Dupuis, O; Gaucherand, P; Mellier, G
2006-11-01
This study aims to describe the organization that was implemented at the Rhône-Alpes perinatal hotline, as well as to describe in utero transfer and neonate transport from an epidemiological point of view. A cohort study was performed between January 2003 and December 2004. Every in utero transfer and neonate transport was included. Transfers performed in 2003 were compared to transfers performed in 2004. Three endpoints were defined: the rate of in utero transfer (number of in utero transfers/number of in utero transfers + number of neonatal transfers), the rate of transfer toward level II units (number of transfers from level I to level II/number of transfers from level I to level II + number of transfers from level I to level III) as well as the rate of intra network transfer (number of intra network transfers/number of intra network transfers + number of extra network transfers). In 2003, 865 in utero transfers (IUT) and 1297 neonate transports (NT) were performed, in 2004 848 IUT and 1069 NT were performed. The rate of in utero transfer significantly increased from 40 to 44.2% in 2004 (865/2162 versus 848/1917, p = 0.007). The rate of transfer toward level II units increased for the mothers from 31.8% to 36.9% (177/557 versus 174/471, p = 0.09) and significantly increased for the neonates from 43.2 to 51.6% in 2004 (335/775 versus 327/633, p = 0.002). Finally the rate of intra network transfer has not significantly changed: for the IUT it decreased from 87 to 86% (755/865 versus 732/848, p = 0.59) and for the NT from 91% to 90% (1179/1297 versus 963/1069, p = 0.45). The organization that was implemented allows not only a safe 24 hour on call management of maternal transfers as well as neonate transport, but also a precise knowledge of epidemiologic indications relative to perinatal transfer.
Calibrating GPS With TWSTFT For Accurate Time Transfer
2008-12-01
40th Annual Precise Time and Time Interval (PTTI) Meeting 577 CALIBRATING GPS WITH TWSTFT FOR ACCURATE TIME TRANSFER Z. Jiang1 and...primary time transfer techniques are GPS and TWSTFT (Two-Way Satellite Time and Frequency Transfer, TW for short). 83% of UTC time links are...Calibrating GPS With TWSTFT For Accurate Time Transfer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT
Transfer Ratios: Ranking the California Community Colleges on Transfer and Institution Size.
ERIC Educational Resources Information Center
Karpp, Edward R.
A study was undertaken to rank the California Community Colleges according to a transfer ratio determined by the number of transfers compared to institution size. For each college, transfer ratios were computed by dividing the college's fall 1992 credit enrollment by the number of transfers from the college in the 1993-94 academic year. Four…
Kayes, Timothy D; Braley-Mullen, Helen
2013-01-01
IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.
Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II
NASA Technical Reports Server (NTRS)
Zhang, Burt X.; Karr, Gerald R.
1991-01-01
Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.
Mach number effect on jet impingement heat transfer.
Brevet, P; Dorignac, E; Vullierme, J J
2001-05-01
An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number.
Messer, C; Zander, A; Arnolds, I V; Nickel, S; Schuster, M
2015-12-01
In most hospitals the operating rooms (OR) are separated from the rest of the hospital by transfer rooms where patients have to pass through for reasons of hygiene. In the OR transfer room patients are placed on the OR table before surgery and returned to the hospital bed after surgery. It could happen that the number of patients who need to pass through a transfer room at a certain point in time exceed the number of available transfer rooms. As a result the transfer rooms become a bottleneck where patients have to wait and which, in turn, may lead to delays in the OR suite. In this study the ability of a discrete event simulation to analyze the effect of the duration of surgery and the number of ORs on the number of OR transfer rooms needed was investigated. This study was based on a discrete event simulation model developed with the simulation software AnyLogic®. The model studied the effects of the number of OR transfer rooms on the processes in an OR suite of a community hospital by varying the number of ORs from one to eight and using different surgical portfolios. Probability distributions for the process duration of induction, surgery and recovery and transfer room processes were calculated on the basis of real data from the community hospital studied. Furthermore, using a generic simulation model the effect of the average duration of surgery on the number of OR transfer rooms needed was examined. The discrete event simulation model enabled the analysis of both quantitative as well as qualitative changes in the OR process and setting. Key performance indicators of the simulation model were patient throughput per day, the probability of waiting and duration of waiting time in front of OR transfer rooms. In the case of a community hospital with 1 transfer room the average proportion of patients waiting before entering the OR was 17.9 % ± 9.7 % with 3 ORs, 37.6 % ± 9.7 % with 5 ORs and 62.9 % ± 9.1 % with 8 ORs. The average waiting time of patients in the setting with 3 ORs was 3.1 ± 2.7 min, with 5 ORs 5.0 ± 5.8 min and with 8 ORs 11.5 ± 12.5 min. Based on this study the community hospital needs a second transfer room starting from 4 ORs so that there is no bottleneck for the subsequent OR processes. The average patient throughput in a setting with 4 ORs increased significantly by 0.3 patients per day when a second transfer room is available. The generic model showed a strong effect of the average duration of surgery on the number of transfer rooms needed. There was no linear correlation between the number of transfer rooms and the number of ORs. The shorter the average duration of surgery, the earlier an additional transfer room is required. Thus, hospitals with shorter duration of surgery and fewer ORs may need the same or more transfer rooms than a hospital with longer duration of surgery and more ORs. However, with respect to an economic analysis, the costs and benefits of installing additional OR transfer rooms need to be calculated using the profit margins of the specific hospital.
Stern, Judy E; Goldman, Marlene B; Hatasaka, Harry; MacKenzie, Todd A; Surrey, Eric S; Racowsky, Catherine
2009-03-01
To determine the optimal number of day 3 embryos to transfer in women >or=38 years by conducting an evidence-based evaluation. Retrospective analysis of 2000-2004 national SART data. National writing group. A total of 36,103 day 3 embryo transfers in women >or=38 years undergoing their first assisted reproductive technology cycle. None. Logistic regression was used to model the probability of pregnancy, delivery, and multiple births (twin or high order) based on age- and cycle-specific parameters. Pregnancy rates, delivery rates, and multiple rates increased up to transfer of three embryos in 38-year-olds and four in 39-year-olds; beyond this number, only multiple rates increased. In women >or=40 years, delivery rates and multiple rates climbed steadily with increasing numbers transferred. Multivariate analysis confirmed the statistically significant effect of age, number of oocytes retrieved, and embryo cryopreservation on delivery and multiple rates. Maximum FSH level was not an independent predictor by multivariate analysis. Use of intracytoplasmic sperm injection was associated with lowered delivery rate. No more than three or four embryos should be transferred in 38- and 39-year-olds, respectively, whereas up to five embryos could be transferred in >or=40-year-olds. Numbers of embryos to transfer should be adjusted according to number of oocytes retrieved and availability of excess embryos for cryopreservation.
46 CFR 13.127 - Service: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... discharged at the same time, a person may receive credit for only one transfer, one loading, and one... dates, the number and kinds of transfers the applicant has participated in, and the number of transfers... satisfaction of the signer that he or she is fully capable of supervising transfers of liquid cargo, including...
46 CFR 13.127 - Service: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... discharged at the same time, a person may receive credit for only one transfer, one loading, and one... dates, the number and kinds of transfers the applicant has participated in, and the number of transfers... satisfaction of the signer that he or she is fully capable of supervising transfers of liquid cargo, including...
46 CFR 13.127 - Service: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... discharged at the same time, a person may receive credit for only one transfer, one loading, and one... dates, the number and kinds of transfers the applicant has participated in, and the number of transfers... satisfaction of the signer that he or she is fully capable of supervising transfers of liquid cargo, including...
46 CFR 13.127 - Service: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... discharged at the same time, a person may receive credit for only one transfer, one loading, and one... dates, the number and kinds of transfers the applicant has participated in, and the number of transfers... satisfaction of the signer that he or she is fully capable of supervising transfers of liquid cargo, including...
Convective heat transfer around vertical jet fires: an experimental study.
Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim
2011-12-15
The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice. Copyright © 2011 Elsevier B.V. All rights reserved.
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
NASA Astrophysics Data System (ADS)
Umer, Asim; Naveed, Shahid; Ramzan, Naveed
2016-10-01
Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).
Heat Transfer from a Horizontal Cylinder Rotating in Oil
NASA Technical Reports Server (NTRS)
Seban, R. A.; Johnson, H. A.
1959-01-01
Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.
2017-09-01
AWARD NUMBER: W81XWH-16-1-0492 TITLE: Treating Gastrointestinal and Autism Symptoms in Adults with Autism Using Microbiota Transfer Therapy (MTT...DATES COVERED (From - To) Sept 1 2016 to Aug 31, 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Treating Gastrointestinal and Autism Symptoms in...Adults with Autism Using Microbiota Transfer Therapy (MTT) 5b. GRANT NUMBER W81XWH-16-1-0492 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
1999-12-01
as an R & D part of the time/frequency transfer system using Koreasat of Korea Telecom. INTRODUCTION The time/frequency transfer system distributes...Satellite Data Manipulation Tool in a Time and Frequency Transfer System Using Satellites 5a . CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...precision and stability. In Korea, research for the time/frequency transfer system using Koreasat is in progress. The time/frequency transfer system using
Code of Federal Regulations, 2010 CFR
2010-04-01
... accounts, transferred accounts, foreign branches and a de minimis number of accounts. 247.723 Section 247... Exemptions for special accounts, transferred accounts, foreign branches and a de minimis number of accounts... dealer. (e) De minimis exclusion. A bank may, in determining its compliance with the chiefly compensated...
Code of Federal Regulations, 2011 CFR
2011-04-01
... accounts, transferred accounts, foreign branches and a de minimis number of accounts. 247.723 Section 247... Exemptions for special accounts, transferred accounts, foreign branches and a de minimis number of accounts... dealer. (e) De minimis exclusion. A bank may, in determining its compliance with the chiefly compensated...
Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.
Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601
Theory and computation of optimal low- and medium-thrust transfers
NASA Technical Reports Server (NTRS)
Chuang, C.-H.
1994-01-01
This report presents two numerical methods considered for the computation of fuel-optimal, low-thrust orbit transfers in large numbers of burns. The origins of these methods are observations made with the extremal solutions of transfers in small numbers of burns; there seems to exist a trend such that the longer the time allowed to perform an optimal transfer the less fuel that is used. These longer transfers are obviously of interest since they require a motor of low thrust; however, we also find a trend that the longer the time allowed to perform the optimal transfer the more burns are required to satisfy optimality. Unfortunately, this usually increases the difficulty of computation. Both of the methods described use small-numbered burn solutions to determine solutions in large numbers of burns. One method is a homotopy method that corrects for problems that arise when a solution requires a new burn or coast arc for optimality. The other method is to simply patch together long transfers from smaller ones. An orbit correction problem is solved to develop this method. This method may also lead to a good guidance law for transfer orbits with long transfer times.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
NASA Astrophysics Data System (ADS)
Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh
2017-09-01
The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.
Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS
NASA Astrophysics Data System (ADS)
Wang, Yongwei; Huai, Xiulan
2018-04-01
The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.
Tanbo, T G; Eskild, A
2015-12-01
Do number of cells in the transferred cleavage stage embryo and number of oocytes retrieved for IVF influence maternal hCG concentrations in early pregnancies? Compared with transfer of a 2-cell embryo, transfer of a 4-cell embryo results in higher hCG concentrations on Day 12 after transfer, and more than 20 oocytes retrieved were associated with low hCG concentrations. Maternal hCG concentration in very early pregnancy varies considerably among women, but is likely to be an indicator of time since implantation of the embryo into the endometrium, in addition to number and function of trophoblast cells. We followed 1047 pregnancies after IVF/ICSI from oocyte retrieval until Day 12 after embryo transfer. Women were recruited in Norway during the years 2005-2013. Successful pregnancies after transfer of one single embryo that had been cultured for 2 days were included. Maternal hCG was quantified on Day 12 after embryo transfer by chemiluminescence immunoassay, which measures intact hCG and the free β-hCG chain. Information on a successful pregnancy, defined as birth after >16 weeks, was obtained by linkage to the Medical Birth Registry of Norway. Transfer of a 4-cell embryo resulted in higher maternal hCG concentrations compared with transfer of a 2-cell embryo (134.8 versus 87.8 IU/l, P < 0.05). A high number of oocytes retrieved (>20) was associated with low hCG concentrations (P < 0.05). The factors studied explain a limited part of the total variation of hCG concentrations in early pregnancy. Although embryo transfer was performed at the same time after fertilization, we do not know the exact time of implantation. A further limitation to our study is that the number of pregnancies after transfer of a 2-cell embryo was small (27 cases). Number of cells in the transferred embryo and number of oocytes retrieved may influence the conditions and timing for embryo implantation in different ways and thereby influence maternal hCG concentrations. Such knowledge may be important for interpretation of hCG concentrations in early pregnancy. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Oxygen ion transference number of doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong; Liu, Meilin
The transference numbers for oxygen ion (t O) in several LaGaO 3-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications.
Condensation heat transfer and flow friction in silicon microchannels
NASA Astrophysics Data System (ADS)
Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng
2008-11-01
An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.
Effects of roughness and permeability on solute transfer at the sediment water interface.
Han, Xu; Fang, Hongwei; He, Guojian; Reible, Danny
2018-02-01
Understanding the mechanisms of solute transfer across the sediment-water interface plays a crucial role in water quality prediction and management. In this study, different arranged particles are used to form typical rough and permeable beds. Large Eddy Simulation (LES) is used to model the solute transfer from the overlying water to sediment beds. Three rough wall turbulence regimes, i.e., smooth, transitional and rough regime, are separately considered and the effects of bed roughness on solute transfer are quantitatively analyzed. Results show that the classic laws related to Schmidt numbers can well reflect the solute transfer under the smooth regime with small roughness Reynolds numbers. Under the transitional regime, the solute transfer coefficient (K L + ) is enhanced and the effect of Schmidt number is weakened by increasing roughness Reynolds number. Under the rough regime, the solute transfer is suppressed by the transition layer (Brinkman layer) and controlled by the bed permeability. Moreover, it is found that water depth, friction velocity and bed permeability can be used to estimate the solute transfer velocity (K L ) under the completely rough regime. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transitions: Managing the Transfer of Security Responsibility
2010-02-05
Index 1.2_Transitions-ConceptNote_v2.0_draft Index Transitions: Managing the Transfer of Security Responsibility A Concept Paper...reporting burden for the collection of information is estimated to average 1 hour per response , including the time for reviewing instructions...TITLE AND SUBTITLE Transitions: Managing the Transfer of Security Responsibility 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
NASA Astrophysics Data System (ADS)
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
Walait, Ahsan; Siddiqui, A M; Rana, M A
2018-02-13
The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.
40 CFR 152.135 - Transfer of registration.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., spinoff, bankruptcy transfer (no financial information need be disclosed); (7) A statement that the transferor and transferee understand that any false statement may be punishable under 18 U.S.C. 1001; and (8...) The name(s) and EPA registration number(s) of the product(s) being transferred; (4) A statement that...
Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang
2013-02-01
Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a significantly higher birth rate of healthy clones (0.5009% vs. 0.3362% and 0.2433%) than that resulting from P,D,L,Y-AFBs and P,D,L,Y-FFBs. This suggests that using LW-AFBs as donor cells results in a higher cloning efficiency in pigs, compared with the other two donor fibroblast cell types. The birth rate of healthy clones was significantly improved when the number of transferred cloned embryos was increased from 150-199 to 200-450 per recipient. However, increase of the number of transferred embryos from 200-249 to 250-450 per surrogate did not change the birth rate of healthy clones. This suggests that transfer of excessive (250-450) cloned embryos to an individual surrogate is not necessary for increasing the cloning efficiency in pigs, and the relatively optimal number of reconstructed embryos transferred to individual recipient is 200-249. Furthermore, our results indicated that the numbers of total born clones, clones born alive, and clones born healthy per litter have a significantly high positive correlation with each other. The present study provides useful information for improving SCNT efficiency in pigs.
Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan
2013-01-01
Abstract Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150–199, 200–249, 250–299, 300–349, or 350–450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53±0.34) was similar with that associated with P,D,L,Y-FFBs (2.72±0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47±0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a significantly higher birth rate of healthy clones (0.5009% vs. 0.3362% and 0.2433%) than that resulting from P,D,L,Y-AFBs and P,D,L,Y-FFBs. This suggests that using LW-AFBs as donor cells results in a higher cloning efficiency in pigs, compared with the other two donor fibroblast cell types. The birth rate of healthy clones was significantly improved when the number of transferred cloned embryos was increased from 150–199 to 200–450 per recipient. However, increase of the number of transferred embryos from 200–249 to 250–450 per surrogate did not change the birth rate of healthy clones. This suggests that transfer of excessive (250–450) cloned embryos to an individual surrogate is not necessary for increasing the cloning efficiency in pigs, and the relatively optimal number of reconstructed embryos transferred to individual recipient is 200–249. Furthermore, our results indicated that the numbers of total born clones, clones born alive, and clones born healthy per litter have a significantly high positive correlation with each other. The present study provides useful information for improving SCNT efficiency in pigs. PMID:23256540
Highly Directive Reflect Array Antenna Design for Wireless Power Transfer
2017-04-14
AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4076 5c. PROGRAM ELEMENT NUMBER...Antenna Design for Wireless Power Principal Investigator: SP Duttagupta Email: sdgupta@ee.iitb.ac.in Institution: Indian Institute of Technology
Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.
Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari
2014-01-01
This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.
NASA Technical Reports Server (NTRS)
Garland, Benjamine J.; Chauvin, Leo T.
1957-01-01
Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).
Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil
NASA Astrophysics Data System (ADS)
Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.
2018-03-01
In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.
Survival of Salmonella on refrigerated chicken carcasses and subsequent transfer to cutting board.
Jiménez, S M; Tiburzi, M C; Salsi, M S; Moguilevsky, M A; Pirovani, M E
2009-06-01
To determine the effect of refrigeration time and temperature on Salmonella cell numbers on inoculated chicken carcasses and their transfer to a plastic cutting board. The survival of Salmonella on chicken skin and the transfer to a plastic cutting board when exposed to different refrigeration temperatures (2, 6 or 8 degrees C) for 9 days were the two main issues on which this work focused. Two scenarios were carried out to ascertain these effects: carcasses treated with a decontaminating acetic acid solution and untreated carcasses. All of the contaminated carcasses remained contaminated after 9 days of refrigeration. However, on untreated samples, while Salmonella numbers increased almost 1.5 log at 8 degrees C, the pathogen numbers decreased about 1 log at 2 and 6 degrees C. On acid-treated samples, cell numbers slightly decreased at all of the temperatures studied. Temperature did not affect salmonellae transfer to the cutting board, but time did. Acid decontamination increased cell numbers transferred to the cutting board compared with untreated samples. Proper refrigeration at low temperatures did not allow Salmonella numbers to rise, regardless of which carcasses had been, or had not been, acid treated. Despite the fact that the rate of transfer was not affected by temperature, the acid treatment detached Salmonella cells from the chicken skin and, therefore, the probability of greater cross-contamination should be studied further. The results of this study may provide better information about the refrigeration conditions for fresh chicken storage and also determine if these, along with acetic acid decontamination of broiler chicken, would affect the pathogen transfer to a cutting board.
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
NASA Astrophysics Data System (ADS)
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.M.; Al-Fahed, S.F.
1996-07-01
A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number andmore » the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.« less
Thermoregulation and the determinants of heat transfer in Colias butterflies.
Kingsolver, Joel G; Moffat, Robert J
1982-04-01
As a means of exploring behavioral and morphological adaptations for thermoregulation in Colias butterflies, convective heat transfer coefficients of real and model butterflies were measured in a wind tunnel as a function of wind speed and body orientation (yaw angle). Results are reported in terms of a dimensionless heat transfer coefficient (Nusselt number, Nu) and a dimensionless wind speed (Reynolds number, Re), for a wind speed range typical of that experienced by basking Colias in the field. The resultant Nusselt-Reynolds (Nu-Re) plots thus indicate the rates of heat transfer by forced convection as a function of wind speed for particular model geometries.For Reynolds numbers throughout the measured range, Nusselt numbers for C. eurytheme butterflies are consistently lower than those for long cylinders, and are independent of yaw angle. There is significant variation among individual butterflies in heat transfer coefficients throughout the Re range. Model butterflies without artificial fur have Nu-Re relations similar to those for cylinders. Heat transfer in these models depends upon yaw angle, with higher heat transfer at intermediate yaw angles (30-60°); these yaw effects increase with increasing Reynolds number. Models with artificial fur, like real Colias, have Nusselt numbers which are consistently lower than those for models without fur at given Reynolds numbers throughout the Re range. Unlike real Colias, however, the models with fur do show yaw angle effects similar to those for models without fur.The independence of heat loss from yaw angle for real Colias is consistent with field observations indicating no behavioral orientation to wind direction. The presence of fur on the models reduces heat loss but does not affect yaw dependence. The large individual variation in heat transfer coefficients among butterflies is probably due to differences in fur characteristics rather than to differences in wing morphology.Finally, a physical model of a butterfly was constructed which accurately simulates the body temperatures of basking Colias in the field for a variety of radiation and wind velocity conditions. The success of the butterfly simulator in mimicking Colias thermal characteristics confirms our preliminary understanding of the physical bases for and heat transfer mechanisms underlying thermoregulatory adaptations in these butterflies.
NASA Technical Reports Server (NTRS)
Poinsatte, Philip E.
1990-01-01
Local heat transfer coefficients from a smooth and roughened NACA 0012 airfoil were measured using a steady state heat flux method. Heat transfer measurements on the specially constructed 0.533 meter chord airfoil were made both in flight on the NASA Lewis Twin Otter Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of small, 2 mm diameter, hemispheres of uniform size to the airfoil surface in four distinct patterns. The flight data was taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range of 1.24x10(exp 6) to 2.50x10(exp 6) and at various angles of attack up to 4 degrees. During these flight tests the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). The wind tunnel data was taken in the Reynolds number range of 1.20x10(exp 6) to 4.52x10(exp 6) and at angles of attack from -4 degrees to +8 degrees. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud making spray off. Results for both the flight and tunnel tests are presented as Frossling number based on chord versus position on the airfoil surface for various roughnesses and angle of attack. A table of power law curve fits of Nusselt number as a function of Reynolds number is also provided. The higher level of turbulence in the IRT versus flight had little effect on heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud making spray air in the IRT did not alter the heat transfer. Roughness generally increased the heat transfer by locally disturbing the boundary layer flow. Finally, the present data was not only compared with previous airfoil data where applicable, but also with leading edge cylinder and flat plate heat transfer values which are often used to estimate airfoil heat transfer in computer codes.
NASA Technical Reports Server (NTRS)
Eaves, R. H.; Buchanan, T. D.; Warmbrod, J. D.; Johnson, C. B.
1972-01-01
Heat transfer tests for two delta wing configurations were conducted in the hypervelocity wind tunnel. The 24-inch long models were tested at a Mach number of approximately 10.5 and at angles of attack of 20, 40, and 60 degrees over a length Reynolds number range from 5 million to 23 million on 4 May to 4 June 1971. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong
2013-12-01
To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, p<0.05) and average litter size (4.1 ± 2.3, 7 ± 3.6 vs. 2.5 ± 0.5). In vitro culture of reconstructed embryos for a longer time (40 h vs. 20 h) resulted in higher (p<0.05) pregnancy rate (44 ± 9 vs. 31 ± 3%) and delivery rate (44 ± 9 vs. 25 ± 9%). Furthermore, double oviductal transfer dramatically increased pregnancy rate (83 ± 6 vs. 27+8%, p<0.05), delivery rate (75 ± 2 vs. 27+8%, p<0.05) and average litter size (6.5 ± 2.8 vs. 2.6 ± 1.2) compared to single oviductal transfer. Our study demonstrated that an improvement in pig cloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun
2017-05-01
Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.
Hypersonic shock tunnel heat transfer tests of the Space Shuttle SILTS pod configuration
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1983-01-01
Heat transfer measurements have been made on a 0.0175-scale NASA Space Shuttle orbiter model having a simulated SILTS (Shuttle Infrared Leeside Temperature Sensor) pod on top of the vertical tail. Heat transfer distributions were measured both on the pod and on the vertical tail. The test program covered Mach numbers of 8, 11 and 16 in air, at Reynolds numbers from 100,000 to 18 million, based on model length. The angle of attack ranged from 30 deg to 40 deg at sideslip angles from -2 to +2 deg. Data were obtained with 92 thin film assistance thermometers located on the SILTS pod and on the upper 30 percent of the vertical tail. Heat transfer rates measured on the vertical tail show good agreement with flight data obtained from missions STS-1, -2 and -3. The variation of heat transfer to the pod with Reynolds number, Mach number and angle of attack is discussed.
NASA Astrophysics Data System (ADS)
Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.
2014-05-01
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.
NASA Astrophysics Data System (ADS)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-01-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
NASA Astrophysics Data System (ADS)
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-06-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
Optimal Placement of Non-Intrusive Waste Heat Recovery Devices in Exhaust Ducts
2015-06-01
Reynolds Number and Local Reynolds Number Depression Mixing .............................................................................40 3...57 viii 1. Counterintuitive Findings Due to Local Reynolds Number Depression ... depression in the secondary recirculation zone enhances heat transfer, and device placement is the dominant factor for maximizing heat transfer in a
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
NASA Astrophysics Data System (ADS)
Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick
2015-01-01
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.
NASA Technical Reports Server (NTRS)
Crawford, Davis H; Mccauley, William D
1957-01-01
A program to investigate the aerodynamic heat transfer of a nonisothermal hemisphere-cylinder has been conducted in the Langley 11-inch hypersonic tunnel at a Mach number of 6.8 and a Reynolds number from approximately 0.14 x 10(6) to 1.06 x 10(6) based on diameter and free-stream conditions. The experimental heat-transfer coefficients were slightly less over the whole body than those predicted by the theory of Stine and Wanlass (NACA technical note 3344) for an isothermal surface. For stations within 45 degrees of the stagnation point the heat-transfer coefficients could be correlated by a single relation between local Stanton number and local Reynolds number. Pitot pressure profiles taken at a Mach number of 6.8 on a hemisphere-cylinder have verified that the local Mach number or velocity outside the boundary layer required in the theories may be computed from the surface pressures by using isentropic flow relations and conditions immediately behind a normal shock. The experimental pressure distribution at Mach number of 6.8 is closely predicted by the modified Newtonian theory.
26. FIRST LEVEL, VIEW OF TRANSFER CHUTES FROM BIN NUMBERS ...
26. FIRST LEVEL, VIEW OF TRANSFER CHUTES FROM BIN NUMBERS 28 AND 32 LEADING TO OUT LEG; LOOKING SOUTHEAST - Northwestern Consolidated Elevator "A", 119 Fifth Avenue South, Minneapolis, Hennepin County, MN
NASA Astrophysics Data System (ADS)
Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua
2018-04-01
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.
Microscale Convective Heat Transfer for Thermal Management of Compact Systems
2012-03-12
pages 641–645, 1997. [9] S.V. Garimella and C.B. Sobhan. Transport in microchannels -a critical review. Annual Review of Heat Transfer , 13, 2003. [10] A... heat transfer for thermal management of compact systems Sb. GRANT NUMBER F A9550-08-l-0057 Sc. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Sd...improve the performance of many components. The e ects of digitized heat transfer using electrowetting on a dielectric were investigated in this paper
NASA Technical Reports Server (NTRS)
Drexel, Rober E; Mcadams, William H
1945-01-01
Report reviews published data and presents some new data on heat transfer to air flowing in round tubes, in rectangular ducts, and around finned cylinders. The available data for heat transfer to air in straight ducts of rectangular and circular cross section have been correlated in plots of Stanton number versus Reynolds number to provide a background for the study of the data for finned cylinders. Equations are recommended for both the streamlined and turbulent regions, and data are presented for the transition region between turbulent and laminar flow. Use of hexagonal ends on round tubes causes the characteristics of laminar flow to extend to high Reynolds numbers. Average coefficients for the entire finned cylinder have been calculated from the average temperature at the base of the fins and an equation which was derived to allow for the effectiveness of the fins. The available results for each finned cylinder are correlated herein in terms of graphs of Stanton number versus Reynolds number. In general, for a given Reynolds number, the Stanton number increases with increases in both spacing and width of the fins, and is apparently independent of cylinder diameter and temperature difference. For a given coefficient of heat transfer improved baffles and rough or wavy surfaces give a substantial reduction in pumping power per unit of heat transfer surface and a somewhat smaller decrease in pressure drop. (author)
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
NASA Astrophysics Data System (ADS)
Rezaei, Omid; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Pourfattah, Farzad; Mashayekhi, Ramin
2017-09-01
In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.
Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Giel, P. W.
2002-01-01
Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.
1995-08-01
Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Technical Reports Server (NTRS)
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Astrophysics Data System (ADS)
Flanagan, Michael J.
