Plume effects on the flow around a blunted cone at hypersonic speeds
NASA Technical Reports Server (NTRS)
Atcliffe, P.; Kumar, D.; Stollery, J. L.
1992-01-01
Tests at M = 8.2 show that a simulated rocket plume at the base of a blunted cone can cause large areas of separated flow, with dramatic effects on the heat transfer rate distribution. The plume was simulated by solid discs of varying sizes or by an annular jet of gas. Flow over the cone without a plume is fully laminar and attached. Using a large disc, the boundary layer is laminar at separation at the test Reynolds number. Transition occurs along the separated shear layer and the boundary layer quickly becomes turbulent. The reduction in heat transfer associated with a laminar separated region is followed by rising values as transition occurs and the heat transfer rates towards the rear of the cone substantially exceed the values obtained without a plume. With the annular jet or a small disc, separation occurs much further aft, so that heat transfer rates at the front of the cone are comparable with those found without a plume. Downstream of separation the shear layer now remains laminar and the heat transfer rates to the surface are significantly lower than the attached flow values.
Excited state electron transfer in systems with a well-defined geometry. [cyclophane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, K.J.
1980-12-01
The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less
Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping
2018-04-01
Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
NASA Astrophysics Data System (ADS)
Câmara, L. D. T.
2015-09-01
The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB separation process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with lumped mass transfer models between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. The modelling and simulations were carried out and compared to the experimental SG-SMB separation of the amino acids phenylalanine and tryptophan. A lumped mass transfer kinetic model was applied for both the modifier (ethanol) as well as the solutes. The simulation results showed that such simple and global mass transfer models are enough to represent all the mass transfer effect between the solid adsorbent and the liquid phase. The separation performance can be improved reducing the interaction or the mass transfer kinetic effect between the solid adsorbent phase and the modifier. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate.
5 CFR 330.209 - Removal from an RPL.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Receives a written cancellation, rescission, or modification to: (i) The RIF separation notice or..., resignation, or transfer) before the RIF separation effective date. Registration continues if the RPL registrant retires on or after the RIF separation effective date. This paragraph does not apply to an RPL...
5 CFR 330.209 - Removal from an RPL.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Receives a written cancellation, rescission, or modification to: (i) The RIF separation notice or..., resignation, or transfer) before the RIF separation effective date. Registration continues if the RPL registrant retires on or after the RIF separation effective date. This paragraph does not apply to an RPL...
5 CFR 330.209 - Removal from an RPL.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Receives a written cancellation, rescission, or modification to: (i) The RIF separation notice or..., resignation, or transfer) before the RIF separation effective date. Registration continues if the RPL registrant retires on or after the RIF separation effective date. This paragraph does not apply to an RPL...
Wu, Jing; Lu, Hongwei; Zhang, Xuliang; Raziq, Fazal; Qu, Yang; Jing, Liqiang
2016-04-11
Modification with chloride and phosphate anions, and coupling with carbon nanotubes could effectively trap holes and transfer the electrons of rutile nanorods, respectively, so as to greatly promote photogenerated charge separation, leading to an obviously-improved cocatalyst-free photocatalytic conversion of CO2 to CH4 and CO, along with the positive effects of constructed phosphate bridges.
D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David
2016-02-04
We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.
Interactions of information transfer along separable causal paths
NASA Astrophysics Data System (ADS)
Jiang, Peishi; Kumar, Praveen
2018-04-01
Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.
Separation of Californium from other Actinides
Mailen, J C; Ferris, L M
1973-09-25
A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.
The Mediating Effect of Context Variation in Mixed Practice for Transfer of Basic Science
ERIC Educational Resources Information Center
Kulasegaram, Kulamakan; Min, Cynthia; Howey, Elizabeth; Neville, Alan; Woods, Nicole; Dore, Kelly; Norman, Geoffrey
2015-01-01
Applying a previously learned concept to a novel problem is an important but difficult process called transfer. Practicing multiple concepts together (mixed practice mode) has been shown superior to practicing concepts separately (blocked practice mode) for transfer. This study examined the effect of single and multiple practice contexts for both…
Physical stage of photosynthesis charge separation
NASA Astrophysics Data System (ADS)
Yakovlev, A. G.; Shuvalov, V. A.
2016-06-01
An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.
43 CFR 3135.1-3 - Separate filing for transfers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Separate filing for transfers. 3135.1-3... RESERVE, ALASKA Transfers, Extensions, Consolidations, and Suspensions § 3135.1-3 Separate filing for transfers. A separate instrument of transfer shall be filed for each lease on a form approved by the...
43 CFR 3135.1-3 - Separate filing for transfers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Separate filing for transfers. 3135.1-3... RESERVE, ALASKA Transfers, Extensions, Consolidations, and Suspensions § 3135.1-3 Separate filing for transfers. A separate instrument of transfer shall be filed for each lease on a form approved by the...
43 CFR 3135.1-3 - Separate filing for transfers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Separate filing for transfers. 3135.1-3... RESERVE, ALASKA Transfers, Extensions, Consolidations, and Suspensions § 3135.1-3 Separate filing for transfers. A separate instrument of transfer shall be filed for each lease on a form approved by the...
43 CFR 3135.1-3 - Separate filing for transfers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Separate filing for transfers. 3135.1-3... RESERVE, ALASKA Transfers, Extensions, Consolidations, and Suspensions § 3135.1-3 Separate filing for transfers. A separate instrument of transfer shall be filed for each lease on a form approved by the...
Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.
Lerch, Sarah; Reinhard, Björn M
2018-04-23
Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.
Three-dimensional numerical study of heat transfer enhancement in separated flows
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Vengadesan, S.
2017-11-01
The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.
Strain-induced modulation of near-field radiative transfer.
Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi
2018-06-11
In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.
Capillary electrophoresis electrospray ionization mass spectrometry interface
Smith, Richard D.; Severs, Joanne C.
1999-01-01
The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.
A cost-effective device for the rapid transfer of gel-separated proteins onto membranes.
Tam, Hann W; Huang, Yu-Chen; Tam, Ming F
2009-03-01
We describe here the fabrication of a cost-effective semi-dry blotting apparatus for the transfer of proteins onto membranes. Graphite sheets were used as electrodes. Protein mixtures were separated on NuPAGE 4% to 12% polyacrylamide gradient gels. With a Tris-bicine buffer, we demonstrated that close to 80% of the proteins with apparent molecular mass of 80kDa or less were removed from the gels after 8min of blotting. The process is much faster than the techniques reported previously in the literature.
Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.
Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C
2013-12-01
Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.
Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas
2011-04-21
An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.
Wallace, Bram; Atzberger, Paul J.; D’Auria, Sabato
2017-05-19
Forster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. But, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. Here, we investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion ofmore » fluorophores, separation diffusion of fluorophores, and non-emitting quenching.« less
Wallace, Bram
2017-01-01
Förster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching. PMID:28542211
System and method for treatment of a medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surinder Prabhjot; Acharya, Harish Radhakrishna; Perry, Robert James
2017-05-23
A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and amore » reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.« less
Heat Transfer of Confined Impinging Air-water Mist Jet
NASA Astrophysics Data System (ADS)
Chang, Shyy Woei; Su, Lo May
This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.
Heat transfer enhancement with mixing vane spacers using the field synergy principle
NASA Astrophysics Data System (ADS)
Yang, Lixin; Zhou, Mengjun; Tian, Zihao
2017-01-01
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
Recent California Water Transfers: Emerging Options in Water Management
1992-12-01
geographically separated, requiring the use of conveyance and storage systems controlled by other parties. The controversies and complexities of effecting ...systematic examination of the engineering and operational aspects of water transfers. Instead, the mechanics of economically effecting actual water...drought and is now part of almost all California urban water plans and operations. The current drought also has had significant effects on how water
Zhu, Jingyi; van Stokkum, Ivo H M; Paparelli, Laura; Jones, Michael R; Groot, Marie Louise
2013-06-04
A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators.
Zahn, Raphael; Lagadec, Marie Francine; Hess, Michael; Wood, Vanessa
2016-12-07
The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.
Shimazaki, Tomomi; Nakajima, Takahito
2017-05-21
This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.
Barter, Laura M. C.; Durrant, James R.; Klug, David R.
2003-01-01
Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865
Heat transfer simulation of unsteady swirling flow in a vortex tube
NASA Astrophysics Data System (ADS)
Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.
2018-03-01
Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
Harel, Elad; Engel, Gregory S
2012-01-17
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.
Harel, Elad; Engel, Gregory S.
2012-01-01
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2. PMID:22215585
Review on charge transfer and chemical activity of TiO2: Mechanism and applications
NASA Astrophysics Data System (ADS)
Cai, Yongqing; Feng, Yuan Ping
2016-12-01
Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.
Guo, Zhi; Lin, Su; Woodbury, Neal W
2013-09-26
In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.
Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin
2009-03-28
Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.
This procedure is designed to ensure that all records as defined in the Federal Records Act, independent of media and format, created or received by EPA employees who are separating, transferring or have separated from an employment relationship with EPA.
An Analysis of the Effects of Military Service on Retirees’ Civilian Earnings
1993-12-01
labor market following separation from the service. Thus. military retirees receive two incomes over a lengthy period of their lives, the military pension...labor market experience. Within this model. Probit analysis Was emprio~cd to correct for expected selecti\\I1!% bilas. The sampie employed in this...have a more direct correlation with the civilian lob market . The third phase examined occupational transfer effects. A dummy transfer variable was
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
NASA Astrophysics Data System (ADS)
Swaddle, T. W.; Spiccia, L.
1986-05-01
The classical Stranks-Hush-Marcus theory of pressure effects on the rates of outer-sphere electron transfer reaction rates in solution underestimates |ΔV ∗| specifically, for the MnO 4/MnO 42- (aq) exchange, ΔV ∗=-21.2 (observed) vs. -6.6 cm3mol-1 (calculated). This discrepancy can best be resolved by conceding that the Mn-Mn separation σ in the transition state is variable and pressure-sensitive in the context of non-adiabatic electron transfer within an ellipsoidal cavity with σ ∼ 550 pm.
The Influence of Heat Transfer on the Drag of Airfoils.
1981-04-01
OF STANDARDS-1963-A LL b AFWAL-TR-81- 3030 THE INFLUENCE OF HEAT TRANSFER ON THE DRAG OF AIRFOILS DR. JOHN D. LEE The Aeronautical and Astronautical...if necReary mid identify by block number) Airfoils , Subsonic, Transonic, Supercritical, Laminar Flow, Transition, Drag Reduction, Heat Transfer...determine the effects of surface temperature on the drag of airfoils . Models of an aft- loaded profile and of a NACA 65A413 were tested with separate models
NASA Technical Reports Server (NTRS)
Davis, L. R. (Editor); Wilson, R. E.
1974-01-01
Recent theoretical and experimental studies in heat transfer and fluid mechanics, including some environmental protection investigations, are presented in a number of papers. Some of the topics covered include condensation heat transfer, a model of turbulent momentum and heat transfer at points of separation and reattachment, an explicit scheme for calculations of confined turbulent flows with heat transfer, heat transfer effects on a delta wing in subsonic flow, fluid mechanics of ocean outfalls, thermal plumes from industrial cooling water, a photochemical air pollution model for the Los Angeles air basin, and a turbulence model of diurnal variations in the planetary boundary layer. Individual items are announced in this issue.
Xu, Jiadi; Chan, Kannie W.Y.; Xu, Xiang; Yadav, Nibhay; Liu, Guanshu; van Zijl, Peter C. M.
2016-01-01
Purpose To develop an on-resonance variable delay multi-pulse (VDMP) scheme to image magnetization transfer contrast (MTC) as well as the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above about 1 kHz. Methods A train of high power binomial pulses was applied at the water resonance. The inter-pulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions due to their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T2 components in MTC and separated out using a variable mixing time. Results Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA) and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method showing strong gray/white matter contrast for the slowly transferring MTC protons while the TFP map was more uniform across the brain but somewhat higher in gray matter. Conclusions The new method provides a simple way of imaging fast-exchanging protons, as well as MTC components with a slow transfer rate. PMID:26900759
Jeong, Seonju; Cho, Changsoon; Kang, Hyunbum; Kim, Ki-Hyun; Yuk, Youngji; Park, Jeong Young; Kim, Bumjoon J; Lee, Jung-Yong
2015-03-24
We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively.
Separation of presampling and postsampling modulation transfer functions in infrared sensor systems
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Olson, Jeffrey T.; O'Shea, Patrick D.; Hodgkin, Van A.; Jacobs, Eddie L.
2006-05-01
New methods of measuring the modulation transfer function (MTF) of electro-optical sensor systems are investigated. These methods are designed to allow the separation and extraction of presampling and postsampling components from the total system MTF. The presampling MTF includes all the effects prior to the sampling stage of the imaging process, such as optical blur and detector shape. The postsampling MTF includes all the effects after sampling, such as interpolation filters and display characteristics. Simulation and laboratory measurements are used to assess the utility of these techniques. Knowledge of these components and inclusion into sensor models, such as the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate's NVThermIP, will allow more accurate modeling and complete characterization of sensor performance.
Hotspot-mediated non-dissipative and ultrafast plasmon passage
NASA Astrophysics Data System (ADS)
Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim
2017-08-01
Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.
1990-01-01
A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.
Effects of transfer distance on spine kinematics for de-palletizing tasks.
Mehta, Jay P; Kim, Tae Hoon; Weiler, Monica R; Lavender, Steven A
2014-01-01
One approach to reducing lateral bending and twisting in manual lifting tasks is to separate the lift's origin and destination, thereby encouraging lifters to step and turn their entire bodies. The objective of the current study was to determine how the degree to which one laterally bends and twists changes with transfer distance and initial lift height. Eighteen males lifted 10.9 kg boxes from a conveyor 0.5 m, 0.9 m, and 1.3 m above the floor and placed the boxes on a conveyor .50, .75, 1.00, 1.25, 1.50, or 1.75 m away at a height of .9 m. During picking, lateral bending and trunk extension velocities increased with increasing transfer distances. When placing the box, the degree of twisting decreased with increased transfer distance. In sum, when attempting to control the twisting and lateral bending during de-palletizing, the lift origin and destination should be separated by between 1 and 1.25 meters.
NASA Astrophysics Data System (ADS)
Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen
2011-09-01
We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.
NASA Astrophysics Data System (ADS)
Pardeshi, Irsha
Efficient and effective cooling of the trailing edges of gas-turbine vanes and blades is challenging because there is very little space to work with. In this study, CFD simulations based on steady RANS closed by the shear-stress transport turbulence model were performed to study the flow and heat transfer in an L-shaped duct for the trailing edge under two operating conditions. One operating condition, referred to as the laboratory condition, where experimental measurements were made, has a Reynolds number at the duct inlet of ReD = 15,000, coolant inlet temperature of Tinlet = 300 K, wall temperature of Twall = 335 K, a back pressure of Pb = 1 atm. When rotating, the angular speed was O = 1,000 rpm. The other condition, referred to as the engine-relevant condition, has Re D = 150,000 at the duct inlet, Tinlet = 673 K, Twall = 1,173 K, and Pb = 25 atm. When rotating, O was 3,600 rpm. The objective is to understand the nature of the flow and heat transfer in an L-shaped cooling passage for the trailing edge that has a combination of ribs and pin fins under rotating and non-rotating conditions with focus on how pin fins and ribs distribute the flow throughout the passage and to understand what features of the flow and heat transfer can or cannot be extrapolated from the laboratory to the engine-relevant operating conditions. When there is no rotation, results obtained show that for both operating conditions, the pin fins minimized the size of the separation bubble when the flow exits the inlet duct into the expanded portion of the L-shaped duct. The size of the separation bubble at the tip of the L-shaped duct created by the adverse pressure gradient is quite large for the laboratory condition and relatively small for the engine condition. Each rib was found to create two sets of recirculating flows, one just upstream of the rib because of the adverse pressure gradient induced by the rib and one just downstream of the rib because of flow separation from a sharp edge. These recirculating flows spiral from the ribs towards the exit of the L-shaped duct, and the spiraling brings cool fluid from the middle of the passage to the walls. Each pin fin was found to induce a pair of counter-rotating separated regions behind it and has horse-shoe vortices that wrap around it next to the top and bottom walls. The heat transfer is highest just upstream of the each rib, around the pin fins, and when the cooling fluid impinges on walls, and very low in the separated region next to the tip. When there is rotation, Coriolis force creates a pair of counter-rotating vortices that bring the cooler fluid to the trailing wall in the inlet duct. Thus, the trailing wall has higher heat transfer than the leading wall. In the inlet duct, centrifugal buoyancy causes a massive flow separation on the leading wall. In the expanded portion of the L-shaped duct, the centrifugal-buoyancy-induced separation on the leading wall is limited to the region with the ribs, and the separation degenerates into a series of smaller spiraling separation bubbles, one between every set of consecutive ribs. On the leading and trailing walls, the ribs and the pin fins induce the same kind of flows as they did under non-rotating conditions. Because of centrifugal-buoyancy-induced flow separation on the leading face, the heat transfer on the leading wall is 10-15% lower than that on the trailing wall, which is not significant. The adverse effects of centrifugal buoyancy were mitigated because the separation bubbles between the ribs are spiraling from the side wall to the trailing-edge exit and are constantly supplied by new coolant. The heat transfer on the side and back walls is higher near the trailing wall because centrifugal buoyancy directed most of the coolant flow towards the trailing wall. The size of the separation bubble at the tip of the L-shaped duct essentially disappeared when there is rotation for both the lab and engine-relevant conditions.
Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube
NASA Astrophysics Data System (ADS)
Duval, W. M. B.
The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.
A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Rigby, D. L.
1999-01-01
A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.
Centrifugal separator devices, systems and related methods
Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV
2012-03-20
Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.
Characteristics of Evaporator with a Lipuid-Vapor Separator
NASA Astrophysics Data System (ADS)
Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo
Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
Definition and determination of the triplet-triplet energy transfer reaction coordinate.
Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel
2014-01-21
A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.
Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su
2016-06-23
It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location of excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from, and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms of performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction. The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D and 3D controlled flows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location o excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms o performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D and 3D controlled flows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.
Xu, Jiadi; Chan, Kannie W Y; Xu, Xiang; Yadav, Nirbhay; Liu, Guanshu; van Zijl, Peter C M
2017-02-01
To develop an on-resonance variable delay multipulse (VDMP) scheme to image magnetization transfer contrast (MTC) and the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above approximately 1 kHz. A train of high power binomial pulses was applied at the water resonance. The interpulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions as a result of their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T 2 components in MTC and separated out using a variable mixing time. Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA), and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method, showing strong gray/white matter contrast for the slowly transferring MTC protons, whereas the TFP map was more uniform across the brain but somewhat higher in gray matter. The new method provides a simple way of imaging fast-exchanging protons and MTC components with a slow transfer rate. Magn Reson Med 77:730-739, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Effects of roughness and permeability on solute transfer at the sediment water interface.
Han, Xu; Fang, Hongwei; He, Guojian; Reible, Danny
2018-02-01
Understanding the mechanisms of solute transfer across the sediment-water interface plays a crucial role in water quality prediction and management. In this study, different arranged particles are used to form typical rough and permeable beds. Large Eddy Simulation (LES) is used to model the solute transfer from the overlying water to sediment beds. Three rough wall turbulence regimes, i.e., smooth, transitional and rough regime, are separately considered and the effects of bed roughness on solute transfer are quantitatively analyzed. Results show that the classic laws related to Schmidt numbers can well reflect the solute transfer under the smooth regime with small roughness Reynolds numbers. Under the transitional regime, the solute transfer coefficient (K L + ) is enhanced and the effect of Schmidt number is weakened by increasing roughness Reynolds number. Under the rough regime, the solute transfer is suppressed by the transition layer (Brinkman layer) and controlled by the bed permeability. Moreover, it is found that water depth, friction velocity and bed permeability can be used to estimate the solute transfer velocity (K L ) under the completely rough regime. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Haiya; Liu, Dongzhi; Wang, Tianyang; Lu, Ting; Li, Wei; Ren, Siyao; Hu, Wenping; Wang, Lichang; Zhou, Xueqin
2017-03-22
Effective charge separation is one of the key determinants for the photovoltaic performance of the dye-sensitized solar cells (DSSCs). Herein, two charge-separated (CS) sensitizers, MTPA-Pyc and YD-Pyc, have been synthesized and applied in DSSCs to investigate the effect of the CS states of the sensitizers on the device's efficiency. The CS states with lifetimes of 64 and 177 ns for MTPA-Pyc and YD-Pyc, respectively, are formed via the photoinduced electron transfer (PET) from the 4-styryltriphenylamine (MTPA) or 4-styrylindoline (YD) donor to the pyrimidine cyanoacrylic acid (Pyc) acceptor. DSSCs based on MTPA-Pyc and YD-Pyc exhibit high internal quantum efficiency (IQE) values of over 80% from 400 to 600 nm. In comparison, the IQEs of the charge transfer (CT) sensitizer cells are 10-30% lower in the same wavelength range. The enhanced IQE values in the devices based on the CS sensitizers are ascribed to the higher electron injection efficiencies and slower charge recombination. The results demonstrate that taking advantage of the CS states in the sensitizers can be a promising strategy to improve the IQEs and further enhance the overall efficiencies of the DSSCs.
Gong, Rujin; Lin, Xiaojian; Li, Ping; Yu, Jianguo; Rodrigues, Alirio E
2014-10-10
The separation of guaifenesin enantiomers by both simulated moving bed (SMB) process and Varicol process was investigated experimentally and theoretically, where the columns were packed with cellulose tris 3,5-dimethylphenylcarbamate (Chiralcel OD) stationary phase and a mixture of n-hexane and ethanol was used as mobile phase. The operation conditions were designed based on the separation region with the consideration of mass transfer resistance and axial dispersion, and the experiments to separate guaifenesin enantiomers were carried out on VARICOL-Micro unit using SMB process with the column configuration of 1/2/2/1 and Varicol process with the column configuration of 1/1.5/1.5/1, respectively. Single enantiomer with more than 99.0% purity was obtained in both processes with the productivity of 0.42 genantiomer/dcm(3) CSP for SMB process and 054 genantiomer/dcm(3) CSP for Varicol process. These experimental results obtained from SMB and Varicol processes were compared with those reported from literatures. In addition, according to the numerical simulation, the effects of solid-film mass transfer resistance and axial dispersion on the internal profiles were discussed, and the effect of column configuration on the separation performance of SMB and Varicol processes was analyzed for a few columns system. The feasibility and efficiency for the separation of guaifenesin enantiomers by SMB and Varicol processes were evaluated. Copyright © 2014 Elsevier B.V. All rights reserved.
Shining light on the antenna chromophore in lanthanide based dyes.
Junker, Anne Kathrine R; Hill, Leila R; Thompson, Amber L; Faulkner, Stephen; Sørensen, Thomas Just
2018-04-03
Lanthanide based dyes and assays exploit the antenna effect, where a sensitiser-chromophore is used as a light harvesting antenna and subsequent excited state energy transfer populates the emitting lanthanide centred excited state. A rudimentary understanding of the design criteria for designing efficient dyes and assays based on the antenna effect is in place. By preparing kinetically inert lanthanide complexes based on the DO3A scaffold, we are able to study the excited state energy transfer from a 7-methoxy-coumarin antenna chromophore to europium(iii) and terbium(iii) centred excited states. By contrasting the photophysical properties of complexes of metal centres with and without accessible excited states, we are able to separate the contributions from the heavy atom effect, photoinduced electron transfer quenching, excited state energy transfer and molecular conformations. Furthermore, by studying the photophysical properties of the antenna chromophore, we can directly monitor the solution structure and are able to conclude that excited state energy transfer from the chromophore singlet state to the lanthanide centre does occur.
Combined heat and mass transfer device for improving separation process
Tran, Thanh Nhon
1999-01-01
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.
Combined heat and mass transfer device for improving separation process
Tran, T.N.
1999-08-24
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.
Entanglement transfer from microwaves to diamond NV centers
NASA Astrophysics Data System (ADS)
Gomez, Angela V.; Rodriguez, Ferney J.; Quiroga, Luis
2014-03-01
Strong candidates to create quantum entangled states in solid-state environments are the nitrogen-vacancy (NV) defect centers in diamond. By the combination of radiation from different wavelength (optical, microwave and radio-frequency), several protocols have been proposed to create entangled states of different NVs. Recently, experimental sources of non-classical microwave radiation have been successfully realized. Here, we consider the entanglement transfer from spatially separated two-mode microwave squeezed (entangled) photons to a pair of NV centers by exploiting the fact that the spin triplet ground state of a NV has a natural splitting with a frequency on the order of GHz (microwave range). We first demonstrate that the transfer process in the simplest case of a single pair of spatially separated NVs is feasible. Moreover, we proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths surrounding each NV are included, quantifying the degradation of the entanglement transfer by the dephasing/dissipation effects produced by the nuclear baths. Finally, we address the issue of assessing the possibility of entanglement transfer from the squeezed microwave light to two nuclear spins closely linked to different NV center electrons. Facultad de Ciencias Uniandes.
Hot spot-mediated non-dissipative and ultrafast plasmon passage.
Roller, Eva-Maria; Besteiro, Lucas V; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O; Liedl, Tim
2017-08-01
Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices.1-5 Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles.6-10 Here, we show the assembly and optical analysis of a triple particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles mediated by the connecting silver particle with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modeling and qualitative quantum-mechanical calculations. We identify the formation of strong hot spots between all particles as the main mechanism for the loss-less coupling and thus coherent ultra-fast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, but also for classical charge and information transfer processes.
