer operations of...

  2. Casting materials

    DOEpatents

    Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  3. Improved Sand-Compaction Method for Lost-Foam Metal Casting

    NASA Technical Reports Server (NTRS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    2008-01-01

    An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.

  4. Solarization of reused pots is an inexpensive and efficient method to eliminate Phytophthora cactorum and other serious soilborne Phytophthora spp. found in production nurseries

    Treesearch

    K. Suslow; S. Sharma; K. Kosta; Kristina Weber; S. Rooney-Latham

    2017-01-01

    The reuse of plant pots by nursery growers has repeatedly been shown to be a method by which transfer of plant pathogens within a nursery will occur. More critically, this practice is an efficient pathway to infest landscape settings or habitat restoration sites by the out-planting of pre-symptomatic infected plant material. The transfer of water molds (oomycetes),...

  5. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  7. Simulation-based process windows simultaneously considering two and three conflicting criteria in injection molding

    PubMed Central

    Rodríguez-Yáñez, Alicia Berenice; Méndez-Vázquez, Yaileen

    2014-01-01

    Process windows in injection molding are habitually built with only one performance measure in mind. In reality, a more realistic picture can be obtained when considering multiple performance measures at a time, especially in the presence of conflict. In this work, the construction of process windows for injection molding (IM) is undertaken considering two and three performance measures in conflict simultaneously. The best compromises between the criteria involved are identified through the direct application of the concept of Pareto-dominance in multiple criteria optimization. The aim is to provide a formal and realistic strategy to set processing conditions in IM operations. The resulting optimization approach is easily implementable in MS Excel. The solutions are presented graphically to facilitate their use in manufacturing plants. PMID:25530927

  8. Simulation-based process windows simultaneously considering two and three conflicting criteria in injection molding.

    PubMed

    Rodríguez-Yáñez, Alicia Berenice; Méndez-Vázquez, Yaileen; Cabrera-Ríos, Mauricio

    2014-01-01

    Process windows in injection molding are habitually built with only one performance measure in mind. In reality, a more realistic picture can be obtained when considering multiple performance measures at a time, especially in the presence of conflict. In this work, the construction of process windows for injection molding (IM) is undertaken considering two and three performance measures in conflict simultaneously. The best compromises between the criteria involved are identified through the direct application of the concept of Pareto-dominance in multiple criteria optimization. The aim is to provide a formal and realistic strategy to set processing conditions in IM operations. The resulting optimization approach is easily implementable in MS Excel. The solutions are presented graphically to facilitate their use in manufacturing plants.

  9. NASA. Langley Research Center dry powder towpreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.

  10. Chemorheology of in-mold coating for compression molded SMC applications

    NASA Astrophysics Data System (ADS)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  11. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  12. Orientation-Controllable ZnO Nanorod Array Using Imprinting Method for Maximum Light Utilization in Dye-Sensitized Solar Cells.

    PubMed

    Jeong, Huisu; Song, Hui; Lee, Ryeri; Pak, Yusin; Kumaresan, Yogeenth; Lee, Heon; Jung, Gun Young

    2015-12-01

    We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2.

  13. Distortion-free foamed-plastic parts

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Jackson, R. G.

    1979-01-01

    In process for molding foamed-plastic products, gases that are formed as byproducts of foaming reaction escape through perforated die. Thus, volatiles are not trapped in pockets that can deform and weaken the molded part.

  14. Deflectometric analysis of high volume injection molds for production of occupational eye wear.

    PubMed

    Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo

    2013-12-01

    Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in general flatter than design data. We applied a deflectometric system for measuring and evaluating specular reflective injection molding tools to optimize the production process of occupational eye wear. The surface quality could be inline monitored in the production processes for actual spectacle models. Copyright © 2013. Published by Elsevier GmbH.

  15. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  16. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  17. Cellulose-reinforced composites and SRIM and RTM modeling

    NASA Astrophysics Data System (ADS)