1992-09-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Effects of learning duration on implicit transfer.
Tanaka, Kanji; Watanabe, Katsumi
2015-10-01
Implicit learning and transfer in sequence acquisition play important roles in daily life. Several previous studies have found that even when participants are not aware that a transfer sequence has been transformed from the learning sequence, they are able to perform the transfer sequence faster and more accurately; this suggests implicit transfer of visuomotor sequences. Here, we investigated whether implicit transfer could be modulated by the number of trials completed in a learning session. Participants learned a sequence through trial and error, known as the m × n task (Hikosaka et al. in J Neurophysiol 74:1652-1661, 1995). In the learning session, participants were required to successfully perform the same sequence 4, 12, 16, or 20 times. In the transfer session, participants then learned one of two other sequences: one where the button configuration Vertically Mirrored the learning sequence, or a randomly generated sequence. Our results show that even when participants did not notice the alternation rule (i.e., vertical mirroring), their total working time was less and their total number of errors was lower in the transfer session compared with those who performed a Random sequence, irrespective of the number of trials completed in the learning session. This result suggests that implicit transfer likely occurs even over a shorter learning duration.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-07-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-02-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
NASA Technical Reports Server (NTRS)
Deissler, Robert G
1955-01-01
The expression for eddy diffusivity from a previous analysis was modified in order to account for the effect of kinematic viscosity on the turbulence in the region close to a wall. By using the modified expression, good agreement was obtained between predicted and experimental results for heat and mass transfer at Prandtl and Schmidt numbers between 0.5 and 3000. The effects of length-to-diameter ratio and of variable viscosity were also investigated for a wide range of Prandtl numbers.
36 CFR 1235.44 - What general transfer requirements apply to electronic records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 20740, phone number (301) 837-3420. (c) When transferring digital photographs and their accompanying... Archives Services Division (NWCS) for digital photographs, 8601 Adelphi Road, College Park, MD 20740, phone number (301) 837-2903. ...
Cross-domain transfer of quantitative discriminations: is it all a matter of proportion?
Balci, Fuat; Gallistel, Charles R
2006-08-01
Meck and Church (1983) estimated a 5:1 scale factor relating the mental magnitudes representing number to the mental magnitudes representing duration. We repeated their experiment with human subjects. We obtained transfer regardless of the objective scaling between the ranges; a 5:1 scaling for number versus duration (measured in seconds) was not necessary. We obtained transfer even when the proportions between the endpoints of the number range were different. We conclude that, at least in human subjects, transfer from a discrimination based on continuous quantity (duration) to a discrimination based on discrete quantity (number) is mediated by the cross-domain comparability of within-domain proportions. The results of our second and third experiments also suggest that the subjects compare a probe with a criterion determined by the range of stimuli tested rather than by trial-specific referents, in accordance with the pseudologistic model of Killeen, Fetterman, and Bizo (1997).
Heat transfer prediction in a square porous medium using artificial neural network
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.
Skin friction and heat transfer correlations for high-speed low-density flow past a flat plate
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Baganoff, Donald
1991-01-01
The independent and dependent variables associated with drag and heat transfer to a flat plate at zero incidence in high-speed, rarefied flow are analyzed anew to reflect the importance of kinetic effects occurring near the plate surface on energy and momentum transfer, rather than following arguments normally used to describe continuum, higher density flowfields. A new parameter, the wall Knudsen number Knx,w, based on an estimate of the mean free path length of molecules having just interacted with the surface of the plate, is introduced and used to correlate published drag and heat transfer data. The new parameter is shown to provide better correlation than either the viscous interaction parameter X or the widely-used slip parameter Voo for drag and heat transfer data over a wide range of Mach numbers, Reynolds numbers, and plate-to-freestream stagnation temperature ratios.
2012-04-10
HYPERTHERMAL CHARGE TRANSFER COLLISIONS (POSTPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR( S ) 5d. PROJECT NUMBER...2301 Benjamin D. Prince and Yu-Hui Chiu 5e. TASK NUMBER PPM00004270 5f. WORK UNIT NUMBER EF004373 7. PERFORMING ORGANIZATION NAME( S ...Kirtland AFB, NM 87117-5776 AFRL-RV-PS-TR-2012-0093 9. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR
Effect of a rotor wake on heat transfer from a circular cylinder
NASA Technical Reports Server (NTRS)
Simoneau, R. J.; Morehouse, K. A.; Vanfossen, G. J.; Behning, F. P.
1984-01-01
The effect of a rotor wake on heat transfer to a downstream stator was investigated. The rotor was modeled with a spoked wheel of 24 circular pins 1.59 mm in diameter. One of the stator pins was electrically heated in the midspan region and circumferentially averaged heat transfer coefficients were obtained. The experiment was run in an annular flow wind tunnel using air at ambient temperature and pressure. Reynolds numbers based on stator cylinder diameter ranged from .001 to .00001. Rotor blade passing frequencies ranged from zero to 2500 Hz. Stationary grids were used to vary the rotor inlet turbulence from one to four percent. The rotor-stator spacings were one and two stator pin diameters. In addition to the heat transfer coefficients, turbulence spectra and ensemble averaged wake profiles were measured. At the higher Reynolds numbers, which is the primary range of interest for turbulent heat transfer, the rotor wakes increased Nusselt number from 10 to 45 percent depending on conditions. At lower Reynolds numbers the effect was as much as a factor of two.
NASA Technical Reports Server (NTRS)
Burbank, Paige B.; Stallings, Robert L., Jr.
1959-01-01
Heat-transfer coefficients and pressure distributions were obtained on a 4-inch-diameter flat-face cylinder in the Langley Unitary Plan wind tunnel. The measured stagnation heat-transfer coefficient agrees well with 55 percent of the theoretical value predicted by the modified Sibulkin method for a hemisphere. Pressure measurements indicated the dimensionless velocity gradient parameter r du\\ a(sub t) dx, where x=0 at the stagnation point was approximately 0.3 and invariant throughout the Mach number range from 2.49 to 4.44 and the Reynolds number range from 0.77 x 10(exp 6) to 1.46 x 10(exp 6). The heat-transfer coefficients on the cylindrical afterbody could be predicted with reasonable accuracy by flat-plate theory at an angle of attack of 0 deg. At angles of attack the cylindrical afterbody stagnation-line heat transfer could be computed from swept-cylinder theory for large distances back of the nose when the Reynolds number is based on the distance from the flow reattachment points.
2013-10-21
PHOTOINDUCED ELECTRONIC ENERGY TRANSFER - THEORETICAL AND EXPERIMENTAL ISSUES FOR LIGHT HARVESTING APPLICATIONS PAUL BRUMER UNIV OF TORONTO 10/21... Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0260 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Harvesting Applications Grant Number: FA9550-10-1-0260 Program Manager: Dr. Tatjana Curcic, AFOSR Stated aims of the project
Code of Federal Regulations, 2010 CFR
2010-01-01
... accounts, foreign branches and a de minimis number of accounts. 218.723 Section 218.723 Banks and Banking... accounts, transferred accounts, foreign branches and a de minimis number of accounts. (a) Short-term... dealer. (e) De minimis exclusion. A bank may, in determining its compliance with the chiefly compensated...
Code of Federal Regulations, 2011 CFR
2011-01-01
... accounts, foreign branches and a de minimis number of accounts. 218.723 Section 218.723 Banks and Banking... accounts, transferred accounts, foreign branches and a de minimis number of accounts. (a) Short-term... dealer. (e) De minimis exclusion. A bank may, in determining its compliance with the chiefly compensated...
ERIC Educational Resources Information Center
Wohldmann, Erica L.; Healy, Alice F.; Bourne, Lyle E., Jr.
2008-01-01
Two experiments explored the benefits to retention and transfer conferred by mental practice. During familiarization, participants typed 4-digit numbers and took an immediate typing test on both old and new numbers. Participants then typed old 4-digit numbers, either physically or mentally, with either a different response configuration or the…
Transfer Patterns of Students, University of Hawaii System, Fall 1975.
ERIC Educational Resources Information Center
Hawaii Univ., Honolulu. Management Systems Office.
In fall 1975, 4,702 students transferred into the University of Hawaii (UH) System, representing a 15.5 percent increase over the number of transfers in 1974. Of the total, 56 percent transferred from within the UH System, 6 percent transferred from other Hawaii institutions, and 36 percent transferred from out-of-state institutions. The total…
Studies on convective heat transfer through helical coils
NASA Astrophysics Data System (ADS)
Pawar, S. S.; Sunnapwar, Vivek K.
2013-12-01
An experimental investigation on steady state convection heat transfer from vertical helical coiled tubes in water was performed for laminar flow regime. Three coils with curvature ratios as 0.0757, 0.064, 0.055 and range of Prandtl number from 3.81 to 4.8, Reynolds number from 3,166 to 9,658 were considered in this work. The heat transfer data were generated from 30 experiments conducted at constant water bath temperature (60 °C) for different cold water flow rates in helical coils. For the first time, an innovative approach of correlating Nusselt number with ‘M’ number is proposed which is not available in the literature and the developed correlations are found to be in good agreement with the work of earlier researchers. Thus, dimensionless number ‘M’ was found to be significant to characterize the hydrodynamics of fluid flow and heat transfer correlations in helical coils. Several other correlations based on experimental data are developed. To cover wide range of industrial applications, suitable generalized correlations based on extended parameters beyond the range of present experimental work are also developed. All these correlations are developed by using least-squares power law fit and multiple-regression analysis of MATLAB software. Correlations so developed were compared with published correlations and were found to be in good agreement. Comparison of heat transfer coefficients, friction factor and Nusselt number for different geometrical conditions is presented in this paper.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Straub, J.S.; Ott, L.L.
1984-04-01
Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less
Laminar forced convection from a rotating horizontal cylinder in cross flow
NASA Astrophysics Data System (ADS)
Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.
2017-04-01
The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.
Fluid Mechanics and Heat Transfer Spirally Fluted Tubing.
1984-12-01
of the tube and the convective transport, due to the secondary flow produced by the spiral flutes. It is well known that the Nusselt number of fully...data for the convective heat transfer behaviour. The computed Nusselt numbers for air show a 120% increase over the smooth tube values while the...The Prediction of Convective Heat Transfer in Spirally Fluted Tubes FIGURES 1. Shell side NU-REY correlation . . . . . . . . . . . . . . . 5 2. Tube
Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis
2016-07-08
AFRL-AFOSR-VA-TR-2016-0244 Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis Jahan Dawlaty UNIVERSITY OF SOUTHERN...TITLE AND SUBTITLE Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report: AFOSR YIP Grant FA9550-13-1-0128: Ultrafast Spectroscopy
Land, Jolande A; Evers, Johannes L H
2004-05-01
In the course of the present Debate series, several new outcome measures for assisted reproduction have been proposed to encourage the transfer of fewer embryos, in order to diminish the number of multiple pregnancies. The implementation of these recommendations, however, is hampered by the perception that safety and efficacy are communicating vessels: it is presumed that by decreasing the number of embryos transferred, pregnancy rates will decrease as well. Data from national and international registries, however, do not confirm the assumption of the communicating vessels: pregnancy rates tend to be low in countries in which many embryos are transferred, and the highest pregnancy rates occur where the number of embryos per transfer is low. Only top-level clinics (where treatment efficacy is guaranteed) are able to decrease the number of embryos transferred without compromising their pregnancy rate, and to vouch for safety in this way. Elective single embryo transfer (eSET) can never be mandatory in all patients, but the percentage of eSETs performed by a particular assisted reproduction treatment centre does reflect its quality: the ultimate outcome measure of efficacy ánd safety. Therefore, the eSET rate is the most relevant qualifier of performance in assisted reproduction.
Number of children and upstream intergenerational financial transfers: evidence from Hong Kong.
Chou, Kee-Lee
2010-03-01
This study examined financial transfers from adult children to elderly parents in Hong Kong and tested three hypotheses about the motives for such transfers. We address previous research, suggesting that family financial support for retirees will decline in the coming decades as a consequence of the reduction in the fertility rate; we also examine whether financial transfers are a function of the number of adult children in the family. We used multiple regression models based on data from a representative sample of parents aged 60 years and older to identify the correlates of the amount of transfers from adult children to their elderly parents. We found evidence for the hypothesis that upstream transfers to elderly parents are their way of withdrawing savings from a "support bank" in which they made contribution for their children's education earlier in life and that transfers are altruistic in nature, but our results provide only moderate support to the old age security hypothesis that perceives family as a source of capital. The number of children has a ceiling effect on transfers, which calls into question common assumptions about the extent to which the decline in fertility will pose a severe threat to the extent of familial support of older persons over the coming decades.
NASA Astrophysics Data System (ADS)
Hassanpour, Amin; Ranjbar, A. A.; Sheikholeslami, M.
2018-02-01
In this research, flow and forced convection heat transfer of a water-copper nanofluid in the presence of magnetic field is studied. The walls of the square ventilation cavity are insulated. The dominating equations are solved by implementing the finite-volume method (FVM) using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. The effects of Hartmann number, nanoparticles volume fraction and Reynolds number on the flow and heat transfer characteristics were examined. The results demonstrate that increasing Reynolds and Hartmann numbers lead to increase the average Nusselt number. By evaluating the geometrical parameters, it was found that the size and number of vortices in the flow field decrease by increasing the inlet width. Besides, the increase of the average Nusselt number occurs with the increase of the inlet width. Moreover, it has been observed that the effect of the Hartmann number is more pronounced for higher Reynolds numbers.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest; Kingery, Joseph E.
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edgemore » test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.« less
NASA Technical Reports Server (NTRS)
Eaves, R. H.; Buchanan, T. D.
1972-01-01
Heat transfer tests for the delta wing orbiter were conducted in a hypervelocity wind tunnel. A 1.1 percent scale model was tested at a Mach number of approximately 10.5 over an angle of attack range from 10 to 60 degrees over a length Reynolds number range from 5 times 10 to the 6th power to 24 times 10 to the 6th power. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint. Limited pressure measurements were obtained.
Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators.
Zahn, Raphael; Lagadec, Marie Francine; Hess, Michael; Wood, Vanessa
2016-12-07
The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.
Huang, Yongye; Ouyang, Hongsheng; Yu, Hao; Lai, Liangxue; Pang, Daxin; Li, Zhanjun
2013-01-01
Summary The successful generation of pigs via somatic cell nuclear transfer depends on reducing risk factors in several aspects. To provide an overview of some influencing factors related to embryo transfer, the follow-up data related to cloned pig production collected in our laboratory was examined. (i) Spring showed a higher full-term pregnancy rate compared with winter (33.6% vs 18.6%, P = 0.006). Furthermore, a regression equation can be drawn between full-term pregnancy numbers and pregnancy numbers in different months (y = 0.692x−3.326). (ii) There were no significant differences detected in the number of transferred embryos between surrogate sows exhibiting full-term development compared to those that did not. (iii) Non-ovulating surrogate sows presented a higher percentage of full-term pregnancies compared with ovulating sows (32.0% vs 17.5%, P = 0.004; respectively). (iv) Abortion was most likely to take place between Day 27 to Day 34. (v) Based on Life Table Survival Analysis, delivery in normally fertilized and surrogate sows is expected to be completed before Day 117 or Day 125, respectively. Additionally, the length of pregnancy in surrogate sows was negatively correlated with the average litter size, which was not found for normally fertilized sows. In conclusion, performing embryo transfer in appropriate seasons, improving the quality of embryos transferred, optimizing the timing of embryo transfer, limiting the occurrence of abortion, combined with ameliorating the management of delivery, is expected to result in the harvest of a great number of surviving cloned piglets. PMID:24244859
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
Vega, W H O; Quirino, C R; Serapião, R V; Oliveira, C S; Pacheco, A
2015-07-03
The growth of the Gyr breed in Brazil in terms of genetic gain for milk, along with conditions for market, has led to the use of ovum pick-up in vitro production (OPU-IVP) as a leader in biotechnology for the multiplication of genetic material. The aim of this study was to investigate phenotypic correlations between OPU-IVP-linked characteristics and pregnancy rates registered in an embryo transfer program using Gyr cows as oocyte donors. Data collected from 211 OPU sessions and 298 embryo transfers during the years 2012 and 2013 were analyzed and statistical analysis was performed. Estimates of simple Pearson correlations were calculated for NVcoc and PVcoc (number and proportion of viable cumulus-oocyte complexes, respectively); NcleavD4 and PcleavD4 (number and proportion of cleaved embryos on day 4 of culture, respectively); NTembD7 and PTembD7 (number and proportion of transferable embryos on day 7 of culture, respectively); NPrD30 and PPrD30 (number and proportion of pregnancies 30 days after transfer, respectively); and NPrD60 and PPrD60 (number and proportion of pregnancies 60 days after transfer, respectively). Moderate to moderately high correlations were found for all numerical characteristics, suggesting these as the most suitable parameters for selection of oocyte donors in Gyr programs. NVcoc is proposed as a selection trait due to positive correlations with percentage traits and pregnancy rates 30 and 60 days after transfer.
The transfer instability index: a novel metric of emergency department transfer relationships.
Kindermann, Dana R; Mutter, Ryan L; Houchens, Robert L; Barrett, Marguerite L; Pines, Jesse M
2015-02-01
In this study, the objective was to characterize emergency department (ED) transfer relationships and study the factors that predict the stability of those relationships. A metric is derived for ED transfer relationships that may be useful in assessing emergency care regionalization and as a resource for future emergency medicine research. Emergency department records at transferring hospitals were linked to ED and inpatient records at receiving hospitals in nine U.S. states using the 2010 Healthcare Cost and Utilization Project State Emergency Department Databases and State Inpatient Databases, the American Hospital Association Annual Survey, and the Trauma Information Exchange Program. Using the Clinical Classification Software to categorize conditions, high transfer rate conditions were placed into nine clinical groups. The authors created a new measure, the "transfer instability index," which estimates the effective number of "transfer partners" for each sending ED: this is designed to measure the stability of outgoing transfer relationships, where higher values of the index indicate less stable relationships. The index provides a measure of how many hospitals a transferring hospital sends its patients to (weighted by how often each transfer partner is used). Regression was used to analyze factors associated with higher values of the index. Sending hospitals had a median of 3.5 effective transfer partners across all conditions. The calculated transfer instability indices varied from 1 to 2.4 across disease categories. In general, higher index values were associated with treating a higher proportion of publicly insured patients: 10 and 12% increases in the Medicare and Medicaid share of ED encounters, respectively, were associated with 10 and 14% increases in the effective number of transfer partners. This public insurance effect held while studying all conditions together as well as within individual disease categories, such as cardiac, neurologic, and traumatic conditions. United States EDs that transfer patients to other hospitals often have multiple transfer partners. The stability of the transfer relationship, assessed by the transfer instability index, differs by condition. Less stable transfer relationships (i.e., hospitals with greater numbers of transfer partners) were more common in EDs with higher proportions of publicly insured patients. © 2015 by the Society for Academic Emergency Medicine.
Fail-over file transfer process
NASA Technical Reports Server (NTRS)
Semancik, Susan K. (Inventor); Conger, Annette M. (Inventor)
2005-01-01
The present invention provides a fail-over file transfer process to handle data file transfer when the transfer is unsuccessful in order to avoid unnecessary network congestion and enhance reliability in an automated data file transfer system. If a file cannot be delivered after attempting to send the file to a receiver up to a preset number of times, and the receiver has indicated the availability of other backup receiving locations, then the file delivery is automatically attempted to one of the backup receiving locations up to the preset number of times. Failure of the file transfer to one of the backup receiving locations results in a failure notification being sent to the receiver, and the receiver may retrieve the file from the location indicated in the failure notification when ready.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell Douglas Booster configuration are presented. Heat-transfer rates were determined by the phase-change paint technique on 0.009-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers 5 million and 7.3 million, and angles of attack of 40, 50, and 60 deg. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1991-05-01
Experimental laminar condensation heat transfer data are reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids, which have been used extensively in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5C to 190C. Over this range of temperature difference, the condensate properties vary significantly; viscosity ofmore » the condensate varies by a factor of nearly 50. Corrections for the temperature-dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data and theory for Stefan number less than unity. To the knowledge of the authors, this is the first reported study of condensation heat transfer examining the effects of Stefan number greater than unity.« less
Project for the analysis of technology transfer
NASA Technical Reports Server (NTRS)
Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.
1971-01-01
The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.
Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow
NASA Astrophysics Data System (ADS)
Taher, R.; Abid, C.
2018-05-01
This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.
NASA Astrophysics Data System (ADS)
Sun, Yujia; Zhang, Xiaobing; Howell, John R.
2017-06-01
This work investigates the performance of the DOM, FVM, P1, SP3 and P3 methods for 2D combined natural convection and radiation heat transfer for an absorbing, emitting medium. The Monte Carlo method is used to solve the RTE coupled with the energy equation, and its results are used as benchmark solutions. Effects of the Rayleigh number, Planck number and optical thickness are considered, all covering several orders of magnitude. Temperature distributions, heat transfer rate and computational performance in terms of accuracy and computing time are presented and analyzed.
NASA Astrophysics Data System (ADS)
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.
2018-02-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.
Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman
2013-01-01
A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.
An Entrance Region Mass Transfer Experiment.
ERIC Educational Resources Information Center
Youngquist, G. R.
1979-01-01
This paper describes an experiment designed to reveal the consequences of the development of a concentration boundary layer. The rate of a mass transfer limited electrochemical reaction is measured and used to obtain the dependence of average Sherwood number on Reynolds number and entrance length. (Author/BB)
Transport equations of electrodiffusion processes in the laboratory reference frame.
Garrido, Javier
2006-02-23
The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.
NASA Technical Reports Server (NTRS)
Graham, John B., Jr.
1958-01-01
Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.
Heat transfer and flow friction correlations for perforated plate matrix heat exchangers
NASA Astrophysics Data System (ADS)
Ratna Raju, L.; Kumar, S. Sunil; Chowdhury, K.; Nandi, T. K.
2017-02-01
Perforated plate matrix heat exchangers (MHE) are constructed of high conductivity perforated plates stacked alternately with low conductivity spacers. They are being increasingly used in many cryogenic applications including Claude cycle or Reversed Brayton cycle cryo-refrigerators and liquefiers. Design of high NTU (number of (heat) transfer unit) cryogenic MHEs requires accurate heat transfer coefficient and flow friction factor. Thermo-hydraulic behaviour of perforated plates strongly depends on the geometrical parameters. Existing correlations, however, are mostly expressed as functions of Reynolds number only. This causes, for a given configuration, significant variations in coefficients from one correlation to the other. In this paper we present heat transfer and flow friction correlations as functions of all geometrical and other controlling variables. A FluentTM based numerical model has been developed for heat transfer and pressure drop studies over a stack of alternately arranged perforated plates and spacers. The model is validated with the data from literature. Generalized correlations are obtained through regression analysis over a large number of computed data.
Prediction of Relaminarization Effects on Turbine Blade Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Giel, P. W.
2001-01-01
An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two-dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.
Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade
NASA Technical Reports Server (NTRS)
Poinsatte, Philip E.; Heidmann, James D.; Thurman, Douglas R.
2008-01-01
Experimental heat transfer and pressure measurements were obtained on a large scale film cooled turbine vane cascade. The objective was to investigate heat transfer on a commercial high pressure first stage turbine vane at near engine Mach and Reynolds number conditions. Additionally blowing ratios and coolant density were also matched. Numerical computations were made with the Glenn-HT code of the same geometry and compared with the experimental results. A transient thermochromic liquid crystal technique was used to obtain steady state heat transfer data on the mid-span geometry of an instrumented vane with 12 rows of circular and shaped film cooling holes. A mixture of SF6 and Argon gases was used for film coolant to match the coolant-to-gas density ratio of a real engine. The exit Mach number and Reynolds number were 0.725 and 2.7 million respectively. Trends from the experimental heat transfer data matched well with the computational prediction, particularly for the film cooled case.
NASA Astrophysics Data System (ADS)
Morozov, A. A.
2007-08-01
Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one.
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.
2018-06-01
Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.
Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Inoue, T.
1990-03-01
An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.
Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels
2006-05-01
Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single
Evaluating the Quality of Transfer versus Nontransfer Accounting Principles Grades.
ERIC Educational Resources Information Center
Colley, J. R.; And Others
1996-01-01
Using 1989-92 student records from three colleges accepting large numbers of transfers from junior schools into accounting, regression analyses compared grades of transfer and nontransfer students. Quality of accounting principle grades of transfer students was not equivalent to that of nontransfer students. (SK)
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.
1996-01-01
An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.
76 FR 34808 - Proposed Collection; Comment Request for Form 8924
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... 8924, Excise Tax on Certain Transfers of Qualifying Geothermal or Mineral Interests. DATES: Written... Qualifying Geothermal or Mineral Interests. OMB Number: 1545-2099. Form Number: Form 8924. Abstract: Form 8924, Excise Tax on Certain Transfers of Qualifying Geothermal or Mineral Interests, is required by...
NASA Astrophysics Data System (ADS)
Jayhooni, S. M. H.; Rahimpour, M. R.
2013-06-01
In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Practices and Trends in Academic Transfer.
ERIC Educational Resources Information Center
Donovan, Richard A.
1992-01-01
During the 1980's, two landmark transfer projects were funded by the Ford Foundation. The Urban Community College Transfer Opportunities Program (UCC/TOP) aspired to increase the number of minority students transferring to and succeeding at four-year institutions. Many of the practical strategies developed during participating colleges, such as…
36 CFR 1235.44 - What general transfer requirements apply to electronic records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Services Division (NWCS) for digital photographs, 8601 Adelphi Road, College Park, MD 20740, phone number..., Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road, College Park, MD 20740, phone number (301) 837-3420. (c) When transferring digital photographs and their accompanying metatdata, the...
36 CFR 1235.44 - What general transfer requirements apply to electronic records?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Services Division (NWCS) for digital photographs, 8601 Adelphi Road, College Park, MD 20740, phone number..., Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road, College Park, MD 20740, phone number (301) 837-3420. (c) When transferring digital photographs and their accompanying metatdata, the...
ERIC Educational Resources Information Center
British Columbia Council on Admissions and Transfer, 2010
2010-01-01
In 2008, a number of changes were identified that expanded the scope of the updating required for Block Transfer for tourism management as follows: a new core curriculum for diploma programs; the need for expanded information on diploma to diploma transfer; and, a growing need for an expanded system of transfer identified in Campus 2020…
Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com; Badruddin, Irfan Anjum
2016-06-08
This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.
NASA Astrophysics Data System (ADS)
Chavan, Durgeshkumar; Pise, Ashok T.
2015-09-01
In the present paper, experimental study is performed to investigate convective heat transfer and flow characteristics of nanofluids through a circular tube. The heat transfer coefficient and friction factor of the γ-Al2O3-water nanofluid flowing through a pipe of 10 mm inner ID and 1 m in length, with constant wall temperature under turbulent flow conditions are investigated. Experiments are conducted with 30 nm size γ-Al2O3 nanoparticle with a volume fraction between 0.1 and to 1.0 and Reynolds number between 8,000 and 14,000. Experimental results emphasize the heat transfer enhancement with the increase in a Reynolds number or nanoparticle volume fraction. The maximum enhancement of 36 % in the heat transfer coefficient for a Reynolds number of 8,550, by using nanofluid with 1.0 vol% was observed compared with base fluid. Experimental measurement also shows the considerable increase in the pressure drop with small addition of nanoparticles in base fluid. Experimental results of nanofluids were compared with existing convective heat transfer correlations in the turbulent regime. Comparison shows that Maiga's correlation has close agreement with experimental results in comparison with Dittus Boelter correlation.
Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts
NASA Astrophysics Data System (ADS)
Abroshan, Hamid
2018-02-01
Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-14
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, k L , and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, k L for the wind-driven wavy gas-liquid interface is generally proportional to Sc -0.5 , and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-01-01
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc−0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking. PMID:27841325
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor
2013-03-01
Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.
Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel
NASA Astrophysics Data System (ADS)
Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali
2018-02-01
In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1990-01-01
Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensatemore » properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.« less
NASA Technical Reports Server (NTRS)
Ostrach, Simon
1953-01-01
The free-convection flow and heat transfer (generated by a body force) about a flat plate parallel to the direction of the body force are formally analyzed and the type of flow is found to be dependent on the Grashof number alone. For large Grashof numbers (which are of interest in aeronautics), the flow is of the boundary-layer type and the problem is reduced in a formal manner, which is analogous to Prandtl's forced-flow boundary-layer theory, to the simultaneous solution of two ordinary differential equations subject to the proper boundary conditions. Velocity and temperature distributions for Prandtl numbers of 0.01, 0.72, 0.733, 1, 1, 10, 100, and 1000 are computed, and it is shown that velocities and Nusselt numbers of the order of magnitude of those encountered in forced-convection flows may be obtained in free-convection flows. The theoretical and experimental velocity and temperature distributions are in good agreement. A flow and a heat-transfer parameter, from which the important physical quantities such as shear stress and heat-transfer rate can be computed, are derived as functions of Prandtl number alone.