Alkaline battery, separator therefore
NASA Technical Reports Server (NTRS)
Schmidt, George F. (Inventor)
1980-01-01
An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.
Positron beams and two-photon exchange: The key to precision form factors
NASA Astrophysics Data System (ADS)
Bernauer, Jan C.
2018-05-01
The proton elastic form factor ratio can be measured either via Rosenbluth separation in an unpolarized beam and target experiment, or via the use of polarization degrees of freedom. However, data produced by these two approaches show a discrepancy, increasing with Q2. The proposed explanation of this discrepancy—two-photon exchange—has been tested recently by three experiments. The results support the existence of a small two-photon exchange effect but cannot establish that theoretical treatment at the measured momentum transfers are valid. At larger momentum transfers, theory remains untested. This paper investigates the possibilities of measurements at DESY and Jefferson Lab to measure the effect at larger momentum transfers.
Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers
NASA Technical Reports Server (NTRS)
Chung, Paul M.; Viegas, John R.
1961-01-01
The flow and heat transfer are analyzed at the reattachment zone of two-dimensional separated laminar boundary layers. The fluid is considered to be flowing normal to the wall at reattachment. An approximate expression is derived for the heat transfer in the reattachment region and a calculated value is compared with an experimental measurement.
Definition and determination of the triplet-triplet energy transfer reaction coordinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Felipe; Marazzi, Marco; Castaño, Obis
2014-01-21
A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfermore » processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.« less
26 CFR 1.1361-4 - Effect of QSub election.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (effective upon the date of the subsidiary's formation) for the subsidiary, the transfer of assets to the... in paragraph (a)(2) of this section is respected as an independent step separate from the stock.... The liquidation described in paragraph (a)(2) of this section is respected as an independent step...
Mechanisms underlying transfer of task-defined rules across feature dimensions.
Baroni, Giulia; Yamaguchi, Motonori; Chen, Jing; Proctor, Robert W
2013-01-01
The Simon effect can be reversed, favoring spatially noncorresponding responses, when people respond to stimulus colors (e.g., green) by pressing a key labeled with the alternative color (i.e., red). This Hedge and Marsh reversal is most often attributed to transfer of logical recoding rules from the color dimension to the location dimension. A recent study showed that this transfer of logical recoding rules can occur not only within a single task but also across two separate tasks that are intermixed. The present study investigated the conditions that determine the transfer of logical recoding rules across tasks. Experiment 1 examined whether it occurs in a transfer paradigm, that is when the two tasks are performed separately, but provided little support for this possibility. Experiment 2 investigated the role of task-set readiness, using a mixed-task paradigm with a predictable trials sequence, which indicated that there is no transfer of task-defined rules across tasks even when they are highly active during the Simon task. Finally, Experiments 3 and 4 used a mixed-task paradigm, where trials of the two tasks were mixed randomly and unpredictably, and manipulated the amount of feature overlap between tasks. Results indicated that task similarity is a determining factor for transfer of task-defined rules to occur. Overall, the study provides evidence that transfer of logical recoding rules tends to occur across two tasks when tasks are unpredictably intermixed and use stimuli that are highly similar and confusable.
Transfer of monolayer TMD WS2 and Raman study of substrate effects
Mlack, Jerome T.; Masih Das, Paul; Danda, Gopinath; Chou, Yung-Chien; Naylor, Carl H.; Lin, Zhong; López, Néstor Perea; Zhang, Tianyi; Terrones, Mauricio; Johnson, A. T. Charlie; Drndić, Marija
2017-01-01
A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and “green polymer” parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices. PMID:28220852
5 CFR 550.706 - Criteria for meeting the requirement for involuntary separation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... decided to abolish, or transfer to another commuting area, all positions in the competitive area (as... resignation) takes effect. [55 FR 6593, Feb. 26, 1990, as amended at 64 FR 69177, Dec. 10, 1999] ...
5 CFR 550.706 - Criteria for meeting the requirement for involuntary separation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... decided to abolish, or transfer to another commuting area, all positions in the competitive area (as... resignation) takes effect. [55 FR 6593, Feb. 26, 1990, as amended at 64 FR 69177, Dec. 10, 1999] ...
5 CFR 550.706 - Criteria for meeting the requirement for involuntary separation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... decided to abolish, or transfer to another commuting area, all positions in the competitive area (as... resignation) takes effect. [55 FR 6593, Feb. 26, 1990, as amended at 64 FR 69177, Dec. 10, 1999] ...
5 CFR 550.706 - Criteria for meeting the requirement for involuntary separation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... decided to abolish, or transfer to another commuting area, all positions in the competitive area (as... resignation) takes effect. [55 FR 6593, Feb. 26, 1990, as amended at 64 FR 69177, Dec. 10, 1999] ...
5 CFR 550.706 - Criteria for meeting the requirement for involuntary separation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... decided to abolish, or transfer to another commuting area, all positions in the competitive area (as... resignation) takes effect. [55 FR 6593, Feb. 26, 1990, as amended at 64 FR 69177, Dec. 10, 1999] ...
Rigid open-cell polyurethane foam for cryogenic insulation
NASA Technical Reports Server (NTRS)
Faddoul, J. R.; Lindquist, C. R.; Niendorf, L. R.; Nies, G. E.; Perkins, P. J., Jr.
1971-01-01
Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields.
Effects of Selected Task Performance Criteria at Initiating Adaptive Task Real locations
NASA Technical Reports Server (NTRS)
Montgomery, Demaris A.
2001-01-01
In the current report various performance assessment methods used to initiate mode transfers between manual control and automation for adaptive task reallocation were tested. Participants monitored two secondary tasks for critical events while actively controlling a process in a fictional system. One of the secondary monitoring tasks could be automated whenever operators' performance was below acceptable levels. Automation of the secondary task and transfer of the secondary task back to manual control were either human- or machine-initiated. Human-initiated transfers were based on the operator's assessment of the current task demands while machine-initiated transfers were based on the operators' performance. Different performance assessment methods were tested in two separate experiments.
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
NASA Astrophysics Data System (ADS)
Shao, Hongyuan; Wang, Weikun; Zhang, Hao; Wang, Anbang; Chen, Xiaonong; Huang, Yaqin
2018-02-01
Despite recent progress in designing modified separators for lithium-sulfur (Li-S) batteries, detail in optimizing the synergistic effect between chemical and physical immobilization for lithium polysulfides (LiPS) in modified separator hasn't been investigated totally. Here, a nano-TiO2 decorated carbon layer (T-DCL) has been successfully applied to modify separator for the Li-S battery. The results indicate that appropriate weight percentage of nano-TiO2 uniformly distributed in conductive carbon layer is effective to chemically and physically immobilize for LiPS, and promote the electron transfer during discharge/charge process. The performance of the modified Li-S battery with T-DCL separator are significantly enhanced, with a specific capacity of 883 mAh g-1 retained after 180 cycles at 0.1 C and 762 mAh g-1 retained after 200 cycles at 0.5C, which are much higher than that of separators only coated with TiO2 layer or conductive carbon layer. Besides, the separator coated with T-DCL also shows low electrochemical impedance and good lithium anode protection. These results indicate that separator with T-DCL is promising to balance the physical and chemical LiPS trapping effect, and optimize the electrochemical performance for Li-S battery.
Problems with multiple use of transfer buffer in protein electrophoretic transfer.
Dorri, Yaser; Kurien, Biji T; Scofield, R Hal
2010-04-01
Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grilli, M.; Raimondi, R.; Castellani, C.
1991-07-08
The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.
Mass transfer apparatus and method for separation of gases
Blount, Gerald C.
2015-10-13
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Mass transfer apparatus and method for separation of gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Unmanned Aircraft System (UAS) Delegation of Separation in NextGen Airspace
NASA Technical Reports Server (NTRS)
Kenny, Caitlin A.; Shively, Robert J.; Jordan, Kevin
2014-01-01
The purpose of this study was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study show benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD), and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD was not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.
Unmanned aircraft system (UAS) delegation of separation in NextGen airspace
NASA Astrophysics Data System (ADS)
Kenny, Caitlin A.
The purpose of this thesis was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study showed benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD) and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD were not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.
Davis, Jason
2011-01-01
Contemporary data for three Central American countries (Costa Rica, Guatemala, and Nicaragua) surveyed by the Latin American Migration Project were analyzed to determine if migration length and remittance transfers had an influence on fertility. The analysis was structured to separate societal influences on fertility attributable to migration from the income effects associated with remittance transfers. At the couple level, the odds that a birth would occur were negatively associated with an increase in U.S. remittance receipts and an increase in a wife’s migration duration. However, no correlation was found between length of male migration and couple fertility.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1980-01-01
Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.
NASA Technical Reports Server (NTRS)
Parusel, A. B.
2000-01-01
The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free-base dyad.
Li, Minghua; Huan, Yahuan; Yan, Xiaoqin; Kang, Zhuo; Guo, Yan; Li, Yong; Liao, Xinqin; Zhang, Ruxiao; Zhang, Yue
2018-01-10
Hybrid organic-inorganic metal halide perovskite solar cells have attracted widespread attention, owing to their high performance, and have undergone rapid development. In perovskite solar cells, the charge transfer layer plays an important role for separating and transferring photogenerated carriers. In this work, an efficient YCl 3 -treated TiO 2 electron transfer layer (ETL) is used to fabricate perovskite solar cells with enhanced photovoltaic performance and less hysteresis. The YCl 3 -treated TiO 2 layers bring about an upward shift of the conduction band minimum (E CBM ), which results in a better energy level alignment for photogenerated electron transfer and extraction from the perovskite into the TiO 2 layer. After optimization, perovskite solar cells based on the YCl 3 -treated TiO 2 layers achieve a maximum power conversion efficiency of about 19.99 % (19.29 % at forward scan) and a steady-state power output of about 19.6 %. Steady-state and time-resolved photoluminescence measurements and impedance spectroscopy are carried out to investigate the charge transfer and recombination dynamics between the perovskite and the TiO 2 electron transfer layer interface. The improved perovskite/TiO 2 ETL interface with YCl 3 treatment is found to separate and extract photogenerated charge rapidly and suppress recombination effectively, which leads to the improved performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier
NASA Astrophysics Data System (ADS)
Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.
2016-08-01
Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this energy being distributed over a larger number of states and to higher excitations with increasing numbers of transferred nucleons. Multinucleon transfer is thus a mechanism by which energy can be dissipated from the relative motion before reaching the fusion barrier radius.
Space Cryogenics Workshop, University of Wisconsin, Madison, June 22, 23, 1987
NASA Technical Reports Server (NTRS)
1988-01-01
Papers are presented on liquid helium servicing from the Space Station, performance estimates in the Superfluid Helium On-Orbit Transfer Flight Experiment, an analytical study of He II flow characteristics in the SHOOT transfer line, a Dewar to Dewar model for superfluid helium transfer, and mechanical pumps for superfluid helium transfer in space. Attention is also given to the cavitation characteristics of a small centrifugal pump in He I and He II, turbulent flow pressure drop in various He II transfer system components, slip effects associated with Knudsen transport phenomena in porous media, and an integrated fountain effect pump device for fluid management at low gravity. Other papers are on liquid/vapor phase separation in He-4 using electric fields, an enclosed capillary device for low-gravity management of He II, cavitation in flowing superfluid helium, the long-term performance of the passive thermal control systems of the IRAS spacecraft, and a novel approach to supercritical helium flight cryostat support structures.
Fast charge separation in a non-fullerene organic solar cell with a small driving force
NASA Astrophysics Data System (ADS)
Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He
2016-07-01
Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.
NASA Astrophysics Data System (ADS)
Bernardi, Michael P.; Milovich, Daniel; Francoeur, Mathieu
2016-09-01
Using Rytov's fluctuational electrodynamics framework, Polder and Van Hove predicted that radiative heat transfer between planar surfaces separated by a vacuum gap smaller than the thermal wavelength exceeds the blackbody limit due to tunnelling of evanescent modes. This finding has led to the conceptualization of systems capitalizing on evanescent modes such as thermophotovoltaic converters and thermal rectifiers. Their development is, however, limited by the lack of devices enabling radiative transfer between macroscale planar surfaces separated by a nanosize vacuum gap. Here we measure radiative heat transfer for large temperature differences (~120 K) using a custom-fabricated device in which the gap separating two 5 × 5 mm2 intrinsic silicon planar surfaces is modulated from 3,500 to 150 nm. A substantial enhancement over the blackbody limit by a factor of 8.4 is reported for a 150-nm-thick gap. Our device paves the way for the establishment of novel evanescent wave-based systems.
NASA Astrophysics Data System (ADS)
Zhong, Suting; Jiang, Wei; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue
2015-08-01
A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe3O4) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron-hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.
Fluidized bed and method and system for gas component capture
Krutka, Holly; Wilson, Cody; Starns, Travis
2016-05-31
The present disclosure is directed to a process that allows dry sorbents to remove a target constituent, such as carbon dioxide (CO.sub.2), from a gas stream. A staged fluidized bed separator enables gas and sorbent to move in opposite directions. The sorbent is loaded with target constituent in the separator. It is then transferred to a regenerator where the target constituent is stripped. The temperature of the separator and regenerator are controlled. After it is removed from the regenerator, the sorbent is then transferred back to the separator.
NASA Astrophysics Data System (ADS)
Polkehn, M.; Tamura, H.; Burghardt, I.
2018-01-01
This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.
Transfer function modeling of damping mechanisms in viscoelastic plates
NASA Technical Reports Server (NTRS)
Slater, J. C.; Inman, D. J.
1991-01-01
This work formulates a method for the modeling of material damping characteristics in plates. The Sophie German equation of classical plate theory is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes, (1985). However, this procedure is not limited to this representation. The governing characteristic equation is decoupled through separation of variables, yielding a solution similar to that of undamped classical plate theory, allowing solution of the steady state as well as the transient response problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Bram; Atzberger, Paul J.; D’Auria, Sabato
Forster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. But, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. Here, we investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion ofmore » fluorophores, separation diffusion of fluorophores, and non-emitting quenching.« less
Ion transport restriction in mechanically strained separator membranes
NASA Astrophysics Data System (ADS)
Cannarella, John; Arnold, Craig B.
2013-03-01
We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.
NASA Astrophysics Data System (ADS)
Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu
2015-12-01
We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d
[Phosphorus transfer between mixed poplar and black locust seedlings].
He, Wei; Jia, Liming; Hao, Baogang; Wen, Xuejun; Zhai, Mingpu
2003-04-01
In this paper, the 32P radio-tracer technique was applied to study the ways of phosphorus transfer between poplar (Populus euramericana cv. 'I-214') and black locust (Robinia pseudoacacia). A five compartment root box (18 cm x 18 cm x 26 cm) was used for testing the existence of the hyphal links between the roots of two tree species when inoculated with vesicular-arbuscular (VA) mycorrhizal fungus (Glomus mosseae). Populus I-214 (donor) and Robinia pseudoacacia (receiver) were grown in two terminal compartments, separated by a 2 cm root-free soil layer. The root compartments were lined with bags of nylon mesh (38 microns) that allowed the passage of hyphae but not roots. The top soil of a mixed stand of poplar and black locust, autoclaved at 121 degrees C for one hour, was used for growing seedlings for testing. In 5 compartment root box, mycorrhizal root colonization of poplar was 34%, in which VA mycorrhizal fungus was inoculated, whereas 26% mycorrhizal root colonization was observed in black locust, the other terminal compartment, 20 weeks after planting. No root colonization was observed in non-inoculated plant pairs. This indicated that the mycorrhizal root colonization of black locust was caused by hyphal spreading from the poplar. Test of tracer isotope of 32P showed that the radioactivity of the treatment significantly higher than that of the control (P < 0.05), 14 days from the tracer applied, to 27 days after, when VA mycorrhizal fungus was inoculated in poplar root. Furthermore, mycorrhizal interconnections between the roots of poplar and black locust seedlings was observed in situ by binocular in root box. All these experiments showed that the hyphal links was formed between the roots of two species of trees inoculated by VA mycorrhizal fungus. Four treatments were designed according to if there were two nets (mesh 38 microns), 2 cm apart, between the poplar and black locust, and if the soil in root box was pasteurized. Most significant differences of radioactivity among four treatments appeared 44 days after feeding 32P, the radioactivity of the day was applied to estimating the contribution of the various possible transfer ways to the total amount of nutrient transfer. Level of 32P radioactivity was found to be significantly (P < 0.05) higher in leaves of the treatment of "no separated and soil non-pasteurized" (17.1 pulse.g-1.s-1) than in leaves of "net separated and soil non-pasteurized" (5.3 pulse.g-1.s-1), and also significantly higher in leaves of "no net separated and soil pasteurized" (11.5 pulse.g.s-1) than in leaves of "net separated and soil pasteurized" (2.3 pulse.g-1.s-1), and very significantly (P < 0.01) higher in leaves of "no net separated and soil non-pasteurized" than in leaves of "net separated and soil pasteurized", whereas the levels of 32P radioactivity were not significantly different between the other treatments. The results showed that root contact and root exudations were the main ways of phosphorus transfer between the two species and the amount of phosphorus transfer through these two ways accounted for 62% of the total. The activity of the microorganisms including VA mycorrhizal fungi and the interaction between the microorganisms and root contact and root exudations made up 38% of total amount of phosphorus. The effect of mycorrhizal hyphal links in the direct nutrient transfer between poplar and black locust through separate mesh (38 microns) was little.
Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina
2013-05-01
The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.
Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils
NASA Astrophysics Data System (ADS)
Izza, H.; Ben Abdessalam, S.; Korichi, M.
2018-03-01
Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.
Wireless power transfer based on dielectric resonators with colossal permittivity
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2016-11-01
Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.
Polarimetry of uncoupled light on the NIF.
Turnbull, D; Moody, J D; Michel, P; Ralph, J E; Divol, L
2014-11-01
Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.
Pyrene-Tagged Ionic Liquids: Separable Organic Catalysts for SN2 Fluorination.
Taher, Abu; Lee, Kyo Chul; Han, Hye Ji; Kim, Dong Wook
2017-07-07
We prepared pyrene-substituted imidazolium-based ionic liquids (PILs) as organic catalysts for the S N 2 fluorination using alkali metal fluoride (MF). In this system, the PIL significantly enhanced the reactivity of MF due to the phase-transfer catalytic effect of the imidazolium moiety as well as the metal cation-π (pyrene) interactions. Furthermore, this homogeneous catalyst PIL was easily separated from the reaction mixture using reduced graphene oxide by π-π stacking with the pyrene of PIL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.
We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less
Selective Listening Point Audio Based on Blind Signal Separation and Stereophonic Technology
NASA Astrophysics Data System (ADS)
Niwa, Kenta; Nishino, Takanori; Takeda, Kazuya
A sound field reproduction method is proposed that uses blind source separation and a head-related transfer function. In the proposed system, multichannel acoustic signals captured at distant microphones are decomposed to a set of location/signal pairs of virtual sound sources based on frequency-domain independent component analysis. After estimating the locations and the signals of the virtual sources by convolving the controlled acoustic transfer functions with each signal, the spatial sound is constructed at the selected point. In experiments, a sound field made by six sound sources is captured using 48 distant microphones and decomposed into sets of virtual sound sources. Since subjective evaluation shows no significant difference between natural and reconstructed sound when six virtual sources and are used, the effectiveness of the decomposing algorithm as well as the virtual source representation are confirmed.
Cost-effectiveness analysis of different embryo transfer strategies in England.
Dixon, S; Faghih Nasiri, F; Ledger, W L; Lenton, E A; Duenas, A; Sutcliffe, P; Chilcott, J B
2008-05-01
The objective of this study was to assess the cost-effectiveness of different embryo transfer strategies for a single cycle when two embryos are available, and taking the NHS cost perspective. Cost-effectiveness model. Five in vitro fertilisation (IVF) centres in England between 2003/04 and 2004/05. Women with two embryos available for transfer in three age groups (<30, 30-35 and 36-39 years). A decision analytic model was constructed using observational data collected from a sample of fertility centres in England. Costs and adverse outcomes are estimated up to 5 years after the birth. Incremental cost per live birth was calculated for different embryo transfer strategies and for three separate age groups: less than 30, 30-35 and 36-39 years. Premature birth, neonatal intensive care unit admissions and days, cerebral palsy and incremental cost-effectiveness ratios. Single fresh embryo transfer (SET) plus frozen single embryo transfer (fzSET) is the more costly in terms of IVF costs, but the lower rates of multiple births mean that in terms of total costs, it is less costly than double embryo transfer (DET). Adverse events increase when moving from SET to SET+fzSET to DET. The probability of SET+fzSET being cost-effective decreases with age. When SET is included in the analysis, SET+fzSET no longer becomes a cost-effective option at any threshold value for all age groups studied. The analyses show that the choice of embryo transfer strategy is a function of four factors: the age of the mother, the relevance of the SET option, the value placed on a live birth and the relative importance placed on adverse outcomes. For each patient group, the choice of strategy is a trade-off between the value placed on a live birth and cost.
Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang
2014-12-24
Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors.
Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang
2014-10-21
The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
NASA Technical Reports Server (NTRS)
Carter, Howard S.; Carr, Robert E.
1961-01-01
Heat-transfer rates have been measured in free flight along the stagnation line of an unswept cylinder mounted transversely on an axial cylinder so that the shock wave from the hemispherical nose of the axial cylinder intersected the bow shock of the unswept transverse cylinder. Data were obtained at Mach numbers from 2.53 to 5.50 and at Reynolds numbers based on the transverse cylinder diameter from 1.00 x 10(exp 6) to 1.87 x 10(exp 6). Shadowgraph pictures made in a wind tunnel showed that the flow field was influenced by boundary-layer separation on the axial cylinder and by end effects on the transverse cylinder as well as by the intersecting shocks. Under these conditions, the measured heat-transfer rates had inconsistent variations both in magnitude and distribution which precluded separating the effects of these disturbances. The general magnitude of the measured heating rates at Mach numbers up to 3 was from 0.1 to 0.5 of the theoretical laminar heating rates along the stagnation line for an infinite unswept cylinder in undisturbed flow. At Mach numbers above 4 the measured heating rates were from 1.5 to 2 times the theoretical rates.
Role of coherence and delocalization in photo-induced electron transfer at organic interfaces
NASA Astrophysics Data System (ADS)
Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.
2016-09-01
Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.
Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.
Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick Glauert Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.
Researchers Demonstrate Liquid Transfer Equipment for Apollo 14 Test
1970-12-21
Two researchers at the National Aeronautics and Space Administration (NASA) Lewis Research Center demonstrate the test equipment they devised to study the transfer of liquid in microgravity onboard the Apollo 14 mission. The test was an early step in developing the ability to transfer liquids from a tanker vehicle to spacecraft in space. Researchers needed to know the tank’s outflow characteristics, the fluid’s behavior when entering new tank, and the effects of accelerations. Others had performed some calculations and analytical studies, but no one had examined the complete transfer from one tank to another in microgravity. The early calculations concluded that the transfer process was impossible without devices to control the liquid and gas. This investigation specifically sought to demonstrate the effectiveness of two different surface-tension baffle designs. The experiment was an entirely closed system with two baffled-tanks. The researchers also built a similar device without the baffles. The experiment was carried onboard the Apollo 14 spacecraft and conducted during the coast period on the way to the moon. The two surface tension baffle designs in the separate tanks were shown to be effective both as supply tanks and as receiver tanks. The liquid transferred within two percent of the design value with ingesting gas. The unbaffled tanks ingested gas after only 12-percent of the fluid had transferred.
NASA Astrophysics Data System (ADS)
Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.
2017-10-01
Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.
Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K
2005-05-25
Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.
Evaluation of Multi-Vessel Ship Motion Prediction Codes
2008-09-01
each other, and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non...Figure 28. Effects of irregular frequency smoothing has on the resultant pitch transfer function for three meter separation, 135 degree heading, and...and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non-hydrodynamic
NASA Astrophysics Data System (ADS)
Jonsson, Bert; Kulaksiz, Yagmur C.; Lithner, Johan
2016-11-01
Two separate studies, Jonsson et al. (J. Math Behav. 2014;36: 20-32) and Karlsson Wirebring et al. (Trends Neurosci Educ. 2015;4(1-2):6-14), showed that learning mathematics using creative mathematical reasoning and constructing their own solution methods can be more efficient than if students use algorithmic reasoning and are given the solution procedures. It was argued that effortful struggle was the key that explained this difference. It was also argued that the results could not be explained by the effects of transfer-appropriate processing, although this was not empirically investigated. This study evaluated the hypotheses of transfer-appropriate processing and effortful struggle in relation to the specific characteristics associated with algorithmic reasoning task and creative mathematical reasoning task. In a between-subjects design, upper-secondary students were matched according to their working memory capacity.
The momentum transfer of incompressible turbulent separated flow due to cavities with steps
NASA Technical Reports Server (NTRS)
White, R. E.; Norton, D. J.
1977-01-01
An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.
Heat Transfer In High-Temperature Multilayer Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Miller, Stephen D.; Cunnington, George R.
2006-01-01
The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.
Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides
Windt, N.F.; Williams, J.L.
In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.
NASA Astrophysics Data System (ADS)
Vázquez, Héctor; Troisi, Alessandro
2013-11-01
We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.