    Fahrurrozi, Mohammad

    Structural reaction injection molding (SRIM) cellulosic/polyurethane composites were prepared from various forms of cellulosic mats, and elastomeric polyurea-urethane (PUU) and rigid polyurethane (PU) formulations. Mats (woven and non-woven) prepared from different sources of fibers with lignin content ranging from zero (cotton) to at least 10% (sugar cane and kenaf fibers) performed comparably in PUU/cellulosic composites. Young's modulus and tensile strength of PUU/cellulosic composites were doubled with 5% and 7% fiber loading respectively. Young's modulus and tensile strength of PU/cellulosic composites were improved by 300% and 30%, respectively, with 7% fiber loading, whereas their bending moduli and strengths were improved up to 100% and 50%, respectively, with 18% fiber loading. However, the mechanical properties of PU composites were more sensitive to the fiber properties and fiber macroscopic arrangements. The study with chemical ratio variations indicates that as the fiber loading increases, the cellulose hydroxyl presence starts shifting the chemical balance and thus should be accounted for. Mats prepared from sugar cane fibers extracted from rind with low alkali concentration (0.2 N) followed by steam explosion require lower injection pressures compared to the ones prepared from fiber obtained from higher alkali treatment (above 0.5 N) without steam explosion. Hence, the steam exploded mats are more suitable for SRIM purposes. The PU kinetics was studied using an adiabatic temperature rise method. An Arrhenius type empirical equation was used to fit the data. The fitted equation was second order to the partial conversion, and the gelling time at adiabatic condition is less than 5 seconds (much quicker than the 10 to 12 seconds in mold gel time quoted by the manufacturer). FORTRAN programs were written to solve the SRIM model based on Darcy's equation. The model incorporated heat transfer and chemical reaction. The modeling was intended to aid in interpreting in-mold pressure data obtained from mat permeability characterization. The model also has other wider applications such as mold design and SRIM and resin transfer molding (RTM) simulation. The model predicts some experimental data from this work and the literature satisfactorily.

  18. Sequential shrink photolithography for plastic microlens arrays

    NASA Astrophysics Data System (ADS)

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  19. Sequential shrink photolithography for plastic microlens arrays.

    PubMed

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-18

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  20. Sequential shrink photolithography for plastic microlens arrays

    PubMed Central

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-01-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children’s toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays. PMID:21863126

  1. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  2. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    NASA Astrophysics Data System (ADS)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  3. Three-dimensional Biomimetic Technology: Novel Biorubber Creates Defined Micro- and Macro-scale Architectures in Collagen Hydrogels

    PubMed Central

    Rodriguez-Rivera, Veronica; Weidner, John W.; Yost, Michael J.

    2016-01-01

    Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material. PMID:26967145

  4. Three-dimensional Biomimetic Technology: Novel Biorubber Creates Defined Micro- and Macro-scale Architectures in Collagen Hydrogels.

    PubMed

    Rodriguez-Rivera, Veronica; Weidner, John W; Yost, Michael J

    2016-02-12

    Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material.

  5. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently ‘intelligent’ behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton—a ubiquitous cellular protein scaffold whose functions are manifold and essential to life—and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness. PMID:26478782

  6. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum.

    PubMed

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently 'intelligent' behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton-a ubiquitous cellular protein scaffold whose functions are manifold and essential to life-and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element packagemore » ABAQUS registered . Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project ''APT{sub P}ACK'' (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging)« less

  8. Development of eddy current probe for fiber orientation assessment in carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Wincheski, Russell A.; Zhao, Selina

    2018-04-01

    Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.

  9. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    PubMed

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  10. Nonaqueous slip casting of high temperature ceramic superconductors using an investment casting technique

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)

    1993-01-01

    A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.

  11. Prosthetics & Orthotics Manufacturing Initiative (POMI)

    DTIC Science & Technology

    2012-12-21

    the two materials. The rod was then put onto a lathe machine, allowing a thin sheet, with stripes of alternating materials, to be cut from the rod...tooling from. Mentis determined a method to use Aquacore, which involved machining blanks via CNC , followed by coating the mold to prevent resin...infusion into the mold. Mentis also attempted to use plaster combined with CNC machining, however, these molds did not survive the machining process

  12. Optimization of process parameters in the RF-DC plasma N2-H2 for AISI420 molds and dies

    NASA Astrophysics Data System (ADS)

    Herdianto, Hengky; Djoko, D. J.; Santjojo, H.; Masruroh

    2017-11-01

    The RF-DC plasma N2-H2 was used to make precise AISI420 molds and dies have complex textured geometry. The quality of the molds and dies directly affect the quality of the produced parts. The excellent examples of molds were used for injection molding lenses and dies used for the precision forging of automotive drive train components. In this study, a temperature, DC bias, and duration as process parameters of the RF-DC plasma N2-H2 have been optimized for molds and dies fabrication. The mask-less micro-patterned method was utilized to draw the initial 2D micro patterns directly onto the AISI420 substrate surface. The unprinted substrate surfaces were selectively nitrided by the RF-DC plasma N2-H2 at 673 K for 5400 s by 70 Pa with hollow cathode device. Energy Dispersive X-ray was utilized to describe the nitrogen content distribution at the vicinity of the border between the unprinted surfaces. This exclusive nitrogen mapping proves that only the unprinted parts of the substrate have high content nitrogen solutes. XRD analysis was performed to investigate whether the iron nitrides were precipitated by RF-DC plasma N2-H2 in the AISI420.