Various heterologous cells exhibit interferon induced transfer of viral resistance.
Hughes, T K; Blalock, J E; Baron, S
1978-01-01
Previously it was shown that cocultivation of mouse L and human WISH or baby hamster kidney cells in the presence of mouse interferon resulted in decreased viral yield from both cell species. We now show that this phenomenon also occurs when rabbit kidney and human WISH cells, with their corresponding interferons, are cocultivated with human WISH and baby hamster kidney cells, respectively. This finding increases the number of donor cell types to three. The related finding that monkey VERO and chick embryo cells can be recipients of transferred resistance expands the number of heterologous recipient cell species capable of receiving transferred resistence to five. Not all cell types tested have been shown to function in this transfer system. The fact that VERO cells, which do not produce interferon, are capable of receiving transferred resistence is significant because it indicates that the mechanism of transfer does not involve production or interferon by the recipient cells.
Heat transfer coefficients for staggered arrays of short pin fins
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1981-01-01
Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on an orbiter configuration are presented. Heat-transfer rates were determined by the phase change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers of 6.0 x 1 million and 8.9 x 1 million, and angles of attack from 10 to 50 deg in 10-deg increments. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described in the data presentation section.
Number-theoretic nature of communication in quantum spin systems.
Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie
2012-08-03
The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.
NASA Astrophysics Data System (ADS)
Kuehndel, J.; Kerler, B.; Karcher, C.
2018-04-01
To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.
Heat and Mass Transfer in an L Shaped Porous Medium
NASA Astrophysics Data System (ADS)
Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.
2017-08-01
This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.
Numerical studies of convective heat transfer in an inclined semiannular enclosure
NASA Technical Reports Server (NTRS)
Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
Intrahospital transfers and adverse patient outcomes: An analysis of administrative health data.
Blay, Nicole; Roche, Michael; Duffield, Christine; Xu, Xiaoyue
2017-12-01
To determine whether there was an association between intra-hospital transfers and adverse outcomes. Transfers between clinical units and between beds on the same unit are routine aspects of an episode of care in acute hospitals. The rate of these transfers per episode has increased in response to high occupancy levels, a decline in bed numbers, and increased demand for hospital services. The impact of the number of transfers between both wards and beds on patient outcomes is not widely explored. Retrospective cross sectional design using hospital administrative data. Data were extracted from existing hospital administrative datasets for one large metropolitan hospital for the financial year 2008-09 in Australia (n = 14,133). Descriptive analyses and logistic regression models were developed for each of 3 selected patient outcomes. Nearly one-tenth of patients (9.2%) experienced a fall with injury, 3.8% of surgical patients a wound infection and 0.1% a complication from medication errors. For each bed or ward transfer, the odds of falls and wound infections increased. Medication errors were not associated with either bed or ward moves. Hospitals should minimise the number of bed and ward transfers per episode of care in order to reduce the likelihood of adverse patient outcomes. Current bed management policies and practices should be evaluated and further refined to address this need. Additional strategies include improving coordination and communication during and after transfer. Nurses must consider the potential cost of intrahospital transfers on patients, length of stay and bed availability. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Guo, Yonghong; Du, Xiaoze; Yang, Lijun
2018-02-01
Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... Activities: Permit To Transfer Containers to a Container Station AGENCY: U.S. Customs and Border Protection... information collection requirement concerning the: Permit to Transfer Containers to a Container Station. This... information collection: Title: Permit to Transfer Containers to a Container Station. OMB Number: 1651-0049...
Improving Articulation and Transfer Relationships. New Directions for Community Colleges, Number 39.
ERIC Educational Resources Information Center
Kintzer, Frederick C., Ed.
1982-01-01
With the intent of revitalizing the study of educational articulation and transfer, this collection of essays describes and assesses the current status of transfer education, points to particular problems and concerns, and highlights specific techniques, activities, and practices. The volume includes "The Transfer Function--One of Many,"…
New Developments in College Transfer. ERIC/Higher Education Research Currents.
ERIC Educational Resources Information Center
Trivett, David A.
The issues and problems associated with transferring from one educational institution to another have existed for some time. This article reports on developments that may increase the flexibility and improve the efficiency of college-university transfer. Following a discussion of the numbers, types, and problems of transfer students, emphasis is…
NASA Technical Reports Server (NTRS)
Stainback, Calvin
1960-01-01
An experimental investigation was conducted to evaluate the heat-transfer characteristics of a hypersonic glide configuration having 79.5 deg of sweepback (measured in the plane of the leading edges) and 45 of dihedral. The tests were conducted at a nominal Mach number of 4.95 and a stagnation temperature of 400 F. The test-section unit Reynolds number was varied from 1.95 x 10(exp 6) to 12.24 x 10(exp 6) per foot. The results indicated that the laminar-flow heat-transfer rate to the lower surface of the model decreased as the distance from the ridge line increased except for thermocouples located near the semispan at an angle of attack of 00 with respect to the plane of the leading edges. The heat-transfer distribution (local heating rate relative to the ridge-line heating rate) was similar to the theoretical heat-transfer distribution for a two-dimensional blunt body, if the ridge line was assumed to be the stagnation line, and could be predicted by this theory provided a modified Newtonian pressure distribution was used. Except in the vicinity of the apex, the ridge-line heat-transfer rate could also be predicted from two-dimensional blunt-body heat-transfer theory provided it was assumed that the stagnation-line heat-transfer rate varied as the cosine of the effective sweep (sine of the angle of attack of the ridge line). The heat-transfer level on the lower surface and the nondimensional heat-transfer distribution around the body on the lower surface were in qualitative agreement with the results of a geometric study of highly swept delta wings with large positive dihedrals made in reference 1.
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.
1994-01-01
The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.
Metro passengers’ route choice model and its application considering perceived transfer threshold
Jin, Fanglei; Zhang, Yongsheng; Liu, Shasha
2017-01-01
With the rapid development of the Metro network in China, the greatly increased route alternatives make passengers’ route choice behavior and passenger flow assignment more complicated, which presents challenges to the operation management. In this paper, a path sized logit model is adopted to analyze passengers’ route choice preferences considering such parameters as in-vehicle time, number of transfers, and transfer time. Moreover, the “perceived transfer threshold” is defined and included in the utility function to reflect the penalty difference caused by transfer time on passengers’ perceived utility under various numbers of transfers. Next, based on the revealed preference data collected in the Guangzhou Metro, the proposed model is calibrated. The appropriate perceived transfer threshold value and the route choice preferences are analyzed. Finally, the model is applied to a personalized route planning case to demonstrate the engineering practicability of route choice behavior analysis. The results show that the introduction of the perceived transfer threshold is helpful to improve the model’s explanatory abilities. In addition, personalized route planning based on route choice preferences can meet passengers’ diversified travel demands. PMID:28957376
NASA Technical Reports Server (NTRS)
Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.
1984-01-01
Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.
NASA Astrophysics Data System (ADS)
Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan
2018-06-01
Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.
NASA Technical Reports Server (NTRS)
Obrien, J. E.; Vanfossen, G. J., Jr.
1985-01-01
The effect of high-intensity turbulence on heat transfer from the stagnation region of a circular cylinder in crossflow was studied. The work was motivated by the desire to be able to more fully understand and predict the heat transfer to the leading edge of a turbine airfoil. In order to achieve high levels of turbulence with a reasonable degree of isotropy and homogeneity, a jet-injection turbulence grid was used. The jet grid provided turbulence intensities of 10 to 12 percent, measured at the test cylinder location, for downstream blowing with the blowing rate adjusted to an optimal value for flow uniformity. Heat transfer augmentation above the zeroturbulence case ranged from 37 to 53 percent for the test cylinder behind the jet grid for a cylinder Reynolds number range of 48,000 to 180,000, respectively. The level of heat transfer augmentation was found to be fairly uniform with respect to circumferential distance from the stagnation line. Stagnation point heat transfer results (expressed in terms of the Frossling number) were found to be somewhat low with respect to previous studies, when compared on the basis of equal values of the parameter Tu Re(1/2), indicating an additional Reynolds number effect as observed by previous investigators. Consequently, for a specified value of Tu Re(1/2), data obtained with a relatively high turbulence intensity will have a lower value of the Frossling number.
NASA Technical Reports Server (NTRS)
Poinsatte, Philip E.; Vanfossen, G. James; Dewitt, Kenneth J.
1989-01-01
Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.
NASA Astrophysics Data System (ADS)
Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.
2018-01-01
The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper
Crawford, Sara; Boulet, Sheree L; Jamieson, Denise J; Stone, Carol; Mullen, Jewel; Kissin, Dmitry M
2016-02-01
To explore whether recently enacted infertility mandates including coverage for assisted reproductive technology (ART) treatment in New Jersey (2001) and Connecticut (2005) increased ART use, improved embryo transfer practices, and decreased multiple birth rates. Retrospective cohort study using data from the National ART Surveillance System. We explored trends in ART use, embryo transfer practices and birth outcomes, and compared changes in practices and outcomes during a 2-year period before and after passing the mandate between mandate and non-mandate states. Not applicable. Cycles of ART performed in the United States between 1996 and 2013. Infertility insurance mandates including coverage for ART treatment passed in New Jersey (2001) and Connecticut (2005). Number of ART cycles performed, number of embryos transferred, multiple live birth rates. Both New Jersey and Connecticut experienced an increase in ART use greater than the non-mandate states. The mean number of embryos transferred decreased significantly in New Jersey and Connecticut; however, the magnitudes were not significantly different from non-mandate states. There was no significant change in ART birth outcomes in either mandate state except for an increase in live births in Connecticut; the magnitude was not different from non-mandate states. The infertility insurance mandates passed in New Jersey and Connecticut were associated with increased ART treatment use but not a decrease in the number of embryos transferred or the rate of multiples; however, applicability of the mandates was limited. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kwon, Dohoon; Jin, Lingxue; Jung, WooSeok; Jeong, Sangkwon
2018-06-01
Heat transfer coefficient of a mini-channel printed circuit heat exchanger (PCHE) with counter-flow configuration is investigated. The PCHE used in the experiments is two layered (10 channels per layer) and has the hydraulic diameter of 1.83 mm. Experiments are conducted under various cryogenic heat transfer conditions: single-phase, boiling and condensation heat transfer. Heat transfer coefficients of each experiments are presented and compared with established correlations. In the case of the single-phase experiment, empiricial correlation of modified Dittus-Boelter correlation was proposed, which predicts the experimental results with 5% error at Reynolds number range from 8500 to 17,000. In the case of the boiling experiment, film boiling phenomenon occurred dominantly due to large temperature difference between the hot side and the cold side fluids. Empirical correlation is proposed which predicts experimental results with 20% error at Reynolds number range from 2100 to 2500. In the case of the condensation experiment, empirical correlation of modified Akers correlation was proposed, which predicts experimental results with 10% error at Reynolds number range from 3100 to 6200.
NASA Technical Reports Server (NTRS)
Crawford, D. H.
1976-01-01
Heat transfer was measured on a space shuttle-tank configuration with no mated orbiter in place and with the orbiter in 10 different mated positions. The orbiter-tank combination was tested at angles of attack of 0 deg and 5 deg, at a Mach number of 10.3, and at a free-stream Reynolds number of one million based on the length of the tank. Comparison of interference heat transfer with no-interference heat transfer shows that shock interference can increase the heat transfer to the tank by two orders of magnitude along the ray adjacent to the orbiter and can cause high temperature gradients along the tank skin. The relative axial location of the two mated vehicles determined the location of the sharp peaks of extreme heating as well as their magnitude. The other control variables (the angle of attack, the gap, and the cross-section shape) had significant effects that were not as consistent or as extreme.
Extension of modified power method to two-dimensional problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919; Lee, Hyunsuk
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. Themore » stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.« less
Carpinello, Olivia J; Casson, Peter R; Kuo, Chia-Ling; Raj, Renju S; Sills, E Scott; Jones, Christopher A
2016-06-01
In states in the USA without in vitro fertilzation coverage (IVF) insurance coverage, more embryos are transferred per cycle leading to higher risks of multi-fetal pregnancies and adverse pregnancy outcomes. To determine frequency and cost of selected adverse perinatal complications based on number of embryos transferred during IVF, and calculate incremental cost per IVF live birth. Medical records of patients who conceived with IVF (n = 116) and delivered at >20 weeks gestational age between 2007 and 2011 were evaluated. Gestational age at delivery, low birth weight (LBW) term births, and delivery mode were tabulated. Healthcare costs per cohort, extrapolated costs assuming 100 patients per cohort, and incremental costs per infant delivered were calculated. The highest prematurity and cesarean section rates were recorded after double embryo transfers (DET), while the lowest rates were found in single embryo transfers (SET). Premature singleton deliveries increased directly with number of transferred embryos [6.3 % (SET), 9.1 % (DET) and 10.0 % for ≥3 embryos transferred]. This trend was also noted for rate of cesarean delivery [26.7 % (SET), 36.6 % (DET), and 47.1 % for ≥3 embryos transferred]. The proportion of LBW infants among deliveries after DET and for ≥3 embryos transferred was 3.9 and 9.1 %, respectively. Extrapolated costs per cohort were US$718,616, US$1,713,470 and US$1,227,396 for SET, DET, and ≥3 embryos transferred, respectively. Attempting to improve IVF pregnancy rates by permitting multiple embryo transfers results in sharply increased rates of multiple gestation and preterm delivery. This practice yields a greater frequency of adverse perinatal outcomes and substantially increased healthcare spending. Better efforts to encourage SET are necessary to normalize healthcare expenditures considering the frequency of very high cost sequela associated with IVF where multiple embryo transfers occur.
NASA Astrophysics Data System (ADS)
Farahani, Somayeh Davoodabadi; Kowsary, Farshad
2017-09-01
An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.
2008-04-02
Associated with Botulism Arvind Raghunath ,1 Francesc Perez-Branguli,1 Leonard Smith,2 and J. Oliver Dolly1 1International Centre for Neurotherapeutics...NUMBER 6. AUTHOR(S) Raghunath A Branguli FP Smith L Dolly JO 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION...Neurosci., April 2, 2008 • 28(14):3683–3688 Raghunath et al. • Botulism Combated by Gene Transfer of Mutated S25 horns, containing the cell bodies
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.; Johnson, C. B.
1972-01-01
The results are presented of a wind tunnel test program to determine aerodynamic heat transfer distributions on delta body and straight body transition models of the space shuttle. Heat transfer rates were determined by the phase-change paint technique on Stycast and RTV models using Tempilag as the surface temperature indicator. The nominal test conditions were: Mach 8, length Reynolds numbers of 5 million and 7.4 million, and angles of attack of 20, 40, and 60 deg. Model details, test conditions, and reduced heat transfer data are included. Data reduction of the phase-change paint photographs was performed by utilizing a new technique.
43 CFR 3106.4-3 - Mass transfers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mass transfers. 3106.4-3 Section 3106.4-3... or Otherwise § 3106.4-3 Mass transfers. (a) A mass transfer may be utilized in lieu of the provisions... large number of Federal leases to the same transferee. (b) Three originally executed copies of the mass...
Update of Community College Transfer Student Statistics, Fall 1982. Commission Report 83-11
ERIC Educational Resources Information Center
California State Postsecondary Education Commission, Sacramento.
For five consecutive years, studies have been conducted of the flow of transfer students from the California community colleges to the University of California (UC) and the California State University (CSU). The studies have focused on trends in numbers of transfers; transfers to the UC and CSU campuses; the colleges of origin of transfer…
ERIC Review: The Scope and Transferability of Occupational Courses in the Two-Year College.
ERIC Educational Resources Information Center
Cohen, Arthur M.; Ignash, Jan M.
1993-01-01
Describes study that sought to find the ratio of liberal arts to nonliberal arts courses taught in the nation's community colleges; the extent to which the curriculum is devoted to nonliberal arts; the number of transferable nonliberal arts courses; and the variability of transfer of these courses. Considers the transferability of nonliberal arts…
ERIC Educational Resources Information Center
Sjogren, Douglas
In this synthesis of research and literature on the nature of occupationally-transferable skills, the author identifies skills that seem to be highly transferable in the sense of being general to a number of occupations. He then speculates about characteristics of skills that are generalizable or transferable and discusses some implications for…
Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2003-01-01
The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
NASA Astrophysics Data System (ADS)
Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.
2018-04-01
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.
Jungheim, Emily S; Ryan, Ginny L; Levens, Eric D; Cunningham, Alexandra F; Macones, George A; Carson, Kenneth R; Beltsos, Angeline N; Odem, Randall R
2010-09-01
To gain a better understanding of factors influencing clinicians' embryo transfer practices. Cross-sectional survey. Web-based survey conducted in December 2008 of individuals practicing IVF in centers registered with the Society for Assisted Reproductive Technology (SART). None. None. Prevalence of clinicians reporting following embryo transfer guidelines recommended by the American Society for Reproductive Medicine (ASRM), prevalence among these clinicians to deviate from ASRM guidelines in commonly encountered clinical scenarios, and practice patterns related to single embryo transfer. Six percent of respondents reported following their own, independent guidelines for the number of embryos to transfer after IVF. Of the 94% of respondents who reported routinely following ASRM embryo transfer guidelines, 52% would deviate from these guidelines for patient request, 51% for cycles involving the transfer of frozen embryos, and 70% for patients with previously failed IVF cycles. All respondents reported routinely discussing the risks of multiple gestations associated with standard embryo transfer practices, whereas only 34% reported routinely discussing single embryo transfer with all patients. Although the majority of clinicians responding to our survey reported following ASRM embryo transfer guidelines, at least half would deviate from these guidelines in a number of different situations. Copyright (c) 2010 American Society for Reproductive Medicine. All rights reserved.
Predicted Turbine Heat Transfer for a Range of Test Conditions
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Lucci, B. L.
1996-01-01
Comparisons are shown between predictions and experimental data for blade and endwall heat transfer. The comparisons of computational domain parisons are given for both vane and rotor geometries over an extensive range of Reynolds and Mach numbers. Comparisons are made with experimental data from a variety of sources. A number of turbulence models are available for predicting blade surface heat transfer, as well as aerodynamic performance. The results of an investigation to determine the turbulence model which gives the best agreement with experimental data over a wide range of test conditions are presented.
Heat transfer distributions on the LMSC 040C and 040A-L4 delta wing orbiters (M equals 8)7
NASA Technical Reports Server (NTRS)
Baker, R. C.; Mcgee, K. W.; Schultz, H. D.
1972-01-01
The results of a wind tunnel investigation are presented for measuring aerodynamic heat transfer distributions on the 040C and 040A-L4 space shuttle orbiter configurations. Heat transfer rates were determined by the phase change coating technique, using 0.012-scale Stycast models coated with Tempilaq. Data were obtained at a nominal free stream Mach number of 8, Reynolds numbers from 1.0 to 3.8 million per foot, and angles of attack from 20 to 60 deg.
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Khan, T. M. Yunus
2018-05-01
The present study investigates the effect of radius ratio and Rayleigh number on beat transfer characteristics of an annular cone subjected to two side heating and one side cooling. Finite element method is used to convert the partial differential equations into algebraic equations. The resulting equations are solved with the help of in-house computer code developed for specific purpose of heat transfer in conical porous medium. The results are discussed with respect to the radius ratio and Rayleigh number.
Rotor assembly and method for automatically processing liquids
Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.
1992-01-01
A rotor assembly for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water, includes a rotor body for rotation about an axis and including a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses.
Determination of the Optimal Fourier Number on the Dynamic Thermal Transmission
NASA Astrophysics Data System (ADS)
Bruzgevičius, P.; Burlingis, A.; Norvaišienė, R.
2016-12-01
This article represents the result of experimental research on transient heat transfer in a multilayered (heterogeneous) wall. Our non-steady thermal transmission simulation is based on a finite-difference calculation method. The value of a Fourier number shows the similarity of thermal variation in conditional layers of an enclosure. Most scientists recommend using no more than a value of 0.5 for the Fourier number when performing calculations on dynamic (transient) heat transfer. The value of the Fourier number is determined in order to acquire reliable calculation results with optimal accuracy. To compare the results of simulation with experimental research, a transient heat transfer calculation spreadsheet was created. Our research has shown that a Fourier number of around 0.5 or even 0.32 is not sufficient ({≈ }17 % of oscillation amplitude) for calculations of transient heat transfer in a multilayered wall. The least distorted calculation results were obtained when the multilayered enclosure was divided into conditional layers with almost equal Fourier number values and when the value of the Fourier number was around 1/6, i.e., approximately 0.17. Statistical deviation analysis using the Statistical Analysis System was applied to assess the accuracy of the spreadsheet calculation and was developed on the basis of our established methodology. The mean and median absolute error as well as their confidence intervals has been estimated by the two methods with optimal accuracy ({F}_{oMDF}= 0.177 and F_{oEPS}= 0.1633 values).
Liu, J; Li, L L; Du, S; Bai, X Y; Zhang, H D; Tang, S; Zhao, M T; Ma, B H; Quan, F S; Zhao, X E; Zhang, Y
2011-10-01
To improve the efficiency of somatic cell nuclear transfer (SCNT) in goats, we evaluated the effects of the interval between fusion and activation (1 to 5 h), cytochalasin B (CB) treatment after electrofusion, and the number of transferred embryos on the in vivo and in vitro development of cloned caprine embryos. The majority of the reconstructed embryos had condensed chromosomes and metaphase-like chromosomes at 2 and 3 h after fusion; cleavage and blastocyst rates from those two groups were higher (P < 0.05) than those of embryos activated 1, 4, or 5 h after fusion. Treatment with CB between fusion and activation improved in vitro and in vivo development of nuclear transfer (NT) goat embryos by reducing the fragmentation rate (P < 0.05). Although there were no significant differences in NT efficiency, pregnancy rate and kids born per recipient were increased by transfer of 20 or 30 embryos per recipient compared with 10 embryos. We concluded that CB treatment for 2 to 3 h between fusion and activation was an efficient method for generating cloned goats by somatic cell NT. In addition, increasing the number of embryos transferred to each recipient resulted in more live offspring from fewer recipients. Copyright © 2011 Elsevier Inc. All rights reserved.
File Transfers from Peregrine to the Mass Storage System - Gyrfalcon |
login node or data-transfer queue node. Below is an example to access data-tranfer queue Interactively number of container files using the tar command. For example, $ cd /scratch/
Yang, Tsung-Chieh; Chen, Yi-Chen; Wang, Tong-Mei; Lin, Li-Deh
This study evaluated the effect of implant number and location on strain around the implant and force transferred to the palate in maxillary implant overdentures (IODs), including two locators attached bilaterally in the canine region (IOD 2), four locators attached bilaterally in the canine and premolar regions (IOD 4CP), four locators attached bilaterally in the canine and molar regions (IOD 4CM), and six locators attached bilaterally in the canine, premolar, and molar regions (IOD 6). As the implant number increased, strain around the implant regions increased, whereas force transferred to the palate decreased under loading. However, the differences were small between IOD 4CM and IOD 6, suggesting identical biomechanical effectiveness.
NASA Technical Reports Server (NTRS)
Han, J. C.; Chandra, P. R.
1987-01-01
The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided.
Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh
2000-11-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inversemore » heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.« less
NASA Astrophysics Data System (ADS)
Lawanya, T.; Vidhya, M.; Govindarajan, A.
2018-04-01
This present paper deals with the investigation of couette flow of a viscous electrically conducting incompressible fluid three dimensionally through a porous medium in presence of transverse magnetic field. Approximate Solution of equations of motion and energy equations are derived using series solution method. Hartmann number, Schmidt number and Grashoff number (or) modified Grashoff number for mass transfer on the velocity and temperature distribution are numerically discussed and shown graphically. The Nusselt number and skin friction coefficients atthe plate are derived and their numerical values are shown graphically. It is seen that in the main flow direction the velocity profiles decreases due to either an increase in Schmidt number (Or) Hartmann number.
NASA Technical Reports Server (NTRS)
ONeal, Robert L.
1960-01-01
A flight investigation has been conducted to study the heat transfer to swept-wing leading edges. A rocket-powered model was used for the investigation and provided data for Mach number ranges of 1.78 to 2.99 and 2.50 to 4.05 with corresponding free-stream Reynolds number per foot ranges of 13.32 x 10(exp 6) to 19.90 x 10(exp 6) and 2.85 x 10(exp 6) to 4.55 x 10(exp 6). The leading edges employed were cylindrically blunted wedges ', three of which were swept 450 with leading-edge diameters of 1/4, 1/2, and 3/4 inch and one swept 36-750 with a leading-edge diameter of 1/2 inch. In the high Reynolds number range, measured values of heat transfer were found to be much higher than those predicted by laminar theory and at the larger values of leading-edge diameter were approaching the values predicted by turbulent theory. For the low Reynolds number range a comparison between measured and theoretical heat transfer showed that increasing the leading-edge diameter resulted in turbulent flow on the cylindrical portion of the leading edge.
Optimizing the number of embryos to transfer on day 5: two should be the limit.
Ruhlmann, Claudio; Molina, Lucas; Tessari, Graciano; Ruhlmann, Felicitas; Tessari, Lautaro; Gnocchi, Diego; Cattaneo, Antonio; Irigoyen, Marcela; Martínez, Alejandro Gustavo
2017-02-01
To define the appropriate number of embryos to be transferred at day 5. Retrospective analysis of 784 consecutive fresh day-5 embryo transfers performed between 2007 and 2015, divided in three groups: Group A (N = 219): received the only 2 embryos that reached a transferable stage; Group B (N = 357): received 2 selected embryos among several that reached a transferable stage; Group C (N = 208): received the only 3 developing embryos. Clinical pregnancy, implantation, multiple pregnancy and delivery rates were registered. Kruskal-Wallis and Fisher Exact tests were applied as appropriate. Age and previous attempts were comparable in the 3 groups. Compared with Group A, Groups B and C had a higher oocyte recovery (10.7 ± 5.6 vs. 14.7 ± 8.0 vs. 13.8 ± 6.6), fertilization rate (75.97% vs. 81.60% vs. 83.29%) and percentage of embryos reaching a transferable stage on day 5 (39.98% vs. 63.99% vs. 60.97%), as well as a significantly higher clinical pregnancy (42.92% vs. 61.06% vs. 58.17%) and implantation rates (21.09% vs. 40.98% vs. 36.97%). The multiple pregnancy rate was higher in Groups B and C than in Group A (11.70% vs. 31.19% vs. 37.19%). The high order multiple pregnancy rate (> 2) was significantly increased in group C (1.06% vs. 0.92% vs. 14.05%). In patients with 3 or more day 5 developing embryos, delivery rates are similar if 2 or 3 embryos are transferred. The transfer of 3 embryos carries an unacceptable increase in the risk of high order multiple pregnancy, with its known consequences. According to our data, we should not exceed the number of 2 day-5 fresh embryos transferred.
Optimizing the number of embryos to transfer on day 5: two should be the limit
Ruhlmann, Claudio; Molina, Lucas; Tessari, Graciano; Ruhlmann, Felicitas; Tessari, Lautaro; Gnocchi, Diego; Cattaneo, Antonio; Irigoyen, Marcela; Martínez, Alejandro Gustavo
2017-01-01
Objective To define the appropriate number of embryos to be transferred at day 5. Methods Retrospective analysis of 784 consecutive fresh day-5 embryo transfers performed between 2007 and 2015, divided in three groups: Group A (N = 219): received the only 2 embryos that reached a transferable stage; Group B (N = 357): received 2 selected embryos among several that reached a transferable stage; Group C (N = 208): received the only 3 developing embryos. Clinical pregnancy, implantation, multiple pregnancy and delivery rates were registered. Kruskal-Wallis and Fisher Exact tests were applied as appropriate. Results Age and previous attempts were comparable in the 3 groups. Compared with Group A, Groups B and C had a higher oocyte recovery (10.7 ± 5.6 vs. 14.7 ± 8.0 vs. 13.8 ± 6.6), fertilization rate (75.97% vs. 81.60% vs. 83.29%) and percentage of embryos reaching a transferable stage on day 5 (39.98% vs. 63.99% vs. 60.97%), as well as a significantly higher clinical pregnancy (42.92% vs. 61.06% vs. 58.17%) and implantation rates (21.09% vs. 40.98% vs. 36.97%). The multiple pregnancy rate was higher in Groups B and C than in Group A (11.70% vs. 31.19% vs. 37.19%). The high order multiple pregnancy rate (> 2) was significantly increased in group C (1.06% vs. 0.92% vs. 14.05%). Conclusions In patients with 3 or more day 5 developing embryos, delivery rates are similar if 2 or 3 embryos are transferred. The transfer of 3 embryos carries an unacceptable increase in the risk of high order multiple pregnancy, with its known consequences. According to our data, we should not exceed the number of 2 day-5 fresh embryos transferred. PMID:28333024
Factors affecting the efficiency of embryo transfer in the domestic ferret (Mustela putorius furo).
Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H; Engelhardt, John F
2006-07-15
Embryo transfer (ET) to recipient females is a foundational strategy for a number of assisted reproductive technologies, including cloning by somatic cell nuclear transfer. In an attempt to develop efficient ET in domestic ferrets, factors affecting development of transferred embryo were investigated. Unilateral and bilateral transfer of zygotes or blastocysts in the oviduct or uterus was evaluated in recipient nulliparous or primiparous females. Developing fetuses were collected from recipient animals 21 days post-copulation and examined. The percentage of fetal formation was different (P<0.05) for unilateral and bilateral transfer of zygotes (71%) in nulliparous females with bilateral transfer (56%) in primiparous recipients. The percentage (90%) of fetal formation in nulliparous recipients following unilateral transfer of blastocysts was higher (P<0.05) than that observed in primiparous recipients with bilateral ET (73%). Notably, the percentage of fetal formation was higher (P<0.05) when blastocyts were transferred as compared to zygotes (90% versus 71%). Transuterine migration of embryos occurred following all unilateral transfers and also in approximately 50% of bilateral transfers with different number of embryos in each uterine horn. These data will help to facilitate the development of assisted reproductive strategies in the ferret and could lead to the use of this species for modeling human disease and for conservation of the endangered Mustelidae species such as black-footed ferret and European mink.
Factors affecting the efficiency of embryo transfer in the domestic ferret (Mustela putorius furo)
Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H.; Engelhardt, John F.
2007-01-01
Embryo transfer (ET) to recipient females is a foundational strategy for a number of assisted reproductive technologies, including cloning by somatic cell nuclear transfer. In an attempt to develop efficient ET in domestic ferrets, factors affecting development of transferred embryo were investigated. Unilateral and bilateral transfer of zygotes or blastocysts in the oviduct or uterus was evaluated in recipient nulliparous or primiparous females. Developing fetuses were collected from recipient animals 21 days post-copulation and examined. The percentage of fetal formation was different (P < 0.05) for unilateral and bilateral transfer of zygotes (71%) in nulliparous females with bilateral transfer (56%) in primiparous recipients. The percentage (90%) of fetal formation in nulliparous recipients following unilateral transfer of blastocysts was higher (P < 0.05) than that observed in primiparous recipients with bilateral ET (73%). Notably, the percentage of fetal formation was higher (P < 0.05) when blastocyts were transferred as compared to zygotes (90% versus 71%). Transuterine migration of embryos occurred following all unilateral transfers and also in approximately 50% of bilateral transfers with different number of embryos in each uterine horn. These data will help to facilitate the development of assisted reproductive strategies in the ferret and could lead to the use of this species for modeling human disease and for conservation of the endangered Mustelidae species such as black-footed ferret and European mink. PMID:16330092
NASA Astrophysics Data System (ADS)
Rabhi, R.; Amami, B.; Dhahri, H.; Mhimid, A.
2017-11-01
This paper deals with heat transfer and fluid flow in a porous micro duct under local thermal non equilibrium conditions subjected to an external oriented magnetic field. The considered sample is a micro duct filled with porous media assumed to be homogenous, isotropic and saturated. The slip velocity and the temperature jump were uniformly imposed to the wall. In modeling the flow, the Brinkmann-Forchheimer extended Darcy model was incorporated into the momentum equations. In the energy equation, the local thermal non equilibrium between the two phases was adopted. A modified axisymmetric lattice Boltzmann method was used to solve the obtained governing equation system. Attention was focused on the influence of the emerging parameters such as Knudsen number, Kn, Hartmann number, Ha, Eckert number, Ec, Biot number, Bi and the magnetic field inclination γ on flow and heat transfer throughout this paper.
Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R
2001-05-01
This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.
NASA Astrophysics Data System (ADS)
Saeed Butt, Adnan; Ali, Asif
2014-01-01
The present article aims to investigate the entropy effects in magnetohydrodynamic flow and heat transfer over an unsteady permeable stretching surface. The time-dependent partial differential equations are converted into non-linear ordinary differential equations by suitable similarity transformations. The solutions of these equations are computed analytically by the Homotopy Analysis Method (HAM) then solved numerically by the MATLAB built-in routine. Comparison of the obtained results is made with the existing literature under limiting cases to validate our study. The effects of unsteadiness parameter, magnetic field parameter, suction/injection parameter, Prandtl number, group parameter and Reynolds number on flow and heat transfer characteristics are checked and analysed with the aid of graphs and tables. Moreover, the effects of these parameters on entropy generation number and Bejan number are also shown graphically. It is examined that the unsteadiness and presence of magnetic field augments the entropy production.
NASA Technical Reports Server (NTRS)
Clark, J. P.; Jones, T. V.; LaGraff, J. E.
2007-01-01
A series of experiments are described which examine the growth of turbulent spots on a flat plate at Reynolds and Mach numbers typical of gas-turbine blading. A short-duration piston tunnel is employed and rapid-response miniature surface-heat-transfer gauges are used to asses the state of the boundary layer. The leading- and trailing-edge velocities of spots are reported for different external pressure gradients and Mach numbers. Also, the lateral spreading angle is determined from the heat-transfer signals which demonstrate dramatically the reduction in spot growth associated with favorable pressure gradients. An associated experiment on the development of turbulent wedges is also reported where liquid-crystal heat-transfer techniques are employed in low-speed wind tunnel to visualize and measure the wedge characteristics. Finally, both liquid crystal techniques and hot-film measurements from flight tests at Mach number of 0.6 are presented.
Disentangling the triadic interactions in Navier-Stokes equations.
Sahoo, Ganapati; Biferale, Luca
2015-10-01
We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.
NASA Astrophysics Data System (ADS)
Khan, Mair; Shahid, Amna; Malik, M. Y.; Salahuddin, T.
2018-03-01
Current analysis has been made to scrutinize the consequences of chemical response against magneto-hydrodynamic Carreau-Yasuda nanofluid flow induced by a non-linear stretching surface considering zero normal flux, slip and convective boundary conditions. Joule heating effect is also considered. Appropriate similarity approach is used to convert leading system of PDE's for Carreau-Yasuda nanofluid into nonlinear ODE's. Well known mathematical scheme namely shooting method is utilized to solve the system numerically. Physical parameters, namely Weissenberg number We , thermal slip parameter δ , thermophoresis number NT, non-linear stretching parameter n, magnetic field parameter M, velocity slip parameter k , Lewis number Le, Brownian motion parameter NB, Prandtl number Pr, Eckert number Ec and chemical reaction parameter γ upon temperature, velocity and concentration profiles are visualized through graphs and tables. Numerical influence of mass and heat transfer rates and friction factor are also represented in tabular as well as graphical form respectively. Skin friction coefficient reduces when Weissenberg number We is incremented. Rate of heat transfer enhances for large values of Brownian motion constraint NB. By increasing Lewis quantity Le rate of mass transfer declines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J. D.
2012-07-01
Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimesmore » fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)« less
Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Shafik, Ramel
2013-06-01
The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.
75 FR 7551 - Transfer of Accumulated Benefit Payments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... Transfer of Accumulated Benefit Payments AGENCY: Social Security Administration (SSA). ACTION: Final rule... that capacity to transfer accumulated benefit payments and interest directly to a beneficiary if we.... For information on eligibility or filing for benefits, call our national toll-free number, 1-800-772...
78 FR 46688 - Proposed Collection; Comment Request for Form 706
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... 706, United States Estate (and Generation-Skipping Transfer) Tax Return. DATES: Written comments... INFORMATION: Title: United States Estate (and Generation-Skipping Transfer) Tax Return. OMB Number: 1545-0015... imposed by Internal Revenue Code section 2001 and the Federal generation-skipping transfer (GST) tax...
NASA Technical Reports Server (NTRS)
Han, J. C.; Ekkad, S. V.; Du, H.; Teng, S.
2000-01-01
Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.
The effects of leading edge and downstream film cooling on turbine vane heat transfer
NASA Astrophysics Data System (ADS)
Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.
1988-11-01
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.
The effects of leading edge and downstream film cooling on turbine vane heat transfer
NASA Technical Reports Server (NTRS)
Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.
1988-01-01
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.
Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo
2012-12-01
The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dunavant, J. C.
1974-01-01
An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.
Code of Federal Regulations, 2012 CFR
2012-04-01
...: (1) The transfer must be communicated directly between two licensed pharmacists. (2) The transferring pharmacist must do the following: (i) Write the word “VOID” on the face of the invalidated prescription; for... registration number of the pharmacy to which it was transferred and the name of the pharmacist receiving the...
Code of Federal Regulations, 2014 CFR
2014-04-01
...: (1) The transfer must be communicated directly between two licensed pharmacists. (2) The transferring pharmacist must do the following: (i) Write the word “VOID” on the face of the invalidated prescription; for... registration number of the pharmacy to which it was transferred and the name of the pharmacist receiving the...
Code of Federal Regulations, 2013 CFR
2013-04-01
...: (1) The transfer must be communicated directly between two licensed pharmacists. (2) The transferring pharmacist must do the following: (i) Write the word “VOID” on the face of the invalidated prescription; for... registration number of the pharmacy to which it was transferred and the name of the pharmacist receiving the...
Code of Federal Regulations, 2011 CFR
2011-04-01
...: (1) The transfer must be communicated directly between two licensed pharmacists. (2) The transferring pharmacist must do the following: (i) Write the word “VOID” on the face of the invalidated prescription; for... registration number of the pharmacy to which it was transferred and the name of the pharmacist receiving the...
Update of Community College Transfer Student Statistics, Fall 1983. Commission Report 84-10.
ERIC Educational Resources Information Center
California State Postsecondary Education Commission, Sacramento.
Since 1978, annual studies have been conducted of the flow of transfer students from the California community colleges to the University of California (UC) and California State University (CSU). The studies have focused on trends in the numbers of transfers and the ethnicity, majors, and age of transfer students. Findings from the study of fall…
Undergraduate Laboratory on a Turbulent Impinging Jet
NASA Astrophysics Data System (ADS)
Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael
2017-11-01
An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses
Local endwall heat/mass-transfer distributions in pin fin channels
NASA Astrophysics Data System (ADS)
Lau, S. C.; Kim, Y. S.; Han, J. C.
1987-10-01
Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.
Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity
NASA Astrophysics Data System (ADS)
Sárkány, Lőrinc; Fortágh, József; Petrosyan, David
2018-03-01
We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.
1990-01-01
A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.
NASA Technical Reports Server (NTRS)
Lee, Chi M.; Schock, Harold J.
1988-01-01
Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.
NASA Technical Reports Server (NTRS)
Yaron, I.
1974-01-01
Steady state heat or mass transfer in concentrated ensembles of drops, bubbles or solid spheres in uniform, slow viscous motion, is investigated. Convective effects at small Peclet numbers are taken into account by expanding the nondimensional temperature or concentration in powers of the Peclet number. Uniformly valid solutions are obtained, which reflect the effects of dispersed phase content and rate of internal circulation within the fluid particles. The dependence of the range of Peclet and Reynolds numbers, for which regular expansions are valid, on particle concentration is discussed.
Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir M; Helvie, Mark A; Richter, Caleb; Cha, Kenny
2018-05-01
Deep learning models are highly parameterized, resulting in difficulty in inference and transfer learning for image recognition tasks. In this work, we propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in digital breast tomosynthesis (DBT). The objective is to prune the number of tunable parameters while preserving the classification accuracy. In the first stage transfer learning, 19 632 augmented regions-of-interest (ROIs) from 2454 mass lesions on mammograms were used to train a pre-trained DCNN on ImageNet. In the second stage transfer learning, the DCNN was used as a feature extractor followed by feature selection and random forest classification. The pathway evolution was performed using genetic algorithm in an iterative approach with tournament selection driven by count-preserving crossover and mutation. The second stage was trained with 9120 DBT ROIs from 228 mass lesions using leave-one-case-out cross-validation. The DCNN was reduced by 87% in the number of neurons, 34% in the number of parameters, and 95% in the number of multiply-and-add operations required in the convolutional layers. The test AUC on 89 mass lesions from 94 independent DBT cases before and after pruning were 0.88 and 0.90, respectively, and the difference was not statistically significant (p > 0.05). The proposed DCNN compression approach can reduce the number of required operations by 95% while maintaining the classification performance. The approach can be extended to other deep neural networks and imaging tasks where transfer learning is appropriate.
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Richter, Caleb; Cha, Kenny
2018-05-01
Deep learning models are highly parameterized, resulting in difficulty in inference and transfer learning for image recognition tasks. In this work, we propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in digital breast tomosynthesis (DBT). The objective is to prune the number of tunable parameters while preserving the classification accuracy. In the first stage transfer learning, 19 632 augmented regions-of-interest (ROIs) from 2454 mass lesions on mammograms were used to train a pre-trained DCNN on ImageNet. In the second stage transfer learning, the DCNN was used as a feature extractor followed by feature selection and random forest classification. The pathway evolution was performed using genetic algorithm in an iterative approach with tournament selection driven by count-preserving crossover and mutation. The second stage was trained with 9120 DBT ROIs from 228 mass lesions using leave-one-case-out cross-validation. The DCNN was reduced by 87% in the number of neurons, 34% in the number of parameters, and 95% in the number of multiply-and-add operations required in the convolutional layers. The test AUC on 89 mass lesions from 94 independent DBT cases before and after pruning were 0.88 and 0.90, respectively, and the difference was not statistically significant (p > 0.05). The proposed DCNN compression approach can reduce the number of required operations by 95% while maintaining the classification performance. The approach can be extended to other deep neural networks and imaging tasks where transfer learning is appropriate.
Adoptive transfer of acute lung injury.
Moxley, M A; Baird, T L; Corbett, J A
2000-11-01
In this study, we describe a novel adoptive transfer protocol to study acute lung injury in the rat. We show that bronchoalveolar lavage (BAL) cells isolated from rats 5 h after intratracheal administration of lipopolysaccharide (LPS) induce a lung injury when transferred to normal control recipient rats. This lung injury is characterized by increased alveolar-arterial oxygen difference and extravasation of Evans blue dye (EBD) into lungs of recipient rats. Recipient rats receiving similar numbers of donor cells isolated from healthy rats do not show adverse changes in the alveolar-arterial oxygen difference or in extravasation of EBD. The adoptive transfer-induced lung injury is associated with increased numbers of neutrophils in the BAL, the levels of which are similar to the numbers observed in BAL cells isolated from rats treated for 5 h with LPS. As an indicator of BAL cell activation, donor BAL cell inducible nitric oxide synthase (iNOS) expression was compared with BAL cell iNOS expression 48 h after adoptive transfer. BAL cells isolated 5 h after LPS administration expressed iNOS immediately after isolation. In contrast, BAL cells isolated 48 h after adoptive transfer did not express iNOS immediately after isolation but expressed iNOS following a 24-h ex vivo culture. These findings indicate that the activation state of donor BAL cells differs from BAL cells isolated 48 h after adoptive transfer, suggesting that donor BAL cells may stimulate migration of new inflammatory cells into the recipient rats lungs.
Comparison of Transferred Versus Nontransferred Pediatric Patients Admitted for Sepsis.
Hsu, Benson S; Schimelpfenig, Michelle; Lakhani, Saquib
2016-01-01
Little is known about the characteristics of pediatric patients transferred for medical care. Thus, we aimed to compare pediatric patients admitted for sepsis as transfers versus those who were not admitted as transfers. Retrospective study using The Agency for Healthcare Research and Quality 2009 Kids' Inpatient Database. Inclusion diagnosis of sepsis based on an All Patient Refined Diagnosis-Related Group of 720: Septicemia & Disseminated Infections resulted in 16,894 patients. Transfer status was based on admission codes. Weighted statistical analysis was conducted using STATA 12.1 (Stata Corporation, College Station, TX). Institutional review board approval was obtained. Weighted analysis found significant differences between transferred versus nontransferred patients in the following areas: highest severity of illness subclass (45.1% vs. 18.7%, P < .001), number of chronic conditions (2.0 vs. 1.5, P < .001), teaching hospital status (85.9% vs. 54.8%, P < .001), length of stay (10.8 vs. 6.5, p<.001), number of procedures (2.9 vs. 1.4, P < .001), mortality (8.4% vs. 3.2%, P < .001), total costs ($30,626 vs. $13,677, P < .001), and daily costs ($2,901 vs. $1,887, P < .001). Our study found that patients diagnosed with sepsis and transferred are more severely ill with a higher number of chronic conditions, longer lengths of stay, more procedures performed, higher mortality, and higher total and daily costs. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
NASA Astrophysics Data System (ADS)
Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad
2011-12-01
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
NASA Astrophysics Data System (ADS)
Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman
2018-03-01
In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.
Van Voorhis, Bradley J; Ryan, Ginny L
2010-07-01
In vitro fertilization (IVF) is an increasingly effective and popular means of achieving pregnancy for infertile women, but contributes to a growing incidence of risky twin pregnancies. Despite studies demonstrating cost-effective means to achieve IVF pregnancy while strictly limiting the number of embryos transferred, multiple-embryo transfer remains the most common practice in the United States, and twin pregnancies continue to increase. IVF providers resist restricting these practices, arguing that this is counter to principles of procreative liberty, patient and professional autonomy, and free-market economics. We counter that physicians have a professional fiduciary responsibility to weigh issues of nonmaleficence to patients and just use of health care resources with patient desires. With oversight from professional organizations, providers should follow strict but medically appropriate restrictions on embryo transfer practices and work toward safer means of optimizing IVF outcomes than multiple-embryo transfer. Thieme Medical Publishers.
Rotor assembly and method for automatically processing liquids
Burtis, C.A.; Johnson, W.F.; Walker, W.A.
1992-12-22
A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.
NASA Astrophysics Data System (ADS)
Amina, Benabderrahmane; Miloud, Aminallah; Samir, Laouedj; Abdelylah, Benazza; Solano, J. P.
2016-10-01
In this paper, we present a three dimensional numerical investigation of heat transfer in a parabolic trough collector receiver with longitudinal fins using different kinds of nanofluid, with an operational temperature of 573 K and nanoparticle concentration of 1% in volume. The outer surface of the absorber receives a non-uniform heat flux, which is obtained by using the Monte Carlo ray tracing technique. The numerical results are contrasted with empirical results available in the open literature. A significant improvement of heat transfer is derived when the Reynolds number varies in the range 2.57×104 ≤ Re ≤ 2.57×105, the tube-side Nusselt number increases from 1.3 to 1.8 times, also the metallic nanoparticles improve heat transfer greatly than other nanoparticles, combining both mechanisms provides better heat transfer and higher thermo-hydraulic performance.
NASA Astrophysics Data System (ADS)
Sobhani, M.; Behzadmehr, A.
2018-05-01
This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.
Momentum transfer conduits -- A new microscopic look at porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moaveni, S.
In this paper, the flow of fluid through porous media is investigated on a microscopic scale by representing a porous medium by an assemblage of hypothetical conduits through which the fluid momentum is transferred across the medium. It is shown that the rate of transfer of fluid momentum depends on the geometrical structure of the conduits such as the number density of momentum transfer conduits (MTCs), the length distribution and the directional distribution of these hypothetical conduits. In addition an expression for the total number of momentum transfer conduits reaching an arbitrary areal element is developed. Finally, an average heightmore » normal to an arbitrary areal element at which the MTCs were last discharged is formulated. This idea leads to definition of momentum thickness, which in turn may be used to define an effective (pseudo) viscosity for a given porous medium.« less
Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.
Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi
2014-08-12
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
NASA Technical Reports Server (NTRS)
Quinn, R. D.; Gong, L.
1978-01-01
Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.
NASA Astrophysics Data System (ADS)
Nazari, Saman; Toghraie, Davood
2017-03-01
This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Akbari, Omid Ali; Toghraie, Davood; Karimipour, Arash; Marzban, Ali; Ahmadi, Gholam Reza
2017-02-01
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.
Does gravidity influence the success of in vitro fertilization-embryo transfer cycles?
Rabinson, Jacob; Bar-Hava, Itai; Meltcer, Simion; Zohav, Efraim; Anteby, Eyal; Orvieto, Raoul
2006-04-01
To evaluate the influence of gravidity on the results of in vitro fertilization (IVF)-embryo transfer (ET) cycles. All consecutive women aged <35 years admitted to our IVF unit from January 2002 to December 2004 were enrolled in the study. Only patients undergoing one of their first three IVF cycle attempts were included. Gravidity, ovarian stimulation characteristics, number of oocytes retrieved, number of embryo transferred and clinical pregnancy rate were assessed. Three hundred and forty-two consecutive IVF cycles were evaluated. One hundred and sixty-one cycles were from nulligravidas and 181 from women with a history of at least one previous clinical pregnancy. Forty-eight (29.8%) clinical pregnancies were observed in the nulligravida group and 56 (30.9%) in the gravida group. There were no differences between nulligravidas and gravidas in causes of infertility, length of ovarian stimulation, peak estradiol and progesterone levels, number of oocytes retrieved, fertilization rate and number of embryos transferred. Gravidas were significantly older (30.4 vs. 27.6 years, p < 0.001) and used more gonadotropin ampoules (36.1 vs. 31.8, p < 0.004) compared with the nulligravidas. Patient gravidity has no influence on the likelihood of achieving pregnancy in IVF-ET cycles.
77 FR 59225 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
...-17) requires approximately 477 registered transfer agents to conduct searches using third party... agencies with monitoring transfer agents and ensuring compliance with the rule. We estimate that the average number of hours necessary for each transfer agent to comply with Rule 17Ad-17 is five hours...
Breakeven costs for embryo transfer in a commercial dairy herd.
Ferris, T A; Troyer, B W
1987-11-01
Differences in Estimated Breeding Values expressed in dollars were compared by simulation of two, 100-cow, closed herds. One herd practiced normal intensity of female selection. The other herd generated various herd replacements by embryo transfer by varying 1) selection rate of embryo transfer dams and 2) numbers of daughters per dam from which embryos were transferred, while varying the merit of mates of embryo transfer dams. Estimated Breeding Value dollars were compounded each generation and regressed to remove age adjustments and added feed and health costs. Beginning values in both herds included a standard deviation of 55 Cow Index dollars, herd average of -23 Cow Index dollars, and a 120 Predicted Difference dollars for mates of dams not embryo transferred. Average merit of all sires used increased $12 per year. Herd calving rate (.70), proportion females (.5), calf loss (.15), and heifer survival rate (.83) were used. Breakeven cost per embryo transfer cow entering the milking herd was computed by Net Present Value analysis using a 10% discount rate over 10 and 20 yr. Breakeven cost or the maximum expense that would allow a 10% return on the expenditure ranged from $135 to $510 per surviving cow, $24 to $125 per transfer, $47 to $178 per pregnancy, and $81 to $357 per female calf born. As the number of replacements resulting from embryo transfer increased, breakeven cost per embryo transfer cow decreased due to diminishing return.
NASA Technical Reports Server (NTRS)
Eckert, E R G; Diaguila, A J
1955-01-01
Report presents the results of an investigation conducted to study free-convection heat transfer in a stationary vertical tube closed at the bottom. The walls of the tube were heated, and heated air in the tube was continuously replaced by fresh cool air at the top. The tube was designed to provide a gravitational field with Grashof numbers of a magnitude comparable with those generated by the centrifugal field in rotating-blade coolant passages (10(8) to 10(13)). Local heat-transfer coefficients in the turbulent-flow range and the temperature field within the fluid were obtained.
Stagnation-point heat transfer correlation for ionized gases
NASA Technical Reports Server (NTRS)
Bade, W. L.
1975-01-01
Based on previous laminar boundary-layer solutions for argon, xenon, nitrogen, and air, it is shown that the effect of gas ionization on stagnation-point heat transfer can be correlated with the variation of the frozen Prandtl number across the boundary layer. A formula is obtained for stagnation-point heat transfer in a noble gas and is shown to be valid from the low-temperature range to the region of strong ionization. It is concluded that the considered effect can be well correlated by the 0.7 power of the Prandtl-number ratio across the boundary layer.
NASA Technical Reports Server (NTRS)
Walstad, D. G.
1975-01-01
Data are presented from heat transfer tests on an 0.0006-scale space shuttle vehicle in the Langley Research Center Nitrogen Tunnel. The purpose of this test was to obtain ascent heating data at a high hypersonic Mach number. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone. All configurations were tested with and without boundary layer transition. Testing was conducted at a Mach number of 19, a Reynolds number of 0.5 million per foot, and angles of attack of 0, + or - 5, and + or - 10 degrees. Heat transfer data was obtained from 77 orbiter and 90 external tank iron-constantan thermocouples.
NASA Astrophysics Data System (ADS)
Xiang, Junting; Schlüter, Jörg Uwe; Duan, Fei
2014-04-01
In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its miniaturization. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1983-01-01
Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.
NASA Technical Reports Server (NTRS)
Wagner, Richard D., Jr.; Pine, W. Clint; Henderson, Arthur, Jr.
1961-01-01
An experimental investigation has been conducted in the 2-inch helium tunnel at the Langley Research Center at a Mach number of 19.4 to determine the pressure distributions and heat-transfer characteristics of a family of reentry nose shapes. The pressure and heat-transfer-rate distributions on the nose shapes are compared with theoretical predictions to ascertain the limitations and validity of the theories at hypersonic speeds. The experimental results were found to be adequately predicted by existing theories. Two of the nose shapes were tested with variable-length flow-separation spikes. The results obtained by previous investigators of spike-nose bodies were found to prevail at the higher Mach number of the present investigation.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert
2002-08-01
A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numericalmore » modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.« less
Resonant Inductive Power Transfer for Noncontact Launcher-Missile Interface
2016-08-01
implementation of a wireless power transfer system based on the concept of non-radiating inductive coupling. 14. SUBJECT TERMS Resonant Inductive Coupling... Wireless Power Transfer 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY...2 In contrast to the ideal transformer, wireless inductive power transfer assumes that the coils are no longer physically connected by an iron core
ERIC Educational Resources Information Center
Mills, Michael Thomas
2011-01-01
This dissertation examined the relationship between the three year academic success of transfer students and the variables of race, gender, age, number of transfer credit hours, and place of residence. The study was conducted at Midwestern State University, a public, regional four-year institution and followed the incoming transfer classes of the…
Heat transfer in aeropropulsion systems
NASA Astrophysics Data System (ADS)
Simoneau, R. J.
1985-07-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Heat transfer in aeropropulsion systems
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1985-01-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Age-Related Differences in Transfer Costs: Evidence From Go/Nogo Tasks
Vallesi, Antonino; Hasher, Lynn; Stuss, Donald T.
2012-01-01
To assess whether age-related differences in suppressing nontarget material impact subsequent performance, the authors initially asked younger and older adults to perform a go/nogo task with colored letters used as conflicting go/nogo stimuli and 2 colored numbers as low-conflict nogo stimuli. Next, participants performed another go/nogo task. A previous number was reused as a nogo stimulus and the other as a go stimulus, with new numbers serving as a baseline. In a 1st block of trials, younger adults showed slower responses to previous nogo/now-go numbers than to new go numbers, an effect not shown by older adults. Alternative accounts of these differential transfer costs are discussed. PMID:20718536
NASA Astrophysics Data System (ADS)
Alrashed, Abdullah A. A. A.; Akbari, Omid Ali; Heydari, Ali; Toghraie, Davood; Zarringhalam, Majid; Shabani, Gholamreza Ahmadi Sheikh; Seifi, Ali Reza; Goodarzi, Marjan
2018-05-01
In recent years, the study of rheological behavior and heat transfer of nanofluids in the industrial equipment has become widespread among the researchers and their results have led to great advancements in this field. In present study, the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 and Reynolds numbers of 1-150 by using finite volume method (FVM). The analyzed geometry is a two-dimensional backward-facing contracting channel and the effects of various weight percentages and Reynolds numbers have been studied in the supposed geometry. The results have been interpreted as the figures of Nusselt number, friction coefficient, pressure drop, velocity contours and static temperature. The results of this research indicate that, the enhancement of Reynolds number or weight percentage of nanoparticles causes the reduction of surface temperature and the enhancement of heat transfer coefficient. By increasing Reynolds number, the axial velocity enhances, causing the enhancement of momentum. By increasing fluid momentum at the beginning of channel, especially in areas close to the upper wall, the axial velocity reduces and the possibility of vortex generation increases. The mentioned behavior causes a great enhancement in velocity gradients and pressure drop at the inlet of channel. Also, in these areas, Nusselt number and local friction coefficient figures have a relative decline, which is due to the sudden reduction of velocity. In general, by increasing the mass fraction of solid nanoparticles, the average Nusselt number increases and in Reynolds number of 150, the enhancement of pumping power and pressure drop does not cause any significant changes. This behavior is an important advantage of choosing nanofluid which causes the enhancement of thermal efficiency.