Different Approaches for Assaying Melanosome Transfer
Berens, Werner; Van Den Bossche, Karolien; Yoon, Tae-Jin; Westbroek, Wendy; Valencia, Julio C.; Out, Coby J.; Naeyaert, Jean Marie; Hearing, Vincent J.; Lambert, Jo
2006-01-01
Summary Many approaches have been tried to establish assays for melanosome transfer to keratinocytes. In this report we describe and summarize various novel attempts to label melanosomes in search of a reliable, specific, reproducible and quantitative assay system. We tried to fluorescently label melanosomes by transfection of GFP-labeled melanosomal proteins and by incubation of melanocytes with fluorescent melanin intermediates or homologues. In most cases a weak cytoplasmic fluorescence was perceived, which was probably due to incorrect sorting or deficient incorporation of the fluorescent protein and different localisation. We were able to label melanosomes via incorporation of 14C-thiouracil into melanin. Consequently, we tried to develop an assay to separate keratinocytes with transferred radioactivity from melanocytes after co-culture. Differential trypsination and different magnetic bead separation techniques were tested with unsatisfactory results. An attempt was also made to incorporate fluorescent thiouracil, since this would allow cells to be separated by FACS. In conclusion, different methods to measure pigment transfer between donor melanocytes and acceptor keratinocytes were thoroughly examined. This information could give other researchers a head start in the search for a melanosome transfer assay with said qualities to better understand pigment transfer. PMID:16162177
Short-term perceptual learning in visual conjunction search.
Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong
2014-08-01
Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.
NASA Technical Reports Server (NTRS)
Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.
1980-01-01
A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.
Modular Homogeneous Chromophore–Catalyst Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulfort, Karen L.; Utschig, Lisa M.
2016-05-17
Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less
Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.
Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N
2018-01-11
Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.
Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao
2017-12-01
A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion energy/momentum effects during ion assisted growth of niobium nitride films
NASA Astrophysics Data System (ADS)
Klingenberg, Melissa L.
The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and closed-structured morphologies.
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heat Transfer Through Dipolar Coupling: Sympathetic cooling without contact
NASA Astrophysics Data System (ADS)
Oktel, Mehmet; Renklioglu, Basak; Tanatar, Bilal
We consider two parallel layers of dipolar ultracold gases at different temperatures and calculate the heat transfer through dipolar coupling. As the simplest model we consider a system in which both of the layers contain two-dimensional spin-polarized Fermi gases. The effective interactions describing the correlation effects and screening between the dipoles are obtained by the Euler-Lagrange Fermi-hypernetted-chain approximation in a single layer. We use the random-phase approximation (RPA) for the interactions across the layers. We find that heat transfer through dipolar coupling becomes efficient when the layer separation is comparable to dipolar interaction length scale. We characterize the heat transfer by calculating the time constant for temperature equilibration between the layers and find that for the typical experimental parameter regime of dipolar molecules this is on the order of milliseconds. We generalize the initial model to Boson-Boson and Fermion-Boson layers and suggest that contactless sympathetic cooling may be used for ultracold dipolar molecules. Supported by TUBITAK 1002-116F030.
Faithful entanglement transference from qubits to continuous variable systems
NASA Astrophysics Data System (ADS)
Blanco, P.; Mundarain, D.
2011-05-01
In this work, we study the transference of entanglement between atomic qubits and the fields of two separate optical cavities. We show that it is possible to transfer all the entanglement of two maximal entangled qubits to the fields of the cavities without post-selection. Initially, the qubit system is in a maximal entangled state and the cavities are in a pure separable state with each cavity in a coherent state. For high excitation levels in the coherent fields, at some characteristic time T, the state of the qubit system becomes separable and at this time all the entanglement is deposited on the mono-modal fields of the cavities. We also consider retrieval of entanglement and an alternative protocol using post-selection.
Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.
2016-01-01
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142
Testing of concrete by laser ablation
Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott
1997-01-01
A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.
Hoekstra, D
1982-06-08
The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine, which occurs when the local concentration of the probe increases upon Ca2+-induced phase separation in phosphatidylserine (PS) bilayers [Hoekstra, D. (1982) Biochemistry 21, 1055-1061]. Fusion was determined by using the resonance energy transfer fusion assay [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which monitors the mixing of fluorescent lipid donor and acceptor molecules, resulting in an increase in energy transfer efficiency. The results show that in the presence of Ca2+, fusion proceeds much more rapidly (t 1/2 less than 5 s) than the process of phase separation (T 1/2 congruent to 1 min). Mg2+ also induced fusion, albeit at higher concentrations than Ca2+. Mg2+-induced phase separation were not detected, however. Subthreshold concentrations of Ca2+ (0.5 mM) or Mg2+ (2 mM) induced extensive fusion of PS-containing vesicles in poly(ethylene glycol) containing media. This effect did not appear to be a poly(ethylene glycol)-facilitated enhancement of cation binding to the bilayer, and consequently Ca2+-induced phase separation was not observed. The results suggest that macroscopic phase separation may facilitate but does not induced the fusion process and is therefore, not directly involved in the actual fusion mechanism. The fusion experiments performed in the presence of poly(ethylene glycol) suggest that the degree of bilayer dehydration and the creation of "point defects" in the bilayer without rigorous structural rearrangements in the membrane are dominant factors in the initial fusion events.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
NASA Technical Reports Server (NTRS)
Dunavant, J. C.
1974-01-01
An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.
Huang, Jier; Huang, Zhuangqun; Yang, Ye; Zhu, Haiming; Lian, Tianquan
2010-04-07
Multiexciton generation in quantum dots (QDs) may provide a new approach for improving the solar-to-electric power conversion efficiency in QD-based solar cells. However, it remains unclear how to extract these excitons before the ultrafast exciton-exciton annihilation process. In this study we investigate multiexciton dissociation dynamics in CdSe QDs adsorbed with methylene blue (MB(+)) molecules by transient absorption spectroscopy. We show that excitons in QDs dissociate by ultrafast electron transfer to MB(+) with an average time constant of approximately 2 ps. The charge separated state is long-lived (>1 ns), and the charge recombination rate increases with the number of dissociated excitons. Up to three MB(+) molecules per QD can be reduced by exciton dissociation. Our result demonstrates that ultrafast interfacial charge separation can effectively compete with exciton-exciton annihilation, providing a viable approach for utilizing short-lived multiple excitons in QDs.
Describing long-range charge-separation processes with subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less
Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G
2011-09-09
We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.
Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple
Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...
2016-11-07
Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less
NASA Astrophysics Data System (ADS)
Shimazaki, Tomomi; Nakajima, Takahito
2016-06-01
This paper discusses the exciton dissociation process at the donor-acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron-hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behavior between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Prabir K.
2001-09-30
Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.
Stationary semi-solid battery module and method of manufacture
Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming
2015-12-01
A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
Effect of the connection gap on the heat-load characteristics of a liquid nitrogen bayonet coupling
NASA Astrophysics Data System (ADS)
Tsai, H. H.; Liu, C. P.; Hsiao, F. Z.; Huang, T. Y.; Li, H. C.; Chiou, W. S.; Chang, S. H.; Lin, T. F.
2012-12-01
A transfer system for liquid nitrogen (LN2) installed at National Synchrotron Radiation Research Center (NSRRC) to provide LN2 required for the superconducting equipment and experimental stations has a LN2 transfer line of length 160 m and pipeline of inner diameter 25 mm, a phase separator (250 L) and an automatic filling station. The end uses include two cryogenic systems, one Superconducting Radio Frequency (SRF) cavity, five superconducting magnets, monochromators for the beam line and filling of mobile Dewars. The transfer line is segmented and connected with bayonet couplings. The aim of this work was to investigate, by numerical simulation, the effects on the heat load of the gap thickness of the bayonet assembly and the thickness of vacuum insulation. A numerical correlation was created that has become a basis to minimize the head load for future design of bayonet couplings.
Chemical and quantum simulation of electron transfer through a polypeptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ungar, L.W.; Voth, G.A.; Newton, M.D.
1999-08-26
Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less
The mediating effect of context variation in mixed practice for transfer of basic science.
Kulasegaram, Kulamakan; Min, Cynthia; Howey, Elizabeth; Neville, Alan; Woods, Nicole; Dore, Kelly; Norman, Geoffrey
2015-10-01
Applying a previously learned concept to a novel problem is an important but difficult process called transfer. Practicing multiple concepts together (mixed practice mode) has been shown superior to practicing concepts separately (blocked practice mode) for transfer. This study examined the effect of single and multiple practice contexts for both mixed and blocked practice modalities on transfer performance. We looked at performance on near transfer (familiar contexts) cases and far transfer (unfamiliar contexts) cases. First year psychology students (n = 42) learned three physiological concepts in a 2 × 2 factorial study (one or two practice contexts and blocked or mixed practice). Each concept was practiced with two clinical cases; practice context was defined as the number of organ systems used (one system per concept vs. two systems). In blocked practice, two practice cases followed each concept; in mixed practice, students learned all concepts before seeing six practice cases. Transfer testing consisted of correctly classifying and explaining 15 clinical cases involving near and far transfer. The outcome was ratings of quality of explanations on a 0-3 scale. The repeated measures analysis showed a significant near versus far by organ system interaction [F(1,38) = 3.4, p < 0.002] with practice with a single context showing lower far transfer scores than near transfer [0.58 (0.37)-0.83 (0.37)] compared to the two contexts which had similar far and near transfer scores [1.19 (0.50)-1.01 (0.38)]. Practicing with two organ contexts had a significant benefit for far transfer regardless of mixed or blocked practice; the single context mixed practice group had the lowest far transfer performance; this was a large effect size (Cohen's d = 0.81). Using only one practice context during practice significantly lowers performance even with the usually superior mixed practice mode. Novices should be exposed to multiple contexts and mixed practice to facilitate transfer.
Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I.
Kaucikas, Marius; Nürnberg, Dennis; Dorlhiac, Gabriel; Rutherford, A William; van Thor, Jasper J
2017-01-24
Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700 +• A 1 -• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.
Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.
Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D
2017-09-06
Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.
Shao, Shiyang; Hu, Jun; Wang, Xingdong; Wang, Lixiang; Jing, Xiabin; Wang, Fosong
2017-12-13
We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m -2 ), which represents the first example of blue TADF nonconjugated polymer.
Chuang, Chi-Hung; Porel, Mintu; Choudhury, Rajib; Burda, Clemens; Ramamurthy, V
2018-01-11
Results of our study on ultrafast electron transfer (eT) dynamics from coumarins (coumarin-1, coumarin-480, and coumarin-153) incarcerated within octa acid (OA) capsules as electron donors to methyl viologen dissolved in water as acceptor are presented. Upon photoexcitation, coumarin inside the OA capsule transfers an electron to the acceptor electrostatically attached to the capsule leading to a long-lived radical-ion pair separated by the OA capsular wall. This charge-separated state returns to the neutral ground state via back electron transfer on the nanosecond time scale. This system allows for ultrafast electron transfer processes through a molecular wall from the apolar capsular interior to the highly polar (aqueous) environment on the femtosecond time scale. Employing femtosecond transient absorption spectroscopy, distinct rates of both forward (1-25 ps) and backward eT (700-1200 ps) processes were measured. Further understanding of the energetics is provided using Rehm-Weller analysis for the investigated photoinduced eT reactions. The results provide the rates of the eT across a molecular wall, akin to an isotropic solution, depending on the standard free energy of the reaction. The insights from this work could be utilized in the future design of efficient electron transfer processes across interfaces separating apolar and polar environments.
NASA Astrophysics Data System (ADS)
Verniero, J. L.; Howes, G. G.; Klein, K. G.
2018-02-01
In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.
Kim, Taeyoung; Kang, Sukwon; Sung, Je Hoon; Kang, Youn Koo; Kim, Young Hwa; Jang, Jae Kyung
2016-12-28
Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer ( e.g ., for O₂/H⁺/ions) than the Nafion PEM; in the case of oxygen mass transfer coefficient (k o ), a rate of 50.0 × 10⁻⁵ cm·s⁻¹ was observed compared with a rate of 20.8 × 10⁻⁵ cm/s in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen (D O ) for PC (2.0-3.3 × 10⁻⁶ cm²/s) was lower than that of the Nafion PEM (3.8 × 10⁻⁶ cm²/s). The PC was found to have a low ohmic resistance (0.29-0.38 Ω) in the MFC, which was similar to that of Nafion PEM (0.31 Ω); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC (104.3 ± 15.3 A/m³) compared with MFCs with Nafion PEM (100.4 ± 17.7 A/m³), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.
Mulliken-Hush analysis of a bis(triarylamine) mixed-valence system with a N...N distance of 28.7 A.
Heckmann, Alexander; Amthor, Stephan; Lambert, Christoph
2006-07-28
An organic mixed valence compound with a spacer length of 25 unsaturated bonds separating two amine redox centres was synthesised and the electron transfer behaviour was investigated in the context of a Mulliken-Hush analysis in order to estimate the longest redox centre separation for which an intervalence charge transfer band can be observed.
The transfer of carbon fibers through a commercial aircraft water separator and air cleaner
NASA Technical Reports Server (NTRS)
Meyers, J. A.
1979-01-01
The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.
Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reslan, Randa; Lopata, Kenneth; Arntsen, Christopher
2012-12-14
We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene molecules. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1–LUMO of the neutral dimer, or HOMO–LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of cautionmore » for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less
Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.
2012-12-14
We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Ohira, Shin-Ichi; Nakamura, Koretaka; Chiba, Mitsuki; Dasgupta, Purnendu K; Toda, Kei
2017-03-01
Chromium speciation by spectrophotometric determination of hexavalent chromium (Cr(VI)) with diphenylcarbazide (DPC) has several problems. These include: (1) the inability to directly detect trivalent chromium (Cr(III)) with DPC, (2) positive interference in Cr(VI) determination by other metal cations and (3) negative interference by any reducing agent present in the sample. These are addressed with an ion transfer device (ITD) in a flow injection analysis system. We previously developed the ITD for electrodialytic separations. Here we separate oppositely charged Cr(III) and Cr(VI) species by the ITD into two different acceptor solutions within ~5 s. The acceptor solutions consist of buffered H 2 O 2 to oxidize the Cr(III) to Cr(VI). Then DPC is added to either acceptor to measure Cr(III) and Cr(VI) spectrophotometrically. The system was optimized to provide the same response for Cr(VI) and Cr(III) with limits of detection (LODs, S/N=3) of 0.5 μg L -1 for each and a throughput rate of 30 samples h -1 . The ITD separation was also effective for matrix isolation and reduction of interferences. Potential cationic interferences were not transferred into the anionic Cr(VI) acceptor stream. Much of the organic compounds in soil extracts were also eliminated as evidenced from standard addition and recovery studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Gebala, Magdalena; La Mantia, Fabio; Schuhmann, Wolfgang
2013-07-22
Surface-confined immobilized redox species often do not show the expected zero peak separation in slow-scan cyclic voltammograms. This phenomenon is frequently associated to experimental drawbacks and hence neglected. However, a nonzero peak separation, which is common to many electrochemical systems with high structural flexibility, can be rationally assigned to a thermodynamic hysteresis. To study this phenomenon, a surface-confined redox species was used. Specifically, a DNA strand which is tagged with ferrocene (Fc) moieties at its 5' end and its complementary capture probe is thiolated at the 3' end was self-assembled in a monolayer at a Au electrode with the Fc moieties being located at the bottom plane of the double-stranded DNA (dsDNA). The DNA-bound Fc undergoes rapid electron transfer with the electrode surface as evaluated by fast scan cyclic voltammetry. The electron transfer is sensitive to the ion transport along the DNA strands, a phenomenon which is modulated upon specific intercalation of proflavine into surface-bound dsDNA. The electron transfer rate of the Fc(0/+) redox process is influenced by the cationic permselectivity of the DNA monolayer. In addition to the kinetic hindrance, a thermodynamic effect correlated with changes in the activity coefficients of the Fc(0/+) moieties near the gold-dsDNA interface is observed and discussed as source of the observed hysteresis causing the non-zero peak separation in the voltammograms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing of concrete by laser ablation
Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.
1997-01-07
A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.
Thermal properties and heat transfer coefficients in cryogenic cooling
NASA Astrophysics Data System (ADS)
Biddulph, M. W.; Burford, R. P.
This paper considers two aspects of the design of the cooling stage of the process known as cryogenic recycling. This process uses liquid nitrogen to embrittle certain materials before grinding and subsequent separation. It is being increasingly used in materials recycling. A simple method of establishing thermal diffusivity values of materials of interest by using cooling curves is described. These values are important for effective cooler design. In addition values of convective heat transfer coefficient have been determined in an operating inclined, rotating cylindrical cooler operating on scrap car tyres. These will also be useful for cooler design methods.
Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.
Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin
2017-06-27
Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.
Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer
Rodrigues, P. A.
2016-02-17
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced populationmore » of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Furthermore, improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.« less
Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides
Windt, Norman F.; Williams, Joe L.
1983-01-01
The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.
Villanova, John W; Barnes, Edwin; Park, Kyungwha
2017-02-08
Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimazaki, Tomomi; Nakajima, Takahito
2016-06-21
This paper discusses the exciton dissociation process at the donor–acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron–hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behaviormore » between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.« less
ERIC Educational Resources Information Center
Jonsson, Bert; Kulaksiz, Yagmur C.; Lithner, Johan
2016-01-01
Two separate studies, Jonsson et al. ("J. Math Behav." 2014;36: 20-32) and Karlsson Wirebring et al. ("Trends Neurosci Educ." 2015;4(1-2):6-14), showed that learning mathematics using creative mathematical reasoning and constructing their own solution methods can be more efficient than if students use algorithmic reasoning and…
Comparison promotes learning and transfer of relational categories.
Kurtz, Kenneth J; Boukrina, Olga; Gentner, Dedre
2013-07-01
We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and transfer of categories that cohere around a common relational property. The effect of comparison was investigated using learning trials that elicited a separate classification response for each item in presentation pairs that could be drawn from the same or different categories. This methodology ensures consideration of both items and invites comparison through an implicit same-different judgment inherent in making the two responses. In a test phase measuring learning and transfer, the comparison group significantly outperformed a control group receiving an equivalent training session of single-item classification learning. Comparison-based learners also outperformed the control group on a test of far transfer, that is, the ability to accurately classify items from a novel domain that was relationally alike, but surface-dissimilar, to the training materials. Theoretical and applied implications of this comparison advantage are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... employee medical folder (EMF) to the NPRC at the same time. (2) Transfer EMFs and OPFs in separate folders... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false How does an agency transfer... Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER, USE, AND...
Heat transfer and performance characteristics of axial cooling fans with downstream guide vanes
NASA Astrophysics Data System (ADS)
Terzis, Alexandros; Stylianou, Ioannis; Kalfas, Anestis I.; Ott, Peter
2012-04-01
This study examines experimentally the effect of stators on the performance and heat transfer characteristics of small axial cooling fans. A single fan impeller, followed by nine stator blades in the case of a complete stage, was used for all the experimental configurations. Performance measurements were carried out in a constant speed stage performance test rig while the transient liquid crystal technique was used for the heat transfer measurements. Full surface heat transfer coefficient distributions were obtained by recording the temperature history of liquid crystals on a target plate. The experimental data indicated that the results are highly affected by the flow conditions at the fan outlet. Stators can be beneficial in terms of pressure drop and efficiency, and thus more economical operation, as well as, in the local heat transfer distribution at the wake of the stator blades if the fan is installed very close to the cooling object. However, as the separation distance increases, enhanced heat transfer rate in the order of 25% is observed in the case of the fan impeller.
Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers
Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia
2017-01-01
Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669
NASA Astrophysics Data System (ADS)
Lee, Dennis T.; Chung, Jong Won; Park, Geonhee; Kim, Yun-Tae; Lee, Chang Young; Cho, Yeonchoo; Yoo, Pil J.; Han, Jae-Hee; Shin, Hyeon-Jin; Kim, Woo-Jae
2018-01-01
Semiconducting single-walled carbon nanotubes (SWNTs) show promise as core materials for next-generation solar cells and nanoelectronic devices. However, most commercial SWNT production methods generate mixtures of metallic SWNTs (m-SWNTs) and semiconducting SWNT (sc-SWNTs). Therefore, sc-SWNTs must be separated from their original mixtures before use. In this study, we investigated a polymer-based, noncovalent sc-SWNT separation approach, which is simple to perform and does not disrupt the electrical properties of the SWNTs, thus improving the performance of the corresponding sc-SWNT-based applications. By systematically investigating the effect that different structural features of the semiconductor polymer have on the separation of sc-SWNTs, we discovered that the length and configuration of the alkyl side chains and the rigidity of the backbone structure exert significant effects on the efficiency of sc-SWNT separation. We also found that electron transfer between the semiconductor polymers and sc-SWNTs is strongly affected by their energy-level alignment, which can be tailored by controlling the donor-acceptor configuration in the polymer backbone structures. Among the polymers investigated, the highly planar P8T2Z-C12 semiconductor polymer showed the best sc-SWNT separation efficiency and unprecedentedly strong electronic interaction with the sc-SWNTs, which is important for improving their performance in applications.
Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong
2012-01-01
In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584
Holzschuh, Stephan; Kaeß, Kathrin; Fahr, Alfred; Decker, Christiane
2016-04-01
In the present study we introduce an efficient approach for a size-based separation of liposomes from plasma proteins employing AF4. We investigated vesicle stability and release behavior of the strongly lipophilic drug temoporfin from liposomes in human plasma for various incubation times at 37°C. We used the radioactive tracer cholesteryl oleyl ether (COE) or dipalmitoyl-phosphocholine (DPPC) as lipid markers and (14)C-labeled temoporfin. First, both lipid labels were examined for their suitability as liposome markers. Furthermore, the influence of plasma origin on liposome stability and drug transfer was investigated. The effect of membrane fluidity and PEGylation on vesicle stability and drug release characteristics was also analyzed. Surprisingly, we observed an enzymatic transfer of (3)H-COE to lipoproteins due to the cholesterol ester transfer protein (CETP) in human plasma in dependence on membrane rigidity and were able to inhibit this transfer by plasma preincubation with the CETP inhibitor torcetrapib. This effect was not seen when liposomes were incubated in rat plasma. DPPC labels suffered from hydrolysis effects during preparation and/or storage. Fluid liposomes were less stable in human plasma than their PEGylated analogues or a rigid formulation. In contrast, the transfer of the incorporated drug to lipoproteins was higher for the rigid formulations. The observed effects render COE-labels questionable for in vivo studies using CEPT-rich species. Here, choline labelled (14)C-DPPC was found to be the most promising alternative. Bilayer composition has a high influence on stability and drug release of a liposomal formulation in human plasma.
NASA Astrophysics Data System (ADS)
Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae
2018-02-01
Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.
1995-08-01
Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less
NASA Astrophysics Data System (ADS)
Khan, Yaser; Brumer, Paul
2012-11-01
A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.
Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan
2010-09-01
By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).
A New Methodology for Turbulence Modelers Using DNS Database Analysis
NASA Technical Reports Server (NTRS)
Parneix, S.; Durbin, P.
1996-01-01
Many industrial applications in such fields as aeronautical, mechanical, thermal, and environmental engineering involve complex turbulent flows containing global separations and subsequent reattachment zones. Accurate prediction of this phenomena is very important because separations influence the whole fluid flow and may have an even bigger impact on surface heat transfer. In particular, reattaching flows are known to be responsible for large local variations of the local wall heat transfer coefficient as well as modifying the overall heat transfer. For incompressible, non-buoyant situations, the fluid mechanics have to be accurately predicted in order to have a good resolution of the temperature field.
Boeving, Emily R; Lacreuse, Agnès; Hopkins, William D; Phillips, Kimberley A; Novak, Melinda A; Nelson, Eliza L
2015-03-01
Intermanual transfer refers to an effect, whereby training one hand to perform a motor task improves performance in the opposite untrained hand. We tested the hypothesis that handedness facilitates intermanual transfer in two nonhuman primate species: rhesus monkeys (N = 13) and chimpanzees (N = 52). Subjects were grouped into one of four conditions: (1) left-handers trained with the left (dominant) hand; (2) left-handers trained with the right (nondominant) hand; (3) right-handers trained with the left (nondominant) hand; and (4) right-handers trained with the right (dominant) hand. Intermanual transfer was measured using a task where subjects removed a Life Savers(®) candy (monkeys) or a washer (chimpanzees) from metal shapes. Transfer was measured with latency by comparing the average time taken to solve the task in the first session with the trained hand compared to the first session with the untrained hand. Hypotheses and predictions were derived from three models of transfer: access: benefit training with nondominant hand; proficiency: benefit training with dominant hand; and cross-activation: benefit irrespective of trained hand. Intermanual transfer (i.e., shorter latency in untrained hand) occurred regardless of whether monkeys trained with the dominant hand or nondominant hand, supporting the cross-activation model. However, transfer was only observed in chimpanzees that trained with the dominant hand. When handedness groups were examined separately, the transfer effect was only significant for right-handed chimpanzees, partially supporting the proficiency model. Findings may be related to neurophysiological differences in motor control as well as differences in handedness patterning between rhesus monkeys and chimpanzees.
Boeving, Emily R.; Lacreuse, Agnès; Hopkins, William D.; Phillips, Kimberley A.; Novak, Melinda A.; Nelson, Eliza L.
2015-01-01
Intermanual transfer refers to an effect whereby training one hand to perform a motor task improves performance in the opposite untrained hand. We tested the hypothesis that handedness facilitates intermanual transfer in two nonhuman primate species: rhesus monkeys (N = 13) and chimpanzees (N = 52). Subjects were grouped into one of four conditions: (1) left-handers trained with the left (dominant) hand; (2) left-handers trained with the right (non-dominant) hand; (3) right-handers trained with the left (non-dominant) hand; and (4) right-handers trained with the right (dominant) hand. Intermanual transfer was measured using a task where subjects removed a Life Savers® candy (monkeys) or a washer (chimpanzees) from metal shapes. Transfer was measured with latency by comparing the average time taken to solve the task in the first session with the trained hand compared to the first session with the untrained hand. Hypotheses and predictions were derived from three models of transfer: access: benefit training with non-dominant hand; proficiency: benefit training with dominant hand; and cross-activation: benefit irrespective of trained hand. Intermanual transfer (i.e., shorter latency in untrained hand) occurred regardless of whether monkeys trained with the dominant hand or non-dominant hand, supporting the cross-activation model. However, transfer was only observed in chimpanzees that trained with the dominant hand. When handedness groups were examined separately, the transfer effect was only significant for right-handed chimpanzees, partially supporting the proficiency model. Findings may be related to neurophysiological differences in motor control as well as differences in handedness patterning between rhesus monkeys and chimpanzees. PMID:25466868
Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne
2018-04-15
The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure and functionality of bromine doped graphite.
Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P
2013-04-28
First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.
Code of Federal Regulations, 2010 CFR
2010-04-01
... whether the transfer is of property separately owned by the transferor or is a division (equal or unequal... includes a modification or amendment to such decree or instrument. Any transfer not pursuant to a divorce... the transferred property equal to the transferee's cost (the fair market value). This carryover basis...
Alternative delivery of male accessory gland products
2014-01-01
To increase fertilization success, males transfer accessory gland products (Acps). Several species have evolved unconventional Acps transfer modes, meaning that Acps are transferred separately from the sperm. By surveying the sperm-free Acps transfer cases, we show that these animals have evolved a common strategy to deliver Acps: they all inject Acps directly through the partner’s body wall into the hemolymph. Our review of this mode of Acps transfer reveals another striking similarity: they all transfer sperm in packages or via the skin, which may leave little room for Acps transfer via the conventional route in seminal fluid. We synthesise the knowledge about the function, and the effects in the recipients, of the Acps found in the widely diverse taxa (including earthworms, sea slugs, terrestrial snails, scorpions and salamanders) that inject these substances. Despite the clearly independent evolution of the injection devices, these animals have evolved a common alternative strategy to get their partners to accept and/or use their sperm. Most importantly, the evolution of the injection devices for the delivery of Acps highlights how the latter are pivotal for male reproductive success and, hence, strongly influence sexual selection. PMID:24708537
Local Mass and Heat Transfer on a Turbine Blade Tip
Jin, P.; Goldstein, R. J.
2003-01-01
Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less
Directional charge separation in isolated organic semiconductor crystalline nanowires
Labastide, J. A.; Thompson, H. B.; Marques, S. R.; ...
2016-02-25
One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized alongmore » the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.« less
Carbon emission trading system of China: a linked market vs. separated markets
NASA Astrophysics Data System (ADS)
Liu, Yu; Feng, Shenghao; Cai, Songfeng; Zhang, Yaxiong; Zhou, Xiang; Chen, Yanbin; Chen, Zhanming
2013-12-01
The Chinese government intends to upgrade its current provincial carbon emission trading pilots to a nationwide scheme by 2015. This study investigates two of scenarios: separated provincial markets and a linked inter-provincial market. The carbon abatement effects of separated and linked markets are compared using two pilot provinces of Hubei and Guangdong based on a computable general equilibrium model termed Sino-TERMCo2. Simulation results show that the linked market can improve social welfare and reduce carbon emission intensity for the nation as well as for the Hubei-Guangdong bloc compared to the separated market. However, the combined system also distributes welfare more unevenly and thus increases social inequity. On the policy ground, the current results suggest that a well-constructed, nationwide carbon market complemented with adequate welfare transfer policies can be employed to replace the current top-down abatement target disaggregation practice.
Heat and mass transfer boundary conditions at the surface of a heated sessile droplet
NASA Astrophysics Data System (ADS)
Ljung, Anna-Lena; Lundström, T. Staffan
2017-12-01
This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.
Factors Affecting Stakeholders' Willingness to Pay to Prevent the Spread of Aquatic Nuisance Species
ERIC Educational Resources Information Center
Blaine, Thomas W.; Lichtkoppler, Frank R.
2016-01-01
Physical separation of the Great Lakes and Mississippi River basins has been identified as the most effective method for preventing the transfer of aquatic nuisance species, particularly Asian carp, from the Mississippi River Basin to the Great Lakes. The U.S. Army Corps of Engineers selected Extension to conduct a study of a key stakeholder…
Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath
2015-02-14
Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.
MSR performance enhancements and modifications at St. Lucie Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubano, V.F.; Ugelow, A.G.; Menocal, A.G.
1989-01-01
The St. Lucie Power Plant provides an excellent historical prospective on various moisture separator/reheater improvements. Between the two essentially identical units there is a total of 14 years of operating experience with various moisture separator/reheater configurations, with a combination of four different heat transfer surfaces and three moisture removal configurations. Through various modifications and enhancements, the performance and the reliability of the moisture separator/reheaters at the St. Lucie Power Plant and consequently the overall plant performance has been improved. This improvement has taken place over several years and involves changes in both the heat transfer and moisture removal areas. Thismore » paper provides an overview of the history and description of moisture separator/reheater modifications at the St. Lucie Power Plant with the resulting performance improvements.« less
Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J
2016-01-01
Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.
Dual-circuit, multiple-effect refrigeration system and method
DeVault, Robert C.
1995-01-01
A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.
Experimental determination of in situ utilization of lunar regolith for thermal energy storage
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1992-01-01
A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister which contains simulated lunar regolith, a heater, nine heat shields, a heat transfer cold jacket, and 19 type-B platinum rhodium thermocouples. The simulated lunar regolith is a basalt that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith, which include melt temperature, specific heat thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.
NASA Technical Reports Server (NTRS)
Kim, K.; Wiedner, B.; Camci, C.
1993-01-01
A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.
Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V
2012-06-01
Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.
Intervalence transfer of ferrocene moieties adsorbed on electrode surfaces by a conjugated linkage
NASA Astrophysics Data System (ADS)
Chen, Wei; Brown, Lauren E.; Konopelski, Joseph P.; Chen, Shaowei
2009-03-01
Effective intervalence transfer occurred between the metal centers of ferrocene moieties that were adsorbed onto a ruthenium thin film surface by ruthenium-carbene π bonds, a direct verification of Hush's four-decade-old prediction. Electrochemical measurements showed two pairs of voltammetric peaks where the separation of the formal potentials suggested a Class II behavior. Additionally, the potential spacing increased with increasing ferrocene surface coverage, most probably as a consequence of the enhanced contribution from through-space electronic interactions between the metal centers. In contrast, the incorporation of a sp 3 carbon spacer into the ferrocene-ruthenium linkage led to the diminishment of interfacial electronic communication.
Effect of anti-GM2 antibodies on rat sciatic nerve: electrophysiological and morphological study.
Ortiz, Nicolau; Sabaté, M Mar; Garcia, Neus; Santafe, Manel M; Lanuza, M Angel; Tomàs, Marta; Tomàs, Josep
2009-03-31
We found that a monoclonal human IgM anti-GM2 was fixed in rat sciatic axons and Schwann cells and was able to activate human complement. The passive transfer of IgM and complement in sciatic nerves can induce an acute alteration in nerve conduction. When the transfer of IgM plus complement was repeated for 10 days, the compound action motor potential amplitude was very low and the morphological study showed axons and myelin damage. Without human complement, IgM can only slightly disorganize the myelin by separating some layers, probably by interfering with the functional role of gangliosides in the myelin package.
The diffusion approximation. An application to radiative transfer in clouds
NASA Technical Reports Server (NTRS)
Arduini, R. F.; Barkstrom, B. R.
1976-01-01
It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2018-06-01
The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2018-02-01
The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.
Fluorine lubricated bearing technology
NASA Technical Reports Server (NTRS)
Mallaire, F. R.
1973-01-01
An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
NASA Astrophysics Data System (ADS)
Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.
2015-06-01
Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets ( S ( λ 1 , T ˜ 2 , λ 3 ) ) along the population time ( T ˜ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps ( S ( λ 1 , ν ˜ 2 , λ 3 ) ). We found that the vibrational coherence from pure excited electronic states appears at positive frequency ( + ν ˜ 2 ) in the rephasing beating map and at negative frequency ( - ν ˜ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
NASA Astrophysics Data System (ADS)
Feng, Guanhua; Li, Zihe; Mi, Liwei; Zheng, Jinyun; Feng, Xiangming; Chen, Weihua
2018-02-01
Separator as an important part of lithium-ion batteries, allowing the ion to transfer and preventing the direct contact of anode with cathode, determines the safety of the batteries. In this work, a kind of polypropylene/hydrophobic silica-aerogel-composite (SAC) separator is fabricated through combining hydrophobic silica aerogel and polypropylene (PP) separator. The rationally designed SAC effectively increases the thermal stability of the separator with slightly growing weight (the area retention rate is 30% higher than that of the PP separator after being heated for 30 min at 160 °C). In addition, the hydrophobic silica aerogel layer in SAC significantly improves the wettability of PP separator to electrolyte owning to the introduced hydrophobic functional groups of -Si(CH3)3 and porous structure, and the contact angles of SAC separator to several common organic electrolytes (EC/DMC, DMC/DOL, Diglyme) are close to 0°. Electrochemical tests show that the prepared SAC separator can decrease the polarization of Li-ion batteries and leads to improved power performance and cycle stability. And the SAC separator is firm with neglectable abscission after folding 200 times. This work provides a new way to improve the safety and simultaneously reduce the polarization of the batteries, implying promising application potential in power batteries.
Experimental Study of Endwall Heat Transfer in a Linear Cascade
NASA Astrophysics Data System (ADS)
Wang, Lei; Sundén, Bengt; Chernoray, Valery; Abrahamsson, Hans
2012-11-01
The endwall heat transfer characteristics of forced flow past outlet guide vanes (OGVs) in a linear cascade have been investigated by using a liquid crystal thermography (LCT) method. Due to the special design of an OGV profile, the focus of this study is emphasized on the heat transfer patterns around the leading part of a vane. The Reynolds number is kept constant at 260,000. Two attack angles of the vane are considered. For α = 0°, the vane obstructs the incident flow like a bluff body and a remarkable flow separation phenomenon was noticed. For α = 30°, the vane is more "streamlined" with respect to the incoming flow and no obvious flow separation was observed. In general, the endwall heat transfer for α = 0° is higher than that for α = 30°.
NASA Astrophysics Data System (ADS)
Pezelier, Baptiste
2018-02-01
In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya
The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less
Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...
2016-08-09
The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less
Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport
NASA Astrophysics Data System (ADS)
Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur
2015-12-01
While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.
Estimating the distance separating fluorescent protein FRET pairs
van der Meer, B. Wieb; Blank, Paul S.
2014-01-01
Förster resonance energy transfer (FRET) describes a physical phenomenon widely applied in biomedical research to estimate separations between biological molecules. Routinely, genetic engineering is used to incorporate spectral variants of the green fluorescent protein (GFPs), into cellular expressed proteins. The transfer efficiency or rate of energy transfer between donor and acceptor FPs is then assayed. As appreciable FRET occurs only when donors and acceptors are in close proximity (1–10 nm), the presence of FRET may indicate that the engineered proteins associate as interacting species. For a homogeneous population of FRET pairs the separations between FRET donors and acceptors can be estimated from a measured FRET efficiency if it is assumed that donors and acceptors are randomly oriented and rotate extensively during their excited state (dynamic regime). Unlike typical organic fluorophores, the rotational correlation-times of FPs are typically much longer than their fluorescence lifetime; accordingly FPs are virtually static during their excited state. Thus, estimating separations between FP FRET pairs is problematic. To overcome this obstacle, we present here a simple method for estimating separations between FPs using the experimentally measured average FRET efficiency. This approach assumes that donor and acceptor fluorophores are randomly oriented, but do not rotate during their excited state (static regime). This approach utilizes a Monte-Carlo simulation generated look-up table that allows one to estimate the separation, normalized to the Förster distance, from the average FRET efficiency. Assuming a dynamic regime overestimates the separation significantly (by 10% near 0.5 and 30% near 0.75 efficiencies) compared to assuming a static regime, which is more appropriate for estimates of separations between FPs. PMID:23811334
Methods for separation/purification utilizing rapidly cycled thermal swing sorption
Tonkovich, Anna Lee Y.; Monzyk, Bruce F.; Wang, Yong; VanderWiel, David P.; Perry, Steven T.; Fitzgerald, Sean P.; Simmons, Wayne W.; McDaniel, Jeffrey S.; Weller, Jr., Albert E.
2004-11-09
The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
17 CFR 270.6c-6 - Exemption for certain registered separate accounts and other persons.
Code of Federal Regulations, 2011 CFR
2011-04-01
... necessary to permit transactions involving the transfer of assets from the existing portfolio company to a new portfolio company; Provided, That: (1) Such assets are transferred without the imposition of any... transfer of assets is fair and reasonable to all shareholders of the company and such determination, and...
NASA Astrophysics Data System (ADS)
Hendrickson, Heidi Phillips
A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their technological design and development. Time dependent perturbation theory, employed by non-equilibrium Green's function formalism, is utilized to study the effect of quantum coherences on electron transport and the effect of symmetry breaking on the electronic spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.
Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.
Sulaymon, Abbas H; Ahmed, Kawther W
2008-01-15
For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.
ESP`s Tank 42 washwater transfer to the 241-F/H tank farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aponte, C.I.; Lee, E.D.
1997-12-01
As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washingmore » steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.« less
Energy gap law of electron transfer in nonpolar solvents.
Tachiya, M; Seki, Kazuhiko
2007-09-27
We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.
The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.
Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan
2018-04-19
Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.
Magnetic field enhancement of organic photovoltaic cells performance.
Oviedo-Casado, S; Urbina, A; Prior, J
2017-06-27
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.
Datinská, Vladimíra; Klepárník, Karel; Belšánová, Barbora; Minárik, Marek; Foret, František
2018-05-09
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a non-complementary strands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.
Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J
2010-12-01
The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.
Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi
2018-05-07
Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
Heat transfer optimization for air-mist cooling between a stack of parallel plates
NASA Astrophysics Data System (ADS)
Issa, Roy J.
2010-06-01
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
Maccari, Francesca; Volpi, Nicola
2002-09-01
We describe a method for blotting and immobilizing several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by a cationic detergent after their separation by conventional agarose gel electrophoresis. Nitrocellulose membranes were derivatized with the cationic detergent cetylpyridinium chloride (CPC) and mixtures of glycosaminoglycans (GAGs) were capillary-blotted after their separation in agarose gel electrophoresis in barium acetate/1,2-diaminopropane. Single purified species of variously sulfated polysaccharides were transferred onto the derivatized membranes after electrophoresis with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining) permitting about 0.1 nug threshold of detection. Nonsulfated polyanions, hyaluronic acid, a fructose-containing polysaccharide with a chondroitin backbone purified from Escherichia coli U1-41, and its defructosylated product, were also electrophoretically separated and transferred onto membranes. The limit of detection for desulfated GAGs was about 0.1-0.5 nug after irreversible or reversible staining. GAG extracts from bovine, lung and aorta, and human aorta and urine were separated by agarose gel electrophoresis and blotted on CPC-treated nitrocellulose membranes. The polysaccharide composition of these extracts was determined. The membrane stained with toluidine blue (reversible staining) was destained and the same lanes used for immunological detection or other applications. Reversible staining was also applied to recover single species of polysaccharides after electrophoretic separation of mixtures of GAGs and their transfer onto membranes. Single bands were released from the membrane with an efficiency of 70-100% for further biochemical characterization.
Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate
NASA Astrophysics Data System (ADS)
Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan
2017-08-01
In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.
Li, Xu-Bing; Liu, Bin; Wen, Min; Gao, Yu-Ji; Wu, Hao-Lin; Huang, Mao-Yong; Li, Zhi-Jun; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu
2016-04-01
Solar H 2 evolution of CdSe QDs can be significantly enhanced simply by introducing a suitable hole-accepting-ligand for achieving efficient hole extraction and transfer at the nanoscale interfaces, which opens an effective pathway for dissociation of excitons to generate long-lived charge separation, thus improving the solar-to-fuel conversion efficiency.
Artificial Neural Network with Hardware Training and Hardware Refresh
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor)
2003-01-01
A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network s coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.
Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.
Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2017-09-28
It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanden Bout, David A.
2015-09-14
Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling themore » CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.« less
Role of charge separation mechanism and local disorder at hybrid solar cell interfaces
NASA Astrophysics Data System (ADS)
Ehrenreich, Philipp; Pfadler, Thomas; Paquin, Francis; Dion-Bertrand, Laura-Isabelle; Paré-Labrosse, Olivier; Silva, Carlos; Weickert, Jonas; Schmidt-Mende, Lukas
2015-01-01
Dye-sensitized metal oxide polymer hybrid solar cells deliver a promising basis in organic solar cell development due to many conceptual advantages. Since the power conversion efficiency is still in a noncompetitive state, it has to be understood how the photocurrent contribution can be maximized (i.e., which dye-polymer properties are most beneficial for efficient charge generation in hybrid solar cells). By the comparison of three model systems for hybrid solar cells with Ti O2 -dye-polymer interfaces, this paper was aimed at elucidating the role of the exact mechanism of charge generation. In the exciton dissociation (ED) case, an exciton that is generated in the polymer is split at the dye-polymer interface. Alternatively, this exciton can be transferred to the dye via an energy transfer (ET), upon which charge separation occurs between dye and Ti O2 . For comparison, the third case is included in which the high lowest unoccupied molecular orbital of the dye does not allow exciton separation or ET from the dye to the polymer, so that the dye only is responsible for charge generation. To separate effects owing to differences in energy levels of the involved materials from the impact of local order and disorder in the polymer close to the interface, this paper further comprises a detailed analysis of the polymer crystallinity based on the H-aggregate model. While the massive impact of the poly(3-hexylthiophene) crystallinity on device function has been outlined for bare metal oxide-polymer interfaces, it has not been considered for hybrid solar cells with dye-sensitized Ti O2 . The results presented here indicate that all dye molecules in general influence the polymer morphology, which has to be taken into account for future optimization of hybrid solar cells. Apart from that, it can be suggested that ED on the polymer needs an additional driving force to work efficiently; thus, energy transfer seems to be currently the most promising strategy to increase the polymer photocurrent contribution.
The effects of dual-domain mass transfer on the tritium-helium-3 dating method.
Neumann, Rebecca B; Labolle, Eric M; Harvey, Charles F
2008-07-01
Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.
Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V
2007-01-18
Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.
Large momentum transfer atomic interferometric gyroscope
NASA Astrophysics Data System (ADS)
Compton, Robert; Dorr, Joshua; Nelson, Karl; Parker, Richard; Estey, Brian; Müller, Holger
2017-04-01
Atom interferometry holds out significant promise as the basis for compact, low cost, high performance inertial sensing. Some light pulse atom interferometers are based on an atomic beam-splitter in which the interferometer paths separate at the velocity imparted by a two-photon (Raman) recoil event, resulting in narrow path separation and a corresponding high aspect ratio between the length and width of the interferometer. In contrast, proposals for large momentum transfer (LMT) offer paths to larger separation between interferometer arms, and aspect ratios approaching 1. Here, we demonstrate an LMT gyroscope based on a combination of Bragg and Bloch atomic transitions adding up to a total of 8 photons of momentum transfer. We discuss prospects for scalability to larger photon numbers where angular random walk (ARW) can be better than navigation-grade. This research was developed with funding from DARPA. The views, opinions, and/or findings contained herein are those of the presenters and should not be interpreted as representing the official views or policies of the DoD or the US Government.
Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.
Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E
2017-11-01
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.
Dissociating proportion congruent and conflict adaptation effects in a Simon-Stroop procedure.
Torres-Quesada, Maryem; Funes, Maria Jesús; Lupiáñez, Juan
2013-02-01
Proportion congruent and conflict adaptation are two well known effects associated with cognitive control. A critical open question is whether they reflect the same or separate cognitive control mechanisms. In this experiment, in a training phase we introduced a proportion congruency manipulation for one conflict type (i.e. Simon), whereas in pre-training and post-training phases two conflict types (e.g. Simon and Spatial Stroop) were displayed with the same incongruent-to-congruent ratio. The results supported the sustained nature of the proportion congruent effect, as it transferred from the training to the post-training phase. Furthermore, this transfer generalized to both conflict types. By contrast, the conflict adaptation effect was specific to conflict type, as it was only observed when the same conflict type (either Simon or Stroop) was presented on two consecutive trials (no effect was observed on conflict type alternation trials). Results are interpreted as supporting the reactive and proactive control mechanisms distinction. Copyright © 2013 Elsevier B.V. All rights reserved.
About Mass Transfer in Capillaries of Biological Systems under Influence of Vibrations
NASA Astrophysics Data System (ADS)
Prisniakov, K.
Vibrations accompany the flight of the manned spacecraft both at a stage of a orbital injection to an orbit, and during long flights (as noise), rendering undesirable physiological influence on crew, reducing serviceability and creating constant discomfort. The report represents attempt to predict a state of the cosmonaut in conditions of influence of vibrations for the period of start and stay in Space, being based on researches of mass transfer processes in capillary systems. For this purpose the original researches on heat and mass transfer processes with evaporation of liquids in capillary - porous structures in conditions of vibration actions and changes of a direction of action of gravitation are generalized. Report demonstrates the existence of modes at which increased or lowered mass transfer is achieved on border of separation "liquid - gas". The possible mechanism of influence of vibrations on evaporation of a liquid in capillaries is examined. The magnitudes of frequencies and amplitudes are submitted at which minimax characteristics are observed. The opportunity of application of the developed mathematical model of heat and mass transfer in capillary - porous structures to forecasting influence of vibrations for biological processes in capillaries of alive essences is analyzed. Such approach is justified on the mechanical nature of harmful influence of vibrations on an organism of the person. In addition the range of vibration frequencies which arise during space flights, corresponds to own resonant frequencies of a human body and his separate organs. Comparison of these resonant frequencies of a body of the person (5-80 Hertz) with vibration frequencies of optimum modes of heat and mass transfer in capillary - porous structures (20-40 Hertz) is shown their ranges of coverage. It gives the basis to assume existence of similar effects in capillaries of human body. It is supposed, that the difficulty of breath, change of a rhythm of breath, the subsequent weariness under vibration action are attributable to infringements of normal mass transfer between the inhaled air and blood. The opportunity of use of the received laws is discussed for assessment of influence of gravitational fields on intensity mass transfer in capillaries of biosystems also.
Isotope separation by photochromatography
Suslick, Kenneth S.
1977-01-01
An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.
17 CFR 229.511 - (Item 511) Other expenses of issuance and distribution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fees, Federal taxes, States taxes and fees, trustees' and transfer agents' fees, costs of printing and engraving, and legal, accounting, and engineering fees shall be itemized separately. Include as a separate...
Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan
2011-01-01
Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830
Prediction and uncertainty in human Pavlovian to instrumental transfer.
Trick, Leanne; Hogarth, Lee; Duka, Theodora
2011-05-01
Attentional capture and behavioral control by conditioned stimuli have been dissociated in animals. The current study assessed this dissociation in humans. Participants were trained on a Pavlovian schedule in which 3 visual stimuli, A, B, and C, predicted the occurrence of an aversive noise with 90%, 50%, or 10% probability, respectively. Participants then went on to separate instrumental training in which a key-press response canceled the aversive noise with a .5 probability on a variable interval schedule. Finally, in the transfer phase, the 3 Pavlovian stimuli were presented in this instrumental schedule and were no longer differentially predictive of the outcome. Observing times and gaze dwell time indexed attention to these stimuli in both training and transfer. Aware participants acquired veridical outcome expectancies in training--that is, A > B > C, and these expectancies persisted into transfer. Most important, the transfer effect accorded with these expectancies, A > B > C. By contrast, observing times accorded with uncertainty--that is, they showed B > A = C during training, and B < A = C in the transfer phase. Dwell time bias supported this association between attention and uncertainty, although these data showed a slightly more complicated pattern. Overall, the study suggests that transfer is linked to outcome prediction and is dissociated from attention to conditioned stimuli, which is linked to outcome uncertainty.
Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1974-01-01
Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.
Wu, Xian; Fan, Lishuang; Qiu, Yue; Wang, Maoxu; Cheng, Junhan; Guan, Bin; Guo, Zhikun; Zhang, Naiqing; Sun, Kening
2018-06-26
Lithium sulfur batteries have been restricted on their major technical problem of shuttling soluble polysulfides between electrodes, resulting in serious capacity fading. For purpose of develop a high-performance lithium-sulfur battery, we first time utilize a simple growth method to introduce a Prussian blue modified Celgard separator as an ion selective membrane in lithium sulfur batteries. The unique structure of Prussian blue could effectively suppress the shuttle of polysulfides but scarcely affect the transfer ability of lithium ions, which is beneficial to achieve high sulfur conversion efficiency and capacity retention. The lithium sulfur battery with Prussian blue modified Celgard separator reveals an average capacity decaying of only 0.03% per cycle at 1C after 1000 cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trapp, Oliver
2010-02-12
Highly efficient and sophisticated separation techniques are available to analyze complex compound mixtures with superior sensitivities and selectivities often enhanced by a 2nd dimension, e.g. a separation technique or spectroscopic and spectrometric techniques. For enantioselective separations numerous chiral stationary phases (CSPs) exist to cover a broad range of chiral compounds. Despite these advances enantioselective separations can become very challenging for mixtures of stereolabile constitutional isomers, because the on-column interconversion can lead to completely overlapping peak profiles. Typically, multidimensional separation techniques, e.g. multidimensional GC (MDGC), using an achiral 1st separation dimension and transferring selected analytes to a chiral 2nd separation are the method of choice to approach such problems. However, this procedure is very time consuming and only predefined sections of peaks can be transferred by column switching to the second dimension. Here we demonstrate for stereolabile 1,2-dialkylated diaziridines a technique to experimentally deconvolute overlapping gas chromatographic elution profiles of constitutional isomers based on multiple-reaction-monitoring MS (MRM-MS). The here presented technique takes advantage of different fragmentation probabilities and pathways to isolate the elution profile of configurational isomers. Copyright 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.