  13. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-07-01

    Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  14. Advanced fabrication of Si nanowire FET structures by means of a parallel approach.

    PubMed

    Li, J; Pud, S; Mayer, D; Vitusevich, S

    2014-07-11

    In this paper we present fabricated Si nanowires (NWs) of different dimensions with enhanced electrical characteristics. The parallel fabrication process is based on nanoimprint lithography using high-quality molds, which facilitates the realization of 50 nm-wide NW field-effect transistors (FETs). The imprint molds were fabricated by using a wet chemical anisotropic etching process. The wet chemical etch results in well-defined vertical sidewalls with edge roughness (3σ) as small as 2 nm, which is about four times better compared with the roughness usually obtained for reactive-ion etching molds. The quality of the mold was studied using atomic force microscopy and scanning electron microscopy image data. The use of the high-quality mold leads to almost 100% yield during fabrication of Si NW FETs as well as to an exceptional quality of the surfaces of the devices produced. To characterize the Si NW FETs, we used noise spectroscopy as a powerful method for evaluating device performance and the reliability of structures with nanoscale dimensions. The Hooge parameter of fabricated FET structures exhibits an average value of 1.6 × 10(-3). This value reflects the high quality of Si NW FETs fabricated by means of a parallel approach that uses a nanoimprint mold and cost-efficient technology.

  15. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  16. Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication

    PubMed Central

    Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.

    2009-01-01

    Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595

  17. Third NASA Advanced Composites Technology Conference, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference held at Long Beach, California, 8-11 June 1992. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  18. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  19. A Review of the NASA Textile Composites Research

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.

    1997-01-01

    During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.

  20. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  1. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has beenmore » implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.« less

  2. Fast and cheap fabrication of molding tools for polymer replication

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.

    2017-02-01

    Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.

  3. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.

    PubMed

    Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-11-01

    The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. The effects of aircraft fuel and fluids on the strength properties of Resin Transfer Molded (RTM) composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dow, Marvin B.

    1993-01-01

    The resin transfer molding (RTM) process offers important advantages for cost-effective composites manufacturing, and consequently has become the subject of intense research and development efforts. Several new matrix resins have been formulated specifically for RTM applications in aircraft and aerospace vehicles. For successful use on aircraft, composite materials must withstand exposure to the fluids in common use. The present study was conducted to obtain comparative screening data on several state-ofthe-art RTM resins after environmental exposures were performed on RTM composite specimens. Four graphite/epoxy composites and one graphite/bismaleimide composite were tested; testing of two additional graphite epoxy composites is in progress. Zero-deg tension tests were conducted on specimens machined from eight-ply (+45-deg, -45-deg) laminates, and interlaminar shear tests were conducted on 32-ply 0-deg laminate specimens. In these tests, the various RTM resins demonstrated widely different strengths, with 3501-6 epoxy being the strongest. As expected, all of the matrix resins suffered severe strength degradation from exposure to methylene chloride (paint stripper). The 3501-6 epoxy composites exhibited about a 30 percent drop in tensile strength in hot, wet tests. The E905-L epoxy exhibited little loss of tensile strength (less than 8 percent) after exposure to water. The CET-2 and 862 epoxies as well as the bismaleimide exhibited reduced strengths at elevated temperature after exposure to oils and fuel. In terms of the percentage strength reductions, all of the RTM matrix resins compared favorably with 3501-6 epoxy.

  5. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    PubMed

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  6. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  7. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  8. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  9. Factors influencing microinjection molding replication quality

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  10. Analysis of form deviation in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  11. Characterization of polymeric binders for Metal Injection Molding (MIM) process

    NASA Astrophysics Data System (ADS)

    Adames, Juan M.