Supported Workplace Learning: A Knowledge Transfer Paradigm
ERIC Educational Resources Information Center
Burns, George R.; Paton, Robert R.
2005-01-01
The importance of knowledge to the effective development of economic growth in the twenty-first century has led to a number of initiatives such as lifelong learning, skills development and knowledge transfer. Of these, knowledge transfer has predominantly been concerned with the commercial exploitation of research knowledge. This article suggests…
Tech Transfer Magazine - KSC News Volume I, Number 2, Fall/Winter 2008
NASA Technical Reports Server (NTRS)
Dunn, Carol (Editor)
2008-01-01
Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals:
Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.
Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua
2015-01-01
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101-150, 151-200 or 201-250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.
Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning
Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua
2015-01-01
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101–150, 151–200 or 201–250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency. PMID:26565717
Energy transfer in turbulence under rotation
NASA Astrophysics Data System (ADS)
Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz
2018-03-01
It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza
2018-04-01
In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.
Interhospital transfer handoff practices among US tertiary care centers: A descriptive survey.
Herrigel, Dana J; Carroll, Madeline; Fanning, Christine; Steinberg, Michael B; Parikh, Amay; Usher, Michael
2016-06-01
Interhospital transfer is an understudied area within transitions of care. The process by which hospitals accept and transfer patients is not well described. National trends and best practices are unclear. To describe the demographics of large transfer centers, to identify common handoff practices, and to describe challenges and notable innovations involving the interhospital transfer handoff process. A convenience sample of 32 tertiary care centers in the United States was studied. Respondents were typically transfer center directors surveyed by phone. Data regarding transfer center demographics, handoff communication practices, electronic infrastructure, and data sharing were obtained. The median number of patients transferred each month per receiving institution was 700 (range, 250-2500); on average, 28% of these patients were transferred to an intensive care unit. Transfer protocols and practices varied by institution. Transfer center coordinators typically had a medical background (78%), and critical care-trained registered nurse was the most prevalent (38%). Common practices included: mandatory recorded 3-way physician-to-physician conversation (84%) and mandatory clinical status updates prior to patient arrival (81%). However, the timeline of clinical status updates was variable. Less frequent transfer practices included: electronic medical record (EMR) cross-talk availability and utilization (23%), real-time transfer center documentation accessibility in the EMR (32%), and referring center clinical documentation available prior to transport (29%). A number of innovative strategies to address challenges involving interhospital handoffs are reported. Interhospital transfer practices vary widely amongst tertiary care centers. Practices that lead to improved patient handoffs and reduced medical errors need additional prospective evaluation. Journal of Hospital Medicine 2016;11:413-417. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
ERIC Educational Resources Information Center
Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan
2012-01-01
A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…
Heat transfer from cylinders in subsonic slip flows
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Stainback, P. C.
1992-01-01
The heat transfer in heated wires was measured using a constant temperature anemometer over a Mach number range from 0.05 to 0.4 and pressures from 0.5 to 8.0 atmospheres. The total temperature ranged from 80 to 120 F and the wire diameters were 0.00015, 0.00032, and 0.00050 inch. The heat transfer data is presented in the form of a corrected Nusselt number. Based on suggested criteria, much of the data was obtained in the slip flow regime. Therefore, the data is compared with data having comparable flow conditions. The possible application of the heat transfer data to hot wire anemometry is discussed. To this end, the sensitivity of the wires to velocity, density, and total temperature is computed and compared using two different types of correlations.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
A wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell-Douglas configurations is reported. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). Heat-transfer rates were determined by the phase-change paint technique on 0.011-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, freestream unit Reynolds numbers of 0.8 x one million, 2.5 x one million, and 3.7 x one million, and angles of attack of -5 deg, 0 deg, +5deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented.
Angel, M A; Gil, M A; Cuello, C; Sanchez-Osorio, J; Gomis, J; Parrilla, I; Vila, J; Colina, I; Diaz, M; Reixach, J; Vazquez, J L; Vazquez, J M; Roca, J; Martinez, E A
2014-04-01
This study aimed to evaluate the effectiveness of superovulation protocols in improving the efficiency of embryo donors for porcine nonsurgical deep-uterine (NsDU) embryo transfer (ET) programs. After weaning (24 hours), purebred Duroc sows (2-6 parity) were treated with 1000 IU (n = 27) or 1500 IU (n = 27) of eCG. Only sows with clear signs of estrus 4 to 72 hours after eCG administration were treated with 750 IU hCG at the onset of estrus. Nonhormonally treated postweaning estrus sows (n = 36) were used as a control. Sows were inseminated and subjected to laparotomy on Days 5 to 6 (Day 0 = onset of estrus). Three sows (11.1%) treated with the highest dosage of eCG presented with polycystic ovaries without signs of ovulation. The remaining sows from nonsuperovulated and superovulated groups were all pregnant, with no differences in fertilization rates among groups. The number of CLs and viable embryos was higher (P < 0.05) in the superovulated groups compared with the controls and increased (P < 0.05) with increasing doses of eCG. There were no differences among groups in the number of oocytes and/or degenerated embryos. The number of transferable embryos (morulae and unhatched blastocysts) obtained in pregnant sows was higher (P < 0.05) in the superovulated groups than in the control group. In all groups, there was a significant correlation between the number of CLs and the number of viable and transferable embryos, but the number of CLs and the number of oocytes and/or degenerated embryos were not correlated. A total of 46 NsDU ETs were performed in nonhormonally treated recipient sows, with embryos (30 embryos per transfer) recovered from the 1000-IU eCG, 1500-IU eCG, and control groups. In total, pregnancy and farrowing rates were 75.1% and 73.2%, respectively, with a litter size of 9.4 ± 0.6 piglets born, of which 8.8 ± 0.5 were born alive. There were no differences for any of the reproductive parameters evaluated among groups. In conclusion, our results demonstrated the efficiency of eCG superovulation treatments in decreasing the donor-to-recipient ratio. Compared with nonsuperovulated sows, the number of transferable embryos was increased in superovulated sows without affecting their quality and in vivo capacity to develop to term after transfer. The results from this study also demonstrate the effectiveness of the NsDU ET procedure used, making possible the commercial use of ET technology by the pig industry. Copyright © 2014 Elsevier Inc. All rights reserved.
Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
NASA Technical Reports Server (NTRS)
Olson, D. A.
1992-01-01
Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B.; Lee, Dorothy B.
1961-01-01
Measurements of aerodynamic heat transfer have been made at six stations on the 40-inch-long 10 deg. total-angle conical nose of a rocket- propelled model which was flight tested at Mach numbers up to 5.9. are presented for a range of local Mach number just outside the bound- ary layer on the cone from 1.57 to 5.50, and a range of local Reynolds number from 6.6 x 10(exp 6) to 55.2 x 10(exp 6) based on length from the nose tip.
NASA Astrophysics Data System (ADS)
Abdulhadi, Ahmed M.; Ahmed, Tamara S.
2018-05-01
In this paper, we deals with the impact of radialiy magnetic field on the peristaltic transport of Jeffrey fluid through a curved channel with two dimensional. The effect of slip condition on velocity, the non-slip condition on temperature and conversation is performed. The heat and mass transfer are considered under the influence of various parameters. The flow is investigated under the assumption of long wave length and low Reynolds number approximations. The distribution of temperature and concentration are discussed for various parameters governing the flow with the simultaneous effects of Brinkman number, Soret number and Schmidt number.
MHD natural convection of hybrid nanofluid in an open wavy cavity
NASA Astrophysics Data System (ADS)
Ashorynejad, Hamid Reza; Shahriari, Alireza
2018-06-01
In this paper, natural convection heat transfer of Al2O3-Cu/water hybrid nanofluid within open wavy cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann method scheme. The left wavy wall is heated sinusoidal, while the right wall is open and maintained to the ambient conditions. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The influence of solid volume fraction of nanoparticles (φ = 0, 0.02, 0.04), Rayleigh number (Ra = 103, 104, 105), Hartmann number (Ha = 0, 30, 60, 90) and phase deviation (Φ = 0, π/4, π/2, 3π/4) are investigated on flow and heat transfer fields. The results proved that the Nusselt number decreases with the increase of the Hartmann number, but it increases by the increment of Rayleigh number and nanoparticle volume fraction. The magnetic field rises or falls the effect produced by the presence of nanoparticles with respect to Rayleigh number. At Ra = 103, the effect of the raising phase deviation on heat transfer is erratic while it has a positive role in the improvement of nanoparticles effect at Ra = 105.
Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Jafaryar, M.; Bateni, K.; Ganji, D. D.
2018-02-01
In this article, Buongiorno Model is applied for investigation of nanofluid flow over a stretching plate in existence of magnetic field. Radiation and Melting heat transfer are taken into account. Homotopy analysis method (HAM) is selected to solve ODEs which are obtained from similarity transformation. Roles of Brownian motion, thermophoretic parameter, Hartmann number, porosity parameter, Melting parameter and Eckert number are presented graphically. Results indicate that nanofluid velocity and concentration enhance with rise of melting parameter. Nusselt number reduces with increase of porosity and melting parameters.
NASA Technical Reports Server (NTRS)
Warmbrod, J. D.; Martindale, W. R.; Matthews, R. K.
1971-01-01
Plots and tables which determine detailed heat transfer distributions on phase B space shuttle configurations are presented. A thin-skinned thermocouple was used to measure the reentry events of the delta wing orbiter. Data was obtained at a nominal Mach number of 8 and free stream Reynolds numbers ranging from 0.83 x 10 to the 6th power to 3.76 x 10 to the 6th power per foot. Angle of attack was varied from -5 to 50 degrees.
Fast computation of the electrolyte-concentration transfer function of a lithium-ion cell model
NASA Astrophysics Data System (ADS)
Rodríguez, Albert; Plett, Gregory L.; Trimboli, M. Scott
2017-08-01
One approach to creating physics-based reduced-order models (ROMs) of battery-cell dynamics requires first generating linearized Laplace-domain transfer functions of all cell internal electrochemical variables of interest. Then, the resulting infinite-dimensional transfer functions can be reduced by various means in order to find an approximate low-dimensional model. These methods include Padé approximation or the Discrete-Time Realization algorithm. In a previous article, Lee and colleagues developed a transfer function of the electrolyte concentration for a porous-electrode pseudo-two-dimensional lithium-ion cell model. Their approach used separation of variables and Sturm-Liouville theory to compute an infinite-series solution to the transfer function, which they then truncated to a finite number of terms for reasons of practicality. Here, we instead use a variation-of-parameters approach to arrive at a different representation of the identical solution that does not require a series expansion. The primary benefits of the new approach are speed of computation of the transfer function and the removal of the requirement to approximate the transfer function by truncating the number of terms evaluated. Results show that the speedup of the new method can be more than 3800.
Local Mass and Heat Transfer on a Turbine Blade Tip
Jin, P.; Goldstein, R. J.
2003-01-01
Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less
2017-06-01
other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary
Thomas, Paul G; Brown, Scott A; Morris, Melissa Y; Yue, Wen; So, Jenny; Reynolds, Cory; Webby, Richard J; Doherty, Peter C
2010-02-15
Naive and recall CD4(+) T cell responses were probed with recombinant influenza A viruses incorporating the OVA OT-II peptide. The extent of OT-II-specific CD4(+) T cell expansion was greater following primary exposure, with secondary challenge achieving no significant increase in numbers, despite higher precursor frequencies. Adoptive transfer experiments with OT-II TCR-transgenic T cells established that the predominant memory set is CD62L(hi), whereas the CD62L(lo) precursors make little contribution to the recall response. Unlike the situation described by other investigators, in which the transfer of very large numbers of in vitro-activated CD4 effectors can modify the disease process, providing CD62L(hi) or CD62L(lo) OT-II-specific T cells at physiological levels neither enhanced virus clearance nor altered clinical progression. Some confounding effects of the transgenic model were observed, with decreasing primary expansion efficiency correlating with greater numbers of transferred cells. This was associated with increased levels of mRNA for the proapoptotic molecule Bim in cells recovered following high-dose transfer. However, even with very low numbers of transferred cells, memory T cells did not expand significantly following secondary challenge. A similar result was recorded in mice primed and boosted to respond to an endogenous IA(b)-restricted epitope derived from the influenza virus hemagglutinin glycoprotein. Depletion of CD8(+) T cells during secondary challenge generated an increased accumulation of OT-II-specific T cells but only at the site of infection. Taken together, significant expansion was not a feature of these secondary influenza-specific CD4 T cell responses and the recall of memory did not enhance recovery.
NASA Astrophysics Data System (ADS)
Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry
2018-05-01
Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.
Schnegg, Michael; Turchany, Morgane; Deviterne, Marie; Gueissaz, Line; Hess, Sabine; Massonnet, Geneviève
2017-10-01
Was this group of target fibers transferred during a criminal action? Is it possible that it was transferred during another legitimate activity? Acquiring knowledge about the activity, whether legitimate or criminal, leading to the transfer of a group of fibers is a recurring challenge encountered throughout the evidence interpretation process. Trace evidence such as fibers may assist with generating a reasoning of the activity which produced the trace, but this assumes that one already has a thorough understanding of the transfer phenomenon. How to generate and then use such relevant knowledge? What are the influencing parameters and which ones should (or can) be controlled? The present work focuses on homicides by smothering using a pillow and the transfer of fibers on the face of the victim in such events. A legitimate activity - represented by a night's sleep on a pillow - was also investigated since such legitimate, alternative explanations concerning the presence of fibers could likely be formulated by the suspect. The number and distribution of fibers transferred onto the victim's face in either scenario were investigated and interpreted using a Bayesian approach. Results showed that the shedding capacity of the pillowcase strongly impact the number of fibers recovered. The nature of the action, modus operandi and amount of friction could not be excluded in their influence on the transfer of fibers. Finally, likelihood ratios indicating the number of fibers recovered from the victim's face can provide relevant information by supporting either criminal or legitimate proposition (i.e., smothering or night's sleep scenario). Copyright © 2017 Elsevier B.V. All rights reserved.
An evaluation of gas transfer velocity parameterizations during natural convection using DNS
NASA Astrophysics Data System (ADS)
Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.
2016-02-01
Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.
Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn
NASA Technical Reports Server (NTRS)
Rigby, David L.
1999-01-01
Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry.
An Analysis of Factors Contributing to the Academic Success of Transfer Students
ERIC Educational Resources Information Center
Smith-Moore, Donna Lynn
2013-01-01
Attrition is a growing concern among higher education institutions. Student retention has long been viewed as a measure of institutional effectiveness. The number of transfer students, particularly those who seek entry into postsecondary education by transfer from a two-year to a four-year institution, continues to increase. However, transfer…
36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2011 CFR
2011-07-01
... characters and other non-data characters removed. Agencies must consult with the National Archives and... Road, College Park, MD 20740, phone number (301) 837-1578 to initiate transfer discussions. (b) Data files and databases. Data files and databases must be transferred to the National Archives of the United...
36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... characters and other non-data characters removed. Agencies must consult with the National Archives and... Road, College Park, MD 20740, phone number (301) 837-1578 to initiate transfer discussions. (b) Data files and databases. Data files and databases must be transferred to the National Archives of the United...
17 CFR 240.17Ad-17 - Transfer agents' obligation to search for lost securityholders.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., each recordkeeping transfer agent shall conduct two data base searches using at least one information data base service. The transfer agent shall search by taxpayer identification number or by name if a.... Such data base searches must be conducted without charge to a lost securityholder and with the...
17 CFR 240.17Ad-17 - Transfer agents' obligation to search for lost securityholders.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., each recordkeeping transfer agent shall conduct two data base searches using at least one information data base service. The transfer agent shall search by taxpayer identification number or by name if a.... Such data base searches must be conducted without charge to a lost securityholder and with the...
17 CFR 240.17Ad-17 - Transfer agents' obligation to search for lost securityholders.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., each recordkeeping transfer agent shall conduct two data base searches using at least one information data base service. The transfer agent shall search by taxpayer identification number or by name if a.... Such data base searches must be conducted without charge to a lost securityholder and with the...
36 CFR 1231.12 - How do executive agencies request to transfer records to another executive agency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... request to transfer records to another executive agency? 1231.12 Section 1231.12 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS FROM...
36 CFR 1231.12 - How do executive agencies request to transfer records to another executive agency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... request to transfer records to another executive agency? 1231.12 Section 1231.12 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS FROM...
36 CFR 1231.12 - How do executive agencies request to transfer records to another executive agency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... request to transfer records to another executive agency? 1231.12 Section 1231.12 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS FROM...
36 CFR 1231.12 - How do executive agencies request to transfer records to another executive agency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... request to transfer records to another executive agency? 1231.12 Section 1231.12 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS FROM...
ERIC Educational Resources Information Center
J. Sargeant Reynolds Community Coll., Richmond, VA.
An overview is provided of the activities and accomplishments of J. Sargeant Reynold Community College's (JSRCC) Urban Community Colleges Transfer Opportunities Program, which was designed to increase the number of minority students transferring to senior institutions. Introductory material highlights the means used to attain the program's…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... Information Collection: Comment Request; Application for the Transfer of Physical Assets AGENCY: Office of the... information: Title of Proposal: Application for the Transfer of Physical Assets. OMB Control Number, if... used to ensure that HUD multifamily housing properties are not placed in physical, financial, or...
What Do We Know about Transfer?
ERIC Educational Resources Information Center
Palmer, James
1991-01-01
A small number of studies conducted during the 1980's provide insights into the magnitude of transfer activity and the characteristics of students who are likely to transfer. The studies, based occasionally on state data and more frequently on secondary analyses of the U.S. Department of Education's longitudinal databases, reveal that: (1)…
50 CFR 622.15 - Wreckfish individual transferable quota (ITQ) system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the RA of his or her percentage share and shareholder certificate number. (2) All or a portion of a... form available from the RA. The RA will confirm, in writing, each transfer of shares. The effective date of each transfer is the confirmation date provided by the RA. The confirmation date will normally...
NASA Astrophysics Data System (ADS)
Hatami, M.; Zhou, J.; Geng, J.; Jing, D.
2018-04-01
In this paper, the effect of a variable magnetic field (VMF) on the natural convection heat transfer of Fe3O4-water nanofluid in a half-annulus cavity is studied by finite element method using FlexPDE commercial code. After deriving the governing equations and solving the problem by defined boundary conditions, the effects of three main parameters (Hartmann Number (Ha), nanoparticles volume fraction (φ) and Rayleigh number (Ra)) on the local and average Nusselt numbers of inner wall are investigated. As a main outcome, results confirm that in low Eckert numbers, increasing the Hartmann number make a decrease on the Nusselt number due to Lorentz force resulting from the presence of stronger magnetic field.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
NASA Astrophysics Data System (ADS)
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
Transferring multiqubit entanglement onto memory qubits in a decoherence-free subspace
NASA Astrophysics Data System (ADS)
He, Xiao-Ling; Yang, Chui-Ping
2017-03-01
Different from the previous works on generating entangled states, this work is focused on how to transfer the prepared entangled states onto memory qubits for protecting them against decoherence. We here consider a physical system consisting of n operation qubits and 2 n memory qubits placed in a cavity or coupled to a resonator. A method is presented for transferring n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states from the operation qubits (i.e., information processing cells) onto the memory qubits (i.e., information memory elements with long decoherence time). The transferred GHZ states are encoded in a decoherence-free subspace against collective dephasing and thus can be immune from decoherence induced by a dephasing environment. In addition, the state transfer procedure has nothing to do with the number of qubits, the operation time does not increase with the number of qubits, and no measurement is needed for the state transfer. This proposal can be applied to a wide range of hybrid qubits such as natural atoms and artificial atoms (e.g., various solid-state qubits).
NASA Astrophysics Data System (ADS)
Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng
2018-04-01
Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.
Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1984-01-01
Various flow visualization techniques were used to define the seondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious. Previously announced in STAR as N83-14435
Blastocyst transfer in human in vitro fertilization. A solution to the multiple pregnancy epidemic.
Vidaeff, A C; Racowsky, C; Rayburn, W F
2000-07-01
Since the 1950s, the incidence of twin gestation has doubled and the incidence of triplets has increased approximately sevenfold in the United States. Of extreme concern is the fact that many of these multiple pregnancies are iatrogenic: 35% of twin gestations and 77% of higher-order pregnancies are the result of some form of infertility therapy. Anything that can be done to reduce the number of these multiple pregnancies would benefit our patients and society. Great hope is placed on emerging blastocyst technology, which has the potential of achieving higher pregnancy rates per embryo transfer while reducing the risk of multiple pregnancy. We present the evolution of the blastocyst transfer concept and the technical aspects involved. The article also outlines the experience with blastocyst culture and transfer at Brigham and Women's Hospital, Boston, and describes identifiers for application of blastocyst transfer. The number of eight-cell embryos on day 3 is an independent marker for the selection of patients who would benefit from transfer on day 5. With no eight-cell embryos on day 3, 0% and 33% pregnancies resulted from day 5 vs. day 3 transfers, suggesting that these cases would not benefit from day 5 transfer. When at least one eight-cell embryo is available, there is no difference in ongoing pregnancy rates between day 5 and day 3 transfers, but there is a significant decrease in multiple gestations with day 5 transfers.
Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
Hu, Yujing; Gao, Yang; An, Bo
2015-07-01
An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)
2002-01-01
The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.
2018-06-01
Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.
NASA Astrophysics Data System (ADS)
Ahmadi Nadooshan, Afshin; Kalbasi, Rasool; Afrand, Masoud
2018-04-01
Perforated fins effects on the heat transfer rate of a circular tube are examined experimentally. An experimental system is set up through the wind tunnel and equipped with necessary measurement tools. Hot water passes through the finned tube and heat transfers to the fin-side air created using the wind tunnel with different velocities. Two fin sets of identical weight are installed on a circular tube with different outer diameters of 22 and 26 mm. The experiments are conducted at two different mass flow rates of the hot water and six Reynolds number of external air flow. Considering the four finned tubes and one no finned tube, a total of 60 tests are conducted. Results showed that with increasing the internal or external flow rates, the effect of larger cross-sectional area is greater. By opening holes on the fins, in addition to weight loss, the maximum heat transfer rate for perforated fins increases by 8.78% and 9.23% respectively for mass flow rates of 0.05 and 0.1 kg/s at low external Reynolds number. While, at high external Reynolds number, the holes reduces heat transfer by 8.4% and 10.6% for mass flow rates of 0.05 and 0.1 kg/s, respectively.
NASA Astrophysics Data System (ADS)
Oon, Cheen Sean; Nee Yew, Sin; Chew, Bee Teng; Salim Newaz, Kazi Md; Al-Shamma'a, Ahmed; Shaw, Andy; Amiri, Ahmad
2015-05-01
Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.
NASA Technical Reports Server (NTRS)
Russell, Louis M.; Thurman, Douglas R.; Simonyi, Patricia S.; Hippensteele, Steven A.; Poinsatte, Philip E.
1993-01-01
Visual and quantitative information was obtained on heat transfer and flow in a branched-duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used to validate computer codes for internal cooling systems. Surface heat transfer coefficients and entrance flow conditions were measured at entrance Reynolds numbers of 45,000, 335,000, and 726,000. The heat transfer data were obtained using an Inconel heater sheet attached to the surface and coated with liquid crystals. Visual and quantitative flow field results using particle image velocimetry were also obtained for a plane at mid channel height for a Reynolds number of 45,000. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Computational results were determined for the same configurations and at matching Reynolds numbers; these surface heat transfer coefficients and flow velocities were computed with a commercially available code. The experimental and computational results were compared. Although some general trends did agree, there were inconsistencies in the temperature patterns as well as in the numerical results. These inconsistencies strongly suggest the need for further computational studies on complicated geometries such as the one studied.
NASA Astrophysics Data System (ADS)
Kruithof, Maarten C.; Bouma, Henri; Fischer, Noëlle M.; Schutte, Klamer
2016-10-01
Object recognition is important to understand the content of video and allow flexible querying in a large number of cameras, especially for security applications. Recent benchmarks show that deep convolutional neural networks are excellent approaches for object recognition. This paper describes an approach of domain transfer, where features learned from a large annotated dataset are transferred to a target domain where less annotated examples are available as is typical for the security and defense domain. Many of these networks trained on natural images appear to learn features similar to Gabor filters and color blobs in the first layer. These first-layer features appear to be generic for many datasets and tasks while the last layer is specific. In this paper, we study the effect of copying all layers and fine-tuning a variable number. We performed an experiment with a Caffe-based network on 1000 ImageNet classes that are randomly divided in two equal subgroups for the transfer from one to the other. We copy all layers and vary the number of layers that is fine-tuned and the size of the target dataset. We performed additional experiments with the Keras platform on CIFAR-10 dataset to validate general applicability. We show with both platforms and both datasets that the accuracy on the target dataset improves when more target data is used. When the target dataset is large, it is beneficial to freeze only a few layers. For a large target dataset, the network without transfer learning performs better than the transfer network, especially if many layers are frozen. When the target dataset is small, it is beneficial to transfer (and freeze) many layers. For a small target dataset, the transfer network boosts generalization and it performs much better than the network without transfer learning. Learning time can be reduced by freezing many layers in a network.
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.
2016-10-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.
Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei
2017-04-10
In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.
Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M
2016-12-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
Lorenzo-Díaz, Fabián; Fernández-López, Cris; Lurz, Rudi
2017-01-01
Abstract Horizontal gene transfer is a key process in the evolution of bacteria and also represents a source of genetic variation in eukaryotes. Among elements participating in gene transfer, thousands of small (<10 kb) mobile bacterial plasmids that replicate by the rolling circle mechanism represent a driving force in the spread of antibiotic resistances. In general, these plasmids are built as genetic modules that encode a replicase, an antibiotic-resistance determinant, and a relaxase that participates in their conjugative mobilization. Further, they control their relatively high copy number (∼30 copies per genome equivalent) by antisense RNAs alone or combined with a repressor protein. We report here that the MobM conjugative relaxase encoded by the promiscuous plasmid pMV158 participates in regulation of the plasmid copy number by transcriptional repression of the antisense RNA, thus increasing the number of plasmid molecules ready to be horizontally transferred (mobilization) and/or vertically inherited (replication). This type of crosstalk between genetic modules involved in vertical and horizontal gene flow has not been reported before. PMID:28525572
NASA Technical Reports Server (NTRS)
Lowdermilk, Warren H; Grele, Milton D
1949-01-01
A heat transfer investigation, which was an extension of a previously reported NACA investigation, was conducted with air flowing through an electrically heated inconel tube with a rounded entrance,an inside diameter of 0.402 inch, and a length of 24 inches over a range of conditions, which included Reynolds numbers up to 500,000, average surface temperatures up to 2050 degrees R, and heat-flux densities up to 150,000 Btu per hour per square foot. Conventional methods of correlating heat-transfer data wherein properties of the air were evaluated at the average bulk, film, and surface temperatures resulted in reductions of Nusselt number of about 38, 46, and 53 percent, respectively, for an increase in surface temperature from 605 degrees to 2050 degrees R at constant Reynolds number. A modified correlation method in which the properties of air were based on the surface temperature and the Reynolds number was modified by substituting the product of the density at the inside tube wall and the bulk velocity for the conventional mass flow per unit cross-sectional area, resulted in a satisfactory correlation of the data for the extended ranges of conditions investigated.
MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity
NASA Astrophysics Data System (ADS)
Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit
2017-06-01
In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.