2016-03-23
How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less
An environmental transfer hub for multimodal atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perea, Daniel E.; Gerstl, Stephan S. A.; Chin, Jackson
Environmental control during transfer between instruments is required for specimens sensitive to air or thermal exposure to prevent morphological or chemical changes. Atom Probe Tomography is an expanding technique but commercial instruments remain limited to loading under ambient conditions. Here we describe a multifunctional environmental transfer hub allowing controlled cryogenic, atmospheric and vacuum transfer between an Atom Probe and other instruments containing separate chambers to allow downstream time-resolved in-situ studies.
New measurement of G_E/GM for the proton
NASA Astrophysics Data System (ADS)
Segel, Ralph
2003-10-01
Recent polarization transfer measurements of the ratio of the proton electric to magnetic form factor, G E /G_M, find μ_pG E /GM = 1 - 0.13Q ^2 while a long series of L-T separations are fit by μ_pG_E/GM ≈ 1. Jefferson Lab experiment E01-001 used a new technique for making L-T separations that greatly reduces the dominant systematic uncertainties present in previous determinations. Protons from ep scattering were measured over a wide range in ɛ at Q^2 = 2.64, 3.20 and 4.10 GeV^2 and, simultaneously, protons scattered at Q^2 = 0.5 GeV^2 were measured over a small range in ɛ. The Q^2 = 0.5 GeV^2 measurements provided an internal monitor and only kinematic factors and ratios of simultaneously measured cross sections enter into the determinations of G_E/G_M. Measuring the proton cross sections has the advantage that for the same Q^2, count rates change very little with ɛ and also proton momentum is the same at all ɛ thus eliminating the effect of any momentum-dependent inefficiencies. Neither of these is true for L-T separations performed by measuring electron cross sections. Furthermore, the radiative corrections for the proton cross sections are a factor of about 2.5 smaller. All previous L-T separations measured electron cross sections and none had the advantage of an internal monitor. Therefore, the results of E01-001 stringently test whether systematic uncertainties in previous L-T separations may have been sufficient to explain the discrepancy with the recent polarization transfer results.
Numerical study of vorticity-enhanced heat transfer
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Alben, Silas
2013-11-01
Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.
Kamat, Prashant V
2012-11-20
The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures. This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO(2) and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2-3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO(2)) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron-hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport. The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye sensitized solar cells (DSSC) and organic photovoltaics.
Keshet, U; Alon, T; Fialkov, A B; Amirav, A
2017-07-01
An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Two-tiered design analysis of a radiator for a solar dynamic powered Stirling engine
NASA Technical Reports Server (NTRS)
Hainley, Donald C.
1989-01-01
Two separate design approaches for a pumped loop radiator used to transfer heat from the cold end of a solar dynamic powered Stirling engine are described. The first approach uses a standard method to determine radiator requirements to meet specified end of mission conditions. Trade-off studies conducted for the analysis are included. Justification of this concept within the specified parameters of the analysis is provided. The second design approach determines the life performance of the radiator/Stirling system. In this approach, the system performance was altered by reducing the radiator heat transfer area. Performance effects and equilibrium points were determined as radiator segments were removed. This simulates the effect of loss of radiator sections due to micro-meteoroid and space debris penetration. The two designs were compared on the basis of overall system requirements and goals.
Two-tiered design analysis of a radiator for a solar dynamic powered Stirling engine
NASA Technical Reports Server (NTRS)
Hainley, Donald C.
1989-01-01
Two separate design approaches for a pumped loop radiator used to transfer heat from the cold end of a solar dynamic powered Stirling engine are described. The first approach uses a standard method to determine radiator requirements to meet specified end of mission conditions. Trade-off studies conducted for the analysis are included. Justification of this concept within the specified parameters of the analysis is provided. The second design approach determines the life performance of the radiator/Stirling system. In this approach, the system performance was altered by reducing the radiator heat transfer area. Performance effects and equilibrium points were determined as radiator segments were removed. This simulates the effect of loss of radiator sections due to micro-meteoroid and space debris penetration. The two designs are compared on the basis of overall system requirements and goals.
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Alley, R. E.; Schieldge, J. P.
1984-01-01
The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.
Water research program final report, March 15, 1970 to October 31, 1972. Separations processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minturn, R. E.
A summary article on separation by filtration is reprinted, and research is reported in the following areas: dynamic membranes, cast film membranes, concentration polarization, economic analysis; and enhanced heat transfer. (DHM)
Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.
Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon
2017-11-01
The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.
Free energy functionals for polarization fluctuations: Pekar factor revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less
Free energy functionals for polarization fluctuations: Pekar factor revisited
Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.
2017-02-13
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less
Free energy functionals for polarization fluctuations: Pekar factor revisited.
Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V
2017-02-14
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).
Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E.L.
2011-01-01
Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input. PMID:21164173
Device and method for automated separation of a sample of whole blood into aliquots
Burtis, Carl A.; Johnson, Wayne F.
1989-01-01
A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.
Isotope separation by photochromatography
Suslick, K.S.
1975-10-03
A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)
NASA Astrophysics Data System (ADS)
Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Eun Jin; Min, Nam Ki
2013-01-01
The single-walled carbon nanotube (SWCNT)-based thin film was spray-coated on the Pt support and functionalized using O2 plasma. The effects of plasma treatment on the biointerfacial properties of the SWCNT films were analyzed by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The plasma-functionalized (pf) SWCNT electrodes modified with Legionella pneumophila-specific probe DNA strands showed a much higher peak current and a smaller peak separation in differential pulse voltammetry and a lower charge transfer resistance, compared to the untreated samples. These results suggest that the pf-SWCNT films have a better electrocatalytic character and an electron transfer capability faster than the untreated SWCNTs, due to the fact that the oxygen-containing functional groups promote direct electron transfer in the biointerfacial region of the electrocatalytic activity of redox-active biomolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, C. B.; Felde, D. K.; Sutton, A. G.
1982-04-01
Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less
Electrical control of spin dynamics in finite one-dimensional systems
NASA Astrophysics Data System (ADS)
Pertsova, A.; Stamenova, M.; Sanvito, S.
2011-10-01
We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias Vg on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of Vg. We identify regions of Vg giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows
NASA Astrophysics Data System (ADS)
Horiuchi, Keisuke; Dutta, Prashanta
We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.
Polarization transfer NMR imaging
Sillerud, Laurel O.; van Hulsteyn, David B.
1990-01-01
A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.
Trevethan, Thomas; Shluger, Alexander
2009-07-01
We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.
Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M
2006-12-01
A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.
Mathematical model of an air-filled alpha stirling refrigerator
NASA Astrophysics Data System (ADS)
McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir
2013-10-01
This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.
Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng
2013-10-01
To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.
Excitation energy transfer in the photosystem I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Andrew N
2012-09-25
Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less
NASA Astrophysics Data System (ADS)
Varney, Philip; Green, Itzhak
2014-11-01
Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM's ability to intrinsically separate synchronous whirl direction for a non-trivial rotordynamic system. Good agreement is found between the CTM results and previously obtained analytic and experimental results for the elastomer ring supported rotordynamic system.
Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko
2016-01-01
We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent.
Experimental Evaluation of a Carbon Slurry Droplet Combustion Model
1981-12-14
the increased mass and energy transport due to the flow percolating through the open porous structure of the carbon agglomerate. Two separate models...catalysts. Transport-rate enhancement factors were also employed in the carbon-agglomerate reaction analysis to account for the increased mass and energy ...D Effective binary diffusivity Ei Activation energy h Heat transfer coefficient H2 Diatomic hydrogen H20 Water i Enthalpy if Enthalpy of formation
Reentry heat transfer analysis of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Ko, W. L.; Quinn, R. D.; Gong, L.
1982-01-01
A structural performance and resizing finite element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle. Two typical wing cross sections and a midfuselage cross section were selected for the analysis. The surface heat inputs to the thermal models were obtained from aerodynamic heating analyses, which assumed a purely turbulent boundary layer, a purely laminar boundary layer, separated flow, and transition from laminar to turbulent flow. The effect of internal radiation was found to be quite significant. With the effect of the internal radiation considered, the wing lower skin temperature became about 39 C (70 F) lower. The results were compared with fight data for space transportation system, trajectory 1. The calculated and measured temperatures compared well for the wing if laminar flow was assumed for the lower surface and bay one upper surface and if separated flow was assumed for the upper surfaces of bays other than bay one. For the fuselage, good agreement between the calculated and measured data was obtained if laminar flow was assumed for the bottom surface. The structural temperatures were found to reach their peak values shortly before touchdown. In addition, the finite element solutions were compared with those obtained from the conventional finite difference solutions.
Pore channel surface modification for enhancing anti-fouling membrane distillation
NASA Astrophysics Data System (ADS)
Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua
2018-06-01
Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.
Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, Robert; Keten, Sinan, E-mail: s-keten@northwestern.edu; Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208
2014-12-15
Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between Iβ CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, whenmore » water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.« less
26 CFR 1.507-2 - Special rules; transfer to, or operation as, public charity.
Code of Federal Regulations, 2014 CFR
2014-04-01
... further research into the causes of cancer. Under the terms of the transfer, V is required to keep M's assets in a separate fund and use the income and principal to further cancer research. Although the... research fund at a hospital. In the case of a community trust, the transferred assets must be administered...
Parents' experiences of neonatal transfer. A meta-study of qualitative research 2000-2017.
Aagaard, Hanne; Hall, Elisabeth O C; Ludvigsen, Mette S; Uhrenfeldt, Lisbeth; Fegran, Liv
2018-02-15
Transfers of critically ill neonates are frequent phenomena. Even though parents' participation is regarded as crucial in neonatal care, a transfer often means that parents and neonates are separated. A systematic review of the parents' experiences of neonatal transfer is lacking. This paper describes a meta-study addressing qualitative research about parents' experiences of neonatal transfer. Through deconstruction and reflections of theories, methods, and empirical data, the aim was to achieve a deeper understanding of theoretical, empirical, contextual, historical, and methodological issues of qualitative studies concerning parents' experiences of neonatal transfer over the course of this meta-study (2000-2017). Meta-theory and meta-method analyses showed that caring, transition, and family-centered care were main theoretical frames applied and that interviewing with a small number of participants was the preferred data collection method. The meta-data-analysis showed that transfer was a scary, unfamiliar, and threatening experience for the parents; they were losing familiar context, were separated from their neonate, and could feel their parenthood disrupted. We identified 'wavering and wandering' as a metaphoric representation of the parents' experiences. The findings add knowledge about meta-study as an approach for comprehensive qualitative research and point at the value of meta-theory and meta-method analyses. © 2018 John Wiley & Sons Ltd.
Advanced missions safety. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
Three separate studies were performed under the general category of advanced missions safety. Each dealt with a separate issue, was a self-contained effort, and was independent of the other two studies. The studies are titled: (1) space shuttle rescue capability, (2) experiment safety, and (3) emergency crew transfer. A separate discussion of each study is presented.
NASA Astrophysics Data System (ADS)
Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier
2017-01-01
We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.
Nickel-hydrogen separator development
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, O. D.
1986-01-01
The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.
Nickel-hydrogen separator development
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, O. D.
1986-01-01
The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1979-01-01
Surface pressure distributions and heat transfer distributions were obtained on wing half-models in regions where three dimensional separated flow effects are prominent. Unswept and 50 deg and 70 deg swept semispan wings were tested, for trailing-edge-elevon ramp angles of 0 deg, 10 deg, 20 deg, and 30 deg, with and without cylindrical and flat plate center bodies and with and without various wing-tip plates and fins. The data, obtained for a free stream Mach number of 6 and a wing-root-chord Reynolds number of 18.5 million, reveal considerably larger regions of increased pressure and thermal loads than would be anticipated using non-separated flow analyses.
NASA Astrophysics Data System (ADS)
Dev, A. A.; Atrey, M. D.; Vanapalli, S.
2017-02-01
A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.
Beam Wave Considerations for Optical Link Budget Calculations
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2016-01-01
The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is considered for diffraction-based link power budget calculations for an optical communications system. Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the concept of effective isotropic radiated power. It is shown here, however, that these considerations are no more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general expression governing the power transfer for a collimated beam wave is derived and from this are defined the three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power transfer are given for each region. It is shown that although the well-known linear expressions for power transfer in the far-field hold for all distances between source and receiver in the radio frequency case, nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with typical aperture sizes at source/receiver separations less that 100 km.
NASA Technical Reports Server (NTRS)
Back, L. H.; Massier, P. F.; Roschke, E. J.
1972-01-01
Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.
FRIB Cryogenic Distribution System and Status
NASA Astrophysics Data System (ADS)
Ganni, V.; Dixon, K.; Laverdure, N.; Yang, S.; Nellis, T.; Jones, S.; Casagrande, F.
2015-12-01
The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.
Study of vortex generator influence on the flow in the wake of high-lift system wing
NASA Astrophysics Data System (ADS)
Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.
2016-10-01
Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were performed on the VG effects on the flow in the intensive separation zone on flaps. A number of VG types is considered that differ by configuration, size, location in relation to the area of flow separation on the flap, as well as the orientation relative to the incoming flow. The major part of standard of VG positions is investigated. The VG influence on head velocity loss and the characteristics of the amplitude-frequency spectra of pressure fluctuations in the wake of the wing are obtained, as well as the flow spectra are obtained by means of fluorescent mini-tufts.
Quan, Quan; Xie, Shunji; Weng, Bo; Wang, Ye; Xu, Yi-Jun
2018-05-01
Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS 2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO 2 nanotube arrays (TNTAs@RGO/MoS 2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H 2 than binary TNTAs@RGO and TNTAs/MoS 2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H 2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi
2016-09-25
We report that while Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance inmore » the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. Finally, by identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contribute towards improved thermal performance of Li-ion cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.; Ayers, P.W.; Zhang, Y.
2009-10-28
The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these twomore » terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.« less
A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.
Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis
2013-07-15
A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS
Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...
Large Ice Crystal Charge Transfer Studies
1988-10-28
electrification. However, the extra- polation using qcd 4 was completely unjustified. With corrected values of the separation probability of ice crystals...contact to leak away from the local area or become trapped in the crystal lattice . Obviously, larger initial charge transfers, with larger 6 crystals
Charge-transfer cross sections in collisions of ground-state Ca and H+
NASA Astrophysics Data System (ADS)
Dutta, C. M.; Oubre, C.; Nordlander, P.; Kimura, M.; Dalgarno, A.
2006-03-01
We have investigated collisions of Ca(4s2) with H+ in the energy range of 200eV/u-10keV/u using the semiclassical molecular-orbital close-coupling (MOCC) method with 18 coupled molecular states ( 11Σ+1 and seven Π+1 states) to determine charge-transfer cross sections. Except for the incoming channel 6Σ+1 , the molecular states all correspond to charge-transfer channels. Inclusion of Ca2+-H- is crucial in the configuration-interaction calculation for generating the molecular wave functions and potentials. Because of the Coulomb attraction, the state separating to Ca2+-H- creates many avoided crossings, even though at infinite separation it lies energetically above all other states that we included. Because of the avoided crossings between the incoming channel 6Σ+1 and the energetically close charge-transfer channel 7Σ+1 the charge-transfer interaction occurs at long range. This makes calculations of charge-transfer cross sections by the MOCC method very challenging. The total charge-transfer cross sections increase monotonically from 3.4×10-15cm2 at 200eV/u to 4.5×10-15cm2 at 10keV/u . Charge transfer occurs mostly to the excited Ca+(5p) state in the entire energy range, which is the sum of the charge transfer to 7Σ+1 and 4Π+1 . It accounts for ˜47% of the total charge transfer cross sections at 200eV/u . However, as the energy increases, transfer to Ca+(4d) increases, and at 10keV/u the charge-transfer cross sections for Ca+(5p) and Ca+(4d) become comparable, each giving ˜38% of the total cross section.
Baek, Gahyun; Jung, Heejung; Kim, Jaai; Lee, Changsoo
2017-10-01
Promotion of direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and electron-utilizing methanogens has recently been discussed as a new method for enhanced biomethanation. This study evaluated the effect of magnetite-promoted DIET in continuous anaerobic digestion of dairy effluent and tested the magnetic separation and recycling of magnetite to avoid continuous magnetite addition. The applied magnetite recycling method effectively supported enhanced DIET activity and biomethanation performance over a long period (>250days) without adding extra magnetite. DIET via magnetite particles as electrical conduits was likely the main mechanism for the enhanced biomethanation. Magnetite formed complex aggregate structures with microbes, and magnetite recycling also helped retain more biomass in the process. Methanosaeta was likely the major methanogen group responsible for DIET-based methanogenesis, in association with Proteobacteria and Chloroflexi populations as syntrophic partners. The recycling approach proved robust and effective, highlighting the potential of magnetite recycling for high-rate biomethanation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Häusermann, R.; Batlogg, B.
2011-08-01
Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.
Restricted transfer of learning between unimanual and bimanual finger sequences
Bai, Wenjun
2016-01-01
When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. PMID:27974447
40 CFR 80.1453 - What are the product transfer document (PTD) requirements for the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... state “No assigned RINs transferred.”. (iv) If RINs have been separated from the renewable fuel or fuel... renewable fuel or fuel blend shall state “This volume of fuel must be used in the designated form, without... used to transfer ownership of the renewable fuel shall state “This volume of renewable fuel may not be...
Lateral gene transfer and the origins of prokaryotic groups.
Boucher, Yan; Douady, Christophe J; Papke, R Thane; Walsh, David A; Boudreau, Mary Ellen R; Nesbø, Camilla L; Case, Rebecca J; Doolittle, W Ford
2003-01-01
Lateral gene transfer (LGT) is now known to be a major force in the evolution of prokaryotic genomes. To date, most analyses have focused on either (a) verifying phylogenies of individual genes thought to have been transferred, or (b) estimating the fraction of individual genomes likely to have been introduced by transfer. Neither approach does justice to the ability of LGT to effect massive and complex transformations in basic biology. In some cases, such transformation will be manifested as the patchy distribution of a seemingly fundamental property (such as aerobiosis or nitrogen fixation) among the members of a group classically defined by the sharing of other properties (metabolic, morphological, or molecular, such as small subunit ribosomal RNA sequence). In other cases, the lineage of recipients so transformed may be seen to comprise a new group of high taxonomic rank ("class" or even "phylum"). Here we review evidence for an important role of LGT in the evolution of photosynthesis, aerobic respiration, nitrogen fixation, sulfate reduction, methylotrophy, isoprenoid biosynthesis, quorum sensing, flotation (gas vesicles), thermophily, and halophily. Sometimes transfer of complex gene clusters may have been involved, whereas other times separate exchanges of many genes must be invoked.
The impact of conditional cash transfers on marriage and divorce.
Bobonis, Gustavo J
2011-01-01
A growing number of less-developed countries have introduced conditional cash transfer programs in which funds are targeted to women. Economic models of the family suggest that these transfer programs may lead to marital turnover among program beneficiaries. Data from the experimental evaluation of the PROGRESA program in Mexico is used to provide new evidence on the short-run impacts of targeted transfers on couples' union dissolution and individuals' new union formation decisions. We find that, although the overall share of women in union does not change as a result of the program, marital turnover increases. Intact families eligible for the transfers experienced a modest (0.32 percentage points) increase in separation rates, with most of the effect concentrated among young and relatively educated women households. In contrast, young single women with low educational attainment levels experienced a substantial increase in new union formation rates. The marital transition patterns are consistent with the workhorse economic model of the marriage market-individuals with the greatest prospects to start new unions and those who may become more attractive in the marriage market are more likely to transition out of existing relationships and form new ones.
Enhanced photoelectrochemical response of plasmonic Au embedded BiVO4/Fe2O3 heterojunction.
Verma, Anuradha; Srivastav, Anupam; Khan, Saif A; Rani Satsangi, Vibha; Shrivastav, Rohit; Kumar Avasthi, Devesh; Dass, Sahab
2017-06-14
The effect of embedding Au nanoparticles (NPs) in a BiVO 4 /Fe 2 O 3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO 4 and Fe 2 O 3 : (i) the formation of a heterojunction between BiVO 4 and Fe 2 O 3 enhances the charge carrier separation and transfer, (ii) the layer of Fe 2 O 3 provides protection to BiVO 4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO 4 /Fe 2 O 3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe 2 O 3 and BiVO 4 . A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.
Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems
Teuscher, Joël; Brauer, Jan C.; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E.
2017-01-01
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here. PMID:29308415
Gillman, Sierra J; Ziegler-Meeks, Karen; Eager, Carol; Tenhundfeld, Thomas A; Shaffstall, Wendy; Stearns, Mary Jo; Crosier, Adrienne E
2017-09-01
This paper examines the effects of transfer away from natal facility and littermate presence on cheetah breeding success in the AZA Species Survival Plan (SSP) population. Transfer and breeding history data for captive males and females were gathered from seven and four AZA SSP breeding facilities, respectively, to identify factors influencing breeding success. The results indicate that transfer history (p = 0.032), age at transfer (p = 0.013), and female littermate presence/absence (p = 0.04) was associated with breeding success, with females transferred away from their natal facility before sexual maturity and without littermates present accounting for the highest breeding success. Keeping males at their natal facility and/or removing them from their coalitions did not negatively affect their breeding success. Males appeared to demonstrate the same fecundity regardless of transfer history or coalition status, indicating that dispersal away from natal environment was not as critical for the breeding success of males compared with female cheetahs. These results highlight the significance of moving females away from their natal environment, as would occur in the wild, and separating them from their female littermates for optimization of breeding success in the ex situ population. © 2017 Wiley Periodicals, Inc.
Impact Study of Metal Fasteners in Roofing Assemblies using Three-Dimensional Heat Transfer Analysis
Singh, Manan; Gulati, Rupesh; Ravi, Srinivasan; ...
2016-11-29
Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases - without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG) approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ) namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta,more » GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software) and 3D analysis using HEAT3 is also discussed.« less
Impact Study of Metal Fasteners in Roofing Assemblies using Three-Dimensional Heat Transfer Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Manan; Gulati, Rupesh; Ravi, Srinivasan
Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases - without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG) approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ) namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta,more » GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software) and 3D analysis using HEAT3 is also discussed.« less
Dickins, Daina S. E.; Sale, Martin V.; Kamke, Marc R.
2015-01-01
Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (<35 years-old) and older adults (>65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand. PMID:25999856
Quantitative understanding of explosive stimulus transfer
NASA Technical Reports Server (NTRS)
Schimmel, M. L.
1973-01-01
The mechanisms of detonation transfer across hermetically sealed interfaces created by necessary interruptions in high explosive trains, such as at detonators to explosive columns, field joints in explosive columns, and components of munitions fuse trains are demostrated. Reliability of detonation transfer is limited by minimizing explosive quantities, the use of intensitive explosives for safety, and requirements to propagate across gaps and angles dictated by installation and production restraints. The major detonation transfer variables studied were: explosive quanity, sensitivity, and thickness, and the separation distances between donor and acceptor explosives.
NASA Astrophysics Data System (ADS)
Xie, Qi
Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
High-power CO laser with RF discharge for isotope separation employing condensation repression
NASA Astrophysics Data System (ADS)
Baranov, I. Ya.; Koptev, A. V.
2008-10-01
High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.
Surface temperature effect on subsonic stall.
NASA Technical Reports Server (NTRS)
Macha, J. M.; Norton, D. J.; Young, J. C.
1972-01-01
Results of an analytical and experimental study of boundary layer flow over an aerodynamic surface rejecting heat to a cool environment. This occurs following reentry of a Space Shuttle vehicle. Analytical studies revealed that a surface to freestream temperature ratio, greater than unity tended to destabilize the boundary layer, hastening transition and separation. Therefore, heat transfer accentuated the effect of an adverse pressure gradient. Wind tunnel tests of a 0012-64 NACA airfoil showed that the stall angle was significantly reduced while drag tended to increase for freestream temperature ratios up to 2.2.
Investigation of surface tension phenomena using the KC-135 aircraft
NASA Technical Reports Server (NTRS)
Alter, W. S.
1982-01-01
The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.
NASA Astrophysics Data System (ADS)
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.
2018-02-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.
Tanaka, Yoshihide
2002-07-01
Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, T.; Sugura, K.; Enokida, Y.
2015-03-15
Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less
1997-04-18
DNA polymerase Alcohol dehydrogenase Hexokinase Glucose-6- phosphatase Arginase Pyruvate kinase (also requires Mg2•) Urease Nitrate...cyclohexane. The layers are separated by centrifugation (5 min at 1000 x g), the top organic layer is removed and dried with anhydrous sodium sulfate...An aliquot of the dried organic layer is transferred to a clean tube and evaporated under a gentle stream of nitrogen at room temperature
The role of interfacial water layer in atmospherically relevant charge separation
NASA Astrophysics Data System (ADS)
Bhattacharyya, Indrani
Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.
Yan, Yaming; Song, Linze; Shi, Qiang
2018-02-28
By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.
NASA Astrophysics Data System (ADS)
Yan, Yaming; Song, Linze; Shi, Qiang
2018-02-01
By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.
In order to establish a safe environment for nurses and patients, the American Nurses Association (ANA) supports actions and policies that result in the elimination of manual patient handling. Patient handling, such as lifting, repositioning, and transferring, has conventionally been performed by nurses. The performance of these tasks exposes nurses to increased risk for work-related musculoskeletal disorders. With the development of assistive equipment, such as lift and transfer devices, the risk of musculoskeletal injury can be significantly reduced. Effective use of assistive equipment and devices for patient handling creates a safe healthcare environment by separating the physical burden from the nurse and ensuring the safety, comfort, and dignity of the patient.