    The Metal Injection Molding (MIM) process is an economically attractive method of producing large amounts of small and complex metallic parts. This is achieved by combining the productivity of injection molding with the versatility of sintering of metal particulates. In MIM, the powdered metal is blended with a plastic binder to obtain the feedstock. The binder imparts flowability to the blend at injection molding conditions and strength at ambient conditions. After molding, the binder is removed in a sequence of steps that usually involves solvent-extraction and polymer burn-out. Once the binder is removed, the metal particles are sintered. In this research several topics of the MIM process were studied to understand how the polymeric binder, similar to the one used in the sponsoring company, works. This was done by examining the compounding and water debinding processes, the rheological and thermal properties, and the microstructure of the binder/metal composite at different processing stages. The factors studied included the metal contents, the composition of the binder and the processing conditions. The three binders prepared during the course of this research were blends of a polyolefin, polyoxymethylene copolymer (POM) and a water-soluble polymer (WSP). The polyolefin resins included polypropylene (PP), high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE). The powdered metal in the feedstocks was 316 L stainless steel. The compounding studies were completed in an internal mixer under different conditions of temperature, rotational speed and feedstock composition. It was found that the metal concentration was the most important factor in determining the torque evolution curves. The observation of microstructure with Scanning Electron Microscope (SEM) at different stages during compounding revealed that the metal particles neither agglomerate nor touch each other. The liquid extraction of the water-soluble polymer (WSP) from the molded parts (or water debinding) was investigated using two configurations of flow of water relative to the samples. Both permitted the reduction of the mass transfer resistance outside the parts, revealing information on the diffusion of the WSP inside the part exclusively. The debinding studies showed that a single effective diffusivity could be used to model the extraction process of the binder from molded parts. This approach is more accurate when the debinding time is above 2 hours. Steady shear and dynamic experiments were conducted on the binder and feedstocks samples containing LLDPE. The results of both experiments revealed that the feedstocks did not show yield stress even though the highest metal content was 64% by volume. Therefore, it was concluded that there were only hydrodynamic interactions between the metal particles. The thermal characterization of binders, polymers and feedstocks included differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC tests were performed after preheating and quenching of the samples. The heating rate was 20°C/min. The TGA scans were conducted from room temperature to 700°C at 20°C/min. The DSC tests revealed that the melting point of the polymers depressed when blended in the binders and feedstocks. The depression was more intense for POM and the water-soluble polymer than for the polyolefins. Therefore, it was concluded that the melting point depression of POM and the water-soluble polymer was caused by their entrapment in the polyolefin matrix and in between the metal particles. The TGA scans showed that the feedstocks with higher metal concentration had higher final decomposition temperature, but similar onset temperature. The reason was that the higher the metal concentration the more difficult the diffusion of the products of the decomposition of the binder out of the samples. The morphological studies revealed that the binders were heterogeneous showing domains of the polar resins, embedded in a continuous phase composed of polyolefin. This distribution of phases was the result of the immiscibility between the polymeric components, and of the higher concentration (>70 vol%) of the polyolefin with respect to the polar components (polyoxymethylene and water-soluble polymer). The deformation during steady shear testing and compounding of the binder with the metal modified the size of the dispersed domains. The steady shearing increased the size of the dispersed domains by coalescence of the particles. On the other hand, the presence of powdered metal during compounding forced a redistribution of the dispersed phases. Apparently, a thin heterogeneous layer of binder surrounded the metal particles while most of the polyolefin occupied the space between the coated metal particles. The SEM study on samples obtained after water debinding revealed that the water-soluble polymer did not distribute uniformly on the surface of the molded disk of feedstock used for water debinding tests.

  12. [Biological monitoring in the molding of plastics and rubbers].

    PubMed

    Fustinoni, S; Campo, L; Cirla, A M; Cirla, P E; Cutugno, V; Lionetti, C; Martinotti, I; Mossini, E; Foà, V

    2007-01-01

    This survey was carried out in the molding of plastics and rubbers, in the "Professional Cancer Prevention Project" sponsored by the Lombardy region with the objective of developing and implementing protocols for evaluating exposure to carcinogens through the biological monitoring. The realities of molding the thermoplastic polymer ABS, rubber, and thermosetting plastics containing formaldehyde were examined. The carcinogenic substances identified in these processes were: 1,3-butadiene, acrylonitrile and styrene in molding ABS, polycyclic aromatic hydrocarbons (PAH) in molding rubber, and formaldehyde in molding the thermosetting plastics. Only for some of these substances biological indicators are available. The limited exposure to airborne chemicals in molding ABS and the intrinsic characteristics of biological indicators available for 1-3 butadiene have determined the non applicability of biological monitoring to this situation. The absence of a biological indicator of exposure to formaldehyde has made this situation not investigable. Exposure in the rubber molding was studied in 19 subjects applying the determination not metabolized PAH in urine. The levels of these indicators were similar to those measured in other groups of subjects without occupational exposure to PAH, confirming a low airborne contamination in this workplace.