Berkkanoglu, Murat; Ozgur, Kemal
2010-07-01
To find out the optimum maximal dosage of recombinant follicle stimulating hormone (rFSH) in microdose gonadotropin-releasing hormone analog (GnRH-a) flare cycles in poor responders. Prospective randomized study. Private infertility clinic. A total of 119 women were taken into the study. The study group underwent a microdose protocol with a GnRH-agonist followed by rFSH administration. On the third day of GnRH-a administration, 119 patients were randomized in three groups to receive daily fixed doses of 300 IU of rFSH (group A, n = 38), or 450 IU of rFSH (group B, n = 39), or 600 IU of rFSH (group C, n = 42). Peak E(2) levels, days of stimulation with rFSH, total rFSH dosage, total number of oocytes retrieved, M2 oocytes retrieved, total number of embryos, number of embryos transferred, number of Grade-1 embryos transferred, clinical pregnancy rate (positive fetal cardiac activity), and cancellation rates of stimulation and embryo transfer. Clinical pregnancy rates were 13.1%, 15.3%, and 16.1% for group A, group B, and group C, respectively. There were no significant differences in the age, peak serum E(2) concentration, days of stimulation with rFSH, total number of M2 oocytes retrieved, number of embryos transferred, clinical pregnancy rates, and cancellation rates of stimulation and embryo transfer between the three groups except for total rFSH dosage. There is no need to use doses above 300 IU of rFSH to increase the pregnancy rate in microdose cycles. In addition, because the duration of stimulation does not differ between the groups, the usage of 300 IU rFSH in microdose cycles results in less total amount of rFSH consumed in a cycle compared with higher dosages, and this would obviously cost less money to the patients. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bauer, Christopher
1993-01-01
Stirling engine heat exchangers are shell-and-tube type with oscillatory flow (zero-mean velocity) for the inner fluid. This heat transfer process involves laminar-transition turbulent flow motions under oscillatory flow conditions. A low Reynolds number kappa-epsilon model, (Lam-Bremhorst form), was utilized in the present study to simulate fluid flow and heat transfer in a circular tube. An empirical transition model was used to activate the low Reynolds number k-e model at the appropriate time within the cycle for a given axial location within the tube. The computational results were compared with experimental flow and heat transfer data for: (1) velocity profiles, (2) kinetic energy of turbulence, (3) skin friction factor, (4) temperature profiles, and (5) wall heat flux. The experimental data were obtained for flow in a tube (38 mm diameter and 60 diameter long), with the maximum Reynolds number based on velocity being Re(sub max) = 11840, a dimensionless frequency (Valensi number) of Va = 80.2, at three axial locations X/D = 16, 30 and 44. The agreement between the computations and the experiment is excellent in the laminar portion of the cycle and good in the turbulent portion. Moreover, the location of transition was predicted accurately. The Low Reynolds Number kappa-epsilon model, together with an empirical transition model, is proposed herein to generate the wall heat flux values at different operating parameters than the experimental conditions. Those computational data can be used for testing the much simpler and less accurate one dimensional models utilized in 1-D Stirling Engine design codes.
Inclusion of heat transfer computations for particle laden flows
NASA Astrophysics Data System (ADS)
Feng, Zhi-Gang; Michaelides, Efstathios E.
2008-04-01
A newly developed direct numerical simulation method has been used to study the dynamics of nonisothermal cylindrical particles in particulate flows. The momentum and energy transfer equations are solved to compute the effects of heat transfer in the sedimentation of particles. Among the effects examined is the drag force on nonisothermal particles, which we found strongly depends on the Reynolds and Grashof numbers. It was observed that heat advection between hotter particles and fluid causes the drag coefficient of particles to significantly increase at relatively low Reynolds numbers. For Grashof number of 100, the drag enhancement effect diminishes when the Reynolds number exceeds 50. On the contrary, heat advection with colder particles reduces the drag coefficient for low and medium Reynolds number (Re<50) for Grashof number of -100. We used this numerical method to study the problem of a pair of hot particles settling in a container at different Grashof numbers. In isothermal cases, such a pair of particles would undergo the well-known drafting-kissing-tumbling (DKT) motion. However, it was observed that the buoyancy currents induced by the hotter particles reverse the DKT motion of the particles or suppress it altogether. Finally, the sedimentation of a circular cluster of 172 particles in an enclosure at two different Grashof numbers was studied and the main features of the results are presented.
Effective Bayesian Transfer Learning
2010-03-01
reasonable value of k , defined by the task B training set size. Transfer Regret 1 Regret = 100 * G AB B No Transfer With Transfer AB...a. REPORT U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed...rule set given the prior and developed staged approximate inference strategy, in which data from observed tasks 1 to k are used to infer general rule
Nucleon transfer reactions with radioactive beams
NASA Astrophysics Data System (ADS)
Wimmer, K.
2018-03-01
Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.
Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela
2017-06-28
A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.
NASA Astrophysics Data System (ADS)
Etminan, Amin; Harun, Zambri; Sharifian, Ahmad
2017-01-01
In this article distilled water and CuO particles with volume fraction of 1%, 2% and 4% are studied numerically. The steady state flow regime is considered laminar with Reynolds number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm respectively. The problem is solved using finite volume method with constant heat flux for two sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt number and convective heat transfer coefficient distribution on walls are investigated in details. The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a remarkable enhancement on heat transfer coefficient pressure loss through the channel. The computations reveal that the size of nanoparticles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between current results and experimental data in the literatures.
Accreting Black Hole Binaries in Globular Clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.
2018-01-01
We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Russell, L. M.; Torres, F. J.
1985-01-01
Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.
Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters
2018-01-01
In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
NASA Astrophysics Data System (ADS)
Heris, Saeed Zeinali; Farzin, Farshad; Sardarabadi, Hamideh
2015-04-01
The aim of the present study was to investigate heat transfer characteristics of turbine oil-based nanofluids inside a circular tube in laminar flow under a constant heat flux boundary condition. Oil-based nanofluids were prepared dispersing less than 1 % volume concentrations of CuO, , and nanoparticles in turbine oil using a two-step method. The primary objective was to evaluate and compare the effect of different volume concentrations and nanoparticle types on convective heat transfer. An experimental apparatus was designed and constructed to measure the heat transfer coefficient and the Nusselt number of the samples. Due to the high Prandtl number of the nanofluids (about 350), it was concluded that the nanofluids were in the developing region. Experimental results clearly indicated that all of the added nanoparticles improved both the heat transfer coefficient and the Nusselt number of the turbine oil. A nanofluid is more capable than a single-phase fluid insofar as removing heat from high heat flux surfaces. The highest values of the Nusselt number and the Nusselt number ratio (the ratio of the nanofluid Nusselt number to that of the pure turbine oil) belonged to the CuO/turbine oil nanofluid. Among the sample nanofluids, the highest Nusselt number ratios belonged to CuO/turbine oil (0.50 %), /turbine oil (0.50 %), /turbine oil (0.50 %), and a Reynolds number of about 800 which were 1.38, 1.31, and 1.15, respectively. Moreover, so as to determine the efficiency of a nanofluid, the ratio of the pressure drop and Nusselt number of three nanofluid samples were compared with that of the base fluid. A third parameter (performance index) was evaluated to determine the possibility of practically using such for rating nanofluids. All the obtained performance indexes for CuO/turbine oil and /turbine oil were more than one, meaning the employment of such nanofluids leads to a higher quality turbine oil.
AAPB-B - Committee offers revised exchange format for transferring geologic and petroleum data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waller, H.O.; Guinn, D.; Herkommer, M.
1990-04-01
Comments received since the publication of Exchange Format for Transfer of Geologic and Petroleum Data revealed the need for more flexibility with the AAPG-A Format (Shaw and Waller, 1989). This discussion resulted in the proposed AAPG-B version, which has unlimited number of data fields per record and unlimited number of records. Comment lines can appear anywhere, including in data records, to help document data transfer. Data dictionary hooks have been added. The American Petroleum Institute has assisted by supplying an ANSI envelope for this format, which will permit the electronic transfer with verification of data sets between any two ANSImore » installations. The American Association of Petroleum Geologists Database Standards Subcommittee invites comments on the proposed revisions, and will review the suggestions when it meets June 2 in San Francisco.« less
Full-coverage film cooling. I - Comparison of heat transfer data for three injection angles
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.; Moffat, R. J.
1980-01-01
Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverage film cooled surfaces with three geometries; normal-, 30 deg slant-, and 30 deg x 45 deg compound-angled injection. A flat full-coverage section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio, injection temperature ratio, and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000.
Couette flow of an incompressible fluid in a porous channel with mass transfer
NASA Astrophysics Data System (ADS)
Niranjana, N.; Vidhya, M.; Govindarajan, A.
2018-04-01
The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.
NASA Astrophysics Data System (ADS)
Nabil, M. F.; Azmi, W. H.; Hamid, K. A.; Mamat, R.
2017-10-01
The need for high performance of heat transfer has been evaluated by finding different ways to enhance heat transfer rate in fluid. One of the methods is the combination of two or more nanoparticles and it is known as hybrid/composite nanofluids which can give better performance of heat transfer. Thus, the present study focused on combination of Titanium oxide (TiO2) and Silicon oxide (SiO2) nanoparticles dispersed in 60:40 volume ratio of water and ethylene glycol mixture as the base fluid. The TiO2-SiO2 hybrid nanofluids are prepared using two-step method for different concentration of 2.0%, 2.5% and 3.0%. The experimental determination of heat transfer coefficients are conducted in the Reynolds numbers range from 2000 to 10000 at a bulk temperature of 30°C. The experiments are undertaken for constant heat flux in a circular tube. The Nusselt number of composite TiO2- SiO2 nanofluids is observed to be higher than the base fluid. The finding on heat transfer coefficient shows that 3.0% volume concentration is the highest enhancement with 45.9% compared with base fluid. While at concentration 2.0% and 2.5%, the enhancement recorded were 29.4% and 33.2%, respectively. The friction factor of nanofluids shows a decreased with the increasing of Reynolds numbers. However, the friction factor slightly increased with the increased of concentration.
NASA Astrophysics Data System (ADS)
Kareem, Ali Khaleel; Gao, Shian
2018-02-01
The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.
ERIC Educational Resources Information Center
Harris, Linwood N.
2017-01-01
This study is a departure from discussions on why community college students do not transfer in large numbers, but instead, provides an analysis of Latino students from community college who have successfully transferred to Tier 1 universities. The conceptual framework included student engagement theory (Kuh, 2003), the support for student…
Code of Federal Regulations, 2011 CFR
2011-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... agency meet before it transfers records to a records storage facility? 1232.14 Section 1232.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... request to transfer records to another executive agency? § 1231.12 Section § 1231.12 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS FROM...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... agency meet before it transfers records to a records storage facility? 1232.14 Section 1232.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administration, Modern Records Programs (NWM), 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301... agency meet before it transfers records to a records storage facility? 1232.14 Section 1232.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF...
14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...
14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...
14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...
The Perennial and the Particular Challenges of Design Education
ERIC Educational Resources Information Center
Ruecker, Stan
2012-01-01
Education in design shares with other disciplines a number of perennial challenges, including the need to transfer human culture, the choice of what parts of human culture to transfer and the decision as to what approaches work best in accomplishing that transfer. Design education also faces particular challenges, which are shared with only a few…
14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results are reported of the phase-change paint tests conducted at Mach 8, to determine the aerodynamic heat transfer distributions on the McDonnell Douglas delta wing orbiter. Model details, test conditions, and reduced heat transfer data are presented.
Postsecondary Student Mobility from College to University: Academic Performance of Students
ERIC Educational Resources Information Center
Gerhardt, Kris; Masakure, Oliver
2016-01-01
This paper considers the impact of transfer credits on the GPA of college-university transfer students. The data come from the academic records of students enrolled at 2 different campuses at an undergraduate university in Ontario across a 4-year period. The results from multivariate regression analyses show that the number of transfer credits is…
An Integrated On-Line Transfer Credit Evaluation System-Admissions through Graduation Audit.
ERIC Educational Resources Information Center
Schuman, Chester D.
This document discusses a computerized transfer evaluation system designed by Pennsylvania College of Technology, a comprehensive two-year institution with an enrollment of over 4,800 students. It is noted that the Admissions Office processes approximately 500 transfer applications for a fall semester, as well as a large number of evaluations for…
NASA Astrophysics Data System (ADS)
Polyakov, A. F.; Strat'ev, V. K.; Tret'yakov, A. F.; Shekhter, Yu. L.
2010-06-01
Heat transfer from six samples of porous reticular material to cooling gas (air) at small Reynolds numbers is experimentally studied. The specific features pertinent to heat transfer essentially affected by longitudinal heat conductivity along gas flow are analyzed. The experimental results are generalized in the form of dimensionless empirical relations.
NASA Technical Reports Server (NTRS)
Han, J. C.; Chandra, P. R.; Lau, S. C.
1988-01-01
The napthalene sublimation technique was employed to study the detailed mass transfer distributions around the sharp 180 deg turns in a two-pass, square, smooth channel and in an identical channel with two rib-roughened opposite walls. Experiments conducted for Reynolds numbers of 15,000, 30,000, and 60,000 indicate that the Sherwood numbers on the top, outer, and inner walls around the turn in the rib-roughened channel are higher than the corresponding Sherwood numbers around the turn in the smooth channel. Sherwood numbers after the sharp turn are found to be higher than those before the turn for both the smooth and the ribbed channels.
Thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity
NASA Technical Reports Server (NTRS)
Lan, C. W.; Kou, Sindo
1990-01-01
Computer simulation of steady-state axisymmetrical heat transfer and fluid flow was conducted to study thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity. The effects of key variables on the extent of thermocapillary flow in the melt zone, the shapes of melt/solid interfaces and the length of the melt zone were discussed. These variables are: (1) the temperature coefficient of surface tension (or the Marangoni number), (2) the pulling speed (or the Peclet number), (3) the feed rod radius, (4) the ambient temperature distribution, (5) the heat transfer coefficient (or the Biot number), and (6) the thermal diffusivity of the material (or the Prandtl number).
Finite analytic numerical solution of heat transfer and flow past a square channel cavity
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Obasih, K.
1982-01-01
A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.
Current status of assisted reproductive technology in Korea, 2011.
Lee, Gyoung Hoon; Song, Hyun Jin; Lee, Kyu Sup; Choi, Young Min
2016-03-01
The number of assisted reproductive technology (ART) clinics, ART cycles, clinical pregnancy rate (CPR), and number of newborns conceived using ART have steadily increased in South Korea. This aim of this study was to describe the status of ART in South Korea between January 1 and December 31, 2011. A localized online survey was created and sent to all available ART centers via email in 2015. Fresh embryo transfer (FET) cases were categorized depending on whether standard in vitro fertilization, intracytoplasmic sperm injection (ICSI), or half-ICSI procedures were used. Thawed embryo transfer (TET) and other related procedures were surveyed. Data from 36,990 ART procedures were provided by 74 clinics. Of the 30,410 cycles in which oocytes were retrieved, a complete transfer was performed in 91.0% (n=27,683). In addition, 9,197 cycles were confirmed to be clinical pregnancies in the FET cycles, representing a pregnancy rate of 30.2% per oocyte pick-up and 33.2% per ET. The most common number of embryos transferred in the FET procedures was three (38.1%), followed by two (34.7%) and one (14.3%). Of the 8,826 TET cycles, 3,137 clinical pregnancies (31.1%) were confirmed by ultrasonography. While the overall clinical pregnancy rate for the TET cycles performed was lower than the rate reported in 2010 (31.1% vs. 35.4%), the overall CPR for the FET cycles was higher than in 2010 (33.2% in 2011 and 32.9% in 2010). The most common number of embryos transferred in FET cycles was three, as was the case in 2010.
NASA Astrophysics Data System (ADS)
Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen
2012-10-01
In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joye, D.D.
1996-07-01
Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less
Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel
NASA Technical Reports Server (NTRS)
Chandra, P. R.; Han, J. C.; Lau, S. C.
1987-01-01
The naphthalene sublimation technique is used to investigate the heat transfer characteristics of turbulent air flow in a two-pass channel. A test section that resembles the internal cooling passages of gas turbine airfoils is employed. The local Sherwood numbers on the ribbed walls were found to be 1.5-6.5 times those for a fully developed flow in a smooth square duct. Depending on the rib angle-of-attack and the Reynolds number, the average ribbed-wall Sherwood numbers were 2.5-3.5 times higher than the fully developed values.
Heat Transfer to Bodies in a High-speed Rarified-Gas Stream
NASA Technical Reports Server (NTRS)
Stalder, Jackson R; Goodwin, Glen; Creager, Marcus O
1952-01-01
Report presents the results of an investigation to determine the equilibrium temperature and heat-transfer coefficients for transverse cylinders in a high-speed stream of rarefied gas measured over a range of Knudsen numbers (ratio of molecular-mean-free path to cylinder diameter) from 0.025 to 11.8 and for Mach numbers from 2.0 to 3.3. The range of free-stream Reynolds numbers was from 0.28 to 203. The models tested were 0.0010-, 0.0050-, 0.030-, 0.051-, 0.080-, and 0.126-inch -diameter cylinders held normal to the stream.
NASA Technical Reports Server (NTRS)
Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.
1987-01-01
The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.
Schlapp, Geraldine; Goyeneche, Lucía; Fernández, Gabriel; Menchaca, Alejo; Crispo, Martina
2015-02-01
To evaluate the effect of the nonsteroidal anti-inflammatory drugs tolfenamic acid and flunixin meglumine in pregnancy rate and embryo survival of recipient mice subjected to embryo transfer. A total of 142 recipient females were transferred with 2,931 embryos and treated with a single injection of tolfenamic acid (1 mg/kg; n = 54 females with 1,129 embryos), flunixin meglumine (2.5 mg/kg; n = 46 females with 942 embryos), or bi-distilled water (10 mL/kg) as control group (n = 42 females with 860 embryos). Pregnancy was checked 2 weeks after embryo transfer, delivery was registered on the due date, and litter size was recorded on Day 7 after birth. Pregnancy rate of tolfenamic acid treated females was significantly higher than flunixin group (P < 0.05) and showed a tendency to be higher when compared to the control group (P = 0.06). The number of pups born from transferred embryos in pregnant females was significantly higher for both treatment groups compared to controls (P < 0.05). Number of pups from total transferred embryos was higher for both treatment groups (P < 0.05) when compared to controls. The use of tolfenamic acid at the time of embryo transfer improves both pregnancy rate and number of live pups in recipient mice, with optimal effects observed with flunixin meglumine. We suggest that the use of tolfenamic acid has beneficial effects on the maintenance of pregnancy and embryo survival in recipient mice, which should be taken into account for further studies in other mammalian females.
NASA Astrophysics Data System (ADS)
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
NASA Astrophysics Data System (ADS)
Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.
2017-12-01
Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B.; Lee, Dorothy B.
1961-01-01
Measurements of aerodynamic heat transfer have been made at several stations on the 15 deg total-angle conical nose of a rocket-propelled model in free flight at Mach numbers up to 5.2. Data are presented for a range of local Mach number just outside the boundary layer from 1.40 to 4.65 and a range of local Reynolds number from 3.8 x 10(exp 6) to 46.5 x 10(exp 6), based on length from the nose tip to a measurement station. Laminar, transitional, and turbulent heat-transfer coefficients were measured. The laminar data were in agreement with laminar theory for cones, and the turbulent data agreed well with turbulent theory for cones using Reynolds number based on length from the nose tip. At a nearly constant ratio of wall to local static temperature of 1.2 the Reynolds number of transition increased from 14 x 10(exp 6) to 30 x 10(exp 6) as Mach number increased from 1.4 to 2.9 and then decreased to 17 x 10(exp 6) as Mach number increased to 3.7. At Mach numbers near 3.5, transition Reynolds numbers appeared to be independent of skin temperature at skin temperatures very cold with respect to adiabatic wall temperature. The transition Reynolds number was 17.7 x 10(exp 6) at a condition of Mach number and ratio of wall to local static temperature near that for which three-dimensional disturbance theory has been evaluated and has predicted laminar boundary-layer stability to very high Reynolds numbers (approximately 10(exp 12)).
2014-10-01
Transfer ( CRET ) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging PRINCIPAL INVESTIGATOR: Susan L. Deutscher...SUBTITLE 5a. CONTRACT NUMBER In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer ( CRET ) Multiplexed Optical Imaging for Human...internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer ( CRET ) coupled with TF- and ErbB2/3- molecularly targeted near-infrared
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence; Smith, Justin
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.; Ching, Chan Y.
1994-01-01
The purpose of the present work was threefold: (1) to determine if a free-stream turbulence length scale existed that would cause the greatest augmentation in stagnation-region heat transfer over laminar levels; (2) to investigate the effect of velocity gradient on stagnation-region heat transfer augmentation by free-stream turbulence; and (3) to develop a prediction tool for stagnation heat transfer in the presence of free-stream turbulence. Heat transfer was measured in the stagnation region of four models with elliptical leading edges that had ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Five turbulence-generating grids were fabricated; four were square mesh, biplane grids made from square bars. The fifth grid was an array of fine parallel wires that were perpendicular to the model spanwise direction. Heat transfer data were taken at Reynolds numbers ranging from 37 000 to 228 000. Turbulence intensities were in the range of 1.1 to 15.9% while the ratio of integral length scale to leading-edge diameter ranged from 0.05 to 0.30. Stagnation-point velocity gradient was varied by nearly 50%. Stagnation-region heat transfer augmentation was found to increase with decreasing length scale but no optimum length scale was found. Heat transfer augmentation due to turbulence was found to be unaffected by the velocity gradient near the leading edge. A correlation was developed that fit heat transfer data for the square-bar grids to within +/- 4%.
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
Air sparging: Air-water mass transfer coefficients
NASA Astrophysics Data System (ADS)
Braida, Washington J.; Ong, Say Kee
1998-12-01
Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.
Gandini, C. L.; Sanchez-Puerta, M. V.
2017-01-01
Angiosperm mitochondrial genomes (mtDNA) exhibit variable quantities of alien sequences. Many of these sequences are acquired by intracellular gene transfer (IGT) from the plastid. In addition, frequent events of horizontal gene transfer (HGT) between mitochondria of different species also contribute to their expanded genomes. In contrast, alien sequences are rarely found in plastid genomes. Most of the plant-to-plant HGT events involve mitochondrion-to-mitochondrion transfers. Occasionally, foreign sequences in mtDNAs are plastid-derived (MTPT), raising questions about their origin, frequency, and mechanism of transfer. The rising number of complete mtDNAs allowed us to address these questions. We identified 15 new foreign MTPTs, increasing significantly the number of those previously reported. One out of five of the angiosperm species analyzed contained at least one foreign MTPT, suggesting a remarkable frequency of HGT among plants. By analyzing the flanking regions of the foreign MTPTs, we found strong evidence for mt-to-mt transfers in 65% of the cases. We hypothesize that plastid sequences were initially acquired by the native mtDNA via IGT and then transferred to a distantly-related plant via mitochondrial HGT, rather than directly from a foreign plastid to the mitochondrial genome. Finally, we describe three novel putative cases of mitochondrial-derived sequences among angiosperm plastomes. PMID:28262720
Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters
NASA Technical Reports Server (NTRS)
Han, J. C.; Park, J. S.; Ibrahim, M. Y.
1986-01-01
Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.
NASA Astrophysics Data System (ADS)
Sayar, Ersin; Sari, Ugurcan
2017-04-01
Experimental evaluation of the heat transfer in oscillating flow under the constant heat flux and constant amplitude fluid displacement conditions is presented for a vertical annular flow through a stainless steel wool porous media. The analysis is carried out for two different heat fluxes and for five different frequencies. The data is acquired from the measurements both in the initial transient period and in the pseudo-steady (cyclic) period by the system. The physical and mathematical behavior of the resulting Nusselt numbers are analyzed, according to data acquired from the experiments and in accordance with the results of the Buckingham Pi theorem. A cycle and space averaged Nusselt number correlation is suggested as a function of kinetic Reynolds number for oscillating flows. The suggested correlation is useful in predicting heat transfer from oscillating flows through highly porous and permeable solid media at low actuation frequencies and at low heat fluxes applied in the wall. The validity of the Nusselt numbers acquired by correlation is discussed using experimental Nusselt numbers for the selected kinetic Reynolds number interval. The present investigation has possible applications in moderate sized wicked heat pipes, solid matrix compact heat exchangers compromising of metallic foams, filtration equipment, and steam generators.
Ashokcoomar, Pradeep; Naidoo, Raveen
2016-04-19
To investigate delays in the transfer of neonates between healthcare facilities and to detect any adverse events encountered during neonatal transfer. A prospective study was conducted from December 2011 to January 2012. A quantitative, non-experimental design was used to undertake a descriptive analysis of 120 inter-healthcare facility transfers of neonates within the eThekwini Health District (Durban) of KwaZulu-Natal Province, South Africa. Data collection was via questionnaire. Data collection was restricted to the Emergency Medical Services (EMSs) of eThekwini Health District, which is the local public ambulance provider. All transfers were undertaken by road ambulances: 83 (62.2%) by frontline ambulances; 35 (29.2%) by the obstetric unit; and 2 (1.7%) by the planned patient transport vehicles. Twenty-nine (24.2%) transfers involved critically ill neonates. The mean (standard deviation (SD)) time to complete an inter-healthcare facility transfer was 3 h 49 min (1 h 57 min) (range 0 h 55 min - 10 h 34 min). Problems with transfer equipment were common due to poor resource allocation, malfunctioning equipment, inappropriate equipment for the type of transfer and dirty or unsterile equipment. The study identified 10 (8.3%) physiologically related adverse events, which included 1 (0.8%) death plus a further 18 (15.0%) equipment-related adverse events. EMS is involved in transporting a significant number of intensive care and non-intensive care neonates between healthcare facilities. This study has identified numerous factors affecting the efficiency of inter-facility transfer of neonates and highlights a number of areas requiring improvement.
Impact of kinetic mass transfer on free convection in a porous medium
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
Laser-induced jet formation in liquid films
NASA Astrophysics Data System (ADS)
Brasz, Frederik; Arnold, Craig
2014-11-01
The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.
Experimental and theoretical study of shuttle lee-side heat transfer rates
NASA Technical Reports Server (NTRS)
Mruk, G. K.; Bertin, J.; Lamb, J. P.
1975-01-01
The experimental program which was conducted in the Calspan 96-inch hypersonic shock tunnel to investigate what effect the windward surface temperature had on the heat transfer to the leeward surface of the space shuttle orbiter is discussed. Heat-transfer distributions, surface-pressure distributions, and schlieren photographs were obtained for an 0.01-scale model of the 139 configuration space shuttle orbiter at angles-of-attack of 30 and 40 deg. Similar data were obtained for an 0.01 scale wingless model of the 139 configuration at angles-of-attack of 30 and 90 deg. Data were obtained for Mach numbers from Reynolds numbers, and surface temperatures and compared with theoretical results.
Interpretations of the Patient-Therapist Relationship in Brief Dynamic Psychotherapy
AMLO, SVEIN; ENGELSTAD, VIBEKE; FOSSUM, ARNE; SØRLIE, TORE; HØGLEND, PER; HEYERDAHL, OSCAR; SØRBYE, ØYSTEIN
1993-01-01
The authors examined whether persistent analysis of the patient-therapist relationship in brief dynamic psychotherapy favorably affects long-term dynamic change in patients initially deemed suitable for such treatment. As in common practice, 22 highly suitable patients were given a high number of transference interpretations per session. A comparison group of 21 patients with lower suitability received the same treatment, but transference interpretations were withheld. Statistical adjustment for the deliberate nonequivalence in pretreatment suitability indicated a significant negative effect of high numbers of transference interpretations on long-term dynamic changes. Demographic variables, DSM-III diagnoses, additional treatment, life events in the follow-up years, or therapist effects did not explain or obscure the findings. PMID:22700155
Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model
NASA Technical Reports Server (NTRS)
Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur
1996-01-01
Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.
Conjugate Heat Transfer in Rayleigh-Bénard Convection in a Square Enclosure
Hashim, Ishak
2014-01-01
Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number (5 × 103 ≤ Ra ≤ 106), the wall-to-fluid thermal conductivity ratio (0.5 ≤ Kr ≤ 10), and the ratio of wall thickness to its height (0.2 ≤ D ≤ 0.4). The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number. PMID:24971390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita
2015-01-14
Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less
NASA Astrophysics Data System (ADS)
Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh
2018-01-01
The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.
NASA Astrophysics Data System (ADS)
Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh
2018-06-01
The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.
Capillary condenser/evaporator
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A. (Inventor)
2010-01-01
A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.
NASA Astrophysics Data System (ADS)
Liu, Joseph T. C.; Barbosa Decastilho, Cintia Juliana; Fuller, Mark E.; Sane, Aakash
2017-11-01
The present work uses a perturbation procedure to deduce the small nanoparticle volume concentration conservation equations for momentum, heat and concentration diffusion. Thermal physical variables are obtained from conventional means (mixture and field theories) for alumina-water and gold-water nanofluids. In the case of gold-water nano fluid molecular dynamics results are used to estimate such properties, including transport coefficients. The very thin diffusion layer at large Schmidt numbers is found to have a great impact on the velocity and temperature profiles owing to their dependency on transport properties. This has a profound effect on the conduction surface heat transfer rate enhancement and skin friction suppression for the case of nano fluid concentration withdrawal at the wall, while the diffusional surface heat transfer rate is negligible due to large Schmidt numbers. Possible experimental directed at this interesting phenomenon is suggested.
FY 2004 Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2004-01-01
The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
A Comparison of Associate in Arts Transfer Rates between 1994-95 and 1998-99.
ERIC Educational Resources Information Center
Windham, Patricia
This study of the of the Florida Community College System compares Associate of Arts (AA) transfers over a five-year period, from 1994-95 to 1998-99. The study tracked transfers with Florida's centralized student database system, which uses social security numbers as student identifiers. It included only students who completed the AA degree, and…
Influence of elliptical structure on impinging-jet-array heat transfer performances
NASA Astrophysics Data System (ADS)
Arjocu, Simona C.; Liburdy, James A.