Information transfer rate with serial and simultaneous visual display formats
NASA Astrophysics Data System (ADS)
Matin, Ethel; Boff, Kenneth R.
1988-04-01
Information communication rate for a conventional display with three spatially separated windows was compared with rate for a serial display in which data frames were presented sequentially in one window. For both methods, each frame contained a randomly selected digit with various amounts of additional display 'clutter.' Subjects recalled the digits in a prescribed order. Large rate differences were found, with faster serial communication for all levels of the clutter factors. However, the rate difference was most pronounced for highly cluttered displays. An explanation for the latter effect in terms of visual masking in the retinal periphery was supported by the results of a second experiment. The working hypothesis that serial displays can speed information transfer for automatic but not for controlled processing is discussed.
A qualitative quantum rate model for hydrogen transfer in soybean lipoxygenase
NASA Astrophysics Data System (ADS)
Jevtic, S.; Anders, J.
2017-09-01
The hydrogen transfer reaction catalysed by soybean lipoxygenase (SLO) has been the focus of intense study following observations of a high kinetic isotope effect (KIE). Today high KIEs are generally thought to indicate departure from classical rate theory and are seen as a strong signature of tunnelling of the transferring particle, hydrogen or one of its isotopes, through the reaction energy barrier. In this paper, we build a qualitative quantum rate model with few free parameters that describes the dynamics of the transferring particle when it is exposed to energetic potentials exerted by the donor and the acceptor. The enzyme's impact on the dynamics is modelled by an additional energetic term, an oscillatory contribution known as "gating." By varying two key parameters, the gating frequency and the mean donor-acceptor separation, the model is able to reproduce well the KIE data for SLO wild-type and a variety of SLO mutants over the experimentally accessible temperature range. While SLO-specific constants have been considered here, it is possible to adapt these for other enzymes.
Charge exchange molecular ion source
Vella, Michael C.
2003-06-03
Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.
Badshah, Syed Lal; Sun, Junlei; Mula, Sam; Gorka, Mike; Baker, Patricia; Luthra, Rajiv; Lin, Su; van der Est, Art; Golbeck, John H; Redding, Kevin E
2018-01-01
In Photosystem I, light-induced electron transfer can occur in either of two symmetry-related branches of cofactors, each of which is composed of a pair of chlorophylls (ec2 A /ec3 A or ec2 B /ec3 B ) and a phylloquinone (PhQ A or PhQ B ). The axial ligand to the central Mg 2+ of the ec2 A and ec2 B chlorophylls is a water molecule that is also H-bonded to a nearby Asn residue. Here, we investigate the importance of this interaction for charge separation by converting each of the Asn residues to a Leu in the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Synechocystis sp. PCC6803, and studying the energy and electron transfer using time-resolved optical and EPR spectroscopy. Nanosecond transient absorbance measurements of the PhQ to F X electron transfer show that in both species, the PsaA-N604L mutation (near ec2 B ) results in a ~50% reduction in the amount of electron transfer in the B-branch, while the PsaB-N591L mutation (near ec2 A ) results in a ~70% reduction in the amount of electron transfer in the A-branch. A diminished quantum yield of P 700 + PhQ - is also observed in ultrafast optical experiments, but the lower yield does not appear to be a consequence of charge recombination in the nanosecond or microsecond timescales. The most significant finding is that the yield of electron transfer in the unaffected branch did not increase to compensate for the lower yield in the affected branch. Hence, each branch of the reaction center appears to operate independently of the other in carrying out light-induced charge separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data
NASA Astrophysics Data System (ADS)
Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan
2015-04-01
The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.
NASA Astrophysics Data System (ADS)
Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi
2017-08-01
Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.
Wave-particle interactions in rotating mirrorsa)
NASA Astrophysics Data System (ADS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-05-01
Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Effects of Cognitive Training on Cognitive Performance of Healthy Older Adults.
Golino, Mariana Teles Santos; Flores Mendoza, Carmen; Golino, Hudson Fernandes
2017-09-20
The purpose of this study was to determine the immediate effects of cognitive training on healthy older adults and verify the transfer effects of targeted and non-targeted abilities. The design consisted of a semi-randomized clinical controlled trial. The final sample was composed of 80 volunteers recruited from a Brazilian community (mean age = 69.69; SD = 7.44), which were separated into an intervention group (N = 47; mean age = 69.66, SD = 7.51) and a control group (N = 33; mean age = 69.73, SD = 7.45). Intervention was characterized by adaptive cognitive training with 12 individual training sessions of 60 to 90 minutes (once a week). Eight instruments were used to assess effects of cognitive training. Five were used to assess trained abilities (near effects), including: Memorization Tests (List and History), Picture Completion, Digit Span, Digit Symbol-Coding, and Symbol Search (the last four from WAIS-III). Two instruments assessed untrained abilities (far effects): Arithmetic and Matrix Reasoning (WAIS-III). The non-parametric repeated measures ANOVA test revealed a significant interaction between group by time interaction for Picture Completion [F(74) = 14.88, p = .0002, d = 0.90, CLES = 73.69%], Digit Symbol-Coding [F(74) = 5.66, p = .019, d = 0.55, CLES = 65.21%] and Digit Span [F(74) = 5.38, p = .02, d = 0.54, CLES = 64.85%], suggesting an interventional impact on these performance tasks. The results supported near transfer effects, but did not demonstrate a far transfer effects.
Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A
2016-04-01
Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.
The Effects of Rhythmicity and Amplitude on Transfer of Motor Learning
Ben-Tov, Mor; Levy-Tzedek, Shelly; Karniel, Amir
2012-01-01
We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation. PMID:23056549
The effects of rhythmicity and amplitude on transfer of motor learning.
Ben-Tov, Mor; Levy-Tzedek, Shelly; Karniel, Amir
2012-01-01
We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.
Braun-Sand, Sonja; Sharma, Pankaz K; Chu, Zhen T; Pisliakov, Andrei V; Warshel, Arieh
2008-05-01
The light-induced proton transport in bacteriorhodopsin has been considered as a model for other light-induced proton pumps. However, the exact nature of this process is still unclear. For example, it is not entirely clear what the driving force of the initial proton transfer is and, in particular, whether it reflects electrostatic forces or other effects. The present work simulates the primary proton transfer (PT) by a specialized combination of the EVB and the QCFF/PI methods. This combination allows us to obtain sufficient sampling and a quantitative free energy profile for the PT at different protein configurations. The calculated profiles provide new insight about energetics of the primary PT and its coupling to the protein conformational changes. Our finding confirms the tentative analysis of an earlier work (A. Warshel, Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium, Photochem. Photobiol. 30 (1979) 285-290) and determines that the overall PT process is driven by the energetics of the charge separation between the Schiff base and its counterion Asp85. Apparently, the light-induced relaxation of the steric energy of the chromophore leads to an increase in the ion-pair distance, and this drives the PT process. Our use of the linear response approximation allows us to estimate the change in the protein conformational energy and provides the first computational description of the coupling between the protein structural changes and the PT process. It is also found that the PT is not driven by twist-modulated changes of the Schiff base's pKa, changes in the hydrogen bond directionality, or other non-electrostatic effects. Overall, based on a consistent use of structural information as the starting point for converging free energy calculations, we conclude that the primary event should be described as a light-induced formation of an unstable ground state, whose relaxation leads to charge separation and to the destabilization of the ion-pair state. This provides the driving force for the subsequent PT steps.
Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.
Kutzner, R; Brombach, H; Geiger, W F
2007-01-01
Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!
Liu, Jian-Yong; El-Khouly, Mohamed E; Fukuzumi, Shunichi; Ng, Dennis K P
2012-06-04
A ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C(60) triad are synthesized and characterized. Upon photoexcitation at the distyryl BODIPY unit, these arrays undergo photoinduced electron transfer to form the corresponding charge-separated species. Based on their redox potentials, determined by cyclic voltammetry, the direction of the charge separation and the energies of these states are revealed. Femtosecond transient spectroscopic studies reveal that a fast charge separation (k(CS) =1.0×10(10) s(-1)) occurs for both the ferrocene-distyryl BODIPY dyad and the ferrocene-distyryl BODIPY-C(60) triad, but that a relatively slow charge recombination is observed only for the triad. The lifetime of the charge-separated state is 500 ps. Charge recombination of the dyad and triad leads to population of the triplet excited sate of ferrocene and the ground state, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel
A hollow fiber device includes a hollow fiber bundle, comprising a plurality of hollow fibers, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fibers. In at least one of the tubesheets, the boreholes are formed radially. The hollow fiber device can be utilized in heat exchange, in gas/gas, liquid/liquid and gas/liquid heat transfer, in combined heat and mass transfer and in fluid separation assemblies and processes. The design disclosed herein is light weight and compact and is particularly advantageous whenmore » the pressure of a first fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less
ERIC Educational Resources Information Center
Timonen, Virpi; Doyle, Martha; O'Dwyer, Ciara
2011-01-01
The literature on intergenerational transfers and divorce has paid little attention to the experiences of older adults whose son or daughter has divorced or separated. The authors conducted 31 qualitative interviews to explore support provision from the perspective of older adults with divorced or separated adult children. All respondents were…
Energetics and kinetics of primary charge separation in bacterial photosynthesis.
LeBard, David N; Kapko, Vitaliy; Matyushov, Dmitry V
2008-08-21
We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.
Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals
NASA Astrophysics Data System (ADS)
Jiang, P.; Kumar, P.
2017-12-01
Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.
Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C
2017-01-11
van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.
Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta
2014-01-01
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564
Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui
2017-10-01
Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.
NASA Technical Reports Server (NTRS)
Lin, John C.
1992-01-01
The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ's), Viets' fluidic flappers, elongated arches at positive angle of attack, and large-eddy breakup devices (LEBU's) at positive angle of attack placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept grooves, Helmholtz resonators, and arches and LEBU's with angle of attack less than or = 0 degrees had no significant effect in reducing the extent of the separation region. Wall-cooling computations indicated that separation delay on a partially-cooled ramp is nearly the same as on a fully-cooled ramp, while minimizing the frictional drag increase associated with the wall cooling process. Dry-flow visualization tests in the water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanewise cylinder located near the wall and LEBU's at angle of attack = -10 degrees produced eddies or transverse vortices which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJ's produced streamwise co-rotating vortices. Comparative wind-tunnel test results indicated that transferring momentum from the outer region of a turbulent boundary layer through the action of embedded streamwise vortices is more effective than by transverse vortices for the separation control application studied herein.
NASA Technical Reports Server (NTRS)
Mantovani, James G.; Townsend, Ivan I.; Mueller, Robert P.
2009-01-01
NASA has built a prototype oxygen production plant to process the lunar regolith using the hydrogen reduction chemical process. This plant is known as "ROxygen - making oxygen from moon rocks". The ROxygen regolith transfer team has identified the flow and transfer characteristics of lunar regolith simulant to be a concern for lunar oxygen production efforts. It is important to ISRU lunar exploration efforts to develop hardware designs that can demonstrate the ability to flow and transfer a given mass of regolith simulant to a desired vertical height under lunar gravity conditions in order to introduce it into a reactor. We will present results obtained under both 1/6-g and 1-g gravity conditions for a system that can pneumatically convey 16.5 kg of lunar regolith simulant (NU-LHT-2M, Mauna Kea Tephra, and JSC-1A) from a flat-bottom supply hopper to a simulated ISRU reactor (dual-chambered receiving hopper) where the granular material is separated from the convey gas (air) using a series of cyclone separators, one of which is an electrically enhanced cyclone separator (electrocyclone). The results of our study include (1) the mass flow rate as a function of input air pressure for lunar regolith simulants that are conveyed pneumatically as a dusty gas in a vertical direction against gravity under lunar gravity conditions (for NU-LHT-2M and Mauna Kea Tephra), and under earth gravity conditions (for NU-LHT-2M, Mauna Kea Tephra and JSC-1A), and (2) the efficiency of the cyclone/electrocyclone filtration system in separating the convey gas (air) from the granular particulates as a function of particle size.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
Stimulus Fading and Transfer in the Treatment of Self-Restraint and Self-Injurious Behavior.
ERIC Educational Resources Information Center
Pace, Gary M.; And Others
1986-01-01
Manipulation of mechanical restraint properties were conducted in separate studies with two profoundly retarded adolescents who exhibited both self-restraint and self-injurious behavior. Techniques included prompting, differential reinforcement, and stimulus fading. Results suggested that stimulus fading and transfer may be valuable components in…
45 CFR 1321.45 - Transfer between congregate and home-delivered nutrition service allotments.
Code of Federal Regulations, 2012 CFR
2012-10-01
... nutrition service allotments. 1321.45 Section 1321.45 Public Welfare Regulations Relating to Public Welfare... Responsibilities § 1321.45 Transfer between congregate and home-delivered nutrition service allotments. (a) A State... State's separate allotments for congregate and home-delivered nutrition services. (b) A State agency may...
45 CFR 1321.45 - Transfer between congregate and home-delivered nutrition service allotments.
Code of Federal Regulations, 2011 CFR
2011-10-01
... nutrition service allotments. 1321.45 Section 1321.45 Public Welfare Regulations Relating to Public Welfare... Responsibilities § 1321.45 Transfer between congregate and home-delivered nutrition service allotments. (a) A State... State's separate allotments for congregate and home-delivered nutrition services. (b) A State agency may...
45 CFR 1321.45 - Transfer between congregate and home-delivered nutrition service allotments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... nutrition service allotments. 1321.45 Section 1321.45 Public Welfare Regulations Relating to Public Welfare... Responsibilities § 1321.45 Transfer between congregate and home-delivered nutrition service allotments. (a) A State... State's separate allotments for congregate and home-delivered nutrition services. (b) A State agency may...
45 CFR 1321.45 - Transfer between congregate and home-delivered nutrition service allotments.
Code of Federal Regulations, 2014 CFR
2014-10-01
... nutrition service allotments. 1321.45 Section 1321.45 Public Welfare Regulations Relating to Public Welfare... Responsibilities § 1321.45 Transfer between congregate and home-delivered nutrition service allotments. (a) A State... State's separate allotments for congregate and home-delivered nutrition services. (b) A State agency may...
45 CFR 1321.45 - Transfer between congregate and home-delivered nutrition service allotments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... nutrition service allotments. 1321.45 Section 1321.45 Public Welfare Regulations Relating to Public Welfare... Responsibilities § 1321.45 Transfer between congregate and home-delivered nutrition service allotments. (a) A State... State's separate allotments for congregate and home-delivered nutrition services. (b) A State agency may...
USDA-ARS?s Scientific Manuscript database
Background—Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive...
26 CFR 1.381(c)(2)-1 - Earnings and profits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(2)-1 Earnings and profits. (a) In... profits, after the date of distribution or transfer and before the completion of the reorganization or... maintaining two separate earnings and profits accounts after the date of distribution or transfer. The first...
New approach for producing chemical templates over large area by Molecular Transfer Printing
NASA Astrophysics Data System (ADS)
Inoue, Takejiro; Janes, Dustin; Ren, Jiaxing; Willson, Grant; Ellison, Christopher; Nealey, Paul
2014-03-01
Fabrication of well-defined chemically patterned surfaces is crucially important to the development of next generation microprocessors, hard disk memory devices, photonic/plasmonic devices, separation membranes, and biological microarrays. One promising patterning method in these fields is Molecular Transfer Printing (MTP), which replicates chemical patterns with feature dimensions of the order of 10nm utilizing a master template defined by the microphase separated domains of a block copolymer thin film. The total transfer printing area achievable by MTP has so far been limited by the contact area between two rigid substrates. Therefore, strategies to make conformal contact between substrates could be practically useful because a single lithographically-defined starting pattern could be used to fabricate many replicates by a low-cost process. Here we show a new approach that utilizes a chemically deposited SiN layer and a liquid conformal layer to enable transfer printing of chemical patterns upon thermal annealing over large, continuous areas. We anticipate that our process could be integrated into Step and Flash Imprint Lithography (SFIL) tools to achieve conformal layer thicknesses thin and uniform enough to permit pattern transfer through a dry-etch protocol.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-05-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-03-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
Compact thermoelectric converter systems technology
NASA Technical Reports Server (NTRS)
1973-01-01
A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.
Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried
2015-10-21
A simple transferable adaptive model is developed and it allows for the first time to simulate by molecular dynamics the separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, which are often limited to an interpretation involving the formation of pure clusters, or involving the modified random network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt.
Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao
2017-03-01
Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.
NASA Astrophysics Data System (ADS)
Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao
2017-03-01
Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.
NASA Technical Reports Server (NTRS)
Deveikis, W. D.
1983-01-01
External and internal pressure and cold-wall heating-rate distributions were obtained in hypersonic flow on a full-scale heat-sink representation of the space shuttle orbiter wing-elevon-cove configuration in an effort to define effects of flow separation on cove aerothermal environment as a function of cove seal leak area, ramp angle, and free-stream unit Reynolds number. Average free-stream Mach number from all tests was 6.9; average total temperature from all tests was 3360 R; free-stream dynamic pressure ranged from about 2 to 9 psi; and wing angle of attack was 5 deg (flow compression). For transitional and turbulent flow separation, increasing cove leakage progressively increased heating rates in the cove. When ingested mass flow was sufficient to force large reductions in extent of separation, increasing cove leakage reduced heating rates in the cove to those for laminar attached flow. Cove heating-rate distributions calculated with a method that assumed laminar developing channel flow agreed with experimentally obtained distributions within root-mean-square differences that varied between 11 and 36 percent where cove walls were parallel for leak areas of 50 and 100 percent.
1991-08-01
cracking in earth dams commonly occurs by hydraulic fracturing . Hydraulic fracturing is a tensile separation along an internal surface in a 25 soil mass...stress. This hydraulic fracturing is facilitated by differential settle- ment and internal stress transfer in an earthen structure. Sherard also showed...the hydraulic fracturing . 42. BioLic activity, i.e., the actions of plant roots and burrowing animals, has provided a popular explanation for pipe
Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu
2015-12-28
We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.
NASA Astrophysics Data System (ADS)
Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo
2017-09-01
The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.
Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.
Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C
2016-10-12
The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.
Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T.
Zaiss, Moritz; Schuppert, Mark; Deshmane, Anagha; Herz, Kai; Ehses, Philipp; Füllbier, Lars; Lindig, Tobias; Bender, Benjamin; Ernemann, Ulrike; Scheffler, Klaus
2018-06-15
The high chemical shift separation at 9.4 T allows for selective saturation of proton pools in exchange with water protons. For the first time, highly selective and comprehensive chemical exchange saturation transfer (CEST) experiments were performed in the human brain at 9.4 T. This work provides insight into CEST signals in the human brain in comparison with existing animal studies, as well as with CEST effects in vivo at lower field strengths. A novel snapshot-CEST method for human brain scans at 9.4 T was optimized and employed for highly-spectrally-resolved (95 offsets) CEST measurements in healthy subjects and one brain tumor patient. Reproducibility and stability between scans was verified in grey and white matter after B 0 , B 1 , and motion correction of the acquired 3D CEST volumes. Two-step Lorentzian fitting was used to further improve separation of spectrally discernible signals to create known and novel CEST contrast maps at 9.4 T. At a saturation power of B 1 = 0.5 μT most selective CEST effects could be obtained in the human brain with high inter-scan reproducibility. While contrast behavior of previously measured signals at lower field, namely amide-, guanidyl- and NOE-CEST effects, could be reproduced, novel signals at 2.7 ppm, and -1.6 ppm could be verified in healthy subjects and in a brain tumor patient for the first time. High spectral resolution chemical exchange saturation transfer at 9.4 T allows deeper insights into the Z-spectrum structure of the human brain, and provides many different contrasts showing different correlations in healthy tissue and in tumor-affected areas of the brain, generating hypotheses for future investigations of in-vivo-CEST at UHF. Copyright © 2018 Elsevier Inc. All rights reserved.
Image transfer by cascaded stack of photonic crystal and air layers.
Shen, C; Michielsen, K; De Raedt, H
2006-01-23
We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and the surface termination, the image can be transfered by the stack with very little deterioration of the resolution, that is the resolution of the final image is approximately the same as the resolution of the image formed behind one single photonic crystal slab.
Chemical exchange rotation transfer imaging of intermediate-exchanging amines at 2 ppm.
Zu, Zhongliang; Louie, Elizabeth A; Lin, Eugene C; Jiang, Xiaoyu; Does, Mark D; Gore, John C; Gochberg, Daniel F
2017-10-01
Chemical exchange saturation transfer (CEST) imaging of amine protons exchanging at intermediate rates and whose chemical shift is around 2 ppm may provide a means of mapping creatine. However, the quantification of this effect may be compromised by the influence of overlapping CEST signals from fast-exchanging amines and hydroxyls. We aimed to investigate the exchange rate filtering effect of a variation of CEST, named chemical exchange rotation transfer (CERT), as a means of isolating creatine contributions at around 2 ppm from other overlapping signals. Simulations were performed to study the filtering effects of CERT for the selection of transfer effects from protons of specific exchange rates. Control samples containing the main metabolites in brain, bovine serum albumin (BSA) and egg white albumen (EWA) at their physiological concentrations and pH were used to study the ability of CERT to isolate molecules with amines at 2 ppm that exchange at intermediate rates, and corresponding methods were used for in vivo rat brain imaging. Simulations showed that exchange rate filtering can be combined with conventional filtering based on chemical shift. Studies on samples showed that signal contributions from creatine can be separated from those of other metabolites using this combined filter, but contributions from protein amines may still be significant. This exchange filtering can also be used for in vivo imaging. CERT provides more specific quantification of amines at 2 ppm that exchange at intermediate rates compared with conventional CEST imaging. Copyright © 2017 John Wiley & Sons, Ltd.
van den Eertwegh, Valerie; van Dulmen, Sandra; van Dalen, Jan; Scherpbier, Albert J J A; van der Vleuten, Cees P M
2013-02-01
In order to reduce the inconsistencies of findings and the apparent low transfer of communication skills from training to medical practice, this narrative review identifies some main gaps in research on medical communication skills training and presents insights from theories on learning and transfer to broaden the view for future research. Relevant literature was identified using Pubmed, GoogleScholar, Cochrane database, and Web of Science; and analyzed using an iterative procedure. Research findings on the effectiveness of medical communication training still show inconsistencies and variability. Contemporary theories on learning based on a constructivist paradigm offer the following insights: acquisition of knowledge and skills should be viewed as an ongoing process of exchange between the learner and his environment, so called lifelong learning. This process can neither be atomized nor separated from the context in which it occurs. Four contemporary approaches are presented as examples. The following shift in focus for future research is proposed: beyond isolated single factor effectiveness studies toward constructivist, non-reductionistic studies integrating the context. Future research should investigate how constructivist approaches can be used in the medical context to increase effective learning and transition of communication skills. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Messer, C; Zander, A; Arnolds, I V; Nickel, S; Schuster, M
2015-12-01
In most hospitals the operating rooms (OR) are separated from the rest of the hospital by transfer rooms where patients have to pass through for reasons of hygiene. In the OR transfer room patients are placed on the OR table before surgery and returned to the hospital bed after surgery. It could happen that the number of patients who need to pass through a transfer room at a certain point in time exceed the number of available transfer rooms. As a result the transfer rooms become a bottleneck where patients have to wait and which, in turn, may lead to delays in the OR suite. In this study the ability of a discrete event simulation to analyze the effect of the duration of surgery and the number of ORs on the number of OR transfer rooms needed was investigated. This study was based on a discrete event simulation model developed with the simulation software AnyLogic®. The model studied the effects of the number of OR transfer rooms on the processes in an OR suite of a community hospital by varying the number of ORs from one to eight and using different surgical portfolios. Probability distributions for the process duration of induction, surgery and recovery and transfer room processes were calculated on the basis of real data from the community hospital studied. Furthermore, using a generic simulation model the effect of the average duration of surgery on the number of OR transfer rooms needed was examined. The discrete event simulation model enabled the analysis of both quantitative as well as qualitative changes in the OR process and setting. Key performance indicators of the simulation model were patient throughput per day, the probability of waiting and duration of waiting time in front of OR transfer rooms. In the case of a community hospital with 1 transfer room the average proportion of patients waiting before entering the OR was 17.9 % ± 9.7 % with 3 ORs, 37.6 % ± 9.7 % with 5 ORs and 62.9 % ± 9.1 % with 8 ORs. The average waiting time of patients in the setting with 3 ORs was 3.1 ± 2.7 min, with 5 ORs 5.0 ± 5.8 min and with 8 ORs 11.5 ± 12.5 min. Based on this study the community hospital needs a second transfer room starting from 4 ORs so that there is no bottleneck for the subsequent OR processes. The average patient throughput in a setting with 4 ORs increased significantly by 0.3 patients per day when a second transfer room is available. The generic model showed a strong effect of the average duration of surgery on the number of transfer rooms needed. There was no linear correlation between the number of transfer rooms and the number of ORs. The shorter the average duration of surgery, the earlier an additional transfer room is required. Thus, hospitals with shorter duration of surgery and fewer ORs may need the same or more transfer rooms than a hospital with longer duration of surgery and more ORs. However, with respect to an economic analysis, the costs and benefits of installing additional OR transfer rooms need to be calculated using the profit margins of the specific hospital.
Abbas, Syed Ali; Ding, Jiang; Wu, Sheng Hui; Fang, Jason; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Lee, Li Wei; Wang, Pen-Cheng; Chang, Chien-Cheng; Chu, Chih Wei
2017-12-26
In this paper we describe a modified (AEG/CH) coated separator for Li-S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems.
Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)
2010-09-28
augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions
The influence of distance on movement of tabanids (Diptera: Tabanidae) between horses.
Barros, A T M; Foil, L D
2007-03-31
Two studies evaluated the potential use of spatial barriers to reduce the mechanical transmission of disease agents by tabanids in the Pantanal region of Brazil. Tabanids at stations separated by four different distances (5, 10, 25, and 50m) were marked. In the first study, tabanids were marked and allowed to feed until engorgement or natural interruption occurred and captured if they transferred to the other horse. A total of 2847 tabanids belonging to nine different species were marked. The percentage of tabanids that moved between horses was 10.5 at 5m, 6.8 at 10m, and 4.6 at 25m. In the second study, flies were marked, feeding was then interrupted, and the flies were released approximately 50cm from the host. A total of 1274 tabanids belonging to five different species were marked. The percentage of flies that moved between horses was 9.7 at 5m, 9.7 at 10m, and 4.6 at 25m. No tabanids transferred between animals separated by 50m in either experiment. The results of this study strongly support the recommendation that segregation of animals effectively prevents the mechanical transmission of pathogens by tabanids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Pápai, M.; Hirsch, A.
Metalloporphyrins are prominent building blocks in the synthetic toolbox of advanced photodriven molecular devices. When the central ion is paramagnetic, the relaxation pathways within the manifold of excited states are highly intricate so that unravelling the intramolecular energy and electron transfer processes is usually a very complex task. This fact is critically hampering the development of applications based on the enhanced coupling offered by the electronic exchange interaction. In this work, the dynamics of charge separation in a copper porphyrin-fullerene are studied with several complementary spectroscopic tools across the electromagnetic spectrum (from near infra-red to X-ray wavelengths), each of themmore » providing specific diagnostics. Correlating the various rates clearly demonstrates that the lifetime of the photoinduced charge-separated state exceeds by about 10 fold that of the isolated photoexcited CuII porphyrin. As revealed by the spectral modifications in the XANES region, this stabilization is accompanied by a transient change in covalency around the CuII center, which is induced by an enhanced interaction with the C60 moiety. This experimental finding is further confirmed by state-of-the art calculations using DFT and TD-DFT including dispersion effects that explain the electrostatic and structural origins of this interaction, as the CuIIP cation becomes ruffled and approaches closer to the fullerene in the charge-separated state. From a methodological point of view, these results exemplify the potential of multielectron excitation features in transient X-ray spectra as future diagnostics of sub-femtosecond electronic dynamics. From a practical point of view, this work is paving the way for elucidating out-of-equilibrium electron transfer events coupled to magnetic interaction processes on their intrinsic time-scales.« less
Nanoscale pillar arrays for separations
Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...
2015-04-01
The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less
Wang, Zhiliang; Zong, Xu; Gao, Yuying; Han, Jingfeng; Xu, Zhiqiang; Li, Zheng; Ding, Chunmei; Wang, Shengyang; Li, Can
2017-09-13
Photoelectrochemical water splitting provides an attractive way to store solar energy in molecular hydrogen as a kind of sustainable fuel. To achieve high solar conversion efficiency, the most stringent criteria are effective charge separation and injection in electrodes. Herein, efficient photoelectrochemical water oxidation is realized by optimizing charge separation and surface charge transfer of GaN:ZnO photoanode. The charge separation can be greatly improved through modified moisture-assisted nitridation and HCl acid treatment, by which the interfaces in GaN:ZnO solid solution particles are optimized and recombination centers existing at the interfaces are depressed in GaN:ZnO photoanode. Moreover, a multimetal phosphide of NiCoFeP was employed as water oxidation cocatalyst to improve the charge injection at the photoanode/electrolyte interface. Consequently, it significantly decreases the overpotential and brings the photocurrent to a benchmark of 3.9 mA cm -2 at 1.23 V vs RHE and a solar conversion efficiency over 1% was obtained.
Separation analysis, a tool for analyzing multigrid algorithms
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1995-01-01
The separation of vectors by multigrid (MG) algorithms is applied to the study of convergence and to the prediction of the performance of MG algorithms. The separation operator for a two level cycle algorithm is derived. It is used to analyze the efficiency of the cycle when mixing of eigenvectors occurs. In particular cases the separation analysis reduces to Fourier type analysis. The separation operator of a two level cycle for a Schridubger eigenvalue problem, is derived and analyzed in a Fourier basis. Separation analysis gives information on how to choose performance relaxations and inter-level transfers. Separation analysis is a tool for analyzing and designing algorithms, and for optimizing their performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftus, M J; Hochreiter, L E; McGuire, M F
This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.
Lordgooei, M.; Sagen, J.; Rood, M.J.; Rostam-Abadi, M.
1998-01-01
A new activated-carbon fiber-cloth (ACFC) adsorber coupled with an electrothermal regenerator and a cryogenic condenser was designed and developed to efficiently capture and recover toxic chemical vapors (TCVs) from simulated industrial gas streams. The system was characterized for adsorption by ACFC, electrothermal desorption, and cryogenic condensation to separate acetone and methyl ethyl ketone from gas streams. Adsorption dynamics are numerically modeled to predict system characteristics during scale-up and optimization of the process in the future. The model requires diffusivities of TCVs into an activated-carbon fiber (ACF) as an input. Effective diffusivities of TCVs into ACFs were modeled as a function of temperature, concentration, and pore size distribution. Effective diffusivities for acetone at 65 ??C and 30-60 ppmv were measured using a chromatography method. The energy factor for surface diffusion was determined from comparison between the experimental and modeled effective diffusivities. The modeled effective diffusivities were used in a dispersive computational model to predict mass transfer zones of TCVs in fixed beds of ACFC under realistic conditions for industrial applications.
5 CFR 2641.302 - Separate agency components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... primarily focusing on cancer research. The agency had been designated as a distinct and separate component... Agency for Cancer Research. Approximately 20% of the employees of the former agency are transferred to various other parts of the Department to continue their work on medical research unrelated to cancer. The...
5 CFR 2641.302 - Separate agency components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... primarily focusing on cancer research. The agency had been designated as a distinct and separate component... Agency for Cancer Research. Approximately 20% of the employees of the former agency are transferred to various other parts of the Department to continue their work on medical research unrelated to cancer. The...
5 CFR 2641.302 - Separate agency components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... primarily focusing on cancer research. The agency had been designated as a distinct and separate component... Agency for Cancer Research. Approximately 20% of the employees of the former agency are transferred to various other parts of the Department to continue their work on medical research unrelated to cancer. The...
5 CFR 2641.302 - Separate agency components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... primarily focusing on cancer research. The agency had been designated as a distinct and separate component... Agency for Cancer Research. Approximately 20% of the employees of the former agency are transferred to various other parts of the Department to continue their work on medical research unrelated to cancer. The...
Chandrasekhar, Arunkumar; Alluri, Nagamalleswara Rao; Sudhakaran, M S P; Mok, Young Sun; Kim, Sang-Jae
2017-07-20
A Smart Mobile Pouch Triboelectric Nanogenerator (SMP-TENG) is introduced as a promising eco-friendly approach for scavenging biomechanical energy for powering next generation intelligent devices and smart phones. This is a cost-effective and robust method for harvesting energy from human motion, by utilizing worn fabrics as a contact material. The SMP-TENG is capable of harvesting energy in two operational modes: lateral sliding and vertical contact and separation. Moreover, the SMP-TENG can also act as a self-powered emergency flashlight and self-powered pedometer during normal human motion. A wireless power transmission setup integrated with SMP-TENG is demonstrated. This upgrades the traditional energy harvesting device into a self-powered wireless power transfer SMP-TENG. The wirelessly transferred power can be used to charge a Li-ion battery and light LEDs. The SMP-TENG opens a wide range of opportunities in the field of self-powered devices and low maintenance energy harvesting systems for portable and wearable electronic gadgets.
Flirting with death: the role of father in containment of sexually perverse behavior.
Koritar, Endre
2013-12-01
The author demonstrates, through clinical case illustration, how sexual perversion is linked to traumatic early separation-individuation processes. The illusion of fusion with a seductive and gratifying mother-introject led a young man into the risky business of unprotected gay sex with strangers. The pleasure-seeking child and enabling mother narrative was played out in the transference/counter-transference relationship threatening to pervert the analysis. Authoritative limit setting re-introduced a potent, previously castrated, father figure into the patient's inner world and gave the patient impetus to separate from the undifferentiated mix-up between mother and child, resulting in containment of dangerous sexual behaviors.
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong
2017-01-05
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
Liu, Junxue; Leng, Jing; Wu, Kaifeng; Zhang, Jun; Jin, Shengye
2017-02-01
Two-dimensional (2D) organolead halide perovskites are promising for various optoelectronic applications. Here we report a unique spontaneous charge (electron/hole) separation property in multilayered (BA) 2 (MA) n-1 Pb n I 3n+1 (BA = CH 3 (CH 2 ) 3 NH 3 + , MA = CH 3 NH 3 + ) 2D perovskite films by studying the charge carrier dynamics using ultrafast transient absorption and photoluminescence spectroscopy. Surprisingly, the 2D perovskite films, although nominally prepared as "n = 4", are found to be mixture of multiple perovskite phases, with n = 2, 3, 4 and ≈ ∞, that naturally align in the order of n along the direction perpendicular to the substrate. Driven by the band alignment between 2D perovskites phases, we observe consecutive photoinduced electron transfer from small-n to large-n phases and hole transfer in the opposite direction on hundreds of picoseconds inside the 2D film of ∼358 nm thickness. This internal charge transfer efficiently separates electrons and holes to the upper and bottom surfaces of the films, which is a unique property beneficial for applications in photovoltaics and other optoelectronics devices.
Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy
Niklas, Jens; Poluektov, Oleg
2017-03-03
Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less
NASA Astrophysics Data System (ADS)
Feron, Krishna; Thameel, Mahir N.; Al-Mudhaffer, Mohammed F.; Zhou, Xiaojing; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.
2017-03-01
Electronic energy level engineering, with the aim to improve the power conversion efficiency in ternary organic solar cells, is a complex problem since multiple charge transfer steps and exciton dissociation driving forces must be considered. Here, we examine exciton dissociation in the ternary system poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester:2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (P3HT:PCBM:DIBSq). Even though the energy level diagram suggests that exciton dissociation at the P3HT:DIBSq interface should be efficient, electron paramagnetic resonance and external quantum efficiency measurements of planar devices show that this interface is not capable of generating separated charge carriers. Efficient exciton dissociation is still realised via energy transfer, which transports excitons from the P3HT:DIBSq interface to the DIBSq:PCBM interface, where separated charge carriers can be generated efficiently. This work demonstrates that energy level diagrams alone cannot be relied upon to predict the exciton dissociation and charge separation capability of an organic semiconductor interface and that energy transfer relaxes the energy level constraints for optimised multi-component organic solar cells.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng
2018-01-01
Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.
Radiant heat exchange calculations in radiantly heated and cooled enclosures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, K.S.; Zhang, P.
1995-08-01
This paper presents the development of a three-dimensional mathematical model to compute the radiant heat exchange between surfaces separated by a transparent and/or opaque medium. The model formulation accommodates arbitrary arrangements of the interior surfaces, as well as arbitrary placement of obstacles within the enclosure. The discrete ordinates radiation model is applied and has the capability to analyze the effect of irregular geometries and diverse surface temperatures and radiative properties. The model is verified by comparing calculated heat transfer rates to heat transfer rates determined from the exact radiosity method for four different enclosures. The four enclosures were selected tomore » provide a wide range of verification. This three-dimensional model based on the discrete ordinates method can be applied to a building to assist the design engineer in sizing a radiant heating system. By coupling this model with a convective and conductive heat transfer model and a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater location. In addition, objects such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the performance of the radiant heating system.« less
Neural correlates of training and transfer effects in working memory in older adults.
Heinzel, Stephan; Lorenz, Robert C; Pelz, Patricia; Heinz, Andreas; Walter, Henrik; Kathmann, Norbert; Rapp, Michael A; Stelzel, Christine
2016-07-01
As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12sessions (45min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Assessing the scalability of dynamic field gradient focusing by linear modeling
Tracy, Noah I.; Ivory, Cornelius F.
2010-01-01
Dynamic field gradient focusing (DFGF) separates and concentrates proteins in native buffers, where proteins are most soluble, using a computer-controlled electric field gradient which lets the operator adjust the pace and resolution of the separation in real-time. The work in this paper assessed whether DFGF could be scaled up from microgram analytical-scale protein loads to milligram preparative-scale loads. Linear modeling of the electric potential, protein transport, and heat transfer simulated the performance of a preparative-scale DFGF instrument. The electric potential model showed where the electrodes should be placed to optimize the shape and strength of the electric field gradient. Results from the protein transport model suggested that in 10 min the device should separate 10 mg each of two proteins whose electrophoretic mobilities differ by 5 ×. Proteins with electrophoretic mobilities differing by only 5% should separate in 3 h. The heat transfer model showed that the preparative DFGF design could dissipate 1 kW of Joule heat while keeping the separation chamber at 25°C. Model results pointed to DFGF successfully scaling up by 1000 × using the proposed instrument design. PMID:18196522
Xu, Caiyun; Liu, Hang; Li, Dandan; Su, Ji-Hu; Jiang, Hai-Long
2018-03-28
The selective aerobic oxidative coupling of amines under mild conditions is an important laboratory and commercial procedure yet a great challenge. In this work, a porphyrinic metal-organic framework, PCN-222, was employed to catalyze the reaction. Upon visible light irradiation, the semiconductor-like behavior of PCN-222 initiates charge separation, evidently generating oxygen-centered active sites in Zr-oxo clusters indicated by enhanced porphyrin π-cation radical signals. The photogenerated electrons and holes further activate oxygen and amines, respectively, to give the corresponding redox products, both of which have been detected for the first time. The porphyrin motifs generate singlet oxygen based on energy transfer to further promote the reaction. As a result, PCN-222 exhibits excellent photocatalytic activity, selectivity and recyclability, far superior to its organic counterpart, for the reaction under ambient conditions via combined energy and charge transfer.
Vega, Mario G; Gleicher, Norbert; Darmon, Sarah K; Weghofer, Andrea; Wu, Yan-Guang; Wang, Qi; Zhang, Lin; Albertini, David F; Barad, David H; Kushnir, Vitaly A
2016-09-01
Outcome measures of IVF success, which account for effectiveness of IVF and perinatal outcome risks, have recently been described. The association between number of embryos transferred in average and poor-prognosis IVF patients, and the chances of having good or poor IVF and perinatal outcomes, was investigated. Good IVF and perinatal outcome was defined as the birth of a live, term, normal-weight infant (≥2500 g). Poor IVF and perinatal outcome was defined as no live birth or birth of a very low weight neonate (<1500 g) or severe prematurity (birth at <32 weeks gestation). Each neonate was analysed as a separate outcome. A total of 713 IVF cycles in 504 average and poor-prognosis patients from January 2010 to December 2013 were identified. The odds of having good IVF and perinatal outcomes increased by 28% for each additional embryo transferred. The odds of poor IVF and perinatal outcome decreased by 32% with an additional embryo transferred. The likelihood of live birth with good perinatal outcome in average- and poor-prognosis patients after IVF increases with additional embryos being transferred. These data add to recently reported evidence in favour of multiple embryo transfer in older women and those with average or poor IVF prognosis. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
A Two-Time Scale Decentralized Model Predictive Controller Based on Input and Output Model
Niu, Jian; Zhao, Jun; Xu, Zuhua; Qian, Jixin
2009-01-01
A decentralized model predictive controller applicable for some systems which exhibit different dynamic characteristics in different channels was presented in this paper. These systems can be regarded as combinations of a fast model and a slow model, the response speeds of which are in two-time scale. Because most practical models used for control are obtained in the form of transfer function matrix by plant tests, a singular perturbation method was firstly used to separate the original transfer function matrix into two models in two-time scale. Then a decentralized model predictive controller was designed based on the two models derived from the original system. And the stability of the control method was proved. Simulations showed that the method was effective. PMID:19834542
Extraction of dye from aqueous solution in rotating packed bed.
Modak, Jayant B; Bhowal, Avijit; Datta, Siddhartha
2016-03-05
The influence of centrifugal acceleration on mass transfer rates in liquid-liquid extraction was investigated experimentally in rotating packed bed (RPB) contactor. The extraction of methyl red using xylene was studied in the equipment. The effect of rotational speed (300-900rpm), flow rate of the aqueous (4.17-20.8×10(-6)m(3)/s), and organic phase (0.83-2.5×10(-6)m(3)/s) on the mass transfer performance was examined. The maximum stage efficiency attained was ∼0.98 at aqueous to organic flow rate ratio of 10. The results suggest that contactor volume required to carry out a given separation can be reduced by an order of magnitude with RPB in comparison to conventional extractors. Copyright © 2015 Elsevier B.V. All rights reserved.
Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly
NASA Technical Reports Server (NTRS)
Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.
1976-01-01
The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.
Schueuermann, C; Bremer, P; Silcock, P
2017-09-01
This study investigated the effect of vineyard site on the volatile profiles of Pinot Noir wines using proton-transfer reaction mass spectrometry with prior headspace dilution. The ANOVA and PCA enabled discrimination of wine based on vineyard site. Sample separation was due to differences in the ratios of a mixture of compounds, including higher alcohols, ethyl, and acetate esters. Proton-transfer reaction mass spectrometry appears to be a useful technique for rapidly discriminating wines based on vineyard site. The similarities and differences expressed in the wines' volatile profiles may help winemakers to reveal the potential of individual vineyard sites to produce wines of certain character. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Enthalpies of solvation for dopamine hydrochloride in water-ethanol solutions
NASA Astrophysics Data System (ADS)
Vandyshev, V. N.; Ledenkov, S. F.; Molchanov, A. S.
2012-10-01
The enthalpies of dissolution of dopamine hydrochloride (H2Dop · HCl) in water-ethanol solvents containing from 0 to 0.8 mole fraction of ethanol are measured by calorimetry at 298.15 K. Standard enthalpies of transfer (Δtr H ∘) for the molecular (H2Dop) and cationic (H3Dop+) forms of dopamine from water into binary solvents are calculated from the obtained data. The enthalpies of transfer of H3Dop+ cation are determined from the enthalpies of dissolution of H2Dop · HCl using the familiar method of separating the molar quantities into ionic contributions (Ph4P+ = BPh{4/-}), and by an original alternative procedure. The effect of the composition of the binary solvent on the solvation of dopamine is considered.
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.; Abbassi, P.; Afifi, F.; Khandhar, P. K.; Ono, D. Y.; Chen, W. E. W.
1987-01-01
The research and development work on Fountain Effect Pump Systems (FEP systems) has been of interest in the competition between mechanical pumps for He II and FEP units. The latter do not have moving parts. In the course of the work, the energetics have been addressed using one part of a simple four-changes-of-state cycle. One option is the FEP ideal change of state at constant chemical potential (mu). The other option is the two-state sequence mu-P with a d mu=0 state change followed by an isobar. Questions of pump behavior, of flow rate response to temperature difference at the hot end, and related questions of thermodynamic cycle completion and heat transfer have been addressed. Porous media data obtained elucidate differences between vapor-liquid phase separation (VLPS) and Zero Net Mass Transfer (ZNMF).
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
Shi, Wen-Jing; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P
2013-08-19
An efficient functional mimic of the photosynthetic antenna-reaction center has been designed and synthesized. The model contains a near-infrared-absorbing aza-boron-dipyrromethene (ADP) that is connected to a monostyryl boron-dipyrromethene (BDP) by a click reaction and to a fullerene (C60 ) using the Prato reaction. The intramolecular photoinduced energy and electron-transfer processes of this triad as well as the corresponding dyads BDP-ADP and ADP-C60 have been studied with steady-state and time-resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge-separated states. Such calculations show that electron transfer from the singlet excited ADP ((1) ADP*) to C60 yielding ADP(.+) -C60 (.-) is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from (1) BDP* to ADP in the dyad BDP-ADP and electron transfer from (1) ADP* to C60 in the dyad ADP-C60 . Sequential energy and electron transfer have also been clearly observed in the triad BDP-ADP-C60 . By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈10(11) s(-1) ). The dynamics of electron transfer through (1) ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge-separation process from (1) ADP* to C60 has been detected, which gives the relatively long-lived BDP-ADP(.+) C60 (.-) with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge-separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP-ADP and ADP-C60 , and the triad BDP-ADP-C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effective network inference through multivariate information transfer estimation
NASA Astrophysics Data System (ADS)
Dahlqvist, Carl-Henrik; Gnabo, Jean-Yves
2018-06-01
Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called "global silencing" approach of Barzel and Barabasi or "network deconvolution" of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank's centrality measurements relate to bank's systemic vulnerability.
NASA Astrophysics Data System (ADS)
Nouri-Borujerdi, Ali; Moazezi, Arash
2018-01-01
The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In the thick wall, the energy equation is obtained by Laplace equation. A multi-block approach is used to perform parallel computing to reduce the CPU time. Each block is modeled separately by sharing boundary conditions with neighbors. The developed program for modeling was written in FORTRAN language with OpenMP API. The obtained results showed that using of the multi-block parallel computing method is a simple robust scheme with high performance and high-order accurate. Moreover, the obtained results demonstrated that the increment of Reynolds number and obstacle height as well as decrement of horizontal distance between the obstacle and the step improve the heat transfer.
Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.
von Ballmoos, Christoph; Lachmann, Peter; Gennis, Robert B; Ädelroth, Pia; Brzezinski, Peter
2012-06-05
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1 H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
Jiang, Dan; Gao, Fei; Zhang, Yuelin; Wong, David Sai Hung; Li, Qing; Tse, Hung-Fat; Xu, Goufeng; Yu, Zhendong; Lian, Qizhou
2016-11-10
Recent studies have demonstrated that mesenchymal stem cells (MSCs) can donate mitochondria to airway epithelial cells and rescue mitochondrial damage in lung injury. We sought to determine whether MSCs could donate mitochondria and protect against oxidative stress-induced mitochondrial dysfunction in the cornea. Co-culturing of MSCs and corneal epithelial cells (CECs) indicated that the efficiency of mitochondrial transfer from MSCs to CECs was enhanced by Rotenone (Rot)-induced oxidative stress. The efficient mitochondrial transfer was associated with increased formation of tunneling nanotubes (TNTs) between MSCs and CECs, tubular connections that allowed direct intercellular communication. Separation of MSCs and CECs by a transwell culture system revealed no mitochiondrial transfer from MSCs to CECs and mitochondrial function was impaired when CECs were exposed to Rot challenge. CECs with or without mitochondrial transfer from MSCs displayed a distinct survival capacity and mitochondrial oxygen consumption rate. Mechanistically, increased filopodia outgrowth in CECs for TNT formation was associated with oxidative inflammation-activated NFκB/TNFαip2 signaling pathways that could be attenuated by reactive oxygen species scavenger N-acetylcysteine (NAC) treatment. Furthermore, MSCs grown on a decellularized porcine corneal scaffold were transplanted onto an alkali-injured eye in a rabbit model. Enhanced corneal wound healing was evident following healthy MSC scaffold transplantation. And transferred mitochondria was detected in corneal epithelium. In conclusion, mitochondrial transfer from MSCs provides novel protection for the cornea against oxidative stress-induced mitochondrial damage. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.
Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2
NASA Astrophysics Data System (ADS)
Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef
2018-02-01
The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO2) via the observation of a positive absorption signal (at λ pr > 610 nm) at later delay times. An electron transfer rate of 7 × 1010 s-1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO2.
Wang, Junhui; Ding, Tao; Wu, Kaifeng
2018-06-12
In multielectron photocatalytic reactions, an absorbed photon triggers charge transfer from the light-harvester to the attached catalyst, leaving behind a charge of the opposite sign in the light-harvester. If this charge is not scavenged before the absorption of the following photons, photoexcitation generates not neutral but charged excitons from which the extraction of charges should become more difficult. This is potentially an efficiency-limiting intermediate event in multielectron photocatalysis. To study the charge dynamics in this event, we doped CdS nanocrystal quantum dots (QDs) with an extra electron and measured hole transfer from n-doped QDs to attached acceptors. We find that the Auger decay of charged excitons lowers the charge separation yield to 68.6% from 98.4% for neutral excitons. In addition, the hole transfer rate in the presence of two electrons (1290 ps) is slower than that in the presence one electron (776 ps), and the recombination rate of charge separated states is about 2 times faster in the former case. This model study provides important insights into possible efficiency-limiting intermediate events involved in photocatalysis.
Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2.
Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef
2018-01-05
The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO 2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO 2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO 2 ) via the observation of a positive absorption signal (at λ pr > 610 nm) at later delay times. An electron transfer rate of 7 × 10 10 s -1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO 2 .
Kopetz, Karen J; Kolossov, Vladimir L; Rebeiz, Constantin A
2004-06-15
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.
VOLATILIZATION OF ALKYLBENZENES FROM WATER.
Rathbun, R.E.; Tai, D.Y.
1985-01-01
Volatilization is a physical process of importance in determining the fate of many organic compounds in streams and rivers. This process is frequently described by the conceptual-two-film model. The model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the water and air films are related to an overall mass-transfer coefficient for volatilization through the Henry's law constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niccoli, G.
The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operatorsmore » by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.« less
NASA Astrophysics Data System (ADS)
Shand, M. A.; Rodgers, M. A. J.; Webber, S. E.