  13. The use of image analysis in evaluation of the fibers orientation in Wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Bednarz, Arkadiusz; Frącz, Wiesław; Janowski, Grzegorz

    2016-12-01

    In this paper a novel way of a digital analysis of fibers orientation with a five-step algorithmwas presented. In the study, a molded piece with a dumbbell shape prepared from wood-polymer composite was used. The injection molding process was examined in experimental and numerical way. Based on the developed mathematical algorithm, a significant compliance of fiber orientation in different areas of the molded piece was obtained. The main aim of thisworkwas fiber orientation analysis of wood-polymer composites. An additional goal of thiswork was the comparison of the results reached in numerical analysis with results obtained from an experiment. The results of this research were important for the scientific and also from the practical point of view. In future works the prepared algorithm could be used to reach optimal parameters of the injection molding process.

  14. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  15. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom-made matrix resins that meet the required processing conditions for the fabrication of textile composites. Once the resin is in place, the temperature is raised to 375 C and the oligomers are cross-linked into a high-glass-transition-temperature (Tg) nematic network without releasing volatiles. The mechanical properties of the fully crosslinked, composite articles are comparable to typical composites based on commercially available epoxy resins.

  16. Investigation of the shear thinning behavior of epoxy resins for utilization in vibration assisted liquid composite molding processes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Kirdar, C.; Rudolph, N.; Zaremba, S.; Drechsler, K.

    2014-05-01

    Efficient production and consumption of energy are of greatest importance for contemporary industries and their products. This has led to an increasing application of lightweight materials in general and of Carbon Fiber Reinforced Plastics (CFRP) in particular. However, broader application of CFRP is often limited by high costs and manual labor production processes. These constraints are addressed by Liquid Composite Molding (LCM) processes. In LCM a dry fibrous preform is placed into a cavity and infiltrated mostly by thermoset resins; epoxy resins are wide spread in CFRP applications. One crucial parameter for a fast mold filling is the viscosity of the resin, which is affected by the applied shear rates as well as temperature and curing time. The work presented focuses on the characterization of the shear thinning behavior of epoxy resins. Furthermore, the correlation with the conditions in vibration assisted LCM processes, where additional shear rates are created during manufacture, is discussed. Higher shear rates result from high frequencies and/or high amplitudes of the vibration motions which are created by a vibration engine mounted on the mold. In rheological investigations the shear thinning behavior of a representative epoxy resin is studied by means of rotational and oscillatory experiments. Moreover, possible effects of shear rates on the chemical curing reaction are studied. Here, the time for gelation is measured for different levels of shear rates in a pre-shearing phase. Based on the rheological studies, the beneficial effect of vibration assistance in LCM processes with respect to mold filling can further be predicted and utilized.

  17. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  18. Chemistry of rubber processing and disposal.

    PubMed Central

    Bebb, R L

    1976-01-01

    The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis. PMID:799964

  19. Polymeric waveguide array with 45 degree slopes fabricated by bottom side tilted exposure

    NASA Astrophysics Data System (ADS)

    Lin, Xiaohui; Dou, Xinyuan; Wang, Alan X.; Chen, Ray T.

    2011-01-01

    This paper demonstrated a practical fabrication process of polymeric waveguide array (12 channels) with 50μm(W)×50μm(H)×23mm(L) dimension and mirror embedded 45° degree slopes for vertical coupling purpose. The entire process contained three main parts: a SU8 pre-mold with 45° slope, a PDMS mold and the final waveguide array device. The key step of fabricating the pre-mold included a bottom side tilted exposure of SU8 photo resist. By placing the sample upside down, tilting by 58.7° and immersing into DI water, the ultraviolet (UV) beam that shined vertically was directed to go through from the bottom of the glass substrate into top side SU8 resist with 45° angle to form the surface. This method was able to guarantee no-gap contact between the mask pattern and the photo resist when exposing. By comparing the process complexity and achieved structure of the top and bottom side exposure, the later was proved to be a promising method for making high quality tilted structure without any tailing effect. The reversed PDMS mold was then fabricated on the SU8 pre-mold. The PDMS mold was used to imprint the cladding layer of the waveguide array. After metal deposition, core filling and top cladding layer coating, the final polymeric waveguide array device was achieved. For performance evaluation, 850nm laser beam from VCSEL was modulated to 10Gbps signals and vertically coupled into the waveguide array. The eye diagrams revealed high Q factor when transmitting signals along these waveguide array.