1997-11-01
A three-by-three square array of submerged, elliptic, impinging jets in water was used to study the heat transfer distribution in the cooling process of a constant heat flux surface. Tow jet aspect ratios were used, 2 and 3, both with the same hydraulic diameter. The array was tested at Reynolds numbers from 300 to 1500 and impinging distances of 1 to 5 hydraulic diameters. Thermochromic liquid crystals wee used to map the local heat transfer coefficient using a transient method, while the jet temperature was kept constant. The liquid crystal images were recorded through an optical fiber coupled with a CCD camera and a frame grabber and analyzed based on an RGB-temperature calibration technique. The results are reported relative to the unit cell that is used to delimitate the central jet. The heat transfer variation is shown to depend on the impingement distance and Reynolds number. The elliptic jets exhibit axis switching, jet column instability and jet swaying. All of these mechanisms affect the enhancement of the heat transfer rate and its distribution. The results are compared in terms of average and local heat transfer coefficients, for both major and minor planes for the two jet aspect ratios.
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Improving TWSTFT short-term stability by network time transfer.
Tseng, Wen-Hung; Lin, Shinn-Yan; Feng, Kai-Ming; Fujieda, M; Maeno, H
2010-01-01
Two-way satellite time and frequency transfer (TWSTFT) is one of the major techniques to compare the atomic time scales between timing laboratories. As more and more TWSTFT measurements have been performed, the large number of point-to-point 2-way time transfer links has grown to be a complex network. For future improvement of the TWSTFT performance, it is important to reduce measurement noise of the TWSTFT results. One method is using TWSTFT network time transfer. The Asia-Pacific network is an exceptional case of simultaneous TWSTFT measurements. Some indirect links through relay stations show better shortterm stabilities than the direct link because the measurement noise may be neutralized in a simultaneous measurement network. In this paper, the authors propose a feasible method to improve the short-term stability by combining the direct and indirect links in the network. Through the comparisons of time deviation (TDEV), the results of network time transfer exhibit clear improved short-term stabilities. For the links used to compare 2 hydrogen masers, the average gain of TDEV at averaging times of 1 h is 22%. As TWSTFT short-term stability can be improved by network time transfer, the network may allow a larger number of simultaneously transmitting stations.
Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies.
Scopece, G; Schiestl, F P; Cozzolino, S
2015-03-01
Pollination systems differ in pollen transfer efficiency, a variable that may influence the evolution of flower number. Here we apply a comparative approach to examine the link between pollen transfer efficiency and the evolution of inflorescence size in food and sexually deceptive orchids. We examined pollination performance in nine food-deceptive, and eight sexually deceptive orchids by recording pollen removal and deposition in the field. We calculated correlations between reproductive success and flower number (as a proxy for resources allocated during reproductive process), and directional selection differentials were estimated on flower number for four species. Results indicate that sexually deceptive species experience decreased pollen loss compared to food-deceptive species. Despite producing fewer flowers, sexually deceptive species attained levels of overall pollination success (through male and female function) similar to food-deceptive species. Furthermore, a positive correlation between flower number and pollination success was observed in food-deceptive species, but this correlation was not detected in sexually deceptive species. Directional selection differentials for flower number were significantly higher in food compared to sexually deceptive species. We suggest that pollination systems with more efficient pollen transfer and no correlation between pollination success and number of flowers produced, such as sexual deception, may allow the production of inflorescences with fewer flowers that permit the plant to allocate fewer resources to floral displays and, at the same time, limit transpiration. This strategy can be particularly important for ecological success in Mediterranean water-deprived habitats, and might explain the high frequency of sexually deceptive species in these specialised ecosystems. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
NASA Astrophysics Data System (ADS)
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
Turbulent Heat Transfer in Curved Pipe Flow
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2013-11-01
In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
Quantum non-demolition phonon counter with a hybrid optomechnical system
NASA Astrophysics Data System (ADS)
Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing
2018-05-01
A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.
Kazi, Salim Newaz; Sadeghinezhad, Emad
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236
NASA Technical Reports Server (NTRS)
Kole, James A.; Schneider, Vivian I.; Healy, Alice F.; Barshi, Immanuel
2017-01-01
Subjects trained in a standard data entry task, which involved typing numbers (e.g., 5421) using their right hands. At test (6 months post-training), subjects completed the standard task, followed by a left-hand variant (typing with their left hands) that involved the same perceptual, but different motoric, processes as the standard task. At a second test (8 months post-training), subjects completed the standard task, followed by a code variant (translating letters into digits, then typing the digits with their right hands) that involved different perceptual, but the same motoric, processes as the standard task. For each of the three tasks, half the trials were trained numbers (old) and half were new. Repetition priming (faster response times to old than new numbers) was found for each task. Repetition priming for the standard task reflects retention of trained numbers; for the left-hand variant reflects transfer of perceptual processes; and for the code variant reflects transfer of motoric processes. There was thus evidence for both specificity and generalizability of training data entry perceptual and motoric processes over very long retention intervals.
NASA Astrophysics Data System (ADS)
Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin
2013-11-01
Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.
Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
Convective heat transfer in a high aspect ratio minichannel heated on one side
Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; ...
2015-10-21
Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusseltmore » numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.« less
Ozaki, T; Hata, K; Xie, H; Takahashi, K; Miyazaki, K
2002-12-01
To investigate the relationship between color Doppler indices of dominant follicular blood flow and clinical factors in in vitro fertilization-embryo transfer cycles. This was a prospective study involving 26 patients completing a total of 33 in vitro fertilization cycles. Dominant follicular blood flow indices, peak systolic velocities, the resistance index and the pulsatility index were evaluated using transvaginal color Doppler. The indices were compared to the clinical outcomes of in vitro fertilization-embryo transfer. There was a significant correlation between dominant follicular peak systolic velocities and the number of oocytes retrieved, as well as the number of mature oocytes obtained. There was no significant correlation between dominant follicular resistance index or pulsatility index and the number of follicles > 10 mm in diameter, the number of oocytes retrieved or the number of mature oocytes. There were no significant differences between dominant follicular peak systolic velocities, resistance index or pulsatility index, and fertilization rate or the ratio of good quality embryos. However, significant differences were found between the number of oocytes retrieved, as well as the number of mature oocytes for those patients in which the peak systolic velocity was below 25 cm/s. Doppler assessment of dominant follicle blood flow alone is useful for predicting the number of retrievable oocytes. However, morphological quality of the embryo produced or the pregnancy rate cannot be predicted by this method.
NASA Astrophysics Data System (ADS)
Kim, Kyoungyoun; Sureshkumar, Radhakrishna
2018-03-01
The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.
Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh
2000-08-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally appliedmore » one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.« less
Visualization of natural convection heat transfer on a sphere
NASA Astrophysics Data System (ADS)
Lee, Dong-Young; Chung, Bum-Jin
2017-12-01
Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.
Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments
O'Connor, B.L.; Hondzo, Miki
2008-01-01
Dissolved oxygen (DO) concentrations were quantified near the sediment-water interface to evaluate DO transfer to sediments in a laboratory recirculating flume and open channel under varying fluid-flow conditions. DO concentration fluctuations were observed within the diffusive sublayer, as defined by the time-averaged DO concentration gradient near the sediment-water interface. Evaluation of the DO concentration fluctuations along with detailed fluid-flow characterizations were used to quantify quasi-periodic sweep and eject motions (bursting events) near the sediments. Bursting events dominated the Reynolds shear stresses responsible for momentum and mass fluctuations near the sediment bed. Two independent methods for detecting bursting events using DO concentration and velocity data produced consistent results. The average time between bursting events was scaled with wall variables and was incorporated into a similarity model to describe the dimensionless mass transfer coefficient (Sherwood number, Sh) in terms of the Reynolds number, Re, and Schmidt number, Sc, which described transport in the flow. The scaling of bursting events was employed with the similarity model to quantify DO transfer to sediments and results showed a high degree of agreement with experimental data. ?? 2008, by the American Society of Limnology and Oceanography, Inc.
NASA Astrophysics Data System (ADS)
Abdelkhalek, M. M.
2009-05-01
Numerical results are presented for heat and mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. An analysis is performed to study the momentum, heat and mass transfer characteristics of MHD natural convection flow over a moving permeable surface. The surface is maintained at linear temperature and concentration variations. The non-linear coupled boundary layer equations were transformed and the resulting ordinary differential equations were solved by perturbation technique [Aziz A, Na TY. Perturbation methods in heat transfer. Berlin: Springer-Verlag; 1984. p. 1-184; Kennet Cramer R, Shih-I Pai. Magneto fluid dynamics for engineers and applied physicists 1973;166-7]. The solution is found to be dependent on several governing parameter, including the magnetic field strength parameter, Prandtl number, Schmidt number, buoyancy ratio and suction/blowing parameter, a parametric study of all the governing parameters is carried out and representative results are illustrated to reveal a typical tendency of the solutions. Numerical results for the dimensionless velocity profiles, the temperature profiles, the concentration profiles, the local friction coefficient and the local Nusselt number are presented for various combinations of parameters.
Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations
NASA Astrophysics Data System (ADS)
Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.
2018-04-01
One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We show how to estimate the statistical uncertainty given the output of just a single radiative-transfer simulation in which the number of photon packets follows a Poisson distribution and the weight (e.g. energy or luminosity) of a single packet may follow an arbitrary distribution. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalise existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.
A novel investigation of heat transfer characteristics in rifled tubes
NASA Astrophysics Data System (ADS)
Jegan, C. Dhayananth; Azhagesan, N.
2018-05-01
The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.
Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations
NASA Astrophysics Data System (ADS)
Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.
2018-07-01
One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We consider simulations in which the number of photon packets is Poisson distributed, while the weight assigned to a single photon packet follows any distribution of choice. We show how to estimate the statistical uncertainty of the sum of weights in each bin from the output of a single radiative-transfer simulation. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalize existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.
Intergenerational resource transfers with random offspring numbers
Arrow, Kenneth J.; Levin, Simon A.
2009-01-01
A problem common to biology and economics is the transfer of resources from parents to children. We consider the issue under the assumption that the number of offspring is unknown and can be represented as a random variable. There are 3 basic assumptions. The first assumption is that a given body of resources can be divided into consumption (yielding satisfaction) and transfer to children. The second assumption is that the parents' welfare includes a concern for the welfare of their children; this is recursive in the sense that the children's welfares include concern for their children and so forth. However, the welfare of a child from a given consumption is counted somewhat differently (generally less) than that of the parent (the welfare of a child is “discounted”). The third assumption is that resources transferred may grow (or decline). In economic language, investment, including that in education or nutrition, is productive. Under suitable restrictions, precise formulas for the resulting allocation of resources are found, demonstrating that, depending on the shape of the utility curve, uncertainty regarding the number of offspring may or may not favor increased consumption. The results imply that wealth (stock of resources) will ultimately have a log-normal distribution. PMID:19617553
NASA Astrophysics Data System (ADS)
Kumar, K. Ravi; Nikhil Varma, P.; Jagadeesh, N.; Sandeep, J. V.; Cheepu, Muralimohan; Venkateswarlu, D.; Srinivas, B.
2018-03-01
Among the different renewable energy resources, solar energy is widely used due to its quantitative intensity factor. Solar air heater is cheap, simple in design and has got wide range of applications. A modest solar air heater has a lower in heat transfer and thermal performance as it has heat transfer coefficient lower in between coated absorber plate and the carrier fluid. This low thermal performance can be reduced to a greater extent by introducing the artificially created roughness over the absorber plate of the solar heater. In the present study, the combination of various geometries and roughness’s on the absorber plate are reported. Methods have been developed and implemented in order to improve the rate of the heat transfer. A comparison is drawn among different geometries to select the most effective absorber plate roughness. For flow analysis k-ω SST model was used and the constant heat flux was taken as 1100 W/m2. The Reynolds number is varied in a range from 3000 to 20000. The variation of different parameters temperature, Nusselt number, turbulence kinetic energy and heat transfer coefficient with Reynolds number were examined and discussed.
NASA Astrophysics Data System (ADS)
Sayar, Ersin
2017-07-01
The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.
NASA Astrophysics Data System (ADS)
Kozhevnikov, Danil A.; Sheremet, Mikhail A.
2018-01-01
The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.
2011-01-01
We have recently reported numerous cases of horizontal transfers of transposable elements between species of drosophilids. These studies revealed a substantial number of horizontal transfers between species of the subgroup melanogaster of the genus Drosophila and between these species and species of the genus Zaprionus. In this review, these transfers and similar, previously reported events are discussed and reanalysed to portray the interrelationships between the species that allowed the occurrence of so many horizontal transfers. The paper also addresses problems that may arise in drawing inferences about the time period during which the horizontal transfers occurred and the factors that may be associated with these transfers are discussed. PMID:22312591
Kurome, Mayuko; Geistlinger, Ludwig; Kessler, Barbara; Zakhartchenko, Valeri; Klymiuk, Nikolai; Wuensch, Annegret; Richter, Anne; Baehr, Andrea; Kraehe, Katrin; Burkhardt, Katinka; Flisikowski, Krzysztof; Flisikowska, Tatiana; Merkl, Claudia; Landmann, Martina; Durkovic, Marina; Tschukes, Alexander; Kraner, Simone; Schindelhauer, Dirk; Petri, Tobias; Kind, Alexander; Nagashima, Hiroshi; Schnieke, Angelika; Zimmer, Ralf; Wolf, Eckhard
2013-05-20
Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.
Improved modeling of turbulent forced convection heat transfer in straight ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokni, M.; Sunden, B.
1999-08-01
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the nonlinear {kappa}-{epsilon} model combined with the heat flux models of simple eddy diffusivity (SED), low Reynolds number version of generalized gradient diffusion hypothesis (GGDH), and wealth {proportional_to} earning {times} time (WET) in general three-dimensional geometries. The numerical approach is based on the finite volume technique with a nonstaggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the nonlinear {kappa}-{epsilon} model, combined with themore » Lam-Bremhorst and the Abe-Kondoh-Nagano damping functions for low Reynolds numbers.« less
Dahlen, C R; DiCostanzo, A; Spell, A R; Lamb, G C
2012-12-01
Our objectives were to determine pregnancy rate, fetal loss, and number of calves born in beef cattle after a fixed-time transfer of an embryo 7 d after a fixed-time artificial insemination (TAI) of cows (Exp. 1) and after transfer of 2 demi-embryos into a single heifer recipient (Exp. 2). In Exp. 1 after synchronization of ovulation, during 2 yr, 297 suckled beef cows were assigned randomly to 1 of 3 treatments: 1) on d 2 cows received a single TAI (TAI-2; n = 99), 2) a fixed-time direct transfer, frozen and thawed embryo placed in the uterine horn ipsilateral to the ovary containing a corpus luteum (CL) on d 9 embryo transfer (ET-9; n = 99), or 3) cows received TAI on d 2 and a frozen and thawed direct transfer embryo placed in the uterine horn ipsilateral to the ovary containing a CL on d 9 (TWIN) treatments (n = 99). Fetal number and viability were determined with ultrasonography at 33 to 35 d and 90 to 100 d after insemination. In Exp. 2, 74 crossbred recipient heifers were assigned randomly to receive either 1) a single whole fresh embryo (WHOLE; n = 37) or 2) 2 identical fresh demi-embryos (SPLIT; n = 37) in the uterine horn ipsilateral to the CL 7 d after an observed estrus. Ultrasonography was used on d 33, 69, and 108 to determine presence and number of embryos or fetuses. Palpation per rectum was used to determine pregnancy status on d 180 of gestation and number of live calves was recorded at birth. In Exp. 1 pregnancy rates on d 30 to 35 were greater (P < 0.05) for TWIN- (48.5%) and TAI-2- (47.5%) than for ET-9- (33.3%) treated cows. Of the 48 pregnant cows in the TWIN treatment, 21 were twin pregnancies whereas there was 1 twin pregnancy in the TAI-2 treatment. As a result, TWIN cows had more fetuses (P < 0.05) as a proportion of all treated cows (69.7%) than TAI-2- (48.5%) or ET-9-(33.3%) treated cows, and cows in the TWIN treatment gave birth to more (P < 0.01) calves (n = 55) compared with cows in the ET treatment (n = 23) whereas cows in the TAI-2 treatment (n = 40) were intermediate. In Exp. 2 heifers receiving SPLIT (81.1%) had greater (P < 0.05) pregnancy rates on d 33 than heifers receiving WHOLE (40.5%). Of the SPLIT heifers that were confirmed pregnant at d 33 after transfer, 57% were gestating twin fetuses. Embryonic or fetal loss from d 33 to birth was greater (P < 0.01) in heifers in the SPLIT treatment (40.0%) compared with the WHOLE treatment (0.0%), but number of calves per female treated was greater (P < 0.05) in heifers in the SPLIT treatment (75.0%) compared with heifers in the WHOLE treatment (40.5%). We conclude that transferring an embryo into a cow 7 d after TAI did not increase the pregnancy rate in Exp.1. However, transferring 2 demi-embryos into a single heifer recipient increased pregnancy rate at 33 d of gestation whereas both methods of inducing twinning resulted in a greater number of calves per female treated. In addition, embryonic or fetal loss associated with unilateral twin pregnancies in heifers occurred at rates greater than those associated with single-fetus pregnancies.
Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier
NASA Astrophysics Data System (ADS)
Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.
2016-08-01
Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this energy being distributed over a larger number of states and to higher excitations with increasing numbers of transferred nucleons. Multinucleon transfer is thus a mechanism by which energy can be dissipated from the relative motion before reaching the fusion barrier radius.
Uncertainty Analysis on Heat Transfer Correlations for RP-1 Fuel in Copper Tubing
NASA Technical Reports Server (NTRS)
Driscoll, E. A.; Landrum, D. B.
2004-01-01
NASA is studying kerosene (RP-1) for application in Next Generation Launch Technology (NGLT). Accurate heat transfer correlations in narrow passages at high temperatures and pressures are needed. Hydrocarbon fuels, such as RP-1, produce carbon deposition (coke) along the inside of tube walls when heated to high temperatures. A series of tests to measure the heat transfer using RP-1 fuel and examine the coking were performed in NASA Glenn Research Center's Heated Tube Facility. The facility models regenerative cooling by flowing room temperature RP-1 through resistively heated copper tubing. A Regression analysis is performed on the data to determine the heat transfer correlation for Nusselt number as a function of Reynolds and Prandtl numbers. Each measurement and calculation is analyzed to identify sources of uncertainty, including RP-1 property variations. Monte Carlo simulation is used to determine how each uncertainty source propagates through the regression and an overall uncertainty in predicted heat transfer coefficient. The implications of these uncertainties on engine design and ways to minimize existing uncertainties are discussed.
NASA Astrophysics Data System (ADS)
Praturi, Divya Sri; Girimaji, Sharath
2017-11-01
Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.
Mass transfer from a sphere in an oscillating flow with zero mean velocity
NASA Technical Reports Server (NTRS)
Drummond, Colin K.; Lyman, Frederic A.
1990-01-01
A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.
Heat and mass transfer analogy for condensation of humid air in a vertical channel
NASA Astrophysics Data System (ADS)
Desrayaud, G.; Lauriat, G.
This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.
Engineering prediction of turbulent skin friction and heat transfer in high-speed flow
NASA Technical Reports Server (NTRS)
Cary, A. M., Jr.; Bertram, M. H.
1974-01-01
A large collection of experimental turbulent-skin-friction and heat-transfer data for flat plates and cones was used to determine the most accurate of six of the most popular engineering-prediction methods; the data represent a Mach number range from 4 to 13 and ratio of wall to total temperature ranging from 0.1 to 0.7. The Spalding and Chi method incorporating virtual-origin concepts was found to be the best prediction method for Mach numbers less than 10; the limited experimental data for Mach numbers greater than 10 were not well predicted by any of the engineering methods except the Coles method.
[Ten years of results of in-vitro fertilisation in the Netherlands 1996-2005].
Kremer, J A M; Bots, R S G M; Cohlen, B; Crooij, M; van Dop, P A; Jansen, C A M; Land, J A; Laven, J S E; Kastrop, P M M; Naaktgeboren, N; Schats, R; Simons, A H M; van der Veen, F
2008-01-19
To present the numbers and results of Dutch IVF treatment from 1996-2005 and to describe trends and differences between centres. Retrospective data-collection, description and analysis. The annual statistics from all Dutch IVF centres covering the years 1996-2005 were collected, described and analysed. During this period 138,217 IVF or intracytoplasmic sperm injection (ICSI) cycles were started and 14,881 transfers of frozen-thawed embryos (cryo transfers) were performed. The number of ICSI treatments, in particular, increased to more than 6000 cycles during this period. These treatments resulted in 30,488 ongoing pregnancies (22.1% per cycle started; 19.1% for IVF and 23.4% for ICSI). The ongoing pregnancy rate per cycle increased from 17.6% in 1996 to 24.4% in 2005. The increase after cryo transfers was remarkable (from 9.4% to 17.6%). It is estimated that during this period, about 1 in 52 newborns in the Netherlands was an IVF or ICSI child (1996: 1 in 77, 2005: 1 in 43). There were differences between the individual centres regarding the ongoing pregnancy rate per cycle (range: 15.0-26.4%), the percentage of ICSI (range 20-58%), the percentage of cryo transfers per cycle (range: 4-22%) and the multiple pregnancy rate (range 5-27% in 2005). In the Netherlands the pregnancy rate has increased over the last 10 years as has the number of IVF treatments. Cryo transfers have become increasingly important and the multiple pregnancy rate has decreased. Although thanks to the collaboration of all centres, the current registry produces important data and works well, there are a number of limitations e.g. the retrospective nature with no validation, which must be tackled over the coming years.
ERIC Educational Resources Information Center
Gawley, Timothy; McGowan, Rosemary A.
2006-01-01
The number of articulation agreements between Canadian colleges and universities has been increasing steadily since the early 2000s. Though various implications of these agreements have been discussed, missing are the students' grounded transfer experiences. This paper discusses the academic and social experiences of college transfer students at a…
Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.
NASA Astrophysics Data System (ADS)
Stossel, Bryan Joseph
1995-01-01
Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.
NASA Technical Reports Server (NTRS)
Davis, L. R. (Editor); Wilson, R. E.
1974-01-01
Recent theoretical and experimental studies in heat transfer and fluid mechanics, including some environmental protection investigations, are presented in a number of papers. Some of the topics covered include condensation heat transfer, a model of turbulent momentum and heat transfer at points of separation and reattachment, an explicit scheme for calculations of confined turbulent flows with heat transfer, heat transfer effects on a delta wing in subsonic flow, fluid mechanics of ocean outfalls, thermal plumes from industrial cooling water, a photochemical air pollution model for the Los Angeles air basin, and a turbulence model of diurnal variations in the planetary boundary layer. Individual items are announced in this issue.
Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?
Van Meervenne, Eva; Van Coillie, Els; Van Weyenberg, Stephanie; Boon, Nico; Herman, Lieve; Devlieghere, Frank
2015-12-01
Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.
Teaching basic science to optimize transfer.
Norman, Geoff
2009-09-01
Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.
Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.
2016-01-01
We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069
78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: The Small Business Administration (SBA) is publishing the Small Business...
78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business... Business Administration (SBA) is reopening the comment period for the Small Business Innovation Research...
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Rokni, Houman B.
2018-01-01
In the present article, the improvement of nanofluid heat transfer inside a porous cavity by means of a non-equilibrium model in the existence of Lorentz forces has been investigated by employing control volume based finite element method. Nanofluid properties are estimated by means of Koo-Kleinstreuer-Li. The Darcy-Boussinesq approximation is utilized for the nanofluid flow. Roles of the solid-nanofluid interface heat transfer parameter (N h s ), Hartmann number (H a ), porosity (ɛ ), and Rayleigh number (R a ) were presented. Outputs demonstrate that the convective flow decreases with the rise of N h s , but it enhances with the rise of R a . Porosity has opposite relationship with the temperature gradient.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1975-01-01
Results are presented of heat transfer tests of a 147B configuration orbiter model (50-0) conducted in the NASA Langley Research Center Freon Tunnel (LRC/CF4). These tests were conducted at a nominal Mach number of 6, and at Reynolds numbers of 0.3 and 0.5 x 1,000,000 per foot. The objectives of the tests were to determine the effects of the low freon specific heat ratio, gamma, on the heating distributions and to determine the impingement of the orbiter bow shock on the wing. The data presented include thin skin heat transfer data (tabulated data and plotted data).
Amlo, S; Engelstad, V; Fossum, A; Sørlie, T; Høglend, P; Heyerdahl, O; Sørbye, O
1993-01-01
The authors examined whether persistent analysis of the patient-therapist relationship in brief dynamic psychotherapy favorably affects long-term dynamic change in patients initially deemed suitable for such treatment. As in common practice, 22 highly suitable patients were given a high number of transference interpretations per session. A comparison group of 21 patients with lower suitability received the same treatment, but transference interpretations were withheld. Statistical adjustment for the deliberate nonequivalence in pretreatment suitability indicated a significant negative effect of high numbers of transference interpretations on long-term dynamic changes. Demographic variables, DSM-III diagnoses, additional treatment, life events in the follow-up years, or therapist effects did not explain or obscure the findings.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong
2013-01-01
In recent years, China’s developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer. PMID:23301152
NASA Astrophysics Data System (ADS)
Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong
2013-01-01
In recent years, China's developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer.
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
NASA Technical Reports Server (NTRS)
Basu, S.; Cetegen, B. M.
2005-01-01
An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.
NASA Astrophysics Data System (ADS)
Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim
2017-06-01
A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.
12 CFR 210.27 - Reliance on identifying number.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Reliance on identifying number. 210.27 Section... J) Funds Transfers Through Fedwire § 210.27 Reliance on identifying number. (a) Reliance by a Federal Reserve Bank on number to identify an intermediary bank or beneficiary's bank. A Federal Reserve...
Baker, Valerie L.; Brown, Morton B.; Luke, Barbara; Conrad, Kirk P.
2015-01-01
Objective To determine if number of oocytes correlates with live birth rate and incidence of low birthweight (LBW). Design Retrospective cohort. Setting N/A. Patients Women undergoing fresh embryo transfer utilizing either autologous (n=194,627) or donor (n=37,188) oocytes whose cycles were reported to the Society for Assisted Reproductive Technology 2004–2010. Main outcome measures Live birth rate, birthweight, birth weight z-score, LBW. Interventions None. Results For both autologous and donor oocyte cycles, increasing number of oocytes retrieved paralleled live birth rate and embryos available for cryopreservation in most analyses performed with all models adjusted for age and prior births. For cycles achieving singleton pregnancy using autologous oocytes via transfer of 2 embryos, a higher number of oocytes retrieved was associated with lower mean birth weight, lower birthweight z-score, and greater incidence of LBW. In contrast, for cycles using donor oocytes, there was no association of oocyte number retrieved with measures of birthweight. Conclusions A higher number of oocytes retrieved was associated with an increased incidence of LBW in autologous singleton pregnancies resulting from transfer of 2 embryos but not in donor oocyte cycles. Although the effect of high oocyte number on the incidence of LBW in autologous cycles was of modest magnitude, further study is warranted to determine if a subgroup of women may be particularly vulnerable. PMID:25638421
NASA Technical Reports Server (NTRS)
Carter, Howard S.; Carr, Robert E.
1961-01-01
Heat-transfer rates have been measured in free flight along the stagnation line of an unswept cylinder mounted transversely on an axial cylinder so that the shock wave from the hemispherical nose of the axial cylinder intersected the bow shock of the unswept transverse cylinder. Data were obtained at Mach numbers from 2.53 to 5.50 and at Reynolds numbers based on the transverse cylinder diameter from 1.00 x 10(exp 6) to 1.87 x 10(exp 6). Shadowgraph pictures made in a wind tunnel showed that the flow field was influenced by boundary-layer separation on the axial cylinder and by end effects on the transverse cylinder as well as by the intersecting shocks. Under these conditions, the measured heat-transfer rates had inconsistent variations both in magnitude and distribution which precluded separating the effects of these disturbances. The general magnitude of the measured heating rates at Mach numbers up to 3 was from 0.1 to 0.5 of the theoretical laminar heating rates along the stagnation line for an infinite unswept cylinder in undisturbed flow. At Mach numbers above 4 the measured heating rates were from 1.5 to 2 times the theoretical rates.
Thermal Management Using Pulsating Jet Cooling Technology
NASA Astrophysics Data System (ADS)
Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.
2014-07-01
The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.
NASA Technical Reports Server (NTRS)
Howard, Floyd G.