1991-02-01
Picosecond absorption studies of photoinduced electron transfer between aromatic chromophores bound to polymethacrylic acid (P) and methylviologen (MV 2+ have been carried out in aqueous solution. The diphenylanthracene copolymer/viologen system at pH 2.8 shows the corresponding redox products DPA + rad and MV + rad arising from the singlet state of DPA with a forward rate constant of electron transfer of 2.6 × 10 9 s -1. At pH 9.0 the quenching of the S 1 state of DPA occurs with no charge separated products being observed. The pyrene copolymer shows no evidence of charge separated products at any pH in the range 2.8-9.0. It is proposed that the differences in the radical pair kinetics arise from differences in the degree of binding of the ground state complexes formed by the donor and acceptor species.
Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo
2010-09-17
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.
McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.
2010-01-01
Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siw, Sin Chien; Chyu, Minking K.; Shih, Tom I. -P.
2012-01-01
Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W=76.2 mm, E=25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D=6.35 mm=¼E, three different pin-fin height-to-diameter ratios, H/D=4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D=0, 1, 2, respectively. The Reynolds number, based onmore » the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D=1, i.e., H/D=3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D=0 and C/D=2, i.e., H/D=4 or 2, respectively.« less
Influence of Spacer Systems on Heat Transfer in Evacuated Glazing
NASA Astrophysics Data System (ADS)
Swimm, K.; Weinläder, H.; Ebert, H.-P.
2009-06-01
One attractive possibility to essentially improve the insulation properties of glazing is to evacuate the space between the glass panes. This eliminates heat transport due to convection between the glass panes and suppresses the thermal conductivity of the remaining low pressure filling gas atmosphere. The glass panes can be prevented from collapsing by using a matrix of spacers. These spacers, however, increase heat transfer between the glass panes. To quantify this effect, heat transfer through samples of evacuated glazing was experimentally determined. The samples were prepared with different kinds of spacer materials and spacer distances. The measurements were performed with a guarded hot-plate apparatus under steady-state conditions and at room temperature. The measuring chamber of the guarded hot plate was evacuated to < 10-2 Pa. An external pressure load of 0.1 MPa was applied on the samples to ensure realistic system conditions. Radiative heat transfer was significantly reduced by preparing the samples with a low- ɛ coating on one of the glass panes. In a first step, measurements without any spacers allowed quantification of the amount of radiative heat transfer. With these data, the measurements with spacers could be corrected to separate the effect of the spacers on thermal heat transfer. The influence of the thermal conductivity of the spacer material, as well as the distance between the spacers and the spacer geometry, was experimentally investigated and showed good agreement with simulation results. For mechanically stable matrices with cylindrical spacers, experimental thermal conductance values ≤0.44W·m-2 ·K-1 were found. This shows that U g -values of about 0.5W · m-2 · K-1 are achievable in evacuated glazing, if highly efficient low-emissivity coatings are used.
Propagation of eigenmodes and transfer functions in waveguide WDM structures
NASA Astrophysics Data System (ADS)
Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk
1998-02-01
A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.
Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong
2013-01-01
In recent years, China’s developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer. PMID:23301152
NASA Astrophysics Data System (ADS)
Zheng, Weiwei; Wang, Xia; Tian, Dajun; Jiang, Songhui; Andersen, Melvin E.; He, Genhsjeng; Crabbe, M. James C.; Zheng, Yuxin; Zhong, Yang; Qu, Weidong
2013-01-01
In recent years, China's developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. We have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. Our results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer.
Separation of metal ions in nitrate solution by ultrasonic atomization
NASA Astrophysics Data System (ADS)
Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka
2004-11-01
In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.
Restricted transfer of learning between unimanual and bimanual finger sequences.
Yokoi, Atsushi; Bai, Wenjun; Diedrichsen, Jörn
2017-03-01
When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
He, Chenye; Bu, Xiuming; Yang, Siwei; He, Peng; Ding, Guqiao; Xie, Xiaoming
2018-04-01
Direct growth of high quality graphene on the surface of SrTiO3 (STO) was realized through chemical vapor deposition (CVD), to construct few-layer 'graphene shell' on every STO nanoparticle. The STO/graphene composite shows significantly enhanced UV light photocatalytic activity compared with the STO/rGO reference. Mechanism analysis confirms the role of special core-shell structure and chemical bond (Tisbnd C) for rapid interfacial electron transfer and effective electron-hole separation.
2014-10-20
unless it hops, and lead to obstructed recombination for PL or charge separation for solar cells and the reduced quantum efficiencies of the...excitons (Fig. 1a and 1b). For the free-moving delocalized states of the Wannier-Mott excitons, the binding energy in silicon , for example, is around...typically encompass many unit cells and typically exist in materials of small bandgap and large dielectric constant. In converse, the the tightly
Method of isotope separation by chemi-ionization
Wexler, Sol; Young, Charles E.
1977-05-17
A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.
Oláh, Erzsébet; Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2010-06-04
Today sub-2 microm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 microm shell particles (1.9 microm nonporous core surrounded by a 0.35 microm porous shell, Kinetex, Core-Shell), packed with other shell-type particles (Ascentis Express, Fused-Core), totally porous sub-2 microm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW=270-430) and a high molecular weight one (MW approximately 900) was conducted. This study proves that the Kinetex column packed with 2.6 microm shell particles is worthy of rivaling to sub-2 microm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency. Copyright 2010 Elsevier B.V. All rights reserved.
Zone separator for multiple zone vessels
Jones, John B.
1983-02-01
A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.
A Laboratory Exercise Illustrating the Sensitivity and Specificity of Western Blot Analysis
ERIC Educational Resources Information Center
Chang, Ming-Mei; Lovett, Janice
2011-01-01
Western blot analysis, commonly known as "Western blotting," is a standard tool in every laboratory where proteins are analyzed. It involves the separation of polypeptides in polyacrylamide gels followed by the electrophoretic transfer of the separated polypeptides onto a nitrocellulose or polyvinylidene fluoride membrane. A replica of the…
Lukianova-Hleb, Ekaterina Y.; Mutonga, Martin B. G.; Lapotko, Dmitri O.
2012-01-01
Current methods of cell processing for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in highly heterogeneous cell systems. Using the cell-specific generation of plasmonic nanobubbles of different sizes around cell-targeted gold nanoshells and nanospheres, we achieved simultaneous multifunctional cell-specific processing in a rapid single 70 ps laser pulse bulk treatment of heterogeneous cell suspension. This method supported the detection of cells, delivery of external molecular cargo to one type of cells and the concomitant destruction of another type of cells without damaging other cells in suspension, and real-time guidance of the two above cellular effects. PMID:23167546
Release strategies for making transferable semiconductor structures, devices and device components
Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J
2014-11-25
Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
Release strategies for making transferable semiconductor structures, devices and device components
Rogers, John A [Champaign, IL; Nuzzo, Ralph G [Champaign, IL; Meitl, Matthew [Raleigh, NC; Ko, Heung Cho [Urbana, IL; Yoon, Jongseung [Urbana, IL; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL
2011-04-26
Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
Release strategies for making transferable semiconductor structures, devices and device components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew
2016-05-24
Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, K. J.; Nash, R. P.; Redinbo, M. R.
The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. Inmore » this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.« less
Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film
Yu, Daoyong; Wang, Mengfei; Zhu, Guoliang; Ge, Baosheng; Liu, Shuang; Huang, Fang
2015-01-01
The macromolecular pigment-protein complex has the merit of high efficiency for light-energy capture and transfer after long-term photosynthetic evolution. Here bio-dyes of A. platensis photosystem I (PSI) and spinach light-harvesting complex II (LHCII) are spontaneously sensitized on three types of designed TiO2 films, to assess the effects of pigment-protein complex on the performance of bio-dye sensitized solar cells (SSC). Adsorption models of bio-dyes are proposed based on the 3D structures of PSI and LHCII, and the size of particles and inner pores in the TiO2 film. PSI shows its merit of high efficiency for captured energy transfer, charge separation and transfer in the electron transfer chain (ETC), and electron injection from FB to the TiO2 conducting band. After optimization, the best short current (JSC) and photoelectric conversion efficiency (η) of PSI-SSC and LHCII-SSC are 1.31 mA cm-2 and 0.47%, and 1.51 mA cm-2 and 0.52%, respectively. The potential for further improvement of this PSI based SSC is significant and could lead to better utilization of solar energy. PMID:25790735
NASA Astrophysics Data System (ADS)
Oon, Cheen Sean; Nee Yew, Sin; Chew, Bee Teng; Salim Newaz, Kazi Md; Al-Shamma'a, Ahmed; Shaw, Andy; Amiri, Ahmad
2015-05-01
Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.
Tang, Sai Chun; McDannold, Nathan J.
2015-01-01
This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems. PMID:26640745
Tang, Sai Chun; McDannold, Nathan J
2015-03-01
This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.
On the effect specificity of accessory gland products transferred by the love-dart of land snails.
Lodi, Monica; Koene, Joris M
2016-05-13
Sexual selection favours the evolution of male bioactive substances transferred during mating to enhance male reproductive success by affecting female physiology. These effects are mainly well documented for separate-sexed species. In simultaneous hermaphrodites, one of the most peculiar examples of transfer of such substances is via stabbing a so-called love-dart in land snails. This calcareous stylet delivers mucous products produced by accessory glands into the mate's haemolymph. In Cornu aspersum, this mucus temporarily causes two changes in the recipient. First, the spermatophore uptake into the spermatophore-receiving organ, called diverticulum, is probably favoured by contractions of this organ. Second, the amount of stored sperm increases by contractions of the copulatory canal, which close off the tract leading to the sperm digesting organ. However, it has yet to be determined whether these effects are similar across species, which would imply a common strategy of the dart in increasing male reproductive success. We performed a cross-reactivity test to compare the in vitro response of the diverticulum and copulatory canal of C. aspersum (Helicidae) to its own and other species' mucus (seven helicids and one bradybaenid). We found that the contractions in the diverticulum were only induced by dart mucus of certain species, while the copulatory canal responded equally to all but one species' mucus tested. In addition, we report a newly-discovered effect causing the shortening of the diverticulum, which is also only caused by dart mucus of certain species. The advantage seems to be a distance reduction to the sperm storage organ. All these findings are the first to shed light on the evolution of the different functions of accessory gland products in dart-bearing species. These functions may be achieved via common physiological changes caused by the substances contained in the dart mucus, since the responses evoked were similar across species' mucus. Moreover, while these substances can act similarly in separate-sexed species as in simultaneous hermaphrodites, differences may occur in their evolution between the two sexual systems.
Polívka, Tomas; Niedzwiedzki, Dariusz; Fuciman, Marcel; Sundström, Villy; Frank, Harry A
2007-06-28
The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.
Vehicle for Space Transfer and Recovery (VSTAR), volume 2: Substantiating analyses and data
NASA Technical Reports Server (NTRS)
1988-01-01
The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). Reference materials, calculations and trade studies used in the analysis and selection of VSTAR components. Each major VSTAR system is examined separately. Simple graphs and tables are used to make qualitative comparisons of various VSTAR component candidates. Equations and/or calculations used for a particular analysis are also included where applicable.
Puckett, Andrew J. R.; Brash, E. J.; Jones, M. K.; ...
2017-11-06
In this paper, interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G p E/G p M of the proton's electric and magnetic form factors for momentum transfers Q 2 ≳ 1 GeV 2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckett, Andrew J. R.; Brash, E. J.; Jones, M. K.
In this paper, interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G p E/G p M of the proton's electric and magnetic form factors for momentum transfers Q 2 ≳ 1 GeV 2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique.
Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis
2014-08-25
High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 80.1453 - What are the product transfer document (PTD) requirements for the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., other than ethanol, that is not registered as motor vehicle fuel under 40 CFR part 79, the PTD which is... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel... each occasion when any party transfers ownership of renewable fuels or separated RINs subject to this...
USDA-ARS?s Scientific Manuscript database
An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...
ERIC Educational Resources Information Center
Handel, Stephen J.
2009-01-01
When representatives from community colleges and selective four-year institutions gather, there is no greater flashpoint than the topic of part-time enrollment. This issue--that students coming from an institution comprising mostly part-time students should be enabled to transfer to selective four-year institutions in which full-time enrollment is…
ERIC Educational Resources Information Center
Anastasio, Daniel; McCutcheon, Jeffrey
2012-01-01
A crossflow reverse osmosis (RO) system was built for a senior-level chemical engineering unit operations laboratory course. Intended to teach students mass transfer fundamentals related to membrane separations, students tested several commercial desalination membranes, measuring water flux and salt rejections at various pressures, flow rates, and…
NASA Astrophysics Data System (ADS)
Wei, Yong; Pei, Huan; Li, Li; Zhu, Yanying
2018-06-01
We present a theoretical study on the influence of the nonlocal dielectric response on surface-enhanced resonant Raman scattering (SERRS) and fluorescence (SEF) spectra of a model molecule confined in the center of a Ag nanoparticle (NP) dimer. In the simulations, the nonlocal dielectric response caused by the electron–hole pair generation in Ag NPs was computed with the d-parameter theory, and the scattering spectra of a model molecule representing the commonly used fluorescent dye rhodamine 6G (R6G) were obtained by density-matrix calculations. The influence of the separation between Ag NP dimers on the damping rate and scattering spectra with and without the nonlocal response were systematically analyzed. The results show that the nonlocal dielectric response is very sensitive to the gap distance of the NP dimers, and it undergoes much faster decay with the increase of the separation than the radiative and energy transfer rates. The Raman and fluorescence peaks as simulated with the nonlocal dielectric response are relative weaker than that without the nonlocal effect for smaller NP separations because the extra decay rates of the nonlocal effect could reduce both the population of the excited state and the interband coherence between the ground and excited states. Our result also indicates that the nonlocal effect is more prominent on the SEF process than the SERRS process.
Wei, Yong; Pei, Huan; Li, Li; Zhu, Yanying
2018-05-04
We present a theoretical study on the influence of the nonlocal dielectric response on surface-enhanced resonant Raman scattering (SERRS) and fluorescence (SEF) spectra of a model molecule confined in the center of a Ag nanoparticle (NP) dimer. In the simulations, the nonlocal dielectric response caused by the electron-hole pair generation in Ag NPs was computed with the d-parameter theory, and the scattering spectra of a model molecule representing the commonly used fluorescent dye rhodamine 6G (R6G) were obtained by density-matrix calculations. The influence of the separation between Ag NP dimers on the damping rate and scattering spectra with and without the nonlocal response were systematically analyzed. The results show that the nonlocal dielectric response is very sensitive to the gap distance of the NP dimers, and it undergoes much faster decay with the increase of the separation than the radiative and energy transfer rates. The Raman and fluorescence peaks as simulated with the nonlocal dielectric response are relative weaker than that without the nonlocal effect for smaller NP separations because the extra decay rates of the nonlocal effect could reduce both the population of the excited state and the interband coherence between the ground and excited states. Our result also indicates that the nonlocal effect is more prominent on the SEF process than the SERRS process.
Phase separated membrane bioreactor: Results from model system studies
NASA Astrophysics Data System (ADS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
Phase separated membrane bioreactor - Results from model system studies
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.
Model system studies with a phase separated membrane bioreactor
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Lamb, J. P.; Center, K. R.; Graumann, B. W.
1971-01-01
Windward and leeward measurements were made for a variety of simulated infinite cylinders exposed to hypersonic streams over an angle of attack from 30 deg to 90 deg. For the range of conditions included in the study, the following conclusions are made: (1) Swept cylinder theory provides a reasonable correlation of the measured laminar heat transfer rates from the plane of symmetry. (2) The boundary layer transition criteria in the plane of symmetry are a function of the transverse curvature. (3) Relaminarization of the circumferential boundary layer for a right circular cylinder was observed at the highest Reynolds number tested. (4) The effect of leeside geometry on the average heat transfer rate can be correlated with a single geometric parameter which is dependent on the location of separation. (5) The relationship of leeward heating to angle of attack is virtually linear for each cross section. (6) No systematic effect of free stream Reynolds number was observed.
Extinction of cue-evoked drug-seeking relies on degrading hierarchical instrumental expectancies
Hogarth, Lee; Retzler, Chris; Munafò, Marcus R.; Tran, Dominic M.D.; Troisi, Joseph R.; Rose, Abigail K.; Jones, Andrew; Field, Matt
2014-01-01
There has long been need for a behavioural intervention that attenuates cue-evoked drug-seeking, but the optimal method remains obscure. To address this, we report three approaches to extinguish cue-evoked drug-seeking measured in a Pavlovian to instrumental transfer design, in non-treatment seeking adult smokers and alcohol drinkers. The results showed that the ability of a drug stimulus to transfer control over a separately trained drug-seeking response was not affected by the stimulus undergoing Pavlovian extinction training in experiment 1, but was abolished by the stimulus undergoing discriminative extinction training in experiment 2, and was abolished by explicit verbal instructions stating that the stimulus did not signal a more effective response-drug contingency in experiment 3. These data suggest that cue-evoked drug-seeking is mediated by a propositional hierarchical instrumental expectancy that the drug-seeking response is more likely to be rewarded in that stimulus. Methods which degraded this hierarchical expectancy were effective in the laboratory, and so may have therapeutic potential. PMID:25011113
Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes
NASA Technical Reports Server (NTRS)
Wiencek, John M.
2002-01-01
The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.
Ward, Naomi L.; Phillips, Caleb D.; Nguyen, Deanna D.; Shanmugam, Nanda Kumar N.; Song, Yan; Hodin, Richard; Shi, Hai Ning; Cherayil, Bobby J.; Goldstein, Allan M.
2017-01-01
Background The interplay between host genetics, immunity, and microbiota is central to the pathogenesis of inflammatory bowel disease (IBD). Previous population-based studies suggested a link between antibiotic use and increased IBD risk, but the mechanisms are unknown. The purpose of this study was to determine the long-term effects of antibiotic administration on microbiota composition, innate immunity, and susceptibility to colitis, as well as the mechanism by which antibiotics alter host colitogenicity. Methods Wild-type mice were given broad-spectrum antibiotics or no antibiotics for two weeks, and subsequent immunophenotyping and 16S rRNA gene sequencing-based analysis of the fecal microbiome were performed six weeks later. In a separate experiment, control and antibiotic-treated mice were given seven days of DSS, six weeks after completing antibiotic treatment, and the severity of colitis scored histologically. Fecal transfer was performed from control or antibiotic-treated mice to recipient mice whose endogenous microbiota had been cleared with antibiotics, and the susceptibility of the recipients to DSS-induced colitis was analyzed. Naïve CD4+ T cells were transferred from control and antibiotic-treated mice to immunodeficient Rag-1-/- recipients and the severity of colitis compared. Results Antibiotics led to sustained dysbiosis and changes in T-cell subpopulations, including reductions in colonic lamina propria total T cells and CD4+ T cells. Antibiotics conferred protection against DSS colitis, and this effect was transferable by fecal transplant but not by naïve T cells. Conclusions Antibiotic exposure protects against colitis, and this effect is transferable with fecal microbiota from antibiotic-treated mice, supporting a protective effect of the microbial community. PMID:27607336
NASA Astrophysics Data System (ADS)
Hoang, J.; Schwartz, Robert N.; Wang, Kang L.; Chang, J. P.
2012-09-01
We report the effects of heterogeneous Yb3+ and Er3+ codoping in Y2O3 thin films on the 1535 nm luminescence. Yb3+:Er3+:Y2O3 thin films were deposited using sequential radical enhanced atomic layer deposition. The Yb3+ energy transfer was investigated for indirect and direct excitation of the Yb 2F7/2 state using 488 nm and 976 nm sources, respectively, and the trends were described in terms of Forster and Dexter's resonant energy transfer theory and a macroscopic rate equation formalism. The addition of 11 at. % Yb resulted in an increase in the effective Er3+ photoluminescence (PL) yield at 1535 nm by a factor of 14 and 42 under 488 nm and 976 nm excitations, respectively. As the Er2O3 local thickness was increased to greater than 1.1 Å, PL quenching occurred due to strong local Er3+ ↔ Er3+ excitation migration leading to impurity quenching centers. In contrast, an increase in the local Yb2O3 thickness generally resulted in an increase in the effective Er3+ PL yield, except when the Er2O3 and Yb2O3 layers were separated by more than 2.3 Å or were adjacent, where weak Yb3+ ↔ Er3+ coupling or strong Yb3+ ↔ Yb3+ interlayer migration occurred, respectively. Finally, it is suggested that enhanced luminescence at steady state was observed under 488 nm excitation as a result of Er3+ → Yb3+ energy back transfer coupled with strong Yb3+ ↔ Yb3+ energy migration.
Field-induced exciton dissociation in PTB7-based organic solar cells
NASA Astrophysics Data System (ADS)
Gerhard, Marina; Arndt, Andreas P.; Bilal, Mühenad; Lemmer, Uli; Koch, Martin; Howard, Ian A.
2017-05-01
The physics of charge separation in organic semiconductors is a topic of ongoing research of relevance to material and device engineering. Herein, we present experimental observations of the field and temperature dependence of charge separation from singlet excitons in PTB7 and PC71BM , and from charge-transfer states created across interfaces in PTB 7 /PC71BM bulk heterojunction solar cells. We obtain this experimental data by time-resolving the near infrared emission of the states from 10 K to room temperature and electric fields from 0 to 2.5 MVcm -1 . Examining how the luminescence is quenched by field and temperature gives direct insight into the underlying physics. We observe that singlet excitons can be split by high fields, and that disorder broadens the high threshold fields needed to split the excitons. Charge-transfer (CT) states, on the other hand, can be separated by both field and temperature. Also, the data imply a strong reduction of the activation barrier for charge splitting from the CT state relative to the exciton state. The observations provided herein of the field-dependent separation of CT states as a function of temperature offer a rich data set against which theoretical models of charge separation can be rigorously tested; it should be useful for developing the more advanced theoretical models of charge separation.
Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey
2016-09-01
To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H
2016-09-14
In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.
Modeling pH-zone refining countercurrent chromatography: a dynamic approach.
Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues
2015-04-24
A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Yan; Buch, Jesse S; Rosenberger, Frederick; DeVoe, Don L; Lee, Cheng S
2004-02-01
An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.
NASA Astrophysics Data System (ADS)
Shi, Jian-Wen; Ma, Dandan; Zou, Yajun; Fan, Zhaoyang; Shi, Jinwen; Cheng, Linhao; Ji, Xin; Niu, Chunming
2018-03-01
The design of efficient and stable photocatalyst plays a critical role in the photocatalytic hydrogen evolution from water splitting. Herein, we develop a novel ZnS/CdS/ZnO ternary heterostructure by the in-situ sulfuration of CdS/ZnO, which includes four contact interfaces: CdS-ZnS interface, ZnS-ZnO interface, CdS-ZnO interface and ZnS-CdS-ZnO ternary interface, forming three charge carrier-transfer modes (type-I, type-II and direct Z-scheme) through five carrier-transfer pathways. As a result, the separation and transfer of photoexcited electron-hole pairs are promoted significantly, resulting in a high hydrogen evolution rate of 44.70 mmol h-1 g-1, which is 2, 3.7 and 8 times higher than those of binary heterostructures, CdS/ZnO, CdS/ZnS and ZnS/ZnO, respectively, and 26.5, 280 and 298 times higher than those of single CdS, ZnO and ZnS, respectively. As a counterpart ternary heterostructure, CdS/ZnS/ZnO contains only two interfaces: CdS-ZnS interface and ZnS-ZnO interface, which form two charge carrier-transfer modes (type-I and type-II) through two carrier-transfer pathways, leading to its much lower hydrogen evolution rate (27.25 mmol h-1 g-1) than ZnS/CdS/ZnO ternary heterostructure. This work is relevant for understanding the charge-transfer pathways between multi-interfaces in multicomponent heterojunctions.
Determination of urine-derived odorous compounds in a source separation sanitation system.
Liu, Bianxia; Giannis, Apostolos; Chen, Ailu; Zhang, Jiefeng; Chang, Victor W C; Wang, Jing-Yuan
2017-02-01
Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective. Copyright © 2016. Published by Elsevier B.V.
The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.
Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime
2014-12-16
RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Ângelo, Joana; Magalhães, Pedro; Andrade, Luísa; Mendes, Adélio
2016-11-01
The photocatalytic activity of a commercial titanium dioxide (P25) and of an in-house prepared P25/graphene composite is assessed according to standard ISO 22197-1:2007. The photoactivity performances of bare and composite TiO2-based materials were further studied by electrochemical impedance spectroscopy (EIS) technique to better understand the function of the graphene in the composite. EIS experiments were performed using a three-electrode configuration, which allows obtaining more detailed information about the complex charge transfer phenomena at the semiconductor/electrolyte interface. The Randles equivalent circuit was selected as the most suitable for modelling the present photocatalysts. The use of the graphene composite allows a more effective charge separation with lower charge transfer resistance and less e-/h+ recombination on the composite photocatalyst, reflected in the higher values of NO conversion.
Production of .sup.64 Cu and other radionuclides using a charged-particle accelerator
Welch, Michael J.; McCarthy, Deborah W.; Shefer, Ruth E.; Klinkowstein, Robert E.
2000-01-01
Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area. The irradiated target is remotely and automatically transferred from the target holder, preferably without transferring any target holder subassemblies, to a conveyance system which is preferably a pneumatic or hydraulic conveyance system, and then further transferred to an automated separation system. The system is effective for processing a single target or a plurality of targets. After separation, the unreacted target material can be recycled for preparation of other targets. In a preferred application of the invention, a biomedical cyclotron has been used to produce over 500 mCi of .sup.64 Cu having a specific activity of over 300 mCi/.mu.g Cu according to the reaction .sup.64 Ni(p,n).sup.64 Cu. These results indicate that accelerator-produced .sup.64 Cu is suitable for radiopharmaceutical diagnostic and therapeutic applications.