  20. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  1. Implementation of New Process Models for Tailored Polymer Composite Structures into Processing Software Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin

    2010-02-23

    This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of amore » new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.« less

  2. Three-dimensional ceramic molding process based on microstereolithography for the production of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku

    2014-03-01

    A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.

  3. Injection molding as a one-step process for the direct production of pharmaceutical dosage forms from primary powders.

    PubMed

    Eggenreich, K; Windhab, S; Schrank, S; Treffer, D; Juster, H; Steinbichler, G; Laske, S; Koscher, G; Roblegg, E; Khinast, J G

    2016-05-30

    The objective of the present study was to develop a one-step process for the production of tablets directly from primary powder by means of injection molding (IM), to create solid-dispersion based tablets. Fenofibrate was used as the model API, a polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol graft co-polymer served as a matrix system. Formulations were injection-molded into tablets using state-of-the-art IM equipment. The resulting tablets were physico-chemically characterized and the drug release kinetics and mechanism were determined. Comparison tablets were produced, either directly from powder or from pre-processed pellets prepared via hot melt extrusion (HME). The content of the model drug in the formulations was 10% (w/w), 20% (w/w) and 30% (w/w), respectively. After 120min, both powder-based and pellet-based injection-molded tablets exhibited a drug release of 60% independent of the processing route. Content uniformity analysis demonstrated that the model drug was homogeneously distributed. Moreover, analysis of single dose uniformity also revealed geometric drug homogeneity between tablets of one shot. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Refractory materials from lunar resources

    NASA Technical Reports Server (NTRS)

    Fabes, B. D.; Poisl, W. H.

    1991-01-01

    Refractories - materials which are able to withstand extremely high temperatures - are sure to be an important part of any processing facility or human outpost which is built on Mars. Containers for processing lunar oxygen will need high temperature components. Fabrication of structural material from lunar resources need both containment vessels to hold high temperature melts and molds in which to form the final shapes. Certainly, it would be desirable to fabricate such vessels and molds on the Moon, rather than carrying them up from the Earth. At first glance, this might appear to be a trivial task, since the Moon's surface consists of a variety of refractory compositions. To turn the regolith into a useful fire brick or mold, however, will require water or other binders and additives which are likely to be in extremely short supply on the Moon. The steps needed to make fire bricks and molds for lunar-derived structural materials are examined, pointing out the critical steps and resources which will be needed. While these processes and applications may seem somewhat mundane, it is emphasized that it is precisely these rudimentary processes which must be mastered before discussing making aerobrakes, and other fancier refractories from lunar resources.

  5. Characterization and Surface Treatment of Materials Used in MADEAL S.A. Industry Productive Process of Rims by Plasma Assisted Repetitive Pulsed Arcs Technique

    NASA Astrophysics Data System (ADS)

    Jiménez, H.; Salazar, V. H.; Devia, A.; Jaramillo, S.; Velez, G.

    2006-12-01

    A study of materials used in the molds production to aluminium rims manufacture in the MADEAL S.A. factory was carried out for apply a plasma assisted surface treatment consists in growing TiAlN hard coatings that it protects this molds in the productive process. This coating resists high oxidation temperatures, of the other of 800 °C, high hardness (2800 Vickers) and low friction coefficient. A plasma assisted repetitive pulsed arcs mono-evaporator system was used in the grow of the TiAlN coatings, the TiAlN target is a sinterized 50% Ti and 50% Al, in the substrate they were used two types of steel that compose the molds injection pieces for the rims production. These materials were subjected to linear and fluctuating thermal changes in the Bruker axs X-Ray diffractometer temperature chamber, what simulated the molds thermal variation in the rims production process and they were compared with TiAlN coatings subjected to same thermal changes. The Materials characterization, before and later of thermal process, was carried out using XRD, SPM and EDS techniques, to analyze the crystallographic, topographic and chemical surface structure behaviours.

  6. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerousmore » defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic characterization are compared to the initial design.« less

  7. Influence of Mold Surface Treatments on Flow of Polymer in Injection Moulding. Application to Weldlines

    NASA Astrophysics Data System (ADS)

    Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.

    2007-04-01

    Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.

  8. Modeling injection molding of net-shape active ceramic components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on themore » GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of representative Newtonian viscosity is dependent on the amount of heating of the initially room temperature mold. An early 3D transient model shows that the initial design of the distributor is sub-optimal. However, these simulations take several months to run on 4 processors of an HP workstation using a preconditioner/solver combination of ILUT/GMRES with fill factors of 3 and PSPG stabilization. Therefore, several modifications to the distributor geometry and orientations of the vents and molds have been investigated using much faster 3D steady-state simulations. The pressure distribution for these steady-state calculations is examined for three different distributor designs to see if this can indicate which geometry has the superior design. The second modification, with a longer distributor, is shown to have flatter, more monotonic isobars perpendicular to the flow direction indicating a better filling process. The effects of the distributor modifications, as well as effects of the mold orientation, have also been examined with laboratory experiments in which the flow of a viscous Newtonian oil entering transparent molds is recorded visually. Here, the flow front is flatter and voids are reduced for the second geometry compared to the original geometry. A horizontal orientation, as opposed to the planned vertical orientation, results in fewer voids. Recently, the Navier-Stokes equations have been stabilized with the Dohrman-Bochev PSPP stabilization method, allowing us to calculate transient 3D simulations with computational times on the order of days instead of months. Validation simulations are performed and compared to the experiments. Many of the trends of the experiments are captured by the level set modeling, though quantitative agreement is lacking mainly due to the high value of the gas phase viscosity necessary for numerical stability, though physically unrealistic. More correct trends are predicted for the vertical model than the horizontal model, which is serendipitous as the actual mold is held in a vertical geometry. The full, transient mold filling calculations indicate that the flow front is flatter and voids may be reduced for the second geometry compared to the original geometry. The validated model is used to predict mold filling for the actual process with the material properties for the PZT paste, the original distributor geometry, and the mold in a vertical orientation. This calculation shows that voids may be trapped at the four corners of the mold opposite the distributor.« less

  9. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  10. Graphene-based inline pressure sensor integrated with microfluidic elastic tube

    NASA Astrophysics Data System (ADS)

    Inoue, Nagisa; Onoe, Hiroaki

    2018-01-01

    We propose an inline pressure sensor composed of a polydimethylsiloxane (PDMS) microfluidic tube integrated with graphene sheets. The PDMS tube was fabricated through molding, and a multilayered graphene sheet was transferred on the surface of the PDMS tube. The pressure inside the tube was monitored using the changes in the electrical resistance of the transferred graphene. The proposed pressure sensor could be suitable for precise pressure measurement for a small amount of fluid in microfluidic systems including organ-on-a-chip devices.

  11. EVALUATION OF POLLUTION PREVENTION OPPORTUNITIES FOR MOLD RELEASE AGENTS

    EPA Science Inventory

    The report gives results of an assessment of the processes, materials, installation practices, and emission characteristics associated with the application of mold release agents (MRAs). Emissions were estimated based on available information on MRA composition and consumption. V...

  12. Incipient flocculation molding: A new ceramic-forming technique

    NASA Astrophysics Data System (ADS)

    Arrasmith, Steven Reade

    Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder. Densities and microstructures were quite similar to those obtained by dry pressing and sintering these powders. Dried green samples with densities of ca. 57% of theoretical sintered to >96% of theoretical density. This research has demonstrated IFM as a viable ceramic forming process which has potential to be developed into an industrial process. Further research is needed to determine preferred molding parameters, other possible polymer-solvent systems, and investigate the use of other ceramic powders. The concepts developed for IFM may have potential applications in other ceramic forming processes, such as extrusion and rapid prototyping.

  13. Computational Fluid Dynamics Modeling of Macrosegregation and Shrinkage in Large-Diameter Steel Roll Castings

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu

    2011-12-01

    Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and shrinkage also are discussed.

  14. Influence of injection molding process parameters on fiber concentration distribution in long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni

    2018-05-01

    In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.

  15. Study on thickness distribution of thermoformed medical PVC blister

    NASA Astrophysics Data System (ADS)

    Li, Yiping

    2017-08-01

    Vacuum forming has many advantages over other plastic forming processes due to its cost effectiveness, time efficiency, higher product precision, and more design flexibility. Nevertheless, when pressures greater than the atmospheric value are required to force the thermo-plastic into more intimate contact with the mold surface, pressure forming is a better choice. This paper studies the process of air-pressure thermoforming of plastic sheet, and focuses on medical blister PVC products. ANSYS POLYFLOW tool is used to simulate the process and analyze the wall thickness distribution of the blister. The influence of mold parameters on the wall thickness distribution of thermoformed part is thus obtained through simulation. Increasing radius between mold and side wall at the bottom of blister and draft prove to improve the wall thickness distribution.

  16. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    NASA Technical Reports Server (NTRS)

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  17. Process and Structural Health Monitoring of Composite Structures with Embedded Fiber Optic Sensors and Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Keulen, Casey James

    Advanced composite materials are becoming increasingly more valuable in a plethora of engineering applications due to properties such as tailorability, low specific strength and stiffness and resistance to fatigue and corrosion. Compared to more traditional metallic and ceramic materials, advanced composites such as carbon, aramid or glass reinforced plastic are relatively new and still require research to optimize their capabilities. Three areas that composites stand to benefit from improvement are processing, damage detection and life prediction. Fiber optic sensors and piezoelectric transducers show great potential for advances in these areas. This dissertation presents the research performed on improving the efficiency of advanced composite materials through the use of embedded fiber optic sensors and surface mounted piezoelectric transducers. Embedded fiber optic sensors are used to detect the presence of resin during the injection stage of resin transfer molding, monitor the degree of cure and predict the remaining useful life while in service. A sophisticated resin transfer molding apparatus was developed with the ability of embedding fiber optics into the composite and a glass viewing window so that resin flow sensors could be verified visually. A novel technique for embedding optical fiber into both 2- and 3-D structures was developed. A theoretical model to predict the remaining useful life was developed and a systematic test program was conducted to verify this model. A network of piezoelectric transducers was bonded to a composite panel in order to develop a structural health monitoring algorithm capable of detecting and locating damage in a composite structure. A network configuration was introduced that allows for a modular expansion of the system to accommodate larger structures and an algorithm based on damage progression history was developed to implement the network. The details and results of this research are contained in four manuscripts that are included in Appendices A-D while the body of the dissertation provides background information and a summary of the results.

  18. Material-Independent Nanotransfer onto a Flexible Substrate Using Mechanical-Interlocking Structure.

    PubMed

    Seo, Min-Ho; Choi, Seon-Jin; Park, Sang Hyun; Yoo, Jae-Young; Lim, Sung Kyu; Lee, Jae-Shin; Choi, Kwang-Wook; Jo, Min-Seung; Kim, Il-Doo; Yoon, Jun-Bo

    2018-05-22

    Nanowire-transfer technology has received much attention thanks to its capability to fabricate high-performance flexible nanodevices with high simplicity and throughput. However, it is still challenging to extend the conventional nanowire-transfer method to the fabrication of a wide range of devices since a chemical-adhesion-based nanowire-transfer mechanism is complex and time-consuming, hindering successful transfer of diverse nanowires made of various materials. Here, we introduce a material-independent mechanical-interlocking-based nanowire-transfer (MINT) method, fabricating ultralong and fully aligned nanowires on a large flexible substrate (2.5 × 2 cm 2 ) in a highly robust manner. For the material-independent nanotransfer, we developed a mechanics-based nanotransfer method, which employs a dry-removable amorphous carbon (a-C) sacrificial layer between a vacuum-deposited nanowire and the underlying master mold. The controlled etching of the sacrificial layer enables the formation of a mechanical-interlocking structure under the nanowire, facilitating peeling off of the nanowire from the master mold robustly and reliably. Using the developed MINT method, we successfully fabricated various metallic and semiconductor nanowire arrays on flexible substrates. We further demonstrated that the developed method is well suited to the reliable fabrication of highly flexible and high-performance nanoelectronic devices. As examples, a fully aligned gold (Au) microheater array exhibited high bending stability (10 6 cycling) and ultrafast (∼220 ms) heating operation up to ∼100 °C. An ultralong Au heater-embedded cuprous-oxide (Cu 2 O) nanowire chemical gas sensor showed significantly improved reversible reaction kinetics toward NO 2 with 10-fold enhancement in sensitivity at 100 °C.

  19. A Knowledge Database on Thermal Control in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Hirasawa, Shigeki; Satoh, Isao

    A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.

  20. Final Shape of Precision Molded Optics: Part 2 - Validation and Sensitivity to Material Properties and Process Parameters

    DTIC Science & Technology

    2012-06-27

    of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE

Top