1971-01-01
A heat-transfer experiment was flight conducted on a 5 deg half-angle cone, 396.2 cm (13 ft) in length, as it entered the sensible atmosphere under laminar, transitional, and turbulent boundary-layer conditions at a free-stream Mach number of about 20. Accurate turbulent-heat-transfer data with natural transition were obtained for correlation with theories in regions of simultaneous high Mach number, Reynolds number, enthalpy, and total-to-wall temperature ratio. Temperatures were measured at four depths through the 15.24-mm-thick (0.600-in.) beryllium wall. Experimental heating rates at 20 stations on the cone were determined independently from the outermost temperature measurement and from the temperature measurement at the second depth by a single-thermocouple inverse method and also from the temperature histories at all four depths by an integral method. The thermal data analysis procedure, associated problems, and results are presented herein.
Quasispecies theory for finite populations
Park, Jeong-Man; Muñoz, Enrique; Deem, Michael W.
2015-01-01
We present stochastic, finite-population formulations of the Crow-Kimura and Eigen models of quasispecies theory, for fitness functions that depend in an arbitrary way on the number of mutations from the wild type. We include back mutations in our description. We show that the fluctuation of the population numbers about the average values are exceedingly large in these physical models of evolution. We further show that horizontal gene transfer reduces by orders of magnitude the fluctuations in the population numbers and reduces the accumulation of deleterious mutations in the finite population due to Muller’s ratchet. Indeed the population sizes needed to converge to the infinite population limit are often larger than those found in nature for smooth fitness functions in the absence of horizontal gene transfer. These analytical results are derived for the steady-state by means of a field-theoretic representation. Numerical results are presented that indicate horizontal gene transfer speeds up the dynamics of evolution as well. PMID:20365394
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
Giel, P. W.; Thurman, D. R.; VanFossen, G. J.; Hippensteele, S. A.; Boyle, R. J.
1996-01-01
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 106, for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136' of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for computational fluid dynamics (CFD) code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.
Articulation Costing. Phase II
ERIC Educational Resources Information Center
British Columbia Council on Admissions and Transfer, 2004
2004-01-01
Within the British Columbia post-secondary system, significant numbers of students transfer among colleges, institutes, universities and university colleges. These transfers may be handled individually student by student or through a set of articulation agreements administered and facilitated by the British Columbia Council on Admissions and…
The effect of free-stream turbulence on heat transfer from a flat plate
NASA Technical Reports Server (NTRS)
Sugawara, Sugao; Sato, Takashi; Komatsu, Hiroyasu; Osaka, Hiroichi
1958-01-01
Turbulence was generated by using screens, and the turbulence percentage was measured by a hot-wire anemometer both in the boundary layer and the free stream. The local heat-transfer coefficient was measured at 12 locations along the plate for the cases of various turbulence levels. The transition Reynolds number from laminar to turbulent flow decreases as the main-stream turbulence level increases. In the range of laminar heat transfer the effect of turbulence in the main flow was not great, but in the range of turbulent heat transfer the heat-transfer coefficient increases according to the increase of turbulence.
2011-01-25
Sharing Knowledge: Achieving Breakthrough Performance 2010 Military Health System Conference Implementation of a Centralized Patient Transfer...Improving the Care Experience of Patients and their Families Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Implementation of a Centralized Patient Transfer Center: Improving the Care Experience of Patients and their Families 5a. CONTRACT NUMBER 5b. GRANT
Specifications of CCITT Signalling System Number 7.
1981-05-01
signalling information destined for thc now accessible signalling point. (3854) - 136 - AP VII-No. 18-F 10 Signalling link management 10.1 Generai...18-E The transfer-prohibited procedure makes use of the transfer-prohibite2 message and of thc transfer-prohibited-acknowledgement message which...APBBEVIATI’)N7 US11 IN ~ A:%1~ CB.A - Changeback-acknowleligement. siift CBD - Changeback-declaratior, signalI CR14 - Changeover and changeback messai-f CNP
ERIC Educational Resources Information Center
Rivas, Martha A.; Perez, Jeanette; Alvarez, Crystal R.; Solorzano, Daniel G.
2007-01-01
The purpose of this report is to take a closer look at the experiences of Latina/o students who transfer from the California Community Colleges (CCC) to the California State University (CSU) or the University of California (UC). The authors examine the role of the CCC in the postsecondary education of Latina/o students, the characteristics of…
Improving Data Transfer Throughput with Direct Search Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaprakash, Prasanna; Morozov, Vitali; Kettimuthu, Rajkumar
2016-01-01
Improving data transfer throughput over high-speed long-distance networks has become increasingly difficult. Numerous factors such as nondeterministic congestion, dynamics of the transfer protocol, and multiuser and multitask source and destination endpoints, as well as interactions among these factors, contribute to this difficulty. A promising approach to improving throughput consists in using parallel streams at the application layer.We formulate and solve the problem of choosing the number of such streams from a mathematical optimization perspective. We propose the use of direct search methods, a class of easy-to-implement and light-weight mathematical optimization algorithms, to improve the performance of data transfers by dynamicallymore » adapting the number of parallel streams in a manner that does not require domain expertise, instrumentation, analytical models, or historic data. We apply our method to transfers performed with the GridFTP protocol, and illustrate the effectiveness of the proposed algorithm when used within Globus, a state-of-the-art data transfer tool, on productionWAN links and servers. We show that when compared to user default settings our direct search methods can achieve up to 10x performance improvement under certain conditions. We also show that our method can overcome performance degradation due to external compute and network load on source end points, a common scenario at high performance computing facilities.« less
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
Heat transfer direction dependence of heat transfer coefficients in annuli
NASA Astrophysics Data System (ADS)
Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.
2018-04-01
In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.
Nerve Transfers to Restore Shoulder Function.
Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat
2016-05-01
The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. Copyright © 2016 Elsevier Inc. All rights reserved.
2017-12-01
AWARD NUMBER: W81XWH-13-1-0138 TITLE: In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical...18Ffluorocholine/ 18F-FDG Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly targeted nearinfrared (NIR) QDs can be used to detect...to examine whether internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly
1990-02-16
Philadelphia, PA by Dr. Leo E. Hanifin, Director Center for Manufacturing Productivity and Technology Transfer and Co-Principal Investigator Background In...Is coordinated by Dr. Leo E. Hanifin and Involves an additional four graduate students, two programmers, one engineer and one technician. In addition...the transfer bit5 - Whether the transfer is a load or unload * 4 bit4 - Which side of the AGV to perform the transfer bit3 through bitO - The number of
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
NASA Technical Reports Server (NTRS)
Pollmann, Konrad W.; Stodieck, Louis S.; Luttges, Marvin W.
1994-01-01
Microgravity can provide a diffusion-dominated environment for double-diffusion and diffusion-reaction experiments otherwise disrupted by buoyant convection or sedimentation. In sliding solvent diffusion cells, a diffusion interface between two liquid columns is achieved by aligning two offset sliding wells. Fluid in contact with the sliding lid of the cavities is subjected to an applied shear stress. The momentum change by the start/stop action of the well creates an additional hydrodynamical force. In microgravity, these viscous and inertial forces are sufficiently large to deform the diffusion interface and induce hydrodynamic transfer between the wells. A series of KC-135 parabolic flight experiments were conducted to characterize these effects and establish baseline data for microgravity diffusion experiments. Flow visualizations show the diffusion interface to be deformed in a sinusoidal fashion following well alignment. After the wells were separated again in a second sliding movement, the total induced liquid transfer was determined and normalized by the well aspect ratio. The normalized transfer decreased linearly with Reynolds number from 3.3 to 4.0% (w/v) for Re = 0.4 (Stokes flow) to a minimum of 1.0% for Re = 23 to 30. Reynolds numbers that provide minimum induced transfers are characterized by an interface that is highly deformed and unsuitable for diffusion measurements. Flat diffusion interfaces acceptable for diffusion measurements are obtained with Reynolds numbers on the order of 7 to 10. Microgravity experiments aboard a sounding rocket flight verified counterdiffusion of different solutes to be diffusion dominated. Ground control experiments showed enhanced mixing by double-diffusive convection. Careful selection of experimental parameters improves initial conditions and minimizes induced transfer rates.
Observational Studies of Parameters Influencing Air-sea Gas Exchange
NASA Astrophysics Data System (ADS)
Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.
A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.
A three phase optimization method for precopy based VM live migration.
Sharma, Sangeeta; Chawla, Meenu
2016-01-01
Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.
Acoustic radiation from weakly wrinkled premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh
2006-01-01
This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of themore » flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id; Patimatuzzohrah, E-mail: pzohrah@yahoo.com
In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ionmore » transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.« less
NASA Technical Reports Server (NTRS)
Blackwell, B. F.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2017-02-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
De Jesús, Antonio J; Olsen, Alan R; Bryce, John R; Whiting, Richard C
2004-06-01
The housefly, Musca domestica L. (Diptera: Muscidae), is recognized as an important factor in the dissemination of various infectious diseases such as cholera, shigellosis, and salmonellosis. They can also serve as a cross-contamination vector for other foodborne pathogens. However, the potential for bacterial transfer by houseflies has been demonstrated in a qualitative rather than quantitative manner. In this study, the numbers of bacteria a housefly can carry on its body and transfer to a clean surface after exposure to a sugar-milk aqueous solution, steak, and potato salad contaminated with a fluorescent gene Escherichia coli (8 log10 CFU/ml) were determined. In the first series of experiments to quantify bacterial numbers on the flies, about 40-60 flies were transferred into a sterile cage, exposed to the food for 30 min, the flies immobilized and the attached E. coli on each fly enumerated. Detectable E. coli (>1.7 log10 CFU/fly) were found on 43% (29/67), 53% (23/43), and 62% (32/52) of the flies in the cages with sugar/milk, steak, and potato salad, respectively. For the positive flies, the geometric mean carriage (log10 CFU/fly) was 2.93+/-1.24 for sugar-milk, 3.77+/-1.28 for steak, and 2.25+/-0.64 for the potato salad. In the second series of experiments, the transfer of bacteria by individual flies from contaminated food to the inner surface of a sterile jar per each landing was determined. E. coli transferred from the sugar-milk was 3.5+/-0.7 log10 CFU/fly-landing, 3.9+/-0.7 for steak and 2.61+/-1.16 for the potato salad. From the initial contamination levels of bacteria and the number of transferred bacteria, it can be calculated that flies contaminate clean surfaces with approximately 0.1 mg of food per landing. Copyright 2004 Elsevier B.V.
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designate a financial institution or to provide appropriate payee bank account information may delay... information: (1) Name, address, and telegraphic abbreviation of the financial institution receiving payment...) Payee's account number at the financial institution where funds are to be transferred. (4) If the...
Hadfield wires the condensate transfer pump in the U.S. Laboratory
2012-12-24
View of Canadian Space Agency (CSA) Chris Hadfield, Expedition 34 Flight Engineer (FE), wiring the condensate transfer pump, in the U.S. Laboratory. Image was released via astronaut Twitter. Original camera number is 268C1459. Photo was taken during Expedition 34.
VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP603). ...
VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra
2016-05-01
The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (nc< n < ∞) , mass transfer parameter (sc < s < ∞) and shrinking parameter (χc < χ < 0) . For both the branches (upper and lower branch), the rate of heat transfer is an increasing function of the power-law index, Prandtl number and Biot number, whereas it is a decreasing function of the material constant and thermophoresis parameter.
Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H
2011-07-01
In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.
An experimental study of turbine vane heat transfer with leading edge and downstream film cooling
NASA Astrophysics Data System (ADS)
Nirmalan, V.; Hylton, L. D.
1989-06-01
This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.
An experimental study of turbine vane heat transfer with leading edge and downstream film cooling
NASA Technical Reports Server (NTRS)
Nirmalan, V.; Hylton, L. D.
1989-01-01
This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.
Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment
NASA Technical Reports Server (NTRS)
Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.
2003-01-01
A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
NASA Astrophysics Data System (ADS)
Vial, M.; Hernández, R. H.
2017-07-01
We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a <1 04). Flow visualizations show a steady cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.
Heat Transfer Through Turbulent Friction Layers
NASA Technical Reports Server (NTRS)
Reichardt, H.
1943-01-01
The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Numerical study of vorticity-enhanced heat transfer
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Alben, Silas
2013-11-01
Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.
Is there a benefit of using an arbitrary facebow for the fabrication of a stabilization appliance?
Shodadai, S P; Türp, J C; Gerds, T; Strub, J R
2001-01-01
The aim of this clinical study was to evaluate if an arbitrary facebow registration and transfer provides significant advantages for the fabrication of an occlusal appliance in comparison with the omission of such a procedure. For 20 fully dentate adult patients diagnosed with bruxism, two Michigan occlusal splints were constructed. One of the two upper dental casts was transferred to the articulator with an arbitrary earpiece facebow; the other maxillary cast was mounted arbitrarily using a flat occlusal plane indicator. Upon splint delivery, the number of intraoral occlusal contacts and the time needed for chairside occlusal adjustment were recorded. The number of occlusal contacts on the appliance fabricated with or without facebow was similar in most cases both in the articulator and in the mouth. The one-sided Wilcoxon rank sum test showed with high probability that the use of an arbitrary facebow does not yield a clinically relevant improvement with regard to the number of occlusal contacts or the chairside adjustment time. From this pilot study, it appears that for the fabrication of an occlusal appliance, registration and transfer with an arbitrary earpiece facebow does not yield clinically relevant benefits. Of course, this conclusion cannot be transferred to other facebows and is restricted to the levels of clinical relevance defined in the study.
NASA Astrophysics Data System (ADS)
Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou
2018-06-01
In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... Protection Agency, Research Triangle Park, North Carolina 27711; Telephone number: (919) 541-3608; Fax number... (E143-01), Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research..., Research Triangle Park, North Carolina 27711; Telephone number: (919) 541-5372; Fax number (919) 541-0246...
Young, John Q; Wachter, Robert M
2009-09-01
Health care organizations have increasingly embraced industrial methods, such as the Toyota Production System (TPS), to improve quality, safety, timeliness, and efficiency. However, the use of such methods in psychiatric hospitals has been limited. A psychiatric hospital applied TPS principles to patient transfers to the outpatient medication management clinics (MMCs) from all other inpatient and outpatient services within the hospital's system. Sources of error and delay were identified, and a new process was designed to improve timely access (measured by elapsed time from request for transfer to scheduling of an appointment and to the actual visit) and patient safety by decreasing communication errors (measured by number of failed transfers). Complexity was substantially reduced, with one streamlined pathway replacing five distinct and more complicated pathways. To assess sustainability, the postintervention period was divided into Period 1 (first 12 months) and Period 2 (next 24 months). Time required to process the transfer and schedule the first appointment was reduced by 74.1% in Period 1 (p < .001) and by an additional 52.7% in Period 2 (p < .0001) for an overall reduction of 87% (p < .0001). Similarly, time to the actual appointment was reduced 31.2% in Period 1 (p < .0001), but was stable in Period 2 (p = .48). The number of transfers per month successfully processed and scheduled increased 95% in the postintervention period compared with the pre-implementation period (p = .015). Finally, data for failed transfers were only available for the postintervention period, and the rate decreased 89% in Period 2 compared with Period 1 (p = .017). The application of TPS principles enhanced access and safety through marked and sustained improvements in the transfer process's timeliness and reliability. Almost all transfer processes have now been standardized.
Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L
2018-01-01
Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted.
Paisner, Kathryn; Vanderford, Nathan L.
2018-01-01
Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted. PMID:29721313
Lunar ash flow with heat transfer.
NASA Technical Reports Server (NTRS)
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
Vehicle Electronics and Architecture
2011-08-26
NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Chris Mocnik 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 22245 9...processes throughout VEA organization 3.3 Strengthen strategic partnerships, alliances, and technology transfer 4.3 Strengthen strategic
Perinatal transport: problems in neonatal intensive care capacity.
Gill, A B; Bottomley, L; Chatfield, S; Wood, C
2004-05-01
To assess the quantity and nature of transfers within the Yorkshire perinatal service, with the aim of identifying suitable outcome measures for the assessment of future service improvements. Collection of data on perinatal transfers from all neonatal and maternity units located in the Yorkshire region of the United Kingdom from May to November 2000. Expectant mothers (in utero transfers) and neonates (ex utero transfers). None Quantification of in utero and ex utero transfers; the reasons for and resources required to support transfers; the nature of each transfer (acute, specialist, non-acute, into or out of region). In the period studied, there were 800 transfers (337 in utero; 463 ex utero); 306 transfers were "acute" (80% of transfers in utero), 214 because of specialist need, and 280 "non-acute". Some 37% of capacity transfers occurred from the two level 3 units in the region. Of 254 transfers out of the 14 neonatal units for intensive care, 44 (17.3%) were transferred to hospitals outside the normal neonatal commissioning boundaries. The study highlights a continuing apparent lack of capacity within the neonatal service in the Yorkshire region, resulting in considerable numbers of neonatal and maternal transfers.
Mass transfer effects in a gasification riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip
2013-07-01
In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less
Near-field heat transfer between graphene/hBN multilayers
NASA Astrophysics Data System (ADS)
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
Frequency of pubic hair transfer during sexual intercourse.
Exline, D L; Smith, F P; Drexler, S G
1998-05-01
This study measured the frequency of pubic hair transfer between a limited number of consenting heterosexual partners. The results derive from controlled experiments with a number of human subjects rather than forensic casework. Standardized collection procedures were observed, situational variables were tracked. Participants (forensic laboratory employees and their spouses) were six Caucasian couples who collected their pubic hair combings immediately following intercourse. Subjects provided informed consent in accordance with the protocol for human subjects approved by the U.A.B. institutional review board. The experiment was replicated ten times for five couples, and five times for another couple (total n = 110). Transfer frequencies were calculated from instances where foreign (exogenous) hairs were observed. Results showed at least one exogenous pubic hair in 17.3% (19/110) of combings. Transfers to males (23.6%, or 13/55) were more prevalent than transfers to females (10.9%, or 6/55). Only once were transfers observed simultaneously between both male and female. A total of 28 exogenous pubic hairs were identified. Subjects reported intercourse duration of 2-25 min, intervening intervals of 1-240 h, pre-coital bathing intervals of 0.25-24 h, and predominantly missionary position (76%). No clear relationship among these other survey variables was observed. The prevalence of female-to-male pubic hair transfers suggests the importance of collecting pubic hair combings from the male suspects as well as from female victims, provided the time interval is not extreme. Even under these optimum collection conditions, pubic hair transfers were observed only 17.3% of the time.
TWSTFT Data Treatment for UTC Time Transfer
2009-11-01
41 st Annual Precise Time and Time Interval (PTTI) Meeting 409 TWSTFT DATA TREATMENT FOR UTC TIME TRANSFER Z. Jiang, W...Abstract TWSTFT (TW) is the primary technique of time and frequency transfers used at BIPM for the UTC/TAI generations. At present, some 19...number. 1. REPORT DATE NOV 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE TWSTFT Data Treatment for UTC Time
Predicting Turbulent Convective Heat Transfer in Three-Dimensional Duct Flows
NASA Technical Reports Server (NTRS)
Rokni, M.; Gatski, T. B.
1999-01-01
The performance of an explicit algebraic stress model is assessed in predicting the turbulent flow and forced heat transfer in straight ducts, with square, rectangular, trapezoidal and triangular cross-sections, under fully developed conditions over a range of Reynolds numbers. Iso-thermal conditions are imposed on the duct walls and the turbulent heat fluxes are modeled by gradient-diffusion type models. At high Reynolds numbers (>/= 10(exp 5)), wall functions are used for the velocity and temperature fields; while at low Reynolds numbers damping functions are introduced into the models. Hydraulic parameters such as friction factor and Nusselt number are well predicted even when damping functions are used, and the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Comparison between the models is presented in terms of the hydraulic parameters, friction factor and Nusselt number, as well as in terms of the secondary flow patterns occurring within the ducts.
Evaluation of cooling performance of impinging jet array over various dimpled surfaces
NASA Astrophysics Data System (ADS)
Kim, Sun-Min; Kim, Kwang-Yong
2016-04-01
Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.
Experimental Investigation on Heat Transfer Characteristics of Different Metallic Fin Arrays
NASA Astrophysics Data System (ADS)
Sangewar, Ravi Kumar
2018-04-01
The reliability of electronic equipment depends on the reliability of the system. For small applications natural convection cooling is sufficient, but for the electronic equipment having number of heat generating components, forced convection cooling is essential. In number of cases, pin fin arrangement is preferred for augmentation of heat transfer. Here, the performance of pin fin array of copper and aluminum material with in-line, as well as staggered arrangement over a flat plate is studied. Constant heat input was given to the inline, staggered arrangement of copper as well as aluminium pin fin arrays. In the present experimental study, heat input and airflow rates are the variables. It was found that the heat transfer coefficient for staggered array is 15% more than that of the in-line array, at the same time pressure drop across the staggered array is more by 10% than the in-line array. The pressure drop was observed to be increasing with increase in flow rate as expected. Endeavor of the present work is to find the optimum spacing between the fins in an array for maximum heat transfer rate, by investigating the heat transfer characteristics.
Gill, C O; Jones, T
2002-06-01
On eight occasions, five volunteers each handled five pieces of meat with bare hands or while wearing dry or wet knitted gloves or rubber gloves after hands had been inoculated with Escherichia coli or after handling a piece of meat inoculated with E. coli. On each occasion, after all meat was handled, each piece of meat, glove, and hand were sampled to recover E. coli. When hands were inoculated, E. coli was recovered from all meat handled with bare hands, in lesser numbers from some pieces handled with knitted gloves, and from only one piece handled with rubber gloves. When pieces of inoculated meat were handled, the numbers of E. coli transferred to uninoculated meat from bare hands or rubber gloves decreased substantially with each successive piece of uninoculated meat, but decreases were small with knitted gloves. The findings indicate that, compared with bare hands, the use of knitted gloves could reduce the transfer of bacteria from hands to meat but could increase the transfer of bacteria between meat pieces, whereas the use of rubber gloves could largely prevent the first and greatly reduce the second type of bacteria transfer.
Schottky Noise and Beam Transfer Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaskiewicz, M.
2016-12-01
Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM, AND THE... transaction; (2) The date of the entry, transfer (only a refiner shall report transfers to the Licensing... license number; (5) The country of origin (entry of raw sugar) or final destination (refined exports...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM, AND THE... transaction; (2) The date of the entry, transfer (only a refiner shall report transfers to the Licensing... license number; (5) The country of origin (entry of raw sugar) or final destination (refined exports...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM, AND THE... transaction; (2) The date of the entry, transfer (only a refiner shall report transfers to the Licensing... license number; (5) The country of origin (entry of raw sugar) or final destination (refined exports...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM, AND THE... transaction; (2) The date of the entry, transfer (only a refiner shall report transfers to the Licensing... license number; (5) The country of origin (entry of raw sugar) or final destination (refined exports...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM, AND THE... transaction; (2) The date of the entry, transfer (only a refiner shall report transfers to the Licensing... license number; (5) The country of origin (entry of raw sugar) or final destination (refined exports...
19 CFR 19.42 - Application for transfer of merchandise.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ____ (Container station) An abstract of the carrier's manifest covering the containers by B/L No., marks, numbers...; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Container Stations § 19.42 Application for transfer of merchandise. The container station operator may file...
19 CFR 19.42 - Application for transfer of merchandise.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ____ (Container station) An abstract of the carrier's manifest covering the containers by B/L No., marks, numbers...; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Container Stations § 19.42 Application for transfer of merchandise. The container station operator may file...
19 CFR 19.42 - Application for transfer of merchandise.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ____ (Container station) An abstract of the carrier's manifest covering the containers by B/L No., marks, numbers...; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Container Stations § 19.42 Application for transfer of merchandise. The container station operator may file...
19 CFR 19.42 - Application for transfer of merchandise.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ____ (Container station) An abstract of the carrier's manifest covering the containers by B/L No., marks, numbers...; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Container Stations § 19.42 Application for transfer of merchandise. The container station operator may file...
19 CFR 19.42 - Application for transfer of merchandise.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ____ (Container station) An abstract of the carrier's manifest covering the containers by B/L No., marks, numbers...; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Container Stations § 19.42 Application for transfer of merchandise. The container station operator may file...
NASA Astrophysics Data System (ADS)
Capra, B. R.; Morgan, R. G.; Leyland, P.
2005-02-01
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √ Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling. Key words: Heat Transfer, Fire II Flight Vehicle, Expansion Tubes, Binary Scaling. NOMENCLATURE dA elemental surface area, m2 H0 stagnation enthalpy, MJ/kg L arbitrary length, m ls scale factor equal to Lf /Le M Mach Number ˙m mass flow rate, kg/s p pressure, kPa ˙q heat transfer rate, W/m2 ¯q averaged heat transfer rate W/m2 RN nose radius m Re Reynolds number, equal to ρURN µ s/RD radial distance from symmetry axis St Stanton number, equal to ˙q ρUH0 St √ Re = ˙qR 1/2 N (ρU)1/2 µ1/2H0 over radius of forebody (D/2) T temperature, K U velocity, m/s Ue equivalent velocity m/s, equal to √ 2H0 U1 primary shock speed m/s U2 secondary shock speed m/s ρ density, kg/m3 ρL binary scaling parameter, kg/m2 subscripts c convective exp experiment f flight r radiative s post shock T total ∞ freestream
Lateral Gene Transfer from the Dead
Szöllősi, Gergely J.; Tannier, Eric; Lartillot, Nicolas; Daubin, Vincent
2013-01-01
In phylogenetic studies, the evolution of molecular sequences is assumed to have taken place along the phylogeny traced by the ancestors of extant species. In the presence of lateral gene transfer, however, this may not be the case, because the species lineage from which a gene was transferred may have gone extinct or not have been sampled. Because it is not feasible to specify or reconstruct the complete phylogeny of all species, we must describe the evolution of genes outside the represented phylogeny by modeling the speciation dynamics that gave rise to the complete phylogeny. We demonstrate that if the number of sampled species is small compared with the total number of existing species, the overwhelming majority of gene transfers involve speciation to and evolution along extinct or unsampled lineages. We show that the evolution of genes along extinct or unsampled lineages can to good approximation be treated as those of independently evolving lineages described by a few global parameters. Using this result, we derive an algorithm to calculate the probability of a gene tree and recover the maximum-likelihood reconciliation given the phylogeny of the sampled species. Examining 473 near-universal gene families from 36 cyanobacteria, we find that nearly a third of transfer events (28%) appear to have topological signatures of evolution along extinct species, but only approximately 6% of transfers trace their ancestry to before the common ancestor of the sampled cyanobacteria. [Gene tree reconciliation; lateral gene transfer; macroevolution; phylogeny.] PMID:23355531
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.; ...
2016-03-22
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
Heat Transfer at a Long Electrically-Simulated Water Wall in a Circulating Fluidised Bed
NASA Astrophysics Data System (ADS)
Sundaresan, R.; Kolar, Ajit Kumar
In the present work, heat transfer measurements are reported in a 100mm square, 5.5 m tall, cold CFB. The test section is a 19 mm OD electrically heated heat transfer tube, 4.64 m tall (covering more than 80% of the CFB height), sandwiched between two equally tall dummy tubes of 19mm OD, thus simulating a water wall geometry, forming one wall of the CFB. Narrow cut sand particles of mean diameters 156, 256, and 362 micrometers, and a wide cut sample of mean diameter 265 micrometer were used as the bed material. The superficial gas velocity ranged from 4.2 to 8.2 m/s, and the solids recycle flux varied from 17 to 110 kg/m2s. Local heat transfer coefficient at the simulated water wall varies, as expected from a low value at the top of the riser to a high value at the bottom, with an interesting increasing and decreasing trend in between. The average heat transfer coefficients were compared with those available in open literature. Correlations for average heat transfer coefficient are presented, both in terms of an average suspension density and also in terms of important nondimensional numbers, namely, Froude number, relative solids flux and velocity ratio. Comparisons are also made with predictions of relevant heat transfer models. Based on the present fifty-five experimental data points, the following correlation was presented with a correlation coefficient of 0.862 and maximum error is ± 15 %.
NASA Technical Reports Server (NTRS)
Eder, D.
1992-01-01
Parametric models were constructed for Earth-based laser powered electric orbit transfer from low Earth orbit to geosynchronous orbit. These models were used to carry out performance, cost/benefit, and sensitivity analyses of laser-powered transfer systems including end-to-end life cycle cost analyses for complete systems. Comparisons with conventional orbit transfer systems were made indicating large potential cost savings for laser-powered transfer. Approximate optimization was done to determine best parameter values for the systems. Orbit transfer flights simulations were conducted to explore effects of parameters not practical to model with a spreadsheet. The simulations considered view factors that determine when power can be transferred from ground stations to an orbit transfer vehicle and conducted sensitivity analyses for numbers of ground stations, Isp including dual-Isp transfers, and plane change profiles. Optimal steering laws were used for simultaneous altitude and plane change. Viewing geometry and low-thrust orbit raising were simultaneously simulated. A very preliminary investigation of relay mirrors was made.
Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend
NASA Astrophysics Data System (ADS)
Patro, Pandaba; Rout, Ani; Barik, Ashok
2018-06-01
Